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Abstract

This M2 mémoire is broadly about the theme of p-adic variation of automorphic forms and
Galois representations, and the connection between this theme and the Langlands functoriality
conjecture. More specifically, it is about how techniques in the domain of p-adic interpolation
of automorphic forms and Galois representations were applied in a recent landmark work of
Newton and Thorne to prove that symmetric power functoriality holds for all holomorphic
modular forms of level 1 and weight £ > 2 if and only if it holds for a single one. Along the
way, we attempt to give useful explanations of the basic theory of p-adic automorphic forms
and eigenvarieties that underpins the arguments of Newton-Thorne.

There is no original content in this mémoire: it is purely an expository synthesis culled
from various sources, especially the books and papers of Bellaiche, Buzzard, Loeffler, Chenevier,

Bellaiche—Chenevier, Ye, Breuil, Breuil-Hellmann—-Schraen, and Newton-Thorne.
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Chapter 1

Introduction

NEEAFE, A=A
S, (FEAHIE)

1.1 Langlands functoriality

In this introductory first section, we follow the exposition of Emerton [Eme2021] as well as
private communication with Gaétan Chenevier in explaining the basic yoga of the (Arthur-
)Langlands conjectures. The purpose is to show how to predict the symmetric power functoriality
conjecture which this mémoire is about, and not to do the full detail of the various constructions,
which themselves could be the subject of an entire M2 mémoire.

Let G be a connected reductive algebraic group over a number field F. To this, one may
attach an “L-group” LG (see [Bor1979, Cas2001]). It will not matter much for us what it is, since
for G = GL,,/Q, depeding on the convention, the L-group can be taken to be GL,,(C).

The Langlands conjecture predicts that for G, H connected reductive groups over F', where
H is quasi-split, a homomorphism G — £ H should induce a way of going from automorphic
representations of G to automorphic representations of H. The requirement is that the relation-
ship is mediated by L-functions of the automorphic representations for the two groups, which
we now explain.

For a finite place p of I, we say that GG is unramified at p if it is quasi-split over F}, and splits
over F".

Generalizing the concept of Satake parameters [Sat1963], Langlands [Lan1970] found a way
to attach, to an arbitrary automorphic representation 7 for GG, and finite place p of F such that

both G and 7 are unramified at p a Langlands parameter, which is a é-conjugacy class ¢, in

@ X Frob,.



Equivalently, it is a @-conjugacy class of homomorphisms
Grp: Wi, x SU(2) = G = G x (Frob,)

that respect’ the canonical map Wr, — (Frob,) and are themselves unramified in the sense
that they are trivial on I, x SU(2).

The point of the Langlands parameters is that the data of the Langlands parameter ¢ com-
pletely determines ,. Being able to do this at all places p, including those in the set S of finite
places where GG and 7 are unramified, is the local Langlands conjecture (known for G = GL,
thanks to Harris— Taylor [HT2001] and Scholze [Sch2013]).

In any event, with the basic structure of how Langlands parameters work out of the way, we
can give the full detail of the statement of the Langlands functoriality conjecture:

Conjecture 1.1.1 (Langlands functoriality). Let G, H be connected reductive groups over a
number field F', with H quasi-split. Let 7 be an automorphic representation for G, and let S be
the set of finite places p of F' with the property that either G or H or 7 is not unramified at p.
Suppose we are given an L-homomorphism 7 :* G — L H. Then there exists an automorphic
representation () for H which is unramified outside of S and such that ¢, (r), = r(cy,) for

all p outside of S.

One reason why Conjecture 1.1.1 and the Langlands parameters are useful is that they are
related to L-functions of automorphic forms. In particular, the L-function of 7 as above outside
of S with respect to some representation p : “G — GL,, is defined to be

1
L(s,m, p) = | | .
S S SR CT)

In many concrete cases (e.g. those in the examples below), it is a straightforward exercise to
check that this L-function corresponds to a more classical construction. Conjecture 1.1.1 may
be restated as

Conjecture 1.1.2. Let H, G, 7w, S,r be as in Conjecture 1.1.1, and let p be an n-dimensional
representation of H. Then there exists an automorphic representation () for H such that

L3(s,m por) = L%(s,r(r),r).

This is useful because it relates, on the left hand side, an L-function whose analytic properties
we might care about (for which the finite set S really doesn’t matter), since it is not exactly the

same as an actual automorphic L-function (which would be L*(s, 7, p)), to, on the right hand

This condition is called being an L-homomorphism.



side, something which is an automorphic L-function, and therefore has good analytic properties
by the general theory (e.g. [G]1972,]51976]).

Example 1.1.3. Let H be the algebraic group corresponding to the units of a definite quaternion
algebra D/Q, and let G = GL,/Q. Since H is an inner form of G, there L-groups are the same.
On the other hand, only G is quasi-split. So Conjecture 1.1.2 predicts that to each quaternionic
modular form on D, one should be able to attach a modular form in a way that respects L-
functions, but not always in the other direction. This is the Jacquet-Langlands correspondence,
which was proved (like many other things) using the Selberg trace formula [J1.1970,GJ1979].
Indeed, since a definite quaternion algebra is by definition ramified at oo, by class field theory,
it is ramified at at least one finite place, which means the modular forms in the image of the

Jacquet-Langlands transfer cannot have level 1.

Example 1.1.4. Let G be the trivial group, and H = GL,/Q. Then we can choose the L-
group G = Gal(Q/Q). Conjecture 1.1.2 predicts that the Artin L-function of any choice of
Galois representation p : Gal(Q/Q) — GL,(C) is actually automorphic, and therefore has
analytic continuation and functional equation by [GJ1972]. In particular, the Artin conjecture is

a consequence of Conjecture 1.1.2.

Example 1.1.5. Let G = GL,/Q and H = GL,/Q, so that “G = G1,(C) and “H = GL,(C),
and we can consider the map
Sym"': G — H.

Conjecture 1.1.2 then predicts that for any modular eigenform f, the symmetric power L-function
L(s,Sym"™" f)

is actually automorphic.

The conjecture suggested by this last example is the symmetric power functoriality conjecture
for holomorphic modular forms. It was proved in a recent paper by Newton and Thorne [NT2021].
The following theorem, which is what the first half of [NT2021] is about, is the main goal of this

mémoire.

Theorem 1.1.6. Let f be an eigenform of level 1 and weightk > 2, and letn > 2. IfL(s, Sym" ' f)

n—1

is automorphic, then L(s, Sym" " g) is automorphic as well for all eigenforms g of level 1 and

weight > 2.

The method is by technique of p-adic analytic continuation, many technical details of which
will be explained in the subsequent chapters.

Later on in Conjecture 1.3.7, we will explain why the Sato—Tate conjecture is a further
concrete reason as to why symmetric power functoriality is interesting.



1.2 Galois representations associated to automorphic

forms

Intertwined with functoriality is the Arthur—Langlands conjecture, which states that cuspidal
automorphic forms on G should correspond to homomorphisms Lg — “@, where Lq is the
conjectural Langlands group. There are various technical difficulties to it, for example those
related to Arthur’s multiplicity formula, but suffice it to say for now that in some cases (and
all the cases we care about here), part of the conjecture amounts to the existence of a Galois
representation associated to an automorphic representation. For example, thanks to Deligne,
Shimura, and Deligne—-Serre [Del1971,1D51974], or alternatively by the Langlands—Kottwitz
method [Sch2011], to an eigenform f € S(I'1(IV), C), for all p not dividing N, there is a
corresponding Galois representation

pr: Gal(Q/Q) — GLa(Qy)-

At p, py is always crystalline and has Hodge-Tate weights £ — 1 and 0 [Sai1997,Pan2020].
A massive project of generalization has recently been completed by the authors of the “Paris
book project” [CH2013] and Caraiani [Car2012]. It goes as follows.

Theorem 1.2.1 (Chenevier—-Harris—Caraiani). Let F//Q be a CM field, and suppose m is an
automorphic representation of GL,,(A ) which is cuspidal, regular algebraic, and conjugate self-

dual. Then for any isomorphism ¢ : Qp — C, there exists a continuous semisimple representation

Try 't GF — GLn(Qp)

such that WD(r, )" = recp, (v"'m,) for all finite places v of F, where recy, denotes the Tate
normalization of the Local langlands correspondence [N'T2021, p. 7). In particular, for any 7 :
F,— Qp, the T-Hodge—Tate weights’ of 1y, |, are exactly

{/\LT,l + (TL - 1)7 T 7/\L7',n}a

where the (\,r;)i—1.. n are the highest weights with respect to the upper-triangular Borel of the
irreducible algebraic representation W of (Resp,qGLy)c with the same infinitesimal character as

Moo

A similar result holds for definite unitary groups, using the machinery of base change (see
[NT2021, Corollary 1.3]).
In order to explain some basic concepts that will be used later, and to make up for the fact

that we give no indication of a proof for Theorem 1.2.1, we now go ahead and explain the case

2to be explained later in this section



n = 1, where this amounts to Weil’s recipe for constructing p-adic Galois characters from
algebraic Hecke characters, and the determination of the Hodge-Tate weights of that character

(for which we follow the proof in an appendix of [Ser1989]).

1.2.1 Algebraic Hecke characters and Galois representations

The aforementioned construction due to Weil originally appeared in [Weil956].

Weil’s construction is a first entry in the theme of “transfering information at infinity to the
finite places over p while transferring the coefficient field from C to Qp,” which is a main point
of [Buz2004] and will feature prominently in the proceeding chapters. In doing it, we follow
Chenevier’s exercise [Che2010, Lecture 2, Problem 9], though we go a bit farther.

Fix a number field F, a rational prime p, an embedding ¢, : Q — C and an embedding
L Q— Qp. Let x : A7 — C* be a Hecke character.

Lemma 1.2.2. x is unramified at all but finitely many places of F'.

Proof. This is the standard “no small subgroups” argument. Being a Lie group, C* = GL,(C)
has no small subgroups. So let us choose a small open neighborhood 1 € U C C*, which is
small in the sense that it contains no nontrivial subgroup of C* (one way to prove the existence
of U, i.e. the “no small subgroups property” for Lie groups in general is by using the fact that
the exponential map g — G is an isomorphism near the identity). By continuity of x, we know
x~(U) is an open neighborhood of 1 in A¥. By definition of the topology on A%, this means
that Y~ !(U) contains a subgroup of the form

H= (HOF> < [ Ho

vEY

where X is a set of finite places of F' containing all but finitely many of the places, ¥’ is the
complement of ¥ in the set of all places of F, and H, is some open neighborhood of 1 in
F) for each v € ¥'. Finally, x(H) C U, and the fact that U is small enough to contain no
nontrivial subgroups, implies that x(H) = 1. Since all but finitely many v are in ¥, it follows
that X”‘Ofw = 1, as desired. Note that we did not use anything about C* other than that it is a
Lie group. [

Thanks to Lemma 1.2.2, it is legitimate to write x = [ ], Xo-

Lemma 1.2.3. For all finite places v of F' (not just the all but finitely many unramified ones),
Xv|o; has finite image in C*.

Proof. We do the same “no small subgroups” argument, but now we leverage also the fact that

Op, is compact. As before, let U C C* be an open neighborhood of 1 containing no nontrivial



subgroup of C*, and consider the open subset Y, (Slx (U) C Op,. The identity in Op, has a

Py
fundamental system of neighborhoods U g) =1+ p", n > 1, so we conclude that y, (U (”)) =1
for sufficiently large n. And U g) is an open subgroup of a compact group, so it is finite-index.

Hence, x kills a finite-index subgroup, which implies it has finite image. ]

Lemma 1.2.4. Suppose that x is algebraic with weights {a, },.r_.c. Then for all finite places v of
F, the subfield of C generated by the image of x, is a finite extension of Q C C. In fact, there is a
finite extension E//Q, depending only on x and the field I, such that the image of x, is contained
in E* for all finite finite places v of F'.

Proof. By Lemma 1.2.3, for any finite place w of F', x.,(Op, ) is a finite subgroup of C*. Therefore,
it lives in Q((w,,)*, where N,, = [OF, : ker Xw|(9; ]. By Lemma 1.2.2, all but finitely many of
the N, are 1, so in fact there is a fixed NV, < oo (the L.c.m. of all the IV,;) such that

Xw(OF,) C Q(CN,)™

Since we want to deal with an arbitrary number field F, there is an obstruction of nontrivial
class group (so there isn’t necessarily a 7, such that v(w,) = 1 and w(m,) = 0 for all finite
w # v, since that would mean p,, = (7,)). For now we ignore that problem, but for the purposes
of dealing with it, we rephrase the lemma as saying that the restriction of y to the finite idéles
has image contained in £ for some finite extension F/Q, where E depends only on F and Y.

We claim that
W an (F 11 0F> C L),
<00

where L is the Galois closure (viewed as a subfield of Q C C) of F//Q and F* acts on the finite
idéles just by the diagonal embedding into the finite places. The reason we have to include L is
because multiplying by = € F'* inside the finite idéles is not obtained by “restriction to subset”
from multiplying by z inside the full idéles for z € F'*, since that multiplication has an effect
on the infinite places and therefore does not necessarily take finite idéles to finite ideles. Let

rx€ F anda €] Or. . Then (using the fact that x is a Hecke character)

<00

(20 vcoe) = X((@a))X (27 Nupoo) = x(@) T] € (o@™))ola™),

o:F—C

which is indeed in L((y, ), since x(a) € Q((x, ) (that is what we proved in the first paragraph)
and the second term is in L (the Galois closure of F//Q viewed in Q C C), since it is a product of
embeddings of ' — C taken at 27! € F. The ¢,,’s, which are 1 when ¢ is complex and either 1
or sign when o is real, obviously don’t enlarge the field since they will only add a multiplicative
factor of 1.



Unfortunately, the class group is not necessarily trivial. Luckily, it is finite. Let

Y

h = |CI(F)| = ‘A;’ﬁ“/ (F 11 o;v>

<00

which is a finite number by finiteness of the class group. Every finite F'-idéle « therefore has

the property that o € F* - ] Or. , hence

x(a)" = x(a") € L(Cy, )"

Therefore, x () is an h-th root of an element of L((y, ), which means it is algebraic over Q.
Letting oy, ...,y € A;’ﬁn be representatives for C1(F'), we know that every element y € A;’ﬁn

is of the form o; 3 for some i = 1,..., hand some 5 € F'- [[,_ O;U, so we conclude that

X(7) € L(Cnpns x ()M,

and therefore that the image of | , x.m lives inside the finite extension L(Cx,p, x(a1)Y", ..., x () /™)
o :
of Q, as desired. O

From now on, y denotes an algebraic Hecke character for F’ with weights {a, },.r_c. From
X, Weil used “technique of transfering co-type to p-type” in order to produce a G: -valued Hecke
character which is trivial on the connected component of the co-component, namely

Nyp - Ap — Q:
given by

ep((0)o) = [T enlen) [T ot oxulan)] T olow,) ==,
A ",
where o is abuse of notation for the embedding F,, — Qp induced by o.

Similarly to in the definition of the weight of an overconvergent automorphic form for GL;
from [Buz2004], the point of the last term indexed by the embeddings 0 : F' — Qp is that
these embeddings are in bijection with the embeddings /' — C by composition on the left by
Loo O Ly L. For such an embedding o, the place v, of I is the one it induces (via the subspace
topology from Q,, obtained by embedding [’ in there with 0); so another way to write the
product HU:F—@p (v, ) = '** would be IL, HJ:FU—@,) o () 7 27"+ The character
7yp is well-defined because there are finitely many o, and all but finitely many of the x, are
trivial on Oy, , by Lemma 1.2.2.



In fact’, by Lemma 1.2.4, the image of 7, , lives in the compositum of the Galois closures
in Q of the various F), for v|p together with (taking another compositum) ¢, o 1! o E, ( E,
being the finite extension of Q C C described in Lemma 1.2.4, where it was just called “£”). In
particular, we can view 7, , as a character F"”*\ A} — E* for some finite £/Q,, (E is bigger
than the £, from before since it is an extension of Q,; the precise form of £, won’t matter, so
we will stick with this confusing notation).

Lemma 1.2.5. The p-adic character n,,, factors through F*\ A}.

Proof. Let a € F*. It suffices to prove that 7, ,(a) = 1. As we just mentioned, there is a finite
list vq, ..., vy, of finite places of F" such that x,(«) # 1, so that the product defining 7, ,(«) is
well-defined. It is equal to

Mpla) = H% o H Lo yu(a) H U(Oé)amm;log_

1;|e(:lj O’:F—}QP
Since « € F is algebraic over Q, so is o(«) for all embeddings o : F' — Qp, and therefore so is
Nyp() (it is a finite product of algebraic numbers; we were implictly doing this argument at the

beginning of the proof of Lemma 1.2.4 to deduce that the image of F* - ], __ Op under x was

<0

in L(Cy, )*). Therefore, we may apply o 0 ¢;;' to both sides to get the equality

-1 aLOOOL7100'
boo © 77x7p €uolw) ij loo O Ly, © o(a) P

= it

- H €v(uy) Hxvj(oz) H T(a)"
’U‘OO ]:1 7 F—C
real

= x(a)

= 17

where we have used the fact that postcomposing with ¢, © ¢, ! provides a bijection beteen
embeddings /' — C and embeddings ' — Q,, and that the ¢, = +1. This implies that
Nyp(@) = 1 because 1o, 0 1) ! is bijective where it is defined. We have therefore concluded that
Ny.p Kills F'*, as desired. [

As a consequence of the fact that we removed all the stuff from the infinite places (at least

making it trivial on the connected component), we have

31t is a general fact from the literature, that I will prove later, that a Galois representation with codomain
GLn(Q,) actually has image in GLy,(K) for some finite £/Q,,, but we don’t need to know it in general to know
it for ny p.



Lemma 1.2.6. The charactern,, : F"\Ap — EX C Q; also vanishes on the kernel of the

global Artin reciprocity map
recp 1 FX\Af — G

Proof. By class field theory”, ker recr is the closure of the image of [ [, .., RZo X I, complex €~
in the idele class group of F'.

Since 7, is trivial on the connected components of the archimedean completions of /'
(whose product is exactly the product we wrote down in the previous sentence), and on F'*,

and it is continuous, we deduce that it kills the kernel of recr, as desired. O

In particular, n, , factors through recp (since recy is surjective) to produce the unique abelian

p-adic Galois character p, ), fitting in the diagram

FX\AL
Tx.p

Px.p

Remark 1.2.7. Recall: the image of p, ), is the same as the image of 1), ,,, which itself is contained

inside £, where £//Q,, is a finite extension that we described explicitly.

*I think you should be able to do this directly (just by writing the kernel as the intersection of all open subgroups
of the idéle class group using the Artin reciprocity law and the existence theorem and trying to show that this is
the same as the connected component), but for some reason most likely linked to my level of competence, I could
never get it to go through (Lang refuses to spoonfeed me the answer and instead cites Artin-Tate, but I could not
find the argument in Artin-Tate, so I had to try and deduce it from whatever was in Lang right before he cites
Artin-Tate). At the very least, here is the argument that I remember, which uses some more input: by [Lan1994, Ch.
X1, §6, Theorem 6], ker recp is infinitely divisible. Since Gil’ is profinite, it has no nontrivial infinitely divisible
elements (any finite quotient is killed by some integer), and so all infinitely divisible elements of F'*\ A} are in
kerrecr, i.e. ker recr is exactly the subgroup of infinitely divisible elements (I don’t think I need to use this last
sentence but it is neat).

Consider the image of ker recr in the quotient of the idéle class group by (F*\ A} )°. That quotient is totally
disconnected. In fact, the quotient (F*\A})/(F*\A})° is also compact. This is because it is equal to

(F\AR)/ T RZ JI ©

v real v complex

(since we know explicitly what the connected component is, as we will do in the rest of the proof of Lemma 1.2.6)
which is compact by compactness of A;’l. So we are looking at a compact totally disconnected Hausdorff (since
we quotiented by a closed subgroup) topological group. All such topological groups are profinite. Since ker recp is
infinitely divisible, as we have already argued, it must be sent to the identity in this quotient.

Again using that G2 is profinite and hence totally disconnected, we know that (F*\A %)/ ker rec is totally
disconnected. The connected component (F*\ A })® is therefore killed by rec (else there would be a nontrivial
connected component of G%, namely the image of (F'*\ A })°).

Hence we have shown both desired inclusions between ker recy and (F'*\AJ)°.



Lemma 1.2.8. The Galois character p,.,, is unramified at all the finite places of I at which x is
unramified (i.e., Xv|(9; = 1), except possibly the places above p.

Proof. By local-global compatibility of class field theory (e.g. [Lan1994, Ch. XI, §4]), for any
finite place v of F', the decomposition group D, C G% (no choice needs to be made because of

the “ab”; also we always have D, = G ) has the property that
recp|px : FY = D, 2 G

is the local reciprocity map. In particular, it takes O, bijectively onto the inertia group I a
(the local reciprocity map is identified with the inclusion of I = O, x Z into its profinite
completion Gill = Op X 7 so even though the local reciprocity map is not surjective, it is when
restricted to a map Op, — [ }E’J — the point is that Oy, is profinitely complete, and F,* is not).
So if a finite place v has the property that X|O§v = 1, then if v does not lie over p, we would

have, for a € Oy,
nX7p(a> = [/p o L;ol o Xy(a> — 1

Therefore, Weil’s associated Galois character p, , is 1 on If)‘b thanks to all the stuff we just said.
Of course here I have abused notation by viewing p, , as a character of G2, but this is okay
because I, surjects onto I*® by the basic theory. O]

Example 1.2.9 (Norm Hecke character and p-adic cyclotomic character). Consider the Hecke
character x given by the norm ||| on the idéles of the general number field F'. What is the
corresponding Galois character ? First, we need to check that x is algebraic. Indeed, it is given
on FX by a — |a, for finite v (therefore unramified since the units have absolute value 1, not

that it matters for the purposes of being algebraic), by
a = |al, = sgn(a)a
for v real, and by
a— |al, =aa

for v complex, where o and & are the complex conjugate pair of complex embeddings inducing
the place v (recall that |«|, means the square of the complex absolute value, since there is
only one place for the two embeddings). So x is algebraic with all the weights equal to 1. The

corresponding p-adic character 7, , is given by

(aw)o = [T sen(e) [T lewlo [T TI ol@w) = [T senlew) I lewlo [TNG, .

v real v<00 v|p UiFu—>6p v real v<00 vlp

Note that in this case the image is all the way downstairs in Q,,.
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By definition of the global reciprocity map’, Weil’s associated p-adic Galois character p, , has
the property that for all finite places v except those over p (by Lemma 1.2.8, p, ,, is unramified at
all of these v so we can use the definition on 7, of the global reciprocity map for Galois groups
of extensions of F' unramified at v)

Px,p(FrOszl) = nxvp(ﬂ'v) = |7yl = (NU)_1~

By the Cebotarev density theorem, this determines completely what p, , is. In particular, if
we cook up some other character p’ : G% — Q, with the same values on Frobenii for finite v
not over p, then we know p, , = p. Let p’ be the p-adic cyclotomic character G2 — Z;. By
definition of p’ and the definition of the Frobenius elements as well as the explicit description of
Galois groups of cyclotomic fields, for v not lying over p, we have

Fl"ObU (Cpn) — C;:Lv mod pn '

and so p'(Frob,) = Nv. We conclude that p, , is the p-adic cyclotomic character Gr — ZX C
Q-

The calculation in Example 1.2.9 is not such a special case, as is shown by the last part of

your exercise:

Lemma 1.2.10. If F' is totally real, then all algebraic Hecke characters for I are of the form ||-||*n,
where a € Z and 1 is a finite-order Hecke character (i.e. a “Dirichlet—Hecke character”).

Proof. Let x be such a character, with weights {a, },.r_.c. Since F is totally real, the unit group
O7 maps to R via the logarithm map

L:aw (loglo(a)|)ersr,

and the Dirichlet unit theorem says that L(O}) is a full-rank lattice in the trace-0 subspace of
RI7Ql. The kernel of L is the set of roots of unity in F, which is just 1, again because it is

totally real. So Dirichlet’s unit theorem is really giving us an identification
OF = (Z/2Z) x ZFA-1,

For all but finitely many finite places v, we know that Xv|o; = 1 by Lemma 1.2.2. For the

others, we know that Y, is trivial on a finite-index subgroup of O by Lemma 1.2.3. Consider

°In order to get the “right answer”, we have to take the “geometric Frobenius” version of the global reciprocity
map, which is defined (up to inertia at v) by 7, — Frob, . Of course, this is the inverse of the usual convention
(at least that of [Lan1994]) where you are supposed to take a uniformizer at v to Frob, in the Galois group of any
extension of F' unramified at v

11



the diagonal map
Or — H Or. .

v<o0o
The preimage H in O of [ |
is a finite-index subgroup of ||

ker Xv|px isafinite index subgroup of O, since [ ], . ker xo|ox

v<oo

veoo ker Op, by what we just wrote involving Lemma 1.2.2 and

Lemma 1.2.3. By the (proof of the) structure theorem for finitely generated modules over a PID,

there is a basis for the free part of O such that we can write

[F:Q]-1 [F:Q]-1

Hm,ZCHZL

In particular, L(H) is still a full-rank sublattice of the trace-zero subspace of RI¥"*Ql (we didn’t
need the structure theorem for this — could have just argued that the lattice is still cocompact).

The point is that we defined H C Oj so that x would kill it if we think of it as living in
A;’ﬁn. If instead we think of & € H diagonally embedded in A7, we also know that y kills it,

since it is a Hecke character. This implies that y kills the infinite part of a, i.e.

1= X((O_(a))a:F%R X v<oo ==+ H

for all @ € H. Taking the log of the absolute value, we get

0= Z asloglo(a)| = ((as)sror, L()).

o:F—R

Since this is true for all @ € H, whose images under L span (over R) the trace-0 subspace of
IL,.r_r R, we conclude that the vector (a,),.r_r is orthogonal to the trace-zero subspace. Of
course, the orthogonal complement of the trace-zero subspace is 1-dimensional and spanned by
(1,...,1). So we conclude that all the a, € Z are equal to the same integer a € Z. Therefore,

X - ||-||~* is algebraic of weights all 0, i.e. finite-order, as desired. O

You mentioned in our meeting that it is a general theorem that algebraic Hecke characters
always factor through N%, : A — A7, where F” is the maximal CM subfield of F (that is, if
F' contains a CM subfield in the first place). Before I prove that, it makes sense to think first
about whether Lemma 1.2.10 can be generalized to CM fields. Indeed, in the ways that affect the
proof of Lemma 1.2.10, CM fields should only be a bit more complicated than totally real fields
(at least according to the definition).

Let " be a CM field, and let F{ be the maximal totally real subfield of F', so that F' is totally
imaginary of degree [F' : Q| = 2r and Fj is totally real of degree [Fy : Q] = r.

Let 0y, ...,0, be a set of complex embeddings of F' such that there is exactly one o; per
conjugate pair of embeddings. We consider the log maps L : Oz — R’ (the i-th coordinate

12



is log o|o;|* = log o(0; - 7;)) and Ly : Of; — R’. The exact same argument as in the proof of
Lemma 1.2.10 using the Dirichlet unit theorem shows (applied to L) that a,, + as; € Z are all
the same. The 7 real embeddings of F{ are exactly the o, (they are invariant under conjugacy
when restricted to Fp), and the Hecke character | A is algebraic with weights a,, + a7, s
the same argument as in the proof of Lemma 1.2.10 using the Dirichlet unit theorem shows
that all of the a,, + ag, are the same for7 = 1, ..., 7. In other words, the totally real part of F'
gives us no new information. This gives us a nice constraint on the co-type of algebraic Hecke
characters for F', but it is not a full classification of the algebraic Hecke characters like we got

for [’ totally real.

Question 1.2.11. Let I’ be a CM field with [F' : Q| = 2r,let 04,73, ...,0,,0, be the various
complex embeddings, and let {a, },.r_,c be a collection of integers satisfying a, + az = m for

some fixed m € Z. Does there exist an algebraic Hecke character y with weights equal to the

{ac}?

For elliptic curves with complex multiplication (where we can use the statements of CM
theory from [Sil1994, Ch. 2]), we can answer Question 1.2.11. Let /" be an imaginary quadratic
field, and let E be an elliptic curve® over a number field L D F' with complex multiplication by
Op. Then there is an associated Hecke character {5 : A} — C*. It is defined by

€p(x) = 0oo(ap())NE(@ )0,

where NL(z71) € A} is the usual norm of the L-idéle 27!, and o, denotes a choice of one
of the two complex embeddings (fixed ahead of time); and ag(z) € F* denotes the unique

element o, € F* such that

vp(a) = vp(Ng),
for all finite prime p of F, and for all fractional ideals a of F, the action of recy(z)™! €
Gal(L*®/L) on E(L™) restricts to F'/a to the morphism given by multiplication by v, (N&x)=1.
The multiplication by (N%x)™' € A} is defined via the decomposition

F/a=EP(F/a)[p @ F,/a,.

p

The complex number £ (z) only depends on N£z — the only potential problem in justifying
this is the recy (z) that tells us how «, restricts to F'/a, but the restriction to F'/a only depends
on the image of recy,(z) in Gal(F®/F), i.e. reck (NE(x)). So (as a special case of the general

Such an E always exists: take the quotient of C by the lattice in C given by OF to get an elliptic curve over
C. This guy is defined over a number field (the j-invariant is algebraic; we don’t need integrality so this is not
deep [Sil1994, Proposition 2.1(b)]), and we can take this number field L to be larger in order to contain F' (take
the compositum with F’), which is enough to make the full complex multiplication by Ok be defined over L by
[Sil1994, Theorem 2.2(b)].
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theorem that I promised to prove), {g(z) factors through N : A¥ — AX. Call the resulting
character A} — C* &p, so that £ = & o NL. This is the one whose weights we are interested
in (it only has two weights — one for each of the two conjugate complex embeddings of F'). To
figure out what the weights are, let © € L* be totally postive, so that any potential €, (o (x))’s
will be trivial (in other words, x is in the connected component of (L ® R)*, so we can figure
out the weights of {r just by looking at x). If we view x as being embedded in AZ’ﬁn, then
we have recy(x) = 1 (since the reciprocity map is trivial on ((L ® R)*)°), which implies
that a, = Nkz € F*. On the other hand, since we are viewing z as being a finite idéle, the

v, -coordinate of N%(z71) € A;’ﬁn is 1, and we deduce that

§u(T) = 0uo(@) = 00g © N%(:E)

It follows that that the algebraic Hecke character { satisfies {r(x) = 0o () for x in an open
subgroup of F'* C A°, and since &5 is trivial on F* embedded in A7, itis actually true that
the co-type of £ is x — z~!. So we have produced an algebraic Hecke character £ for I whose
weights are —1 and 0. By changing our choice of 0, to its conjugate (which simply has the
effect of taking the conjugate of £x), we can also produce an algebraic Hecke character for F' of

weights (0, —1). Taking Z-linear (multiplicative) combinations of of these two, or of one of them

and ||-||, we see that all of the weight-tuples deemed possible by our previous discussion (which
is just all pairs of integers since F" has just two complex embeddings) can in fact be attained by
algebraic Hecke characters associated to CM elliptic curves. So every algebraic Hecke character
for an imaginary quadratic field F' is given by a product of a finite-order character with a bunch
of characters coming from elliptic curves with complex multiplication by /' (the construction of

which is explicit).

Remark 1.2.12. Though Question 1.2.11 is still useful (it is good to know whether these algebraic
Hecke characters come from CM abelian varieties up to finite-order, e.g. for the purposes of
Fontaine—Mazur conjecture for GL;), the question of whether algebraic Hecke characters for
a CM field F' with weights satisfying a, + az = m for a fixed m € Z exist does not really
require us to go in that direction. It’s true that in the totally real case we had the particularly
convenient character ||-|| that generated everything up to finite-order characters. But the point is
that by finiteness of the class group, it suffices to define x on F'* and on a finite-index subgroup
[Tojoo £5° Ilo<oo OF, (in a way that is compatible on the intersection); by finiteness of the class
group of I, the subgroup of A} generated by this stuff is of finite-index, and hence x can be
extended to a global Hecke character in at least one way. Of course, we must define y(F*) = 1
(so that we end up with a Hecke character), so it remains to define it on a finite-index subgroup
of [T 100 £° I1icoo OF, so that it is trivial on the intersection with /™ and has the desired
weights. What is the intersection with ™ ? The condition that an element of F is in O, for all
finite v implies that this intersection is in O}. (possibly smaller depending on the finite-index
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subgroup we choose). So we are looking to define a character y on a finite-index subgroup of
[Tojoo £5° % I1ico0 OF, so that it is trivial on the intersection with O and has co-type given
by the {a,} (all the o are complex so there are no signs €, to worry about). As usual, such a
x (on this particular subset) must be given by [[, X, where for infinite v, x,(z,) = 27,
and for finite v, X, is supposed to be trivial on the (finite-index) open subgroup of O, where
we choose to define it. This completely determines how we will define y, once we choose the
open subgroups of OF, (only finitely many of them proper) on which to define the y, to be
defined and trivial. Our only constraint is that for all @ € O}, that happen to also be in all of
those open subgroups, we need to have [[, o(a)% = 1. The key point is that for & € O, the
quantity [[_o(«)? is a priori a root of unity. We now justify this claim. Recall that if z € C
is an algebraic integer all of whose Galois conjugates have absolute value 1, then z is a root
of unity’. So our first step should be to prove that [[, o(a)? € S'if « € OF. For this, the
condition that the a, + az = m all coincide, together with the (easy part of the) Dirichlet unit
theorem, is telling us that for all o € Oy,

0="> loglo(a)* =) logloi(a)™Ti(a)™| =log| [ ol(a)|,
=1 =1

o:F—C

i.e. that
H ola)*| =1
o:F—C

Since F is a CM field, postcomposing by an element g € Gal(Q/Q) commutes with complex
conjugation, so it just permutes the unordered conjugate pairs of embeddings o : ' — C.
Therefore,

loglg- [[ o) | = logloi(a)™s " owia;(a)™s "o
=1

o:F—C

Zlog\ol =

which implies that in fact all the Galois conjugates of [[ . .o o(®)? have absolute value 1.
Since v € O are by definition algebraic over Z, so is [ [, -, o(a)?. Therefore, this product

is a root of unity. By Dirichlet’s unit theorem again, OF. is a finitely generated abelian group, so

"1 learned this very nice fact from an exercise I did in Marcus’ book on number fields a few years ago. Let
z € C be an algebraic integer all of whose Galois conjugates have absolute value 1. Then the minimal polynomial
f= Hfil (X — 2) € Z|X] (21 = z) of z, which is monic of degree N with coefficients in Z, has i-th coefficient in
Z of absolute value at most (Jy ) There are finitely many such polynomials (polynomials with Z-coefficients of
degree N where each coefficient has absolute value at most (]j )) For every n > 1, we can consider the polynomial
fn € Z]X] which is the minimal polynomial of z™ (which is an algebraic integer all of whose Galois conjugates
have absolute value 1). The polynomial f,, has degree at most N and its ¢-th coefficient is of absolute value at most
(degif") < (]2[) Since the set {f = Xde&f + adegf_leegffl +--+ap € ZX]:deg f < N,a; < (Jj)} is
finite, we conclude that the set of all Galois conjugates of all powers of z is finite, and hence that the set of powers
of z is finite. This implies by the pigeonhole principle that z is a root of unity.
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in fact there is a positive integer M such that

I o) € pu

o:F—C

for all @« € O (M can be taken as a maximum over a finite list of generators « : O of m
such that [[_ ., o(a)% is an m-th root of unity). Since 1y C C* is a finite group, it follows
that there is a finite-index subgroup H C O such that [[ o(a)% = 1forall« € H. By
Chevalley’s theorem [Che1951] on the congruence subgroup problem for Oy, there is a finite
list of finite primes py, ..., ps of ' and positive integers f1, ..., fs such that

H205n [] o5 = [Ja+p").
pE{pi} =1

Therefore, we conclude that there is an algebraic Hecke character x for F' which is given on
[Tojoo £ X pggpy OF, X [T;_,(1+p/*) by being trivial on the finite parts and by z,,, — z%7T,_
for each complex embedding o.

This concludes my discussion on constructing algebraic Hecke characters with prescribed
weights over totally real and CM fields. The only remaining question seems to be whether the
answer to Question 1.2.11 in the case of elliptic curves with complex multiplication by rings
of integers of imaginary quadratic fields generalizes easily to abelian varieties with complex
multiplication by rings of integers of CM fields.

Our computations with algebraic Hecke character associated to a CM elliptic curve also

motivates the following fact.

Proposition 1.2.13. Let L be a number field, and x an algebraic Hecke character over L. If L
contains a CM field, then let F' be the maximal CM subfield of F'. In this case, up to a finite-order
character, x factors through N% : AY — AJ. If L does not contain a CM field, then up to a
finite-order character, x is a power of ||-||.

Proof. Let F{ be the maximal totally real subfield of L. Then L contains a CM field if and only
if it contains a square root of some totally negative element of Fj. In fact, if a € Fj is any
totally negative element of Fy such that Fy(y/a) C L in that colloquial sense, then Fy(+/a) is
the maximal® CM subfield of L.

In any event, we have an action of “complex conjugation” on F{, and possibly on all of
Fy(y/a), if it exists, which is trivial on Fjy and acts by v/a — —+/a on Fy(y/a). The point is that

8Suppose b is another totally negative element of Fy with a square root in L. Then the totally positive element
ab would have a square root in L, which would itself have to be totally real. Since F(v/ab) is totally real, by
maximality of F, we conclude that ab has a square root in Fy, and hence that Fy(y/a) = Fo(v/b). The maximal
CM subfield has Fj as its totally real subfield, so any choice of a described in the text indeed works.
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for any embeding o : ' — C (real or complex), o applied to the “complex conjugate” of an
element « of Fjy or Fy(+/a) is the same as (). In other words, for x € Fy(+1/a), its “complex
conjugation” is given by 0! (7 (z)) for any choice of complex embedding o (it doesn’t matter
which one, which is the point of being a CM field).

The key point in all of this is that the behavior of complex conjugation commuting in this
way with the various complex embeddings o : L. — C* is the defining property of Fy(+/a)
(or just Fy if the former does not exist). More specifically: if it exists, then Fy(y/a) has the
property that o(Fy(y/a)) is the subfield of o(L) that is fixed by all elements of the commutator
[Gal(Q/Q), {()}] (a general element of this commutator in Gal(Q/Q) doesn’t necessarily act
on (L) since it is not necessarily Galois over Q, but it is still Kosher to look at the fixed field
since these are automorphisms of Q C C that still take o(L) to some other elements of Q). To
prove this, just consider

o(Fo(Va)) co(L)cQcC.

If o(b) € o(L) with the property that (¢~ o (-) o g)(c(b)) = o(b) for all ¢ € Gal(Q/Q)
(i.e. is fixed by the commutator [Gal(Q/Q), {( )})), then since o (Fy(y/a)) is also fixed by this
commutator, we can translate this as saying that on Fy(1/a, b), the two complex embeddings
goo and g o 7 are the same for all ¢ € Gal(Q/Q). Since the complex embeddings of L are
exhausted by the g o o for fixed o and ¢ € Gal(Q), this is saying that the automorphism 7! o 7
of Fy(y/a,b) (“complex conjugation interpreted via the embedding 7”) does not depend on
7 : L — C. This automorphism is nontrivial, for example because it takes \/a to —/a. We
already said that this property was true for CM fields (obvious), and in fact it is equivalent to
Fy(v/a,b) being a CM field. To see the other direction, just let ¢ = ¢, ( /a5 be the automorphism
given by 7717 for all 7. By definition, ¢ = id (since complex conjugation satisfies this property).
The fixed field of c is totally real, since it embeds via each 7 into the subfield of C fixed by
complex conjugation, i.e. R. So we have produced a totally real subfield K C Fy(+/a, b) which
is the fixed field of an involution and hence [Fy(v/a,b) : K| = 2 (split it into +1 and —1-
eigenspaces; the —1-eigenspace is there because c is nontrivial). On the other hand, Fy(v/a, b)
is totally imaginary because Fy(+/a) is. So Fy(y/a,b) is a CM field as claimed. Of course, this
implies that b € Fy(y/a) by the fact that Fy(y/a) is the maximal CM subfield of L, and hence
o(Fy(y/a)) is, as claimed, the fixed field of [Gal(Q/Q), ()] in o(L).

If L contains no CM field, then the exact same argument shows that the maximal totally real
subfield F{ has the property that o(F}) is the fixed field in o(L) of the exact same commutator
subgroup (if o(b) € o(L) is fixed by that commutator, then we get again that 77! o 7 does
not depend on the choice of 7; if it is nontrivial then we get that F,(b) C L is CM, which is a
contradiction, so we conclude that Fi(b) is totally real and hence that b € F{ by the maximal
property of Fp).

Let {a, } be the weights of y. By the same Dirichlet unit theorem arguments we have been
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giving, this implies that there is an m € Z such that for all o (including the real embeddings),
Qs + Gz = M.

Applying the same Dirichlet unit theorem argument to g o x, which is algebraic of weights
by = a4-10, We also know that

Qg—log + Qg-105 =M

for all g € Gal(Q/Q) (the Galois group permutes the embeddings o without necessarily
preserving complex conjugate pairs).

Assume for now that L contains a CM field, so that Fjy(1/a) is the maximal CM subfield.
We claim that a, depends only on 0|, (,/a)- Let 0, 0" : L — C such that they agree on Fy(+/a).
This means that there is a g € Gal(Q/Q) which fixes o(Fy(/a)) and satisfies 0’ = g o 0. By
the characterization of Fy(+/a) as a fixed field explained in the previous paragraphs, we may
assume for the purposes of what we want to deduce (by induction) that g restricts to o(L) to an

embedding (L) — C of the form

and hence

We conclude that

g =M — g = M — Q1,505’7 — Ah—1ohoo’ = Qo’,

as claimed. The exact same argument shows that if L contains no CM field, then a, depends
only on the restriction of ¢ to the maximal totally real subfield £, C L.

Suppose that L contains no CM field, and let F{ be the maximal totally real subfield. For
each embedding 7 : Fy — R, let S; = {o|7} be the set of embeddings of L that agree with 7 on
Fy. This means that all the a, with o € S, are the same (this is the content of what we proved
above), and that S; is stable under taking complex conjugates. Let a, be the common value of
the a,, for o extending 7. In fact, the a,’s are all the same and equal to m /2, thanks to the faact
that S, is stable under taking complex conjugates and a, + az = m.

Then the Hecke character for L given by

iz, o N

is algebraic with weights equal to the {a, }. Indeed, if = = (z,), € A} with z, > 0 for all real
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infinite places v and x,, = 1 at all the infinite places, then

ar

INE@I™2 =TT [Tz

T:Fo—R | o|T

- I TT=

T:Fo—R o|r

_ a
= ]I =

o:L—C

Of course, for any place v of F{), we have

[INGs) o =TT [N ou| = [Tlwole

wlv wlv wlv
v

m/2 ONL

Hecke character [|-[|'," can be written more succinctly as ||- || ?, and we have proved that

INE
this has the same We1ghts as x. It follows (from this and the fact that algebraic Hecke characters
with all weights 0 are finite-order, as usual) that y = v - ||- ||m/ for some finite-order Hecke
character v. This completes the case where L contains no CM subfield.

Now we consider the case where L contains a CM subfield, and F' = Fj(y/a) is the maximal
such CM subfield. Previously in this letter (in Lemma 1.2.10 and the discussion after Ques-
tion 1.2.11), I showed’ that if F' is a CM field, and {b, },.r_,c a collection of integers satisfying
b + b = m for all 7, then there is a Hecke character £ for F' that is algebraic with weights b, .
In that case, since all the places in both F' and L are complex, we don’t have to think too much:
if v € A} has x, = 1 for all finite v, then

ENga) =& | ([0 = I TI=X= 1] "

0"7' T F—C T F—=C a'|7' o:L—-C

Setting the b, to a, (for any o lying over 7) gives us £ such that £ o N£ is an algebraic Hecke
character for L of weights equal to those of y, and therefore y = 1+ (£ oN%) for some finite-order
1. This concludes. [

°T have made no claims about whether this Hecke character is associated to a CM abelian variety — just that it
exists, which I did prove after stating Question 1.2.11.
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1.2.2 Hodge-Tate decomposition of Weil’s p-adic representations
associated to Algebraic Hecke characters, and the Fontaine-

Mazur conjecture for GL;

Our investigations regarding the p-adic Galois character associated to an algebraic Hecke
character by Weil showed that the cyclotomic character is prominent on the Galois side of this:
in Lemma 1.2.10, we saw that up to finite-order characters, the powers of the cyclotomic character
account for all the Galois characters coming from algebraic Hecke characters for totally real
fields. We also saw that this remains true for any number field not containing any CM subfield
in Proposition 1.2.13. For number fields containing a CM field, it is a priori unclear if there is an
explicit way of understanding the corresponding Galois character (especially as I am not yet able
to get them from CM abelian varieties), since the algebraic Hecke characters we constructed
with prescribed weights for CM fields were not that explicit. However, in [Ser1989, Appendix to
Ch. IIT] , it is shown that that in fact, being Hodge-Tate at the places above p is a necessary and
sufficient condition for a p-adic Galois character to come from an algebraic Hecke character.

In our case, rather than simply having a 1-dimensional Q,-representation G, — Q,;, we
have a character'

p:Gr, — E*,

where F is a finite extension of Q,. It is a representation on a 1-dimensional E-vector space,
which isa d = [E : Q,]-dimensional Q,-vector space. It can be confusing at first how this
should be considered to be Hodge-Tate, but the answer can be found in [Ser1989, Appendix to
Ch. I1I, A.4]. This works for vector spaces of higher dimension over F (as is used constantly in
[NT2021]), but we will just do it for the relevant case of dimension 1.

Let V' be an abstract 1-dimensional E-vector space, so that p is reinterpreted as G, —
GL(V). Also replace L, with a general p-adic field K. Viewing V' as a d-dimensional Q,,-vector
space, p gives it the structure of a d-dimensional p-adic Galois representation, together with
the action of £ that it already has. The Hodge-Tateness of IV depends on the structure of W =
Ck ®q V as a d-dimensional C i -semilinear representation of G. But the “d dimensions” of
this are deceptive, since W retains a Cy,,-linear action of E that leaves the Cx-coordinate alone.
The point is that this breaks up into simultaneous eigenspaces whose systems of eigenvalues
are given by the d embeddings o : E — Q,,. Writing £ = Q,,(cv) for a primitive element a € E
with minimal polynomial f,(X) € Q,[X], we have

fulX)= T[] (X =ola)),

U:Eaap

9This is just the restriction to G, of the global p-adic Galois character associated to some algebraic Hecke
character.
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and therefore

where the F-action is seen explicitly on the o-coordinate to be by x € E' acting via multiplication
by o(z). This direct sum decomposition of W also respects the Galois action in general: the
o-coordinate of ) . ¢;®x;is ), ¢;o(x;), and the o-coordinate of g-> . c; ®x; = ) . g(ci)p(g)x;
is >, g(ci)o o p(g)o(wi).

In other words, it is the usual Galois action on Cg except twisted by a multiplicative factor
of g — o 0 p(g). So the study of the d-dimensional C-semilinear representation W comes
down to the study of the various Cg-semilinear 1-dimensional representations (call them ;)

given by o o p viewed as an element of H'(Gf, C). More precisely:

Lemma 1.2.14. V' (as defined above) is Hodge-Tate if and only if, forallo : E — Qp, cop€E
H'(Gg, Cy) is equivalent to X" for somen, € Z.

Proof. NB we have changed y from meaning a Hecke character to meaning the p-adic cyclotomic
character. We just saw that W = Cx ®q, V = @ W, where the W, has semilinear G k-action
given by o o p, so certainly if W, = "7 in H'(Gx, C}.), then by the fact that H*(G, GL,,(M))
(where M has a G-action which induces in the natural way an action on GL,,(M)) parametrizes

1-dimensional M -semilinear representations of GG,
= @V, = @ Cxin

and hence V' is Hodge-Tate with Hodge-Tate weights equal to the n, (or maybe the —n,
depending on the convention).
Conversely, if V' is Hodge—Tate, we have two G x-equivariant splittings into 1-dimensional

(hence irreducible and indecomposable) C x-semilinear G -representations
W= W,
and
d
W = P Crk(n).
i=1

By Schur’s lemma (at least the part of it that still definitely holds in the semilinear setting,
namely that a G -equivariant map between irreducibles is either 0 or an isomorphism) applied

21



to
f
CK(TLZ) — @CK(nz) = @Wg — W,
=1 o

for each ¢, 7, we conclude that the 1V, are G/ x-equivariantly isomorphic to some permutation of

the C(n;), as desired. O

We will ultimately want to check that the p-adic Galois character p coming from an algebraic
Hecke character is Hodge-Tate. But by Weil’s construction and local-global compatibility
of class field theory, being algebraic will only tell us about what p looks like on on a small
neighborhood of 1 in the inertia group of Gx. Luckily, for the purposes of Hodge-Tateness,
this does not matter. This fact is proved in [Ser1989, Appendix to Ch. III, A.1] and also in
[BC2009b, Theorem 2.4.6] by essentially the same technique.

Lemma 1.2.15. Let p : Gx — GL(V) be a p-adic Galois representation. Let K' be a finite
extension of'' K", so that G is an finite-index closed (hence open) subgroup of Ix. The Hodge—
Tateness and Hodge—Tate weights of p are independent of whether we look at p or p|g,.,.

Proof. From Ax-Sen-Tate theory, we know that Ci’( " = K'. We will prove that the natural

morphism of graded K'-vector spaces
K @k Duray (V) = Darg,. (V)

(given just by multiplying by K' in the Byp-tensor-coordinate of Dur ., (V) to get something
still fixed by G'x) is an isomorphism. This is enough, because it tells us that Dyt ¢, (V) is a
graded vector space of the same dimension and whose graded parts have the same dimension
(albeit over different field) as those of Dyt ¢, (V).

We begin by proving the isomorphism in the case where K’ is a finite Galois extension of K.

This is essentially just Galois descent. In particular,
Dura,., (V) = (Bur ®q, V)G
has an action of G that factors through G /G = Gal(K’'/K), and so
Dty (V) = (Bur ®q, V)% = DHT,GK/(V)Gal(K//K)~

By Hilbert 90, for all n > 1 (and in particular n equal to the dimension of Dyt g, (V') or of one

of its graded pieces),
HY(Gal(K'/K),GL,(K")) =1,

" Any finite extension of any unramified extension would also work, though of course the Galois group would
cease to be an open subgroup of the inertia.
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which means that the K'-semilinear Gal(K'/K)-module Dyt ¢, (V) (and, in fact, all of its
graded pieces) is trivializable, hence

DHT,GK(V) = DHT,GK/(V)GM(KI/K) o (K’@H)Gal(K’/K) _ K@n

which means that (either by applying the above to the graded pieces or just by remarking that
the multiplication map respects the grading) indeed the multiplication map

K' ® Dur,g, (V) = Dureg,., (V)

is an isomorphism of graded K’-vector spaces. If K’/ K is finite but not Galois, then consider
its Galois closure M D K’ O K. We know that the natural map

M ® Dur,x (V) = Durg,, (V)

is an isomorphism of graded M-vector spaces, and we get the desired result just by taking
Gal(M/K')-fixed vectors on both sides.

Everything above works fine if K is replaced with K™, so it remains to check that it works
with K’ = K. The Galois group G xw is the same as I, and Gal(K"/K) = Gal(k/k) = G,
where £ is the residue field of K. We must now do some “integral theory.” In particular,

Dur g (V)

is a graded K“-vector space that comes with a K"-semilinear G /G« = Gji-action. We
claim that it admits a G-invariant Ogw-lattice. To do this, just pick a random (not necessarily
Galois-invariant) O gu-lattice Ag C Dyt ¢ (V). Writing the K™ -semilinear representation

Gj-module Dyt .. (V') as a (continuous) 1-cocycle
= : Gy — GLy(K™),

where the K™ -basis used to write down = is a basis for Ag. The subgroup of g € G, that
stabilize Ag is just 271 (GLg(Ogw)). Since GLy(Okuw) is open in GLd(ﬁ), it follows that Ag
is stabilized by a finite-index subgroup of GG;. Taking A to be the sum of the requisite finite
number of G;-translates of A, we can therefore produce a G-invariant lattice A C Dyr ¢ -
Our goal is to prove that

o o G
K" @k Dur,gy = K™ @k DHEF,GKur — Du1,6
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is an isomorphism, which would follow after inverting 7 from showing that
OKur ®OK AGk — A

is an isomorphism.

The proofs from [Ser1989] and [BC2009b] are slightly different from here, though they
both essentially use technique of “successive p-adic approximation of cocycles” + Hilbert 90.
Serre finishes by proving that H'(G},, GL4(Oguw)) is trivial, which he does directly by filtering
GL4(Oguw) by subgroups of matrices congruent to the identity modulo higher and higher powers
of 7k, using the fact that (thanks to Hilbert 90 and the usual compatibility of group cohomology
with taking inverse limits) H' (G}, GLq(k)) = HY(G}, Mgxa(k)) = 0.

I will explain what Brinon—-Conrad do, which uses all the same stuff but I thought was
more interesting. Continuing with the notation d = dim = Dur6 0 = 1“k(9ﬁr A, we know that
A/mgANisa O /(1K) = k-vector space of dimension d. Since 7 € K is fixed by Gy, the
d-dimensional k-vector space A /7 A inherits a k-semilinear G-action. For [v] € A /7 A, we

have

Stabe, ([v]) = {g € G) : gv — v € T A}
D{g€Gr:E(g) €1+ Maea(rxO)}
=2 M(I + Myxa(rkOw)),

where now = stands for the 1-cocycle G, — GL4(Oz=) coming from a choice of basis of A that

represents the O -semilinear G;.-action on A. Since = is continuous and [ + ded(m{(’)@)

is open in GL4(Ojz ), we conclude that the action of G, on A/mx A has open stabilizers, i.e.
that it is continuous for the discrete topology on A /7, A. By Hilbert 90,

HY (G, GLy(k)) =1,

where this is continuous cohomology with the discrete topology on k, so (thanks to the continuity
we just proved) we have a G-equivariant isomorphism A /7 A = 5 This already tells us the

“mod 7" version of the result:
k@ (A TN — AJmgA

is an isomorphism.
To finish, we use additive Hilbert 90 to argue that H' (G}, A/mxA) = 0, so by the long exact

sequence,

AC* J e ACF = (A /e A) ¥,

which we just showed is a dimension-d k-vector space. Lifting a basis of this k-vector space to
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A%*, we see that there are e, . .., eq € A such that every element of A" is within a multiple
of m (that is, 7k - = for some v € Oz) of a O-linear combination of the ey, ..., e4. By
approximating x again by a linear combination of the e; and repeating ad infinitum, we end up
(by convergence of series whose elements go to zero) seeing that ey, . . ., e; actually span A*
over Q7. Being now a finitely-generated torsion-free O;=:-module, AC* is free, and its rank is
exactly d because that is the dimension of its reduction mod 7. The map

OI/(‘,; Ko A% = A

is a map of free O7=-modules of the same rank which is an isomorphism modulo 7, so it is an
isomorphism (e.g. by the same successive approximation arguments as before, since the map

here is O;=-linear), as desired. O

Let us consider an algebraic Hecke character £ : A7 — C* with weights {a,}. Denote
Weil’s corresponding p-adic Galois character by p¢, : G — E*, where F is a finite extension
of Q,. We will allow £ to be any such finite extension that contains the image of p¢ , in 6;
(there doesn’t seem to be a canonical choice of such a field except possibly the smallest one).
Let v be a finite place of F' over p. By local-global compatibility of class field theory and the

X

definitions in Weil’s construction, p¢ , is given on an open subgroup H, of I3 = r, (namely,
the one on which ¢, is trivial) by

a -1
a— H T(Oé) too oLy ~oTo(F—Fy) c EX‘
T:Fv—>§p

Let K be a finite extension of Q, large enough to contain F;, and all the Galois conjugates
of E, and also large enough so that the open subgroup G C Gp, has the property that
Gk N1Ip, = Ik lands inside H C [ ?;]j) under the projection to the abelianization Ix — I}‘}’
followed by the restriction map 12> — I?:E’j. We also might as well replace K with its Galois
closure over Q,, in order to assume that K/Q,, is Galois (this is most likely not necessary but
makes things a little clearer as usual). By Lemma 1.2.15, the Hodge-Tateness and Hodge-Tate
weights of p¢ , are the same as those of px, defined by

Pe,
PK3GK_>GF1,_>G}EJ ifEX
Of course, pk factors through G% 50 a more reasonable way to write it is
Pe,
pi G — G2 — G2 X B,

and to make things easier we can also abuse notation and consider py as a character G% —
G ¢ B which restricts on [ ab > O to (using class field theory to identify the restriction
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maps between inertia groups with the norm between unit groups)

NE,
O = Op — E™.

[a¥)

By construction of K, Nﬁfv (Ox) C H C Ij‘:'z >~ Oy, , so we can write via the identification
I >~ OF that

b (:E) _ H T (N? l.)aLOOOLgloTo(F%FU)
K v
T:Fv—>6p

— H T H O.(x)aboomglo-ro(F%Fv)

T:E,—>6p ceGal(K/Fy)

PK

_ H 1 H U(x)amm;lomw%pﬂ)

TZFv—>6p oeGal(K/Qp)

o|p,=T

— H H O.<I.>aLOOOL;10-ro(F~>Fv)

T:Fy—>6p UE%TI(KC-Qp)
Fy=

— H O-(a:)atooOLEIOU\FUO(F—?Fv)'

oeGal(K/Qp)

So regardless of how big we choose K, the representation that we are interested in the
Hodge-Tateness of is going to be a product of powers of embeddings of K into Qp, where the
powers only depend on the restriction of that embedding to £,.

The key point in all of this is to observe that all such p-adic Galois characters that land in
E* can be rewritten as products of powers of the various 7N, for embeddings 7 : £ — Q,,.
Serre has an argument using algebraic groups which I am perfectly comfortable with, but I will
not reproduce his argument because (for the purposes of what I need to prove) that perspective
does not seem to add anything useful and makes things more confusing for the purposes of
explicitly determining the Hodge-Tate weights.

First, we rewrite, for + € K and an embedding 7 : £/ — Qp, the candidate “basis element”

for our characters is

TINE@) =" [ = ][] o).
c€Gal(K/TE) o€Gal(K/Qp)

o Yg=T1
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Since pg lands in F, we know that for any g € Gal(K/E), we have g o px = p, i.e. that

H O_((/I;)aLoooLgloo-\Fvo(FﬁFU) _ l [ O—<x)aboow51°9_1oalpvO(F—>Fu)_

ceGal(K/Qp) o€Gal(K/Qp)

The notation is getting unwieldy, so let us call b, := o1 ool o(F—Fy)* The equation above
being true for all x € K tells us that b, = b, if 0,0’ € Gal(K/Q,) have the property that
goo = o’ for some g € Gal(K/E),ie.ifc™|g = (¢/) | . For a given embedding 7 : £ — Q,,,

we may define b, to be the common value of the b, such that o~ !|g = 7. Then we get

p@)=J[ o
oeGal(K/Qp)

- I oo

T:E—)QP UeGiall‘(K/Qp)
ot g=T

PK

=1 1 @

T;E_>6p oeGal(K/Qp)

o~ Yp=7

= J] (F'NE ()",

T:E—>6p

The numbers b, are common values of some subsets of the a, depending on how big F
is (but, as we saw by the end, not on how big K is, which is good because we don’t expect
the Hodge-Tate weights to depend on the choice of K). If £ = Q,, for example, then all the
o € Gal(K/Q,) restrict to the same thing on £, and there is just one 7, so we may rewrite px
as a power of the norm from K to Q,, and end up with the situation of Example 1.2.9 (which
ends up showing that the Galois representation into Q,; is Hodge-Tate with Hodge-Tate weight
equal to that power). If £ = K, on the other hand, then the b, are exactly the same as the
a,’s. Anyway, this all is consistent with the (eventual) fact that the b, are the Hodge-Tate
weights of p¢ ;,, i.e. that W = Cx ®q, V (V being the 1-dimensional E-vector space that p
defines an action on) is a direct sum of C (b, ), where the Cx (b,) is the IV, that was defined in
Lemma 1.2.14. In fact, this is what we prove now.

Proposition 1.2.16. Let 7 : E — Qp be an embedding. The Galois character x,p : I¥ =

Giw — E* given by a — 77 'N5, () via the local class field theory identification I} = O} is

Hodge-Tate with Hodge-Tate weight 1 in the T-component and 0 in all the others (in the sense of
Lemma 1.2.14).

Proof: By Lemma 1.2.14, it suffices to check that 7 o x, g = x in H'(Gz, C)) and that

00 Xrp = 1in H' (G, C)) for all 0 # 7. Thanks to the definition of X, g, this is the same as
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saying that (via the class field theory isomorphism 72 = O

[z = NI (2)] = x € H (G, CF), [z~ 0o NE ()] =1 € H (G, CF)
whenevero : 7TE — Qp is an embedding not equal to the inclusion 7E — K /B\y Lemma 1.2.15,
if we can extend z — N%; to all of G2 then it will suffice to do this with K" replaced with
K. In Galois-theoretic terms, this map is simply the one I — %, (i.e. Ox — O)}) given
by the norm. We can’t really use the same formula to extend to the profinite completion of
K™, since that would land in the profinite completion of (7 E)* rather than (7 E)*. Instead, we
choose a uniformizer 7 of K, which induces a decomposition K* = Oy x Z and therefore
G~ K* x Z by class field theory. Define the Galois character

Xrgqx: Gk — OFp C (TE)

by
G — G2 = 0% x 7 — OF —5(9

We clearly have x, g »
to check that

= [x > NfEx}, so (as mentioned already) by Lemma 1.2.15, it suffices

XTEJ:XGHl(GK,C;(), O'OXTEm:lEHl(GK,C;()

for every embedding 0 : TE — Qp not equal to the inclusion 7E — K. The key point now
is that x . » is not just any Galois character: it is exactly the Tate module of the Lubin-Tate
formal group .#, over O, . This is essentially the statement of [Ser1967, Ch. 3, Theorem 3(c,
e)], once one remembers that our Artin reciprocity map is the inverse of Serre’s (which we
did to accommodate Example 1.2.9) and therefore the extra inverse is not necessary. Indeed,
Sr(mp)[7s] = O,/ (7!g) as Og-modules, so the Tate module is identified with

Jm § (meg)p] = b §(mg) g™ "] = hm O,/ (w279 = Or

[Ser1967, Ch. 3, Theorem 3(c)] (except with u instead of v ™! since our reciprocity map already
has an inverse added) says that the 72 = (O -action on this Tate module is given on the each
coordinate of the inverse limit by multiplication by the restriction (i.e. norm) downstairs in Oj.
[Ser1967, Ch. 3, Theorem 3(e)] says that the ZC G'2-action is trivial. Putting this together, we
indeed see that x, g : Gk — Oj is the action of G on the Tate module of §.

In the sense of [Tat1967], we can look at the p-divisible group 4 = F.[p>°], i.e. the connected
p-divisible group corresponding to the divisible formal Lie group §, over O, . The p-divisible
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group ¢ is connected of height d = [E : Q,], thanks to the fact that

#Sﬂ<mﬁ3> [p] _ #Sﬂ(m@) [Wi(belQp)] = 4 (OTE/(WigE\Qp))) _ pe(TEIQP)f(TElQp) — pd_

The Hodge-Tate decomposition for the Tate module of ¢ (one of the main results of [Tat1967])

provides a GG g -equivariant isomorphism
CK ®Qp T(g) = CK KRK HOIHTE(tgv<TE>, K) D CK(l) KK tg(K)

By [Tat1967, Proposition 3], 4" is of dimension d — 1 (the height of ¢ is d and the dimension
is 1 by definition since it comes from a 1-dimensional formal Lie group over O.g). So this
is a decomposition of a d-dimensional Cg-semilinear representation of G into subspaces
of dimensions d — 1 and 1. Moreover, by functoriality, the Hodge-Tate decomposition is
also 7 E-invariant, where 7FE' is defined to act on both sides by the morphisms it induces via
the O -action on ¢ (and 1/p acts just by multiplication by 1/p, as is forced). The tangent
space ty(K) is defined to be the set of O, g-linear functions 6 : O, g[[X]] — K satisfying
3(fg) = f(0)d(g) + 6(f)g(0). The O p-action on the formal group SpfO,[[X]] is just by
multiplying X by the units, so the induced action of u € O]} on the tangent space is by
taking 0 to ud (the key point being that 0 only cares about linear terms). In other words, 7F
acts on the Cx (1) ® ty-coordinate just by taking the canonical inclusion 7E — K and using
the K'-vector space structure on ty(K'). That means that the simultaneous 7 E-eigenspace of
Ck ®q, T(¥) corresponding to the inclusion 7TE — K — Qp (i.e. the subspace W, gk
from Lemma 1.2.14) is exactly Cx (1) ® g ty(K). All the other simultaneous 7 E-eigenspaces
(coming from all the embeddings 7 — K other than the inclusion) are inside the other factor
Ck ®x Hom, g(tyv(TE), K), since E acts on each direct summand individually (thanks to how
the F-action is defined by being an induced action on tangent spaces).

First of all, the fact that the simultaneous eigenspace for the inclusion 7 — K is equal
to Ck (1) ®k ty(K) = C(1) (as a Gk-representation) tells us (by the proof of Lemma 1.2.14)
XrEx = X in H'(Gg, C}). Similarly, the fact that if o : 7E — K is not the inclusion then
the corresponding simultaneous eigenspace is in Cx ® (other thing with trivial Galois action)
implies that this eigenspace is just a Cx-line with the usual Galois action, and hence (it being

equalto ooy, g, in H'(Gg, C) from the proof of Lemma 1.2.14) we conclude that cox, 5. = 1

in H'(Gg, C}), as desired. O

We have therefore concluded that the Weil’s p-adic Galois characters corresponding to
algebraic Hecke characters are Hodge-Tate, regardless of which coefficient field £//Q,, is chosen.
To recap:

Corollary 1.2.17. Let ¢ be an algebraic Hecke character for F' with weights {a,}, pe, : Gr —
G — Q; Weil’s corresponding p-adic Galois character, & some choice of finite extension of
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Q,, containing the image of p¢ ,. Then pe,, is Hodge—Tate at each v|p as a [E : Q,]-dimensional
representation. Its Hodge—Tate weights at v are, as a set (the multiplicities will depend on the choice

of E), equal to the set of numbers a, with 1, o 1} o o inducing the place v on F.

Proof. By Lemma 1.2.15, we can consider instead the representation px : G2 — E* defined
above. We proved that on 1% = O, it is defined by

T = H 71N7['{E ’

T E—)Q

where b, is the common value of the a,, over all o € Gal(K/Q,) such that 07|z = 7. Letting
V be the abstract 1-dimensional F-vector space that px defines a Galois action on, and W =
V ®q, Ck, byProposition 1.2.16, for any 7 : £ — Qp, the simultaneous F-eigenspace W is
1-dimensional (as always) and as a C i-semilinear G x-module equals Ck (b, ) (as it is the b,-fold
composite of something equal to Ck (1)) in H* (G, Cx). O

In fact, the representations Gp — Q: which are Hodge-Tate at the places above p are
exactly those that come from Weil’s construction. First of all, being a representation into Q; is
the same as having coefficients in £ for some finite extension £/Q,, as I learned from a paper
of Breuil-Mézard [BM2002, Lemme 2.2.1.1] (a proof they say is due to Bost) after searching on
the internet:

Lemma 1.2.18. Letp : G — GLN(Q ) be a continuous representation of the absolute Galois
group Gk of a p-adic field K. Then there exists a finite extension E/Q,, such that p(Gr) C
GLy(F).

Proof. The topological space G is compact and Hausdorff, so the Baire category theorem
applies. In particular, if G has a cover consisting of a countable collection of closed sets C;,
then one of the C; has an interior point. If C; is a subgroup of G, then this implies that C is
open.

By Krasner’s lemma and compactness of Z,, there are countably many finite extensions
E/Q, inside a fixed algebraic closure (the usual argument involving Eisenstein polynomials
implies there are only finitely many of given degree). Since ' C Qp is closed and p is continuous,
we get a countable covering of G by closed subgroups p~'(GLy(E;)), where {E; };en is the
set of finite extensions of Q,. One of these subgroups must be open by the previous paragraph.
So there are finite extensions K’/K and F/Q, such that p(Gal(K/K')) C GLy(FE). Letting
g1, - -, gn be a system of representatives in G i for G /Gal(K /K') (the key point being that
there are finitely many), there is a finite extension E’/Q, such that p(g;) € GLy(E") for
j =1,...,n, and hence the image of p lives inside GLy(E - E"). O]

Starting with a continuous representation p : Gp — E* which is Hodge-Tate at all v|p, it

suffices to prove that it is algebraic in the p-adic sense at all v|p, i.e. that it is given (via the local

30



class field theory isomorphism) on an open subgroup of I = Oy by x +— [],.p. ~q, o(x)
for some {a,} € Z. Once we have this it is obvious how to get back (bijectively) to the Hecke
character side. To prove this, it mostly suffices to do the argument we just did in reverse. If
p : Gp — E* isHodge-Tate with Hodge-Tate weights {n, } . g, atv

and the fact that algebraicity only cares about an open subgroup of 1 "‘2, we can consider p as

p, then by Lemma 1.2.15

instead coming from G i where K/Q, meets all the same conditions as before: contains all the
Galois conjugates of I, contains [, is Galois over Q,. We can therefore consider the 2> -valued

character of G given by
-1

po| II 7 toxim|
T!E—)GP
which is Hodge-Tate but with all of its Hodge-Tate weights equal to zero. In other words, by

Lemma 1.2.14,
-1

T:E—)QP
in H'(Gp,,Cj, ) forall 7 : E — Qp. It is proven in [Ser1989, Appendix to Ch. III, A.3]"* that
-1
this implies that p - (HTE%Q 77 1o XZTE> must be 1 on an open subgroup of I} , i.e. that p
. D ) v

is algebraic (as we know that the character 77! o X", = 77!NX, is algebraic from our previous

formulas expressing it on /2> 2 O as a product of powers of certain embeddings of K).

Remark 1.2.19. We have now proved a fairly remarkable fact: the algebraic Hecke characters for
a number field ' are in bijection (via Weil’s construction) with the Hodge—-Tate representations
Gp — Q; . Combined with our stuff from the previous section regarding Hecke characters
factoring through the norm to the maximal CM subfield, we almost have the Fontaine-Mazur
conjecture for GL;. Indeed, if a Galois representation p : Gp — 6; is potentially semistable at
all v

p, then it is Hodge—Tate. We don’t lose any information by now forgetting the potentially
semistable assumption, because by the p-adic monodromy theorem (probably not really necessary
in the 1-dimensional case) and the fact that de Rham equals Hodge-Tate in 1 dimension [BC2009b,
Example 6.3.9], actually it is equivalent to Hodge-Tate. By what we just proved, p comes from
an algebraic Hecke character for F', which factors through the maximal CM subfield of F'. If
F has no maximal CM subfield, then the Hecke character is just ||| up to finite order, and the
corresponding Galois character is (up to finite order) the cyclotomic character, which of course
comes from geometry. In the case where F' has a maximal CM subfield Fy(+/a), we would need
to know that the Galois characters associated to algebraic Hecke characters for CM fields come

from geometry. An affirmative answer to the full Question 1.2.11 would give us this, as it would

127 don’t want to do the details for this one, but it is essentially taking p-adic logarithms and applying [Tat1967,
Theorem 2].
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give us those characters as a subquotient of the Tate module of an abelian variety.

1.3 The Sato-Tate conjecture

This section is about the Sato—Tate conjecture and the relationship with the symmetric power
functoriality conjecture for holomorphic modular forms Example 1.1.5. We begin with the

standard generalities on equidistribution (see for example [Elk2019]).

Proposition 1.3.1. Let G be a compact Lie group and X the set of conjugacy classes of G, endowed
with the quotient measure from G. Denote by p the pushforward to X of the Haar measure on G
via the quotient map G — X, normalized so that (G) = u(X) = 1.

A sequence {z,,} € X is equidistributed with respect to . if and only if for every nontrivial

irreducible character x of G,
N

. 1
Jm > x(a) =0

i=1

Proof. The sequence z,, being equidistributed on X with respect to p is equivalent to having

. 1
fp= Jim > flx) (1.1)

forall f € € (X) (if we don’t take this to be the definition of equidistribution, it is easy to show
this is equivalent to the more intuitive one by looking at characteristic functions of open sets
and using that their C-span is dense in %’(X') under the sup norm, for example [compactness of
X makes this straightforward]).

The forwards direction is straightforward: just plug in each y for f € € (X), and use the
fact that by definition of the pushforward measure, the left hand side of (1.1) equals

Luweéxmmm

where dg is the Haar measure on G. When Y is plugged in, we know (after using the letter y to

denote both the function on GG and the function on X) that this is equal to

0, ifxy#1
/x(g)dg= ,
el 1, ify=1

(by the exact same argument as for finite groups, using the invariance of the Haar measure
and integration rather than summation). So (1.1) (true from the assumption of equidistribution)
implies the conclusion of the forward direction of the claimed result.
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For the reverse direction, since the left hand side of (1.1) is tautologically equal to lim ;o % sz\il x(x;)

1 when x = 1 (using the assumption that | o 1dg = 1), it suffices to show that (1.1) being true
for all irreducible characters (implied by the hypothesis of the reverse direction by what we just
did) implies that (1.1) is true for all f € €' (X).

It is a consequence (which I will explain next) of the Peter-Weyl theorem that the C-span of
the irreducible characters of G is dense in %'(X') under the sup norm. Once this is established,
we are done, because (1.1) being true for all x implies it is true for all C-linear combinations
of the  (both sides being linear in the choice of function in ¢ (.X)). Those linear combintions
being dense in €’ (X') under the sup norm, for every f € € (X) and e > 0, thereisa g € € (X)
for which (1.1) holds and for which || f — g||z~ < € (take g to be a linear combination of the
close to f under the sup norm). Together, these two facts about g imply that the two sides of
(1.1) are within 2¢ of each other (thanks | o Ldg = 1); since € > 0 is arbitrary, we conclude that
(1.1) holds for all g € ¥ (X) and therefore {z;} is equidistributed with respect to y, as long as
(1.1) is true for all x # 1.

The only thing left to justify is the claim that the C-span of the irreducible characters of
G is dense in € (X). Part of the Peter-Weyl theorem says that the matrix coefficients of G are
dense in €' (G). This part of the theorem essentially follows from Stone-Weierstrass. We need to
deduce from this that every continuous class function on G can be uniformly approximated by
C-linear combinations of characters of irreducible representations. Let f € ¢’ (X) and € > 0 be
arbitrary. By the part of the Peter-Weyl theorem mentioned above, there is a matrix coefficient
Yz — u(n(z)v) for G (here 7 : G — GL(V) is a finite-dimensional representation, v € 7
and v € 7") such that || f — ¢||,~ < . To produce a class function from ) (which will hopefully
approximate f well because 1) does, and will hopefully be a C-linear combination of characters
of irreducible representations of (&), one can use the usual technique of averaging: consider the

element p € € (G) given by

o) = /G u(r(gzg~" ) dg.

By invariance of the Haar measure, ¢ is a continuous class function on G. We have (thanks to
having normalized the Haar measure such that |, o 1dg = 1and f being a class function)

e /G (f(x) — u(n(gzg ™)) dg

1f = lle~ =
Lo

T /G (flgzg™") — u(n(gzg~")v)) dg

Lo

< [ lle = Flaag™) = ulrlgag™ o)l do

< /G Iz = £(z) — ulr(z)o)]| - dg
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= [If =¥l <&

so it remains to confirm that ¢ is not only a class function, but a C-linear combination of
characters of irreducible representations. To do this, write 7 = @ 7; as a direct sum of
irreducible representations (G is compact and V' is finite-dimensional so the usual Maschke

argument works). Then the matrix coefficient 1) may be rewritten in terms of this decomposition:
Y(o) = ui(mi(x)v),

where u = Y u; (u; € m')and v = Y v; (v; € ™). So ¢(x) = Y, [, ui(mi(gzg")v;)dyg,
and we just need to check that the i-th term here is a C-multiple of x,. For any fixed z, the
linear operator on m; given by v — |, o 7i(grg~')v dg is G-intertwining (by invariance of Haar
measure), so by Schur’s lemma (this was the point of decomposing into irreducible 7;), it is
of the form v — «;,v, where o;, € C. Therefore, again by f o 1dg = 1, and passing the
linear functionals u; outside the integral sign (allowed because of how integrating vector-valued
functions is defined),

p(z) = Zui(amvi) dg = Zui(vi)ai,x-

What is the relationship with the character y; of m; ? It is that

Xi(x) = Trm(x) = / Trmi(grg™ ") dg = Tr/ mi(grg™") dg = (dim ;) 4,
G e

(again using |, o 1dg =1, the fact that y; is a class function, and the theory of integration of

vector-valued functions, treating 7;(gzg~") as a (dim 7;)?-dimensional vector). Hence,

p(r) = Z vy Xi()

dim s

for all z € G, which means that f can indeed be approximated uniformly by C-linear combina-

tions of characters of irreducible representations, completing the proof. ]

Now we explain the relationship with L-functions. The technique of how to deduce equidis-
tribution (in the form given by Proposition 1.3.1) from properties of L-functions follows the
exact same lines as how we usually deduce results about asymptotic behavior of prime-counting
functions from the analytic properties of the appropriate L-functions [Elk2019, psi.pdf,
chebi.pdf, pnt.pdf, pnt_q.pdf]. In particular, we get something out of the Wiener-
Ikehara tauberian theorem for the logarithmic derivative of appropriate L-function (or if we have
a zero-free region that goes sufficiently far into the critical strip we can use the more explicit
Perron integration technique on the logarithmic derivative and get a more explicit error term

depending on what we know about the zeros of the L-function; this works for arbitrary number
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fields, as is classical for the prime number theorem and was worked out by Lagarias—Odlyzko
and Serre for the Cebotarev density theorem [LO1977,Ser1981]). The asymptotic result that
we actually want will follow by partial summation (in the same way that asymptotics for the
Chebyshev 1/-function are equivalent to asymptotics for the prime-counting 7-function by
partial summation, and analogously in the proof of Dirichlet’s theorem or more generally the
Cebotarev density theorem). Indeed, the Cebotarev density theorem for finite extensions is an
equidistribution theorem about a sequence of conjugacy classes (the Frobenii at unramified
downstairs places) of a finite (Lie) group. It makes sense that we should be able to use the
same techniques as in that proof to also deduce more general results about equidistribution of
sequences indexed by places of a number field with values in a general compact Lie group.

We are forced to explain this in general, so that we can develop in full detail not only the
example with the equidistribution of angles but also the Sato-Tate conjecture and its relationship
with symmetric power L-functions.

Let F' be a number field, G a compact Lie group, and X the space of conjugacy classes of
G, as above. Let ¥ be a subset of the set of finite places of F'. We are interested in whether a
given collection {z,} of elements of X is equidistributed with respect to y (the pushforward
of the Haar measure on G). In order to ask whether the {z, },cx are equidistributed, we need
to define some ordering on >.. The obvious thing to do is to order them by their norm. Since
the number of places of fixed norm is bounded by a constant that only depends on F' (namely
[F' : Qp)), the question of equidistribution is unaffected by which one of the various orderings
of the v € ¥ such that v < w is the same as Nv < Nw. So we pick an arbitrary such ordering,
the point being that the only thing that matters in our truncated averages will be a sum over v
such that Nv < T', where we will send 7" — o0. Since the sum will be divided by 7', and has a
bounded number of fewer terms compared to any truncated average computed over any subset
of the v with Nv < 7" 4 1 that contains all of the v with Nv < T, the truncated averages over
{v € ¥ : Nv < T} going to zero as T — oo implies the same thing for all of the truncated
averages.

By Proposition 1.3.1, {z,} is equidistributed with respect to x if and only if

1
li v) =0
T%#{UGEINUST} UGZEX(:E)

No<T

for all nontrivial irreducible characters x of G. We want to build an L-function which is supposed
to tell us about this, which we can basically do by direct analogy to Artin and/or Hecke L-
functions (the former being for where the z,, are Frobenii in some finite Galois group and the
latter being for where the z, are images of uniformizers 7, in a ray class group or maybe some
other quotient of the idéle class group that happens to be isomorphic to S* [these are quotients
by the kernel of surjective unitary Hecke characters]; of course these [z, being Frobenii and
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being images in ray class groups] amount to the same thing when you restrict to the case where
the Galois group of the upstairs field over F' is abelian by class field theory).

With particular attention to doing the exact same thing as Artin L-functions in the non-
abelian case: for an irreducible representation p of Gz, define

1

LE(S’ p> VEX det(ldp - (Nv)_sp(l'v)) .

If this function has good properties (not always obvious or known) for all p, then we can crank
the usual handle:

Proposition 1.3.2. Suppose that for all nontrivial irreducible representations p of G, L(s, p)
converges to a nowhere-vanishing holomorphic function on {s € C : R(s) > 1} which extends
meromorphically to {s € C : R(s) > 1} again without zeroes or poles. Suppose also that L(s, 1)
converges for R(s) > 1 with meromorphic continuation to {s € C : R(s) > 1} such that there
are no zeroes and the only pole is a simple pole at s = 1. Then the {x,} are equidistributed with

respect to .

Proof. Let p be an irreducible representation of G. For each v € 3], let {/\Sf)}?i:nfp be the roots
(listed with multiplicity) of the characteristic polynomial of p(x, ). Using the Euler product (in
our case the definition) of L(s, p), we have

dim p
L d 1
(s,p) = —log i
L d 1;11 1— AV (Nv)==
dim p d
--y Z - log (1= A (No)™)
veY =1
B _Zdlzmp)\( log Nv Nv) s
veY 1=1 )7
dim p
- _ Z Z log(Nv)(Nv)~™* Z A"
veEX m>1 i=1
- _ Z Z log(Nw)(Nv) ™™ x(x)").
veEX m>1

where x is the character of p. Here we have used the unitary trick to see that \)\g)\ = 1land
therefore the geometric series manipulation is allowed. This is valid in the region where the
Dirichlet series for L(s, p) converges, which is at least for R(s) > 1.

For the exact same reason that the contribution to ¢(x) of higher prime powers is negligible
in [E1k2019, chebi.pdf, p. 3], we really only need to be interested in the m = 1 terms
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here. Following the model of [Elk2019, cheb1i . pdf] rather than what is done by Serre in
[Ser1989, appendix to Ch. I, A.3], we continue without doing anything to L'/ L.

The Dirichlet series we just wrote down for %(57 p) cannot be directly plugged into the
Wiener-Ikehara theorem, because of the y(z,), which are not nonnegative real numbers. So
we need to bound our Dirichlet series by something with good convergence and positive real

coefficients. This is where the hypothesis about the “zéta function” L(s, 1) comes in useful:

/

—(dim p)%(s, D) =Y ) log(Nv)(Nv)~"*(dim p).

veX m>1

As noted above, we are guaranteed that this Dirichlet series converges for R(s) > 1, and since
x(z!") is the sum of dim p eigenvalues, all of absolute value 1, its coefficients are upper bounds
for the absolute values of the coefficients of %(s, p)-

The hypothesis that L(s, p) converges to a holomorphic function on $(s) > 1 with holo-
morphic continuation to R(s) > 1 with no zeros in that region implies that %(s, p) has no
poles in the region $(s) > 1. Similarly, the hypothesis that L(s, 1) converges on R(s) > 1 with
meromorphic continuation to $(s) > 1 with no zeros anywhere and a simple pole at s = 1
implies that —(dim p)%(s, 1) has a meromorphic continuation to $(s) > 1 such that the only
pole is a simple pole at s = 1.

In this situation, the Wiener-Ikehara Tauberian theorem (in the statement in [Lan1994, Ch.
XV, §3, Theorem 1], we are setting f(s) = %(3, 1) and g(s) = %(5, p)) tells us all about the
asymptotic behavior of the partial sums of coeflicients of Lf/(s, p). In particular, the fact that
Lf/(s, p) has no poles for R(s) > 1 implies that for 7" > 0,

> ) (log(Nv))x () = o(T) (1.2)

vEY, m>1
(No)ym<T

as T" — oo. It is at this point that we choose to get rid of the terms with m > 2. For any fixed
m, the absolute value of the contribution of the terms with that value of m is

Y, (ogN)x()| < > (logN(v)) [x(z})]

vEX veEY
NUSTl/WL NUSTI/‘"L
< (dimp) Y logN(v)
veEY
NUSTI/‘"L

< (dim p)#{v € ¥ : No < TV} log TV/™
1

< (dim p)[F : Q—T"™logT.
m
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Therefore, the sum of these contributions over all m is of absolute value <, (log T") Z:;gQQT ;L T,
because the terms of (1.2) all have T' > 2™, i.e. m < log, T. The m = 2 term is < T"/?log T,
and the m > 3 terms all add up to < 7"/3(log T')?> < T"?1og T = o(T'). Combined with (1.2),

we conclude that the asymptotic holds without any of the m > 2 terms, i.e. that

> (log(Nw))x(zy) = o(T) (1.3)

veEY
No<T

as ' — oo.
This implies the desired result by partial summation: the thing we want to estimate as

T — oo is (by partial summation, i.e. integration by parts for the Riemann-Stieltjes integral)

= 3/2 logx
No<T Nv<x
log(N v log(Nv) ) dx
T 2 ) + /Mbg 5 2 g
No<T N'u<1‘

R Y
_1ogTO 3/2xlog(x)20x v

For sufficiently large x, the o(z) in the second term is at most 2. So as ' — oo, we conclude that

> e =0 (7) +© (i) = (o)

No<T

By Wiener-Ikehara applied just to —%(s, 1), and the same argument applied again to ignore

the m > 2 terms, since this function has its only pole at s = 1, which is simple of residue 1, we

know that T T
Y:No<T}=
v e vsT) logT+O<logT>

(the “prime number theorem for number fields”). It follows that

1
#{veX:No<T} UEZEX(ZE

Nu<T

as T — oo whenever Y is the character of a nontrivial irreducible representation of G, i.e. that
the x, are equidistributed on X, by Proposition 1.3.1. O
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Example 1.3.3. If we are looking for an unramified unitary Hecke character x for Q(i), since

1=ClQ(:)) = Q(i)X\As(i)/ (CX X H Zm:> ;

p<oo

it suffices to specify x on C* (its unramifiedness means it is trivial on Zm: ; that is the definition).
a|)k for s € Z. But
not all of these work, because there is the additional restriction that y is 1 on Q(7)*. Since
Q@) NC* x [[e0n Zmp = {1, 4i}, we are all set as long as i* = 1, i.e. 4|k. This is where

our y might come from. This Hecke character also has the nice property that for each finite

The unitary characters of C* are exactly those of the form o — («a/

prime p of Q(%) above a rational prime p, if 7, has v, (7,) = 1 and vy(m,) = 0 for all finite q # p
(that is, p = (), which is okay for us because the class group is trivial), then

Xp (ﬂ'p) = X((av)v)y

where o, = 7, ! whenever v # p and a, = 1 when v = p (this is just the definition of

p
Xp combined with the fact that 7, € Q(i)*). Since 7, e Zm: for all finite q # p, and
is unramified, we conclude that y,(7,) € S' is precisely the inverse of the fourth power of
the argument of ,, viewed as an element of S' C C*. The point is that this is really an
angle associated to p, as the fourth power assures us that it will not depend on the choice of
generator 7,, which we are allowed to push around by +1, £. The information contained in
this fourth-power thing is the same as the data of the argument of the generator of p that lives
in the first quadrant. For each finite prime p of Q(i), we let 2, € S* be x(,). The nontrivial
irreducible (unitary) characters of S! are just the self-maps S* — S' C C* given by z — 2* for
integers k # 0, so for any such character 7, the truncated averages we are interested in thanks

to Proposition 1.3.1 are exactly equal to

1 1 .
#{p:Np <T} ; () = #{p:Np <T} ; X" ().

Np<T Np<T

Of course, x* is just another nontrivial unramified unitary Hecke character for Q(i), namely
the one that is trivial on Z[:], for all finite p, and equal to a (I%) on C*. That this does
not depend on the choice of 7, is immediate from this explicit form and also from the fact that
X is unramified. The unitary Hecke character x* is surjective onto S when restricted to Aa’(ll.),
since this subset contains S C C*, and the 4k-th power map from S! to itself is surjective

when k # 0. In the notation that we defined above in the general setup relating L-functions to
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equidistribution, we have

Ky 1
Lo 00 = I T=rmymr

p<oco

which is the exact same thing as LH¢¢(s, y*). The unitary Hecke character x* being surjective
onto S* when restricted to Ag’é), we know by the general theory of Hecke L-functions (see
[Lan1994, Ch. XV, §4, Theorem 3], essentially the 3-4-2 trick) that the series defining L(s, (-)*)
converges to a holomorphic function on #(s) > 1, which extends holomorphically to #(s) > 1
without any zeroes there either (there are no zeros on R(s) > 1 by the general fact about infinite
products of the form that L(s, p) is given by [SS2003, Ch. 5, Proposition 3.1]). Since L(s, 1)
would just be the usual Dedekind zeta function for Q(%), the hypotheses for Proposition 1.3.2
are met, and we conclude that the values x(m,) are equidistributed in S* for the Haar measure
(G = S'is abelian so X and G are the same, and . is the same as the Haar measure).

The finite primes p|p are either split, ramified, or inert. The inert ones are those for which p
is the only prime lying over p, in which case Np = p?. The split ones are those for which p, p
are distinct and are the only two primes lying over p. There is only one ramified prime, namely
(1+1)
is a finite number).

ignore because its contribution will always go to zero (because 1

In fact, we can also ignore the contribution of the inert primes. Their contribution to the

sum from Proposition 1.3.1 is

i cp2 < cp2 <
lim Z i < lim #{p|p inert : p*> < T} < lim #p:p’ <T} _
7= {p| : Np < T} NP <T} oo Tooo  #{p:p<T} Tooo H{p:p < T}
p2<T

by the prime number theorem. So the equidistribution of the x(m,) over all p implies the
equidistribution of the x(m,) over just the p|p which are split. In other words: if we order
the rational primes in the usual way, and consider only those of the form p = 4k + 1, so that
p = a2+b; where {a,,b,} € N*is uniquely determined by p, then if we let 65" = arctan(b,/a,)
and 07 = arctan(a,/b,), the sequence 93 ,Qé ), Qél), ... is equidistibuted on [0, 7/2]. If we
want to rewrite this in a way more “intrinsic” to p, one way would be to just say that the smaller
¢, among the two is equidistributed in [0, 7 /4] (this sequence has just one element instead of two
per p and contains the same information since 9,()1) and 9,(,2) are the first quadrant representatives
of m, and 7 so one of them determines the other in an explicit enough way [92(72) =3 — 91(91)] as
7y has a representative in the fourth quadrant which is the same as the complex conjugate of a
first-quadrant representative of 7,). In a more symmetric fashion: an unordered pair {a, @} for
a € S' C C is determined by a + @ = 2R(a) € [—2, 2]. The pushforward measure on [—2, 2]
of the Haar measure on S* under 6 — 2 cos § (as I have computed by taking the derivative of
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arccos) can be normalized to be — \/%. The fact that x(,) (which lives on S* and only depends

on the choice of p) is equidistributed on S is equivalent to 2R(x(m,)) being equidistributed
on [—2, 2] with the measure mentioned above, since if something is in the image of {z, }, then
both possible preimages are in the {z,}. Moreover, 2R(x (7)) does not depend on the choice
of 7, (that was the point of x) nor the choice of p lying over p (that was the point of mapping
to [—2,2]), so we can really deduce that a naturally constructed sequence whose elements are

naturally indexed by the rational primes p = 4k + 1 (rather than one that is twice as big), namely

4 4
2a, — 6a§b12, + 2bp
2

9

2 .
D= Eg%((ap + bpl)4) =

is equidistributed on [—2, 2] with respect to = \/?_7, and this is equivalent to the original

equidistribution statement involving all the primes of Q(i). Indeed, this is a quantity that
does not depend on the order or sign of @ and b, so a,, b, can be chosen arbitrarily among the
(ap,b,) € Z? such that af, + blz) = p. Later in this letter (also copying what you wrote on the
board at some point) I will write this in a more reasonable way as the equidistribution of traces

of Frobenii in an induced Galois representation

Now let us consider a much more involved case of equidistribution, namely the Sato—Tate
conjecture. Fix a rational prime /. Let E be an elliptic curve over a number field F’, and let
¥ be the set of finite places v of F' such that £ has good reduction and v does not lie over ¢
(this eliminates only finitely many places of v so it makes no difference from the perspective
of equidistribution). For all finite places v (though we will only care about those in ¥), let
Ko = Op/Py.

Thanks to our two conditions, the easy direction of the Néron-Ogg—Shafarevich criterion
[Sil2009, VIL.4.1] tells us that the global /-adic Galois representation V; := Q, ® T, F (that is,
p: Gp — GLy(Q) = GL(V})) is unramified at all v € ¥. Moreover, either by the classical
explicit calculations that work for elliptic curves, or by the Weil conjectures, the Frobenii

p(Frob,), which are conjugacy classes in GL3(Qy), satisfy the following property:

Theorem 1.3.4 (Hasse-Weil). The characteristic polynomial p,(X) of p(Frob,) (a priori a
quadratic polynomial with coefficients in Q,) actually has coefficients in Q. More precisely,

po(X) = X* = (No+ 1= #E,(k,)) X + No,

where E,, denotes the mod-p,-reduction of E.

Sketch of proof. The constant term is what it is just because det op is the global ¢-adic cyclotomic
character (thanks to the fact that the Weil pairing respects the Galois action [Sil2009, II.8.1]),
or because of the Riemann hypothesis part of the Weil conjectures. The X-coeflicient (i.e.
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computation of the trace) is what it is by writing
Trp(Frob,) = 1 + det p(Frob, ) — det(id — p(Frob,))

(this is a general fact about 2 x 2 matrices), this time using the fact [Sil2009, IIL.8.2] that the dual
isogeny to an endomorphism f acts on the Tate module as the adjoint (with respect to the Weil
pairing) of f to identify those determinants with degrees of morphisms F), and id — F;, on F,
(F, being the Frobenius morphism that acts on k,-points by Nu-th powers of the coordinates,
which induces the action of p(Frob,) on TyE' = Ty E,) and then using the fact that id — F, is a
separable morphism [Sil2009, IIL.5.5], so its degree tells us about the number of k,-points in its
kernel, i.e. the number of k,-points on FE,. Alternatively, the trace computation is the Lefschetz
fixed-point formula part of the Weil conjectures, in which case you have to unwrap what the
Frobenius action is on the 1-dimensional Q,-vector spaces H)(E,, Q,) and H2(E,,Q,). [

Thanks to Theorem 1.3.4, the data of the conjugacy classes p(Frob,) in GLy(Qy) is of great
interest, because if we understand them, then we understand the number of points in the mod-
p,-reductions of F for v € 3. For any choice of Frob,,, we know from Theorem 1.3.4 that the
two generalized eigenvalues of p(Frob,) are actually in Q C Q, (choose an embedding ¢,), and
that they are complex conjugates (choose an embedding of Q — C (choose an embedding ..),
after which the generalized eigenvalues will still satisfy p, (X)) of absolute value v/Nv. To each
v € X, we can therefore attach the conjugacy class x,, of SU(2) whose eigenvalues are'’

Qy  Qy
VA Nv' v/Nov

where «, and its complex conjugate @, are the generalized eigenvalues of p(Frob,) (here we

abuse notation by using «,, to denote what is really ¢, o ¢; ' (c,)). By the spectral theorem, the
conjugacy classes of SU(2) are determined by the choice of diagonal matrix whose entries are
two complex conjugate elements of S*, so it certainly makes sense to send our conjugacy classes
p(Frob,) to these particular diagonal ones.

Since the set of conjugacy classes of SU(2) is in bijection with [—2, 2] under the trace map
Tr : [diag(a, @)] — o + @ = 2R(«), asking about equidistribution in SU(2) of the p(Frob,)
is the same as asking about equidistribution under the pushforward of the chosen measure
(which is the Haar measure as usual) under Tr of the traces of the Frobenii. One reason this is
interesting is that by Theorem 1.3.4, understanding the distribution of Trp(Frob,) as v varies
(ordering by Nv as usual) is the same as understanding the distribution of the error term in the
Hasse-Weil estimate F,(k,) ~ Nv + 1.

3Note the similarity to Example 1.3.3, where we had two complex numbers in S which were complex conjugates,
namely L\/‘% and its complex conjugate, and we were also interested in the distribution of this unordered pair of

complex conjugates, which we did by taking their sum.
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I did the exercise of computing the pushforward of the Haar measure on SU(2) under Tr. If
I had used polar coordinates on SU(2), I would have ended up with a very simple computation.

Unfortunately, I only realized this halfway through the computation I started.

Lemma 1.3.5. The pushforward of the Haar measure on SU(2) under Tr : SU(2) — [—2, 2] is,
up to a constant factor that we multiply by to make it a probability measure, %\/4 — a2 dz.

Proof. SU(2), via the usual identification with the unit Hamilton quaternions (identified with
a pair of complex numbers by a + bi + ¢j + dk — (a + bi, ¢ + di)), can be identified with
S$3 C C?. The matrix (left-)action of o € SU(2) on C? coincides on S® with the one you get
by identifying elements of S* with the corresponding element of SU(2) and multiplying on
the left by «, which I checked by explicitly writing down the isomorphism SU(2) = S3. By
definition, the action of & : SU(2) induces isomorphisms 7,C? — T, C? for each z € C?
which preserve the natural Riemannian metric on C? (the Euclidean one coming from C? = R,
i.e. just the standard inner product at each point). If we equip S® C C? with the metric induced
from that inclusion, then we see that the action of SU(2) on SU(2) = S? also preserves this
metric (since you get the induced metric just by restricting from 7,,C? to 7,53, which is the
same way that you get the pushforward of o € SU(2) acting on S? rather than all of C?). But
S3 has a volume form coming from that metric, which induces a measure on S3. The fact that
SU (2) preserves the metric implies that it preserves this measure when left-multiplying. By
the fact that compact groups are unimodular, this makes the measure we just defined a Haar
measure on SU(2). So, to write down a Haar measure on SU (2), all we need to do is explicitly
write down the volume form on S® coming from the induced metric.

Once we have some good local coordinates for S? (for example, polar coordinates, which I

mistakenly did not use), we could just use the fact that in local coordinates, the volume form

Vdet gdat A dx? A da?,

and if the local coordinates are o : U — S® (U an open subset of R?), then the definition of the

induced metric g;; from the inclusion S 3 & R* with the Euclidean d;; metric is

(2 9
95 = I\ Gzt i

() ()

_opop
T ot ox

induced by the metric g;; is

This is all well and good, but I did it a different way before I had thought rigorously about what
the right volume form is. Suppose we have some local coordinates ¢ : U — S® which is a

local diffeomorphism almost everywhere on S®. Then we get a local diffeomorphism almost
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everywhere (for example definitely not hitting the measure-zero set {0}) ¥ : U x Rso — R?
given by (z,7) — r¢(x). In the local coordinates provided by U, the volume form we want will
just be ix (¢*w)|ux 1}, where ix is the interior derivative along the vector field X on U x Ry
which is given at (u, r') by the unit normal (0, 1) € T{,,,)(U X Rso), andw = dz' Ada? Ada? Adx?
is the Euclidean volume form on R*. It is easy to check, up to sign, that this is the same volume
form as the pullback via ¢ of the volume form on S* coming from the Euclidean-induced metric:
both of them give us the same definition of “positively-oriented covolume-1”. Indeed, for all
p € S3, the set of bases X, X5, X3 of T,5% such that (iyx(w)|ss),(X1, Xa, X3) = 1is, by
definition of the interior derivative, the same as the set of bases such that w(¢* X, X7, X5, X3) =
1, which (since 1* X is the outward-pointing unit normal to S* in R*) is the same as the set of
bases that are actually positively'*-oriented bases of covolume 1 for 7,,5? under the Euclidean
inner product obtained by restricting from 7, R*. This is exactly what the intrinsic definition of
the volume form induced by a metric is (up to sign): that the volume form w, induced by the

metric g;; on an n-dimensional oriented Riemannian manifold is equal to €] A - - - € for any

positively-oriented covolume-1 frame ey, . . ., e, (which can be assumed to be orthonormal) is
just because in the coordinates x!, ..., 2" we can write &% = Me; for some n x n matrix M

(M varies along the manifold just like everything else), in which case
ey Ao ANel = (det M)dz' A+ Ada" = /det gda' A -+ A da" = w,

where the calculation of det M = y/det g is because the matrix g;; is defined, in terms of the
abstract inner product that the data of the metric is, by

9ij = <%, %>g = (Mey, Mej)y = (ei, M Mej)g = (M M)y;.
In fact, this is why the volume form is defined the way it is with the \/det g.

Having justified the equivalence of the two volume forms, it remains only to write down
an appropriate ¢ : U — S* and compute the volume form ix (¢*w)|y«{1}. By doing it this
way, we avoid computing all the inner products of the previous method, but have to compute
a 4 x 4 determinant rather than a 3 x 3"°. Since S® C C? is the set of (a + bi, ¢ + di) such
that a> + b? + ¢ + d? = 1, and so a® + b*, ¢* + d* < 1, a very natural choice of coordinates on
SU(2) = S% is by

¢ :U=[0,7/2] x [0,27] x [0,27] — S*

(0,101, 13) > (™ cos B, €2 sinh).

14Up to sign: so this could be supposed to be “negatively-oriented.”
BIn reality I don’t think I saved any time; it’s just that this was the first thing I came up with and did in my
notes; then in this letter I had to justify the equivalence which definitely made it not worth it in terms of time.
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The Jacobian of the resulting ¢ : U x R~¢ — R? is then

cospy cosf  —rcosf sinyy 0 —7r cos ) sinf
sin; cosf 1 cosf cos iy 0 —rsin; sin 6 3 .
) _ ] =r°sinfcosb,
cos 1y sin 6 0 —rsinfsinys, 7 cosyy cos b
sin g sin 6 0 rsinfcosvyy  rsing cosd

so the form ¢*w = *(dz' A+ - Adx?) = r3sin 0 cos 0 dr A df A dipy A dips. Tts interior product
with X = (0, 1), restricted to the locus r = 1, is sin 6 cos 0df A dip; A di)s. This is the Haar
measure for SU(2) in the coordinates we have provided. If I had chosen polar coordinates,
it would now be obvious what the pushforward under Tr is, but instead we have to do more

computation. Let 1 be the measure we just wrote down on SU(2). The measure Tr* i on [—2, 2]
is given by, for [a, b] C [—2, 2] with WLOG [a, b] C [0, 2],

Tr*u((a, b)) /// 01 0 sin € cos 0 dfdi),di,

2 cos ¢y cos 0€(a,b)

=27 / 060 sin 0 cos 0 dfdy,

2 cos 1y cos 0€(a,b)

-1

—47r// schostQ—dy
—2 Jcosfe( a/yb/y) \/ _y
b/y
—4#// rdr —— dy+47r// dy
/y & y2

a a 1

[ (1__)_@%/ (___ P
a v') JA—y? by \Y 1P 4_y?

b dy 2 ? 2
:27r/——27ra/ +27rb —
o VA=Y o Y24 b 4 — g2
=27 {arcsin (g) — arcsin <2>] — —a\/4—a2+ b\/ — b?

b
—7T/ V4 — 22 dx.

Renormalizing to make it a probability measure, we get the desired ¢Tr*p = %\/ 4 — 22 dx for
some constant c. [

Remark 1.3.6. Note that even though in either case we are taking the pushforward under the
trace map of a Haar measure in order to state in the simplest way an equidistribution result about
eigenvalues of Frobenii that come in complex conjugate pairs, the measure we get on [—2, 2]
in Lemma 1.3.5 is completely different than the one we got in Example 1.3.3. This is because

even when we rewrite Example 1.3.3 in terms of a Galois representation formed by IndGQ( )
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the image of that Galois representation will be inside of S' C SU(2) (the diagonal matrices
that represent all the conjugacy classes), whereas the image of the Galois representation we are
interested in here (at least in the non-CM case'®) is too big, so we have to consider the Haar
measure on all of SU(2) rather than just S'. Indeed, the pushforward of the Haar measure on
SU(2) to S* (viewed as the space of conjugacy classes) is not the Haar measure %d@ on St
Instead, it is % sin? # df, which I computed just by pulling back the volume form /4 — 22 dz on
[—2, 2] under the trace map S — [-2,2], @ — a +a@ = 2 cos¥.

Anyway, now that we have measures on the space of conjugacy classes of SU(2), and, what
is equivalent, the “Sato-Tate measure” on [—2, 2] obtained by pushforward under the trace
of that measure and computed to be the “semicircle” measure in Lemma 1.3.5, I can state the

Sato-Tate conjecture:

Conjecture 1.3.7 (Sato-Tate). Fix F, E, {, 3, p as above, and suppose that £ does not have CM.
For v € ¥, let x, = Trp(Frob,), where p(Frob,) is considered as a conjugacy class in SU(2)
as explained above. Then the sequence {z,} € [—2, 2|, ordered by Nuv, is equidistributed with
respect to the Sato-Tate measure, that is, %\/m dz.

By the L-function machinery, it makes sense that properties of L-functions would be related
to Conjecture 1.3.7. The key point is that the symmetric power L-functions appear because the
irreducible representations of SU(2) are exactly the matrix actions on the symmetric powers of
C2

To be more precise: by Proposition 1.3.2, the L-functions we should be interested in for the
purposes of Conjecture 1.3.7 are the “L(s, p)” obtained from the sequence {z,} for all irreducible

representations p = Sym”C?. By definition of the x,,

1
L(s,Sym"C?) = )
( ) Ul; det(id — (Nv)= - Symk—p(\F/r%“))

where here p(Fr—\/%”) is just standing for the conjugacy class in SU(2) that we were discussing

earlier (we can just pick an arbitrary element, e.g. a diagonal one), and p is V;(E) rather than an
irreducible representation of SU(2). If v, @, € S! are the two eigenvalues of p(Frob,)/v/Nv,
then its Sym” is the (k 4 1)-dimensional C-vector space of degree-k homogeneous elements of
C[X, Y], and since p(Frob,)/+/Nuv can be assumed to be diag(c.,, @, ), hence acting on X by

18This explains why the Sato-Tate conjecture is only the way it is for non-CM elliptic curves; in the CM case
the measure, being obtained by pushforward from S! rather than all of SU(2), is different and one is essentially
done by a consequence of the main theorem of complex multiplication [Sil1994, I1.10.5] which says that the Galois
representation we are interested in is, as in Example 1.3.3, obtained by induction from GQ(i) (though the Galois
representation corresponding to the Hecke character from Example 1.3.3 via Weil’s construction is never the one
associated to a CM elliptic curve, as we will see).
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a, and Y by a; so its Symk is also diagonal, with eigenvalues equal to

m—~k—m __ _2m—k _
Q, O =, " m=0,..., k.

So we have in fact

k
1
L(s, Sym"C?) = H H 1 — (Nov)—sa2znh

vEY m=0

Granting that £ has no CM, this L-function does not seem to be easily written in terms of Hecke
characters; so we need some other strategy to show that it has the analytic properties required
by Proposition 1.3.2 (we would need to do this even if £’ did have CM, it’s just that we would
then be able to apply [Sil1994, I1.10.5] and relate the situation to the situation of L-functions
of Hecke characters which are well-understood). The point is that L(s, Sym*C?) is essentially
the same as the L-function of the k-th symmetric power of the GGp-representation that is the
rational /-adic Tate module of E: the latter L-function is defined to be the Artin L-function

1
det(id — (Nv)~sSym”p(Frob,))

L(s,Sym”p) := H

vEY

. 1
- = wmoma

veX m=0

=1L (s — g Syka2) .

If we can prove (e.g. in some form of symmetric power functoriality) that L (s, Sym*p) equals the
L-function of a cuspidal automorphic representation of GLj 1 (Ar), then it is a general fact due
to Jacquet—Shalika [JS1976] that it does not vanish on the line $(s) = 1. We would then conclude
that L(s, Sym”C?) does not vanish for R(s) > 1 — k/2 for all k > 1. For k = 0 we clearly have

a zeta function, so we would have a valid proof of Conjecture 1.3.7 by Proposition 1.3.2.

Remark 1.3.8. In [Ser1989, I-26], Serre claims that I have a sign error - it should be s + k/2 in
the input to the L function at the bottom of the display equation above, and R(s) > 1+ k/2 for
the place where L(s, Sym*C?) does not vanish. I mention this here since differing from Serre

means there is certainly a mistake in my work.
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Chapter 2

Eigenvarieties

“Many of the truths we cling to depend

greatly on our own point of view.”

Obi-Wan Kenobi to Luke Skywalker,
Star Wars Episode VI: Return of the Jedi

Eigenvarieties are rigid analytic spaces that parametrize p-adic families of automorphic forms.
The concept was introduced by Coleman—Mazur [CM1998], who constructed (for p > 2) the
eigencurve (equidimensional of dimension 1 as the name suggests), a reduced rigid analytic
space &, over Q, containing a Zariski-dense subset of C,-points (the “classical modular locus”
of [CM1998, Definition 1]) that is in natural bijection with the set of normalized eigenforms
of finite slope and level Iy (p™=!) [CM1998, Theorem F]. In fact, &,1(C,) is itself in natural
bijection with the set of “normalized finite-slope overconvergent modular forms of tame level 1”
[CM1998, Theorem E]. The construction of Coleman-Mazur relied in a crucial way on earlier
work of Coleman [Col1997b] on p-adic families of modular forms. The main technical point of
that work was to generalize the theory of compact operators on p-adic Banach spaces [Ser1962]
to Banach spaces over the affinoid algebra of weight space.

More generally, Buzzard [Buz2007, part IT] constructed, for any rational prime p and any
tame level IV, a generalization of the eigencurve parametrizing normalized finite-slope p-adic
overconvergent eigenforms of tame level V. The construction of eigenvarieties parametrizing
p-adic families of automorphic forms other than holomorphic modular forms has grown into an
important and useful industry, having notably been done for Hilbert modular forms [K1.2005,
AM2004,Pi12013], forms of GLy/ F compact modulo center at infinity [Buz2007, Part IIT] for F//Q
totally real (e.g. quaternionic Hilbert modular forms), forms of GL,,/Q compact modulo center
at infinity [Che2004], and for reductive groups G such that G%"(R)) satisfies the Harish-Chandra
condition [Urb2011].

Of particular importance to this mémoire is Emerton’s landmark work [Eme2006b], which
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works in the special cases that we will require (namely the case of the Coleman—Mazur eigencurve

and the case of eigenvariety for definite unitary groups).

In broad strokes, there are typically two ways of thinking about an eigenvariety. We use the

“0” v

(1)

s. “D” notation in order to be consistent with [CM1998] and [Buz2007]:

The “C” eigencurve of [CM1998, §6] is defined as a Zariski-closed subspace of X"& x T,
where X = SpfR"™ is a formal scheme coming from a universal deformation ring (so
that its Berthelot rigid generic fiber' is a rigid space parametrizing some collection of
pseudorepresentations), and 7 is a space intended to parametrize nonzero Atkin-Lehner
Hecke eigenvalues (typically it is a product of copies of G,,, or the character variety of a
torus depending on the exact viewpoint). In the case of the Coleman-Mazur eigencurve,
this is essentially classical: by Atkin-Lehner theory, this is the information that determines
a modular form — the oldforms for I'y(p/N) associated to a given newform for I'y(/V') have
the same associated Galois representation, but they are distinguished by their Atkin-
Lehner U,-eigenvalue. Indeed, once the “C” eigenvariety is projected down to X"¢, one
obtains the “infinite fern” of [GM 1998, Che2011], the many transverse intersections of
which come from Coleman families interpolating the various eigenforms projecting to the

same point in X.

The “D” eigencurve of [CM1998, §7] is constructed without any Galois-theoretic input,
and it is axiomitized by Buzzard in [Buz2007]. Essentially, once one has a system of Banach
modules on weight space equipped with a Hecke action where some distinguished operator
U (playing the role of Atkin-Lehner U, operator) for which everything is finite-slope
is compact (see also [Che2004] for a nice description of the setup), one can construct
the “spectral variety,” which is a Fredholm variety given by the vanishing locus of the
characteristic series of U. The eigenvariety is then constructed by taking a affinoid
cover of the spectral variety over which the characteristic series of aU (for all « in the
Hecke algebra) is divisible by a polynomial Q(T"), proving this cover is admissible (always
[Buz2007, Theorem 4.6] or some variant), and defining the eigenvariety over an affinoid
SpA in the cover to be the Sp of the image of the Hecke algebra in the endomorphism
algebra of the finite-type module of overconvergent forms killed by 796 Q(7~1). It turns
out that this construction can be glued to form the eigenvariety D, which is locally finite
flat in the source over weight space (this is [CM1998, Theorem C] and follows directly

from the construction we just described).

Correspondingly, there are two approaches: one can construct the “D” eigencurve using just

the spectral eigenvariety machine of [Buz2007], and then embed it in X" x 7T by constructing

a universal pseudocharacter on D (e.g. by using [Che2014, Example 2.32] to interpolate the

Isee [d]1998, §7]
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construction of Galois representations associated to a Zariski-dense subset of classical auto-
morphic forms, if such a construction is available). Alternatively, one can construct the “C”
eigencurve directly as being the Zariski-closure of the classical modular locus in X" x 7, and
prove separately that the classical points are dense in D in order to show that they coincide
(e.g. via the technique of [BC2009a, Proposition 7.2.8]). Note that either way, these approaches
both require proving that the classical points are Zariski-dense in the natural rigid space that
contains them. This is NOT always true, as remarked by Ash-Pollack-Stevens [AIS2014] in
the case of GL,,/Q and by Calegari-Mazur [CM2009] in the case of GLy/K where K/Q is
imaginary quadratic (as is remarked in the introduction to [Urb2011]). However, such a density
result is true in the cases required by [N'T2021], namely GL,/Q and definite unitary groups,
and the proof of this fact using the representation-theoretic techniques of Emerton [Eme2006b]
will be a focus of this chapter. We also remark here (before doing the full detail) that Emerton’s
construction is very nice because it provides a global version of the construction of the “D”
eigencurve (at least in the sense that all the local constructions and gluing are hidden in the
theory of relative Sp, which is taken care of by [Con2006]).

Before starting with the full detail, we finally remark that the “D” eigenvariety construction
is very useful for proving geometric properties of eigenvarieties: for example the fact that the
eigenvariety is equidimensional of certain relative dimension over weight space is typically
a direct consequence of the “D” construction. In addition, there is a well-known conjecture
of Coleman—Mazur—-Buzzard-Kilford to the effect that eigenvarieties are supposed to admit a
particularly nice structure over boundary annuli of weight space [LWX2017, Conjecture 1.2].
Progress on this conjecture in special cases [BK2005, LWX2017,Ye2019,JN2019] has typically
used the “D” eigenvariety together with explicit computations of slopes using the Newton
polygon of the characteristic series of U, (indeed, it was motivated by such computations).
We mention this conjecture in particular because the special case of it that was proved by
Buzzard—Kilford [BK2005] for &5 is used in a crucial way in the “ping-pong” argument of
[NT2021].

While the “C” eigenvariety construction on its own does not a priori give any useful infor-
mation in the same way as the “D” eigenvariety construction does, keeping that perspective is
ultimately equally useful to the application to symmetric power functoriality in [NT2021]. In-
deed, the entire point is that the question of symmetric power functoriality can be reinterpreted
via the “C” construction as being a question about comparing the image of the GL,-eigenvariety
under the obvious Sym™ ' morphism (obvious because it is obvious how to define it on the
ambient space X"® x T) and the GL,,-eigenvariety (except of course there is not yet any useful
notion of “GL,, eigenvariety” and so a definite unitary group of rank n must be used). Moreover,
this perspective allows for the systematic use of p-adic Hodge theory to study the eigenvariety,
particularly via comparison with the trianguline variety, which is also central to the arguments
of [NT2021].
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Having a global object that parametrizes p-adic automorphic forms (that is, the entire eigen-
variety, as opposed to just an understanding of how to interpolate locally in families, especially
the “C” interpretation of it), and understanding the global structure of that object (especially via
the “D” interpretation), has been for at least two decades a promising approach to attacking
the Langlands conjectures via technique of p-adic analytic continuation, as was pointed out in
[Kis2003,Bel2019]. An early example of this philosophy is the work of Chenevier [Che2005],
which provided a general framework for p-adic interpolation of cases of Langlands functoriality.
The recent breakthrough of Newton-Thorne [NT2021] on symmetric power functoriality that is
the main subject of this mémoire appears to be one of the first fully successful instances of the

technique of p-adic interpolation being applied to make progress on the Langlands conjectures

themselves.

2.1 The concept of a p-adic overconvergent automor-
phic form

2.1.1 Overconvergent modular forms, a la Katz and Coleman

Assume” for this entire section that p > 5 is a rational prime and that N > 3 is a positive
integer not divisible by p. The original approach of Coleman-Mazur [CM1998] used as the
main input the geometric theory of overconvergent modular forms developed by Katz [Kat1973]
and Coleman [Col1997b, Col1996,Col1997a] (see also Gouvea [Gou1988] and the AWS notes of
Calegari [Cal2013]). This section follows these standard reference in sketching the main point
of the theory of overconvergent modular forms. In the style of [Buz2004] (except with more
details), this is meant to motivate the main features and predict some important phenomena of
the general theory of overconvergent automorphic forms that will be in reality the viewpoint of
the remainder of this thesis.

In my view, the starting point of the geometric theory is really an observation from Serre’s
paper [Ser1973] that takes the point of view of p-adic families of g-expansions, namely that
for p > 5°, the normalized Eisenstein series £,,_; has g-expansion satisfying £, ; =1 mod p
(Clausen von Staudt congruence[Ser1973, §1.1(d)]), and therefore F,_; is invertible as a p-adic

modular form, as

. m_q
= lim B}
-1 m—o0

E

P

’In reality, the papers of Katz and Coleman deal with basically all choices of p, N, but this requires making the
exposition somewhat more technical, due to needing to pass to higher N (in order to have a representable moduli
problem) and due to the ad hoc choice of lift of Hasse invariant in the cases p = 2, 3 (where E,_; is not a modular
form). Neither of these technicalities will be relevant in the representation-theoretic viewpoint, so we ignore them
completely in this section.

For p = 2, 3 you can still get the theory to work, though it becomes a bit more technical because you need to
consider large IV and take fixed points by a group action. All of this is done in full detail in [Kat1973].
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(this is exactly the argument implicit in [Ser1973, §1.4(c), exemple]). Since F,_; is a lift to
characteristic zero of the Hasse invariant on elliptic curves in characteristic p (see [Cal2013, §1]
or [Kat1973, §2.1] — this is also a consequence of the Clausen—von Staudt congruence and
basic theory of the Hasse invariant), this motivates part of the definition of Katz’s modular
definition of p-adic modular forms [Kat1973, §2.2]: a p-adic modular form should be considered
as a rule defined only” on elliptic curves over p-adically complete Z,-algebras which have
ordinary reduction at p. The same kind of reasoning is also present in a slightly different form
in [Gou1988, p. 2]. For any complete field K/Q,, we should therefore define the space of p-adic
modular forms of level I'; (V) over K to be

M{(T1(N), K., 0) := HO(X,(N)(0)x,w"),

where X (N)(0)k is the base-change via Q, — K of the affinoid (by [Col1989, Lemma 3.30])
region of the rigid analytification X; (N )ggp defined by v,(E,_1) < 0, and w” is the rigid-
analytification of the usual line bundle. As it turns out (see maybe [KM1985]), X1(V)(0)x
is connected. These p-adic modular forms coincide with those of Serre [Ser1973] via the ¢-
expansion principle (that is, evaluation at the appropriate Tate curve): see e.g. [Col1996, Theorem
9.1] (which itself relies on the equivalence between Katz and Serre p-adic modular forms [Kat1973,
Theorem 4.5.1]) for the full detail.

However, the theory of p-adic modular forms is usually restricted to the so-called overcon-
vergent modular forms, which are those that can be defined on a much larger rigid subspace
than just the ordinary locus, namely the locus X;(/N)(v) defined by v(E,_1) < v, where v is

allowed to vary within the interval’

2—m
I, — <o,p )CR
p+1

where m will usually be related to the level at p. Though Katz uses the language of formal schemes
(see [Abb2010,Ray1974,BL1993]), Coleman [Col1996, §2] remarks that Katz [Kat1973, §2.9]
shows that if » € Ok with v(r) = v, his space of modular forms S(Ok,r, N, k) ® K coincides
with Coleman’s space of v-overconvergent modular forms, namely

MI(D(N), K, v) := H(X{(N)(v)g, ).

With higher level at p, say I'1(Np™) with m > 1, the locus in the Q,-rigid analytification of
X1(Np) defined by v(E,_1) > v is not connected. One must then define X;(Np)(v) to be

*Of course, classical modular forms like E,_; can be defined everywhere, but the point is that we want to
consider Ep__ll, being a limit of g-expansions of modular forms, as a p-adic modular form, and this one will only be
defined on the ordinary locus.

>The reason for this particular interval is due to the theory of the canonical subgroup, which will be partially
explained later in this section and then completely in Section 2.1.2.
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the connected component of oo in this locus, and then define )M, ,I(Fl(N p), K, v) in the exact
same way as M, (T'y(N), K, v) except with “N” replaced with “Np.” For a given v € I,,,, there
are much fewer v-overconvergent modular forms than there are p-adic modular forms. For
example, the point of the previous paragraph was that Ep’_ll is a p-adic modular form that
is not r-overconvergent for any r € I,,, as p/(p + 1) < 1. The point is that restricting to
overconvergent modular forms allows for a much more manageable spectral theory of the Atkin-
Lehner U),-operator on the relevant Banach spaces of forms. Following Calegari [Cal2013, §2.3.1],
we first explain why the spectrum of U, is much too complicated if we consider all finite-slope

p-adic modular forms at once. Start with the “p-deprived Ramanujan A-function

g =A-VU,A= Y 7(n)g" € Min(T1(p), Zy).

(n,p)=1

This satisfies
Upg =0,

i.e. g is of infinite slope. The point is not that this is bad in and of itself (we were definitely
going to exclude the infinite-slope forms anyway). Rather, the point is that if we do not care
at all about restrictions on the radius of overconvergence, then we can use this to generate
overconvergent eigenforms of all sorts of U,-eigenvalues: for any A € C,, satisfying |A|, < 1,
we can consider
fr= D) NV,
n>0

Since |A|, < 1, and by definition of V}, on ¢-expansions (see [Cal2013, Exercise 2.3.2] or [Ser1973]),
this indeed defines a p-adic modular form in M, (T';(p), Oc,,0). Of course, we have no control
over how much it overconverges, since applying V), could be making overconvergence worse at

each step. The point is that

Upfr =Y N'UV'g

n>0

=Upg + Y N(UV) (V)

n>1

=0+> ANVl

n>1

n>0

= A

i.e. we have constructed a p-adic modular form f, € M, (T'y(p), Oc,,0) with U,-eigenvalue
A for any A in the open unit ball of C,,. This is very bad: it means that U,, does not have discrete
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spectrum when it acts on the Banach spaces of p-adic modular forms, and hence it won’t be
compact (see [Dwo1962, §2]) and we cannot apply the theorems of p-adic functional analysis
(e.g. those of [Ser1962,Col1997b, Buz2007] mentioned in the introduction that are crucially used
to construct eigenvarieties).

On the other hand, if we restrict to the K -Banach space of r-overconvergent p-adic modular
forms M/ (T'1(N), K,v) for v € I,, N Rsy, then U, will be compact. The remainder of this
section will be devoted to sketching the proof of this fact. It crucially depends on the modular
interpretation of U, (to be explained later) together with the following KEY FACT [Kat1973,
Theorem 3.1]:

Theorem 2.1.1 (Lubin-Katz). Let Ry be a complete DVR of residue characteristic p, let r € Ry
withv(r) € I, and let (E/ R, ay,Y') be a tuple of data’ consisting of

1. An elliptic curve 7w : E — SpecR (in the sense of [Kat1973, §1.0], where R is a p-adically
complete Ry-algebra).

2. an : un.r — E[N] a level structure at N.
3. Y € H(FE, (Q}E/R)(@(l*p)) suchthatY - E, |(E) =r/

There exists a unique way to associate to every such tuple of data an order-p finite flat R-subgroup
scheme (g q,) C I depending only on the isomorphism class of the data (E, ay) such that

1. The formation of (g o, commutes with arbitrary change of p-adically complete Ry-algebras
R — R

2. If p/r € Ry vanishes in R, then ¢ is the kernel of the relative Frobenius’ E — EP) :=
E X R zrsap R.

3. If E/R is the Tate curve Tate(q") over R = (Ro/p™ Ry)((q)), then £ is the subgroup"
Hp-

®This is the first time we are writing down the full detail of what this data is, but previously in this section
we explained why it is exactly the modular data that Katz’s definition of p-adic overconvergent modular forms is
defined on (except for the additional possibility of extra level structure at p). The purpose here is just to explain the
main idea of why the theory of overconvergent modular forms is the way it is, before moving on to a more general
framework which will be more representation-theoretic and involve none of the modular viewpoint of Katz.

"Here the notation makes sense because the value of a weight-(p — 1) Katz modular form such as E,,_; on a
test object F is a global section of (Q}E/R)‘g(”_l).

8N.B. p/r € Ry since Ry is a DVR and thanks to the assumption that v(r) € I

See [SGA3.I, exposé VI, §4]

10Recall that the subgroup i, of the Tate curve just refers to the canonical inclusion p, C G, — Tate(¢") (of
course you have to work through the explicit formulas of the Tate uniformization, e.g. in [Kat1973, Appendix A1.2]
if you want to write it down explicitly)
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Proof. See [Kat1973, Ch. III] or [Col2005]. In the latter paper, Coleman explicitly computes the
isomorphism class of the canonical subgroup as a finite flat 2-group scheme, and finds that it
can be written using the “G,;” classification of [TO1970] in terms of v(E,_;(E)). N

The finite flat R-subgroup scheme #(g o) C E is called the canonical subgroup attached
to the given test object. It provides a canonical way of lifting the relative Frobenius from
characteristic p to characteristic 0, defined by quotienting out by %" (the resulting morphism
will be called “Frob” but we will not really need the notation that much). Taking such a quotient
is a well-defined operation: see for example [Ray1967].

As we just mentioned above, one reason for studying the canonical subgroup is that the
Atkin-Lehner U, operator acting on forms of level I'; (Np™), m > 1, can be interepreted in
a modular fashion so that it involves the quotient by .Z", and this will allow us to prove that
U, acts compactly on the Banach spaces of overconvergent p-adic modular forms. Another
reason is that it provides the reason for why the level at p is distinguished in the theory of p-adic
modular forms, as will be explained in Section 2.1.2.

Before discussing the level at p, let us first state the second KEY FACT that underpins the
compactness of U, acting on spaces of overconvergent modular forms, namely the analysis of
the fibers of the Frob morphism.

Theorem 2.1.2 (Lubin—-Katz). Let ) be a an algebraically closed complete field of characteristic zero
and residue characteristic p, and let E' be an elliptic curve over Oq such that v(E,_1(E/Oq,w)) €
I NRq for any' choice of Og-basis w of H(F, Q}E/OQ). Then there are exactly p elliptic curves
E®/Oq,i=1,...,p such that there is an Oq-isomorphism E = EW | ¥ In fact, the curve
E can be constructed explicitly as the quotient of E by the i-th order-p finite flat Oq-subgroup
scheme of . which is NOT . Moreover,

0(Eypy (BD, w)) = }vaplw,w)),

where w®) is an Oq-basis element of H(E® Q}W)/OQ)'
Proof. See [Kat1973, Theorem 3.10.7(5)]. [
We now state the modular definition of the U, operator (here we follow [Kat1973], but note

that via the explicit description of the £(*) in Theorem 2.1.2, this definition agrees with that of
[Cal2013]):

Definition 2.1.3. Let Ry be a complete DVR of residue characteristic p and field of fractions K
of characteristic 0. Let f € S(Ry, 7, N, k) with v(r) € I,. Define U,f € M, (T',(N), K, r) to be

"Obviously the choice of w does not make a difference if we are just considering the valuation of E,_;.
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given on test objects by
1
(Upf> (E/Ra an, Y) = ];TrFrOb(f)(E/Ra an, Y)

1< L
= ];Zf((E Xy Ocy )V, ay, Y),
i—1

where ay denotes the obvious base-change-then-take-preimage-under-quotient-by-_#% of
the level structure oy.

By evaluation on Tate curves (it is essentially done in [Kat1973, p. 22-23], except in this case
we remember that we ignore the canonical subgroup, which is p, by Theorem 2.1.1 — so only
the terms coming from the “H;” of [Kat1973, p. 22] appear) shows that Definition 2.1.3 is a good

definition: it agrees with the classical definition of Atkin-Lehner, namely

D ang" =Y g™

n>0 n>0

Combining Definition 2.1.3 and Theorem 2.1.2, we obtain the following crucial result, which
is the fundamental reason for compactness of U, when it is restricted to overconvergent modular

forms:

Corollary 2.1.4. Forr € I, N R, U, : M}(T'\(N), K,v) — M (T'\(N), K, v) actually factors
through
Mll-(rl(N)a Kv U) - MII(Fl(N)? K,pU) — M]I(Fl(N)v Ka U)?

where the second map is restriction from X1(N)(pv) gk to X1(N)(v)k, and the first map is contin-

uous

Proof. The only part that doesn’t follow directly is the continuity of the first map. This is not so
hard to see from the definitions either: see [Gou1988, Corollary I1.3.7]. [

As this is often stated, “U,, improves overconvergence.” This is the central phenomenon in
the theory of p-adic automorphic forms, and it will always be the fact that leads to compactness
of the Atkin-Lehner action on overconvergent automorphic forms, and thus to the entire theory
of eigenvarieties as described at the beginning of this chapter. Moreover, the statement and
proof of Corollary 2.1.4 essentially go through as stated if V is replaced with Np™, m > 1
(see [Gou1988]), but one has to keep track of the level structure at p which could have some
nontrivial interaction with Frob — so we have left the analysis of that situation out in order to

simplify the exposition and especially to avoid writing down anything false'”.

12T have undoubtedly already failed in this endeavor.
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For good measure, we formally state the compactness and briefly sketch the proof of how it
follows from Corollary 2.1.4 (this is essentially an abridged version of something done in full
detail in [Col1997b, §B.3] and [Gou1988]):

Corollary 2.1.5. Form > 1 andv € Iyax(2,m) R0, U : M(Dy(Np™), K, v) — M} (Ty(Np™), K,v)
is a compact morphism of K -Banach spaces.

Proof. By using the usual technique of multiplication by weight-%£ p-deprived Eisenstein series
(see [CM1998, §2.2], [Col1997b, §B.1]), one has a non-Hecke-equivariant isomorphism

M (Np™), K, v) = MJ(T1(Np™), K, v).

The good thing is that this isomorphism does respect the restriction maps, so this comes down to
the compactness of the restriction map from the affinoid algebra of X (Np™)(pv) to the affinoid
algebra of X;(Np™)(v). This is [Gou1988, Corollary 1.2.9]. O

The proof of [Gou1988, Corollary 1.2.9] essentially proceeds by choosing an explicit basis. In
the representation-theoretic context this will also be the fastest way of proving compactness of
the Atkin-Lehner action, and it will be much easier in practice because the affinoids X; (Np™)(v)
will be replaced with much more concrete spaces. We also remark here that [Col1997b, A5.2]
provides a fairly general way of proving that a restriction map on affinoid algebras is compact,
though checking the hypotheses in the case of the modular curve will ultimately require the
same kind of considerations as in the proof of [Gou1988, Corollary 1.2.9].

By studying how the isomorphism M (I'y(Np™), K, v) = M{(I'y(Np™), K, v) constructed
via the restricted Eisenstein family £, (for general possibly non-classical weights ) intertwines
Uy, Coleman [Col1997b, §B.3] proved that the characteristic series of U, is itself (coefficient-by-
coefficient) an analytic function of the weight, and constructed his p-adic families of modular

forms.

2.1.2 The level at p a la Katz and Coleman

One might find it suspicious that in Definition 2.1.3, the U, operator may be defined on modular
forms of level I'; (IV), whereas in the classical Atkin-Lehner theory the level will jump up to
[’y (Np) in general. The point here is that the level at p (the p being the same as in the “p-adic”
of the rings that everything is defined over) is very special, essentially due to the theory of the
canonical subgroup. For example, Serre [Ser1973, §3] observed that a classical form of level
I'o(p) was in fact p-adically a form for SLy(Z). Using the modular perspective of Katz and the

theory of the canonical subgroup, this is easy to generalize'” as follows.

B3Serre’s proof is essentially an obfuscated way of rewriting the modular proof while writing everything in terms
of g-expansions.
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Lemma 2.1.6. Let m > 1. For anyv € I,,,, there is a canonical injection of K -Banach spaces
M;(T1(N) N To(p™), K) = M{(T1(N), K, v).

Proof. Interpreting the classical modular forms on the left hand side as Katz modular forms,

simply define the image of the classical form f to be
(E7 an, Y) = f(EJ an, Q%/(En,a]v)v Y)7

where ,%/(EQN) denotes the order-p™ canonical subgroup of £, which exists by inductive appli-

cation of Theorem 2.1.1 since v € I,,. [

In fact, using the same kind of technique with the canonical subgroup, one can further
generalize Lemma 2.1.6 to conveniently understand how p-adic modular forms of level I'; (Np™)

are tied together for all m.

Theorem 2.1.7. Forv € I, The overconvergent locus X1(Np)(v) is actually the quotient of
X1(Np™)(v) by the action of the diamond operators in (1 + pZ,)/(1 + p™Z,).

Proof. Recall that X;(Np™)(v) is defined to be the connected component of the locus of
X1(Np™) cut out by v(E,_;) < v. It turns out [KM1985] that this connected component
may be described explicitly in a way that depends only on the relationship between the level
structure at p (see the definitions in [Col1997b, §B.2], [CM 1998, §2.1]) and the canonical sub-
groups of various p-power orders. In short, the fiber over a point in X;(/Np)(v) consists of level
structure on the same elliptic curve that only differ at p™, but whose images are all equal to the
canonical subgroup of order p” and whose images on 1, are all equal to the canonical subgroup
of order p (and which of course all agree on ,,). The elements of the fiber are therefore acted on
transitively by diamonds that permute ji,,» but act trivially on 1, which justifies the claim. [

The point of Theorem 2.1.7 is that in the theory of p-adic modular forms, even if we plan
on studying the forms of level I'; (Np™) for all m > 1, we can get away with only looking at
the Banach spaces M,I(Fl(Np), K, v). More specifically, fix some m > 1, and a Nebentypus
character x : (Z/p™Z)* of conductor m. Multiplication by Eisenstein series £;, ) provides an

identification of K -Banach spaces
MJ<P1(Np)7 K7 U) = MII(F1<Npm)7 K7 v; XT_k)a

at least if y is defined over K (so that the Eisenstein series we need is actually defined on the
locus we wrote down) and v € I, (here 7 is the p-adic Teichmiiller character). This is why in
the theory of overconvergent modular forms, we simply consider a single fixed tame level N,
and allow the level at p to be arbitrarily deep, keeping track of that level by simply keeping
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track of the Nebentypus character y. The Nebentypus character becomes part of the data of the

weight, which we discuss next.

2.1.3 Weights and weight space

As early as Serre [Ser1973], it was observed that for the purpose of p-adic interpolation of
modular forms, it was best to think of the weight and the Nebentypus at p as being part of the
same data, which the families of modular forms live over. This makes some sense as soon as
we consider the weight and Nebentypus of the restrcted Eisenstein family, which was done in
[Ser1973] (see also [CM 1998, §2.2]). In general, given a character

By 2% X
k2, = CJ,

we can form the Eisenstein series F,, which is an overconvergent modular form of weight-
character k, and multiplication by E,, provides us with the definition of the space M (N, C,, v)
of v-overconvergent p-adic modular forms of tame level N (see [CM 1998, §2.4] for the full detail
of how to define it). We remark that although this was the original definition and was sufficient for
the construction and proof of basic properties of the eigencurve, Pilloni [Pil2013] and Andreatta—
Tovita—Stevens [AIS2014] have constructed sheaves that the elements of M (N, C,,v) can be
viewed as sections of. These constructions are very useful: for example Ye [Ye2020] used them
to provide a new'* proof of the conjecture of Coleman—Mazur to the effect that the eigencurve
satisfies the valuative criterion for properness.

There is a natural rigid space WV over Q,, that parametrizes p-adic families of continuous
homomorphisms  : Z; — CJ. It is the same as what [Buz2004] calls Hom(Z), G,,). The
structure of VV is fairly easy to understand: it is just a disjoint union of p — 1 open discs. The

reason is that (still taking p > 2 for convenience)
Z; = iy X (1 +pZy),

and 1 + pZ, = Z, via the p-adic logarithm and exponential, so the p — 1 discs are indexed by
choice of image of a primitive (p — 1)-th root of unity, and the discs themselves parametrize the
choice of where to send a topological generator of 1 + pZ,. This choice of topological generator
is usually taken to be exp(p) or 1 + p. It must satisfy x(1 + p)?" — 1 as m — oo, which is why

the possible choices of k(1 + p) are parametrized by an open unit disc around 1.

Remark 2.1.8. When p = 2 it doesn’t get that much harder: the radius on which log and
exp produce an isomorphism gets smaller, so we have to replace 2 by 4 in a bunch of places:
75 = (Z/AZ)* x (1 + 4Z,), and the distance from the center of a given disc making up W is
given by |k(5) — 1|. We make this remark because the ping-pong arguments of Newton and

!“The original proof having been given by Diao and Liu [D1.2016] using (¢, I')-module techniques.
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Thorne take place on the 2-adic eigencurve so it is necessary to understand completely what

weight space is.

The classical weights (k, x), k > 2, x : (Z/p™Z)* — C* = Q cons1st1ng of a weight and
Nebentypus character can be thought of as elements of W(C,,) = Hom(Z, C)), namely

This is how one forms the classical p-deprived Eisenstein series F(; ) (though it is important
to heed the warning that some sources replace “k — 2” with “k”). The classical weights (k, m)
(closed points of WV corresponding to the Galois orbit of C,-points of the form (k, x) where x is
of conductor m) are actually trés Zariski-dense in W, in the sense of [Che2005]. This is not so
hard to check: trés Zariski density is just asking that {(k, m)} accumulates at itself. Given a
particular (k, x) of conductor m, which corresponds to

(1 +p>kgpm(p—1) —le W(Cp>a

in an arbitrary open affinoid containing (k, ), there are plenty of other classical points, namely
those of the form (£, x) with k£’ congruent to & modulo a high power of p. In any event, the
basic lesson here is that Nebentypus characters of deeper conductor at p bring a classical point
closer to the center of weight space, and in the absence of a Nebentypus character, weights k£
p-adically close to zero bring a classical point closer to the center of weight space.

Note that the point of x being of conductor m is that it is constant on 1 4+ p™Z,,, and hence
locally constant (by multiplicativity). More generally, as all continuous characters Z; — C
are locally analytic, we can consider the locus in W(C,) consisting of weight-characters which
are analytic on 1 + p™Z,,. It is straightforward (using the standard explicit reasoning for why
the continuous characters are locally analytic) to verify that this locus is actually the set of
C,-points of the affinoid open W,,, C W given by the condition that the distance from the
center of weight space is less than ppm@ D). See for example [Che2010, Lecture 7, Proposition

3.5] for the proof, though Chenevier’s convention for what m is is slightly different from ours.

2.14 Classical p-adic automorphic representations

So far in this chapter, we have sketched the basic idea of how p-adic modular forms live in families
parametrized by the data of their weight and Nebentypus character at p. This suggests that
in general, for the theory of automorphic forms and representations for a particular reductive
group to be interpolated p-adically, one should consider the local data at the infinite places at
the same time as the local data at the p-adic places. I have nothing intelligent to say about the
conceptual reason for this that goes past the following paragraph from [Eme2006b, §3]:
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“Common conditions that arise in the p-adic theory of automorphic representations,
such as an automorphic representation 7 being ordi-nary or of non-critical slope,
are not local at p; they depend on a comparison of invariants obtained from the local
factors at the infinite places (typically, an infinity type) and from the local factor at

p (such as a Satake parameter). ”

To be more specific (and explain in detail Emerton’s claim about things like ordinaryness
and non-criticality of slope): if f is a new eigenform of level I'; (V) and weight £ > 2, then the
data of the weight is just the data of the infinity-type 7/ ., and the data at p is the data of the
Satake parameters, i.e., the data of two unramified characters x1, x2 of Q; such that 7, is the
parabolic induction of x; ® x2. The data of a,(f), and hence the data of whether f is ordinary
(or indeed any condition depending on the slope of f) depends on both pieces of information: it
is

k—1

P2 (x1(p) + x2(p))
(see for example [LW2012, §2.2]).

For this reason, in the general theory of p-adic interpolation of automorphic representations,
it is always good idea to “shift the data at co over to the p-adic places” This was perhaps
first written down by Buzzard [Buz2004], who did the example of GL;, where p-adic families
of Hecke characters trivial at connected components of places at oo could be defined, and a
Galois-theoretic criterion for classicality result could be deduced from the relationship between
algebraic Hecke characters and Hodge-Tate Galois characters [Ser1989].

We now describe Emerton’s general formalism for how to modify an automorphic repre-
sentation or automorphic by “transferring the data at co to p” to make it amenable to p-adic
interpolation. This is slightly different from the conventions of Loeffler [Loe2011], Buzzard
[Buz2004], Chenevier [Che2004], and Bellaiche—Chenevier [BC2009a], but it is not hard to go
between the two notions.

The basic concept underlying the definition of a classical p-adic automorphic form is to
consider automorphic forms valued in some finite-dimensional (locally) algebraic representation,
which allows you to isolate the data at infinity and make it “p-adic” via a choice of isomorphism
L2 Q,=C.

Let us now be more specific. Let G be a reductive algebraic group over a number field F'/Q
that is totally split at p, satisfying the conditions that G(F.,) is compact (or at least compact
modulo center) and that there exists an n > 1 such that G xp F, = GL,/r, = GL,/q, for all
v|p. In fact, we also assume that G(Fl,) is connected, but this is not really necessary (it just
allows us to not think about the group “my” in [Eme2006b]). The first hypothesis ensures that the
shimura variety associated to G is (or, in the case of “compact modulo center”, can be assumed
to be) zero-dimensional — this is very convenient because it means that automorphic forms can

be viewed as simply being tuples of elements in the module they are valued in (indeed, this is a
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main reason why the explicit computations of [Buz2004, LWX2017, WXZ2017,Ye2019] can be
done). It is also convenient in analyzing the space of automorphic forms for a few reasons: it
means that everything is cuspidal, so there is no continuous spectrum; it means that there is no
need for the theory of (g, K')-modules, as the G(F,)-action clearly preserves K -finiteness (so
the local archimedean component can be thought of as a bona fide representation of G(F,)),
and all the automorphic forms are automatically square-integrable. The second hypothesis can
be weakened considerably (see [Loe2011]), but it is all we will need here. For example, G could
be the rank-n definite unitary group attached to a CM extension of Q that is totally split at p.
We now follow Bellaiche [Bel2021]" in explaining how to isolate a particular co-type. Let
A(G) be the space of automorphic forms on G. Thanks to the hypothesis of compactness at

infinity, there are none of the usual subtleties: we have, as a representation of G(Ar),
A(G) = P m(m)r, (2.1)

where 7 ranges over all the automorphic representations of G. It is a theorem due to Harish-
Chandra [HC1968] that the numbers m(7) are finite. The fact that A(G) decomposes is a
consequence of the fact that A, (G) = A(G) (thanks to the compactness assumption) and
the theorem of Gelfand-Graev-Piatetski-Shapiro [GfGPS1990] to the effect that A, (G) C
Aise(G). The automorphic representation 7 decomposes (by Flath’s tensor product theorem ) as

!
~
=@,
v

and our goal is to isolate any particular choice of 7o, = ®,|o7,, Which is always just an
irreducible (finite-dimensional by Peter-Weyl theorem) representation of the compact Lie group
G(Fy)-

It follows from Schur’s lemma (as for now the coefficient field is C) and the decomposition
in (2.1) that

P m(m)m = (AG) @ W) o W (2.2)
oo W

For 7 with archimedean component W, the G(A r)-module 7 ® W")¢F=) is the same as
except with trivial archimedean component.

It is immediate from the definition that (A(G) @ WV)%(F=) =2 A(G, WV) as G(A)-modules,
where A(G, W) is as follows:

Definition 2.1.9 (Modular forms valued in G(F)-module). Let W be a representation of the

ISWARNING: this material cannot be found in the published version of Bellaiche’s eigenbook. Here we are
referring to the draft on his website.
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Lie group G(F,,) as above. Then an algebraic automorphic form valued in W is a function
f:GF)\GAp) - W

which is K -finite for some (any) compact open K C G(A%) and such that f(gh) = h - f(g) for
all h € G(F), where G(F) C G(AF) in the usual way.

Thanks to the condition that elements of A(G, W) are G(F)-equivariant on the right,
restricting to G(A%) does not lose any information, and provides the isomorphism of the

following lemma.

Lemma 2.1.10. A(G, W) isisomorphic as a G(A%)-module to the space of functions f : G(AY) —
W such that for ally € F and g € A,

f(vg) = - flg),

and [ is K -finite for some open compact subgroup K C A$.
In any event, (2.1) and (2.2) imply

Theorem 2.1.11. As representations of G(Ar) = G(AY) x G(Fy),

AG) =P P mmr=PAGCW )W,

Moo W W

so understanding the spaces of automorphic forms described in Lemma 2.1.10 for each
irreducible representation W of G(Fl,) is the same as understanding A(G).

Now it is time to make the definition p-adic, following [Eme2006b]. Assume further that
T comes from an irreducible representation of G X p C via the natural map G(F) — G(C)
(this is what the “allowable” hypothesis of [Eme2006b, Definition 3.1.3] boils down to in our
case). The point of asking for this is that W is then uniquely determined by the infinitesimal
character of 7, (for example by highest-weight theory of representations of reductive groups

over algebraically closed field), but more importantly because then via an isomorphism ¢ : Q,,

C, the representation W may be viewed as an algebraic representation (='W of G xp Qp

~
~

GL, /Q, with coefficients in Qp. By restriction to F}, = Q,-points for some p|p, we can (and
from now on always will) regard ¢!V as a finite-dimensional algebraic representation of the
locally Q,-analytic group GL,(Q,). Let E/Q, be a finite extension so that :~'TW and .~ '7*
can be defined over E. There is no harm in considering both of these representations as being
defined over E rather than over C = Qp: the descent to F is unique, by [Eme2006b, 3.1.4],
which itself is a standard application of the basic theory of Hecke algebras (see e.g. [JL.1970]).
Having made this switch, we make the obvious change to the perspective on module-valued

automorphic forms of Lemma 2.1.10:
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Definition 2.1.12. Let V' be a finite-dimensional algebraic representation of GL,,(Q,) with
coeflicients in a finite extension £/Q, and fix a prime p|p. Then define the space A(G, V') of
algebraic automorphic forms valued in V to be the set of

f:GAY) =V
such that for all v € G(F') and g € G(AY),

f(vg) = % f(9)

and such that f is K-invariant for some compact open K C G(AY).

Thanks to the assumption that G(F.,) is connected, our Definition 2.1.12 is clearly equivalent
to Emerton’s [Eme2006b, Definition 3.2.1] (note the “locally constant” hypothesis in Emerton’s
definition). It is equivalent to the definitions of [Buz2004, Loe2011, Ye2019] by taking f to

g g, f(g).

Putting all of this together, the whole point is the following theorem, to the effect that
(despite the shifting of the action from oo to p) the space A(G, = 'W) is just a p-adic model of
A(G,W).

Theorem 2.1.13. Let W be a finite-dimensional irreducible complex representation of G(F,) that
factors through G(F) — G(C). Then there is a G(AY)-equivariant isomorphism

A(G, W) = AG, "' W) @, C,

where as above E /Q,, is a finite extension chosen so that .='W is defined over E.

Proof. This is a straightforward generalization of the argument in [DT1994, p. 443]. The
isomorphism is defined by taking f € A(G, W) to the element of A(G,: W) ® C given by

g gy ') flg) €W = (W) ®p, C

where the “g” in f(g) is thought of as being in Ar D A%, and ¢ is abuse of notation for the

the isomorphism G(Q,) = GL,(Q,) = GL,(C) = G(C) induced by the actual isomorphism
L Qp — C that was chosen ahead of time. In particular, we use the fact that for v € G(F'), Y
and ¢(y,) have the same image in G(C), since £ D F, D F. O

From the representation-theoretic point of view on A(G), Definition 2.1.16 provides the

following p-adic model of Theorem 2.1.11:
Corollary 2.1.14. For an allowable algebraic representation W of G, let

AG)w = @ m(m)r =2 AG,WY) @ W.

T
Moo =W
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Then
A(G)w = <A<G, L‘1WV) XF L_1W) ®g, C.

Proof. This is a direct consequence of the isomorphism of Definition 2.1.16 together with the
usual facts from commutative algebra:

(AG, "WYY @p, C)@c W = (AG, . 'WY) @, C) ®c (C®p, 1 'W)
=~ (A(G,'WY) @ ' W) @, C,
which concludes. [

Finally, from the perspective of representation theory, again by [Eme2006b, Lemma 3.1.4]
applied to the various 7¢’s thought of as being defined over F (as this is part of the hypothesis
on F), Corollary 2.1.14, and (2.2), we have

Corollary 2.1.15. For W as above, we have

/
AG WY @ W @ ®7Tv QT @p L W.

Uy <00
Too =W U;&p

as representations of G(AY)

This was the full detail of the motivation for Emerton’s [Eme2006b, Definition 3.1.15] of

classical p-adic automorphic representations, which we now repeat for convenience:

Definition 2.1.16. Let 7 be an automorphic representation of GG such that 7, is allowable as

above. Then the classical p-adic automorphic representation associated to 7 is the G(A y)-module

/
T = ®7TU Qp T Qp L W,

V<00

o
where . ~'W is as usual considered as an algebraic E-representation of GL,(Q,) = G(F}).

Remark 2.1.17. Of course, 7 is not in general an honest automorphic representation: the local
component at p, namely 7, ®x ¢~ W, is not even necessarily a smooth representation of G(Fj})
in general.

2.1.5 Overconvergent p-adic automorphic forms

In the previous Section 2.1.4, we explained how to construct p-adic versions of the classical

automorphic forms and representations for (¢, and showed that (as Emerton explains is desirable)
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they are the same as the usual automorphic representations except the data at infinity is transfered
to p. This section is about the general technique of how to interpolate the resulting systems of

Hecke eigenvalues in p-adic families. There are at least two basic approaches:

1. The perspective of Buzzard [Buz2004,5uz2007], Chenevier [Che2004], and Loeffler [Loe2011]:
you copy the definition (Definition 2.1.12) of A(G, V') where V is an algebraic reprentation
of G(F,) = GL,(Q,), except you allow V' to be a locally analytic representation instead.
The radius of convergence of this analytic action is what tells you how overconvergent an
automorphic form is.

2. The perspective of Emerton [Eme2006b], in which an “Eichler-Shimura”-type result is
used: one views the systems of eigenvalues of the classical forms as being inside of the
cohomology of some Shimura variety, and then finds a way to p-adically complete this
cohomology to pick up the systems of eigenvalues that come from the overconvergent
automorphic forms. In Emerton’s perspective, many questions can be neatly resolved by
simply applying the general theory of locally analytic representations of locally p-adic
analytic groups to this “completed cohomology”, though Emerton had to expend some
effort [Eme2017,Eme2006a] to sufficiently complete that general theory.

It was shown in Loeffler’s thesis (see [Loe2011, §3]) that in fact the two viewpoints essentially pick
up the same data (except for usually the first approach requires asking for some Iwahori-fixed
vectors and therefore only allows one to construct some central zone of the eigenvariety'°.

Let us first begin by laying the groundwork of Emerton’s approach under the same hypotheses
on (G as in Section 2.1.4. In this situation, the Shimura varieties associated to (G are O-dimensional.
Indeed, by compactness of G(R), for all choice of compact open level structure K C G(Ar),

Y (G, K)| = |GIF)\G(Ap)/ K] < oo,

where Y (G, K) is the level- K Shimura variety for G, namely the double coset space G(F)\G(Ar)/ K.
By the same argument as in [Buz2004, p. 10ff], if the level K’ C G(A%) is small enough,
then
g7 'G(F)ginK =1

18Chenevier has told me that this defect of the Buzzard—Chenevier-Loeffler approach is not consequential.
have not worked out the details, but it makes sense: one can just take the union over deeper and deeper Iwahori
subgroups, and eventually pick up any information about the global structure of the eigenvariety that one is
interested in by doing what amounts essentially to looking at everything over increasingly wide subsets of weight
space. Presumably one can even construct the full eigenvariety by taking an increasing union of these. Moreover,
in the next section we will follow [Ye2019] in proving that an analog of Lemma 2.1.6 (that is, the appropriate
generalization of [Buz2004, Lemma 4(4)]) holds, and hence for many purposes, especially things that just rely on
understanding slopes, it really is enough to just understand things for a single choice of ITwahori).
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forall g; = gi, ..., g, representatives in G(Ar) of Y (G, K). Therefore, for any V, A(G, V)&
(easy to view as the space of V'-valued p-adic automorphic forms) is canonically isomorphic to
V@ This is convenient for computations and sometimes even in conceptual arguments.

To have a version of Eichler-Shimura, we need to have some local system on the Shimura
variety Y (G, K):

Definition 2.1.18 (Definition 2.2.3 of [Eme2006b]). Let K = K,K* C G(A%) be a compact
open subgroup, and M a Q,-representation of K, C G(F},) = GL,(Q,). Define the Q,-local
system'’ on Y (G, K)

Vit = (M < (GIFNG(AF)))/K.

Moreover, for any tame level KP, define

HO(KP, Vi) o= lim HO(Y (G, K, %), V™).
Ky

The point of Definition 2.1.18 is the following Lemma 2.1.19, which replaces the Eichler—
Shimura isomorphism (see for example [Con, Shi1994]) in our situation in which Y (G, K) is

zero-dimensional (of course it is much easier than the Eichler-Shimura isomorphism).
Lemma 2.1.19 (Proposition 3.2.2 of [Eme2006b]). For all finite-dimensional Q,,-representations
W of G(F,) = GL,,(Q,), there is a G(AY)-equivariant isomorphism

A(G,W)E" = HO(KP V).

Proof. We follow the proof of [Eme2006b, Proposition 3.2.2] (which is the same as this except
slightly more general because Emerton does not assume that G(F,) is connected; also Emerton
does not appear to be consistent in his definition of Vj; so if we want to be consistent with

Definition 2.1.18, we must also incorporate the transformation of the proof of [Eme2006b, 2.2.4]).

The isomorphism is given by sending f € A(G, W)X %> to

g (9, f(9),9),

which defines a bona fide element of H°(Y (K?K,), Vi) because for v € G(F), g € G(A¥),

(g5 % - F(vg)vg) ~ (% - f(9), 9).

It is then straightforward to verify the desired properties. O

As mentioned at the beginning of this section, Emerton’s approach requires us to p-adically
complete this thing. Doing so requires choosing a Z,-lattice in W and taking the induced

"In the full generality, Emerton has the coefficients in E where V' is defined over E. But in our situation, V' is a
representation of GL,,(Q,) valued in Q,,, and is hence automatically defined over £ = Q,, as GL,(Q,) is split.
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Z,-local system on the various Y(G, KPKP), as in [Eme2006b, Definition 2.2.9]. In reality,
thanks essentially to Corollary 2.1.14, we expect to only really need to consider the case where
W = Q, is the trivial representation of GG. In this case, there is an obvious choice of lattice, Z,,
to complete with respet to. More generally, it is still convenient to consider an arbitrary finite
extension £//Q, and the lattice O (so that we will then have the space of p-adic automorphic

forms over £ and be able to define the eigenvariety over E).

Definition 2.1.20. For n > 0 (though only n = 0 is relevant to our situation'”), define the
n-th completed cohomology associated to the data of G and a tame level K* C G(A%") and a
E[G(F})]-module W to be

H"(K?, V) := E ®o,, limlim H(Y (K, K*), Vi, /p°),
Ky

S

where W) is an arbitrary choice of Og-lattice in W, and K, runs over the compact opens of
G(F,) = GL,(Q,) that stabilize W}, so that the Og-local system Vyy, can be defined in the
exact same way as Definition 2.1.18. Emerton [Eme2006b, Lemma 2.2.8] shows that this is
well-defined in the sense that it does not depend on the choice of (separated) lattice 1W. The
completed cohomology H "(K®, V) is an E-Banach space that comes with the structure of a

continuous representation of G(F}).

The only completed cohomology that we will actually need is
H'(K*, E),

which Emerton [Eme2006b, Definition 3.2.3] calls the “space of p-adic automorphic forms of
tame level K This name makes sense, for example by [Loe2011, Proposition 3.10.1], but also"’

because H O(K*, F) is precisely the set of continuous functions
G(F)\G(A)/K? —» E,

and the Fj-analytic vectors of H O(K*, F) (considered as usual as a continuous representation
of the locally Q, = Fj,-analytic group GL,(Q,) = G(F})) consist of all such functions which
are locally analytic on G(F})-cosets.

The key point is that the space H O(K*, E) p-adically interpolates the classical p-adic auto-

morphic representations of GG (those of Definition 2.1.16), for the exact same structural reason

®We remark, however, that the Coleman-Mazur eigencurve can also be recovered by setting G = GLo
(which does NOT satisfy the hypotheses we put on G), setting n = 1, and using Eichler-Shimura, as is done in
[Eme2006b, §4].

YThis key fact is the first thing Emerton mentions after the definition, and the first thing that Professor Chenevier
told me in his office when I told him the definition, but it is NOT mentioned in the discussion of [NT2021] on
completed cohomology.
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as Corollary 2.1.15 and friends:

Proposition 2.1.21 (Proposition 3.2.4 of [Eme2006b]). The locally algebraic irreducible closed
G(A%)-subrepresentations of H°(K®, E) are precisely the classical p-adic classical automorphic

representations of G(A$) coming from automorphic representations m with m>° definable over E.

Proof. By definition ([Eme2017, Definition 4.2.1, Proposition-Definition 4.2.6]), a locally algebraic
closed subrepresentation of the F-Banach space H O(K*, F) must live inside H OU(KP, E)w-toc. alg.
for some finite-dimensional irreducible algebraic representation W of G X ¢ F,. The key technical
input (which we will not prove) is [Eme2006b, Corollary 2.2.25], which says that the natural map

HO(Y(Kp), VWV) RF W — ﬁO(va E)W—loc. alg.

is an isomorphism. Therefore, the 1V -locally algebraic vectors provide, by Corollary 2.1.15 and
Lemma 2.1.19, exactly the direct sum of the classical p-adic automorphic representations coming

from automorphic representations 7 with 7, = W. [l

The Banach space H O(K®, F) contains all sorts of vectors which are not locally algebraic,
and these will provide the “flesh” of the eigenvariety. It helps (at least psychologically) to know
that the overconvergent automorphic forms defined along the lines of Buzzard, Chenevier, and
Loeffler can essentially be viewed as living inside the locally analytic vectors of this Banach
space, and that the systems of Hecke eigenvalues can be viewed as living inside the locally
analytic Jacquet module thereof.

Let Gy C G(F},) = GL,(Q,) be a compact open subgroup which is decomposable in the
sense of [Loe2011, Definition 2.2.1]. For example, Gy could be an Iwahori subgroup

1+ p°Z, Z, Z, - Z,
p°Z, 1+p°2, 2, --- Z,
G[) = .
Py, Py, e ply, 1+ p°4y,

or any of the subgroups “I'(¢)” or “I'g(c)” of [Ye2019] for group-like c¢. Then for r > 0, let
G, be the subgroup of GG given by the image of the exponential map on 7"~ 'g, where g is
the Z,-lattice in the Lie algebra g of GL,,(Q,) that exponentiates to Gy to begin with (more
explicitly, you just add r to all the exponents). Similarly to as in [Loe2011] except with M
replaced with T (as we have no reason to consider arbitrary parabolics), define N,., T}, N, to be
defined just like GG, except using the decomposition g = n@® t&® n into positive and negative and
zero weights with respect to the upper-triangular borel. Obviously this is just taking about the
torus, upper-triangular, and lower-triangular unipotent radicals in the Iwahori decomposition

of G,.. As usual, we also let B, = T,.N,. be the upper-triangular Borel of GG,.
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Definition 2.1.22 (Definition 3.7.1 of [Loe2011]). For an r-locally analytic weight-character
X : Tp — E* (meaning that y is analytic when restricted to 7;; the typical situation is that
Ty =(Z);)" and T, = (1 + p"Z,)" for r > 1), the r-overconvergent automorphic forms for G of
tame level K* and level GG at p and weight-character y are simply

A(G, (Il’ldgo X)Gk—an)KpGO )

where this is defined slightly differently from Definition 2.1.12: the space A(- - - ) is here defined
to be the set of
£ GF\G(AF) = (Ind%°X)Gp-an

satisfying f(gu) = u, " f(g) forallu € GoKPG(FL). As mentioned previously, this is equivalent
to Definition 2.1.12 via an easy transformation, but it is more convenient because u belonging
to the level structure will always have u, € G, which is necessary for it to have a well-defined

action on any f(g)’s which live in a locally analytic representation of Gj.

The point is that when Y is locally algebraic, it should be considered as a classical weight (it
will look like ¢y where ¢ stands for (z1, ..., z,) — ] x;j and y is alocally constant “Nebentypus”
character). This is completely analogous to the situation of Section 2.1.3. We finally remark that
Definition 2.1.22 is the direct generalization of the definition of [Buz2004] for overconvergent
quaternionic modular forms, thanks to [Loe2011, Proposition 2.2.4], which identifies the locally
analytic induction here with a space of locally analytic functions (with specified radius of
convergence) on Ny. For n = 2 this is just Z,, which is exactly what is going on in [Buz2004].

We finally state Loefller’s comparison between the Buzzard—Chenevier—Loeffler Defini-
tion 2.1.22 and Emerton’s completed cohomology Definition 2.1.20.

Proposition 2.1.23 (Proposition 3.10.1 of [Loe2011]). The space of overconvergent p-adic auto-
morphic forms of level Gy K* (but arbitrary radius of overconvergence r) of weight-character x is
isomorphic to

~0 Bo
(H (KP’ E)Qp—loc. an. & X) .
Moreover, this isomorphism is G(A%>)-equivariant.

Proof. The isomorphism is given by taking an automorphic form f in the sense of Defini-
tion 2.1.22, that is, a function

f : G(AF) — (IndggX)Qp—loc. an. = (gloc. - (Fm X)7
and sending it to the element of H 9%(K*) ® x given by

9= fl9)).
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For the verification that this works, see the full detail in [Loe2011, Proposition 3.10.1]. Note that
Loeffler’s conventions are not quite the same as ours — our Borels are conjugate to his because

we want things to conform to the concrete situation of [Buz2004]. [

2.1.6 Interlude: the level at p a la Buzzard—Chenevier-Loeffler-Ye

In this section, we explain the analog to Lemma 2.1.6 for automorphic forms on G, to the effect
that the level at p can be made deeper without changing the space of automorphic forms, at the
cost of changing the radius of overconvergence. This is important because it justifies in many
situations the ability to compute the slopes of modular forms for a fixed Iwahori level at p in
order to deduce a global fact about the spectral variety and therefore the entire eigenvariety.
This kind of thing is a key technical observation for justifying the computations of [LWX2017]
and [Ye2019] towards the Coleman-Mazur-Buzzard-Kilford conjecture about the structure
of the eigenvariety near the boundary of weight space. Though technically orthogonal to the
ultimate goal of this mémoire (as the special case of Coleman—-Mazur-Buzzard—Kilford that
is used is the paper [BK2005] that does it for the eigencurve and not for any group compact
at infinity), we still discuss it briefly in order to round out the discussion in full generality of
the main phenomena described in [Buz2004]. In particular, this is the direct generalization to
higher-rank groups of [Buz2004, Lemma 4(4)].

We will follow [Ye2019, Proposition 4.1.2], where this is done for locally algebraic weights
(but observe that it clearly works just as well for locally analytic weights). Ye’s proof has the
advantage of generality and hindsight over that of Buzzard, and is considerably easier to follow.

For r > 1, let I'y(p") be the usual compact open subgroup of GL,(Z,), namely the one
congruent modulo p" to the upper-triangular unipotent radical in GL,,(Z/p"Z).

Proposition 2.1.24 (Proposition 4.1.2 of [Ye2019]). Let ¢, d, e be positive integers with d < e
andc+d — e > 1. Let x be a (c + d — e)-locally analytic character of Ty, and K* a tame level.
Then the c-overconvergent automorphic forms on G of weight-character x and level K*T(p?) is
Hecke-equivariantly isomorphic to the (¢ + d — e)-overconvergent automorphic forms on G of
weight-character x and level K*T'(p°®).

Proof. The c-overconvergent forms of level K*I'y(d) are the elements of

KPTo(p?)
(Hom(G(F\G(AF), E) @5 I () tocan. )

which are furthermore invariant under some set of representatives oy, ..., a, € Iy (pd) for
Lo(p®)\o(p?). Ye then argues that the restriction map from the {«; }-invariant tuples of ele-
ments of ¢“1oc an (pZZ(n_l)/2, E) indexed by G(F)\G(AF)/K?To(p°) to tuples of elements of

¢ (ctd—e)-loc. an (pE*dZZ("_l)/ *F ) indexed by the same double coset space is actually an isomor-
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phism, by constructing the explicit isomorphism. Of course,
c+d—e)-loc. an. (, e—drpn(n—1)/2 ~ ct+d—e)-loc. an. n(n—1)/2
@ ) (p Zp( )/ E) = %! ) (pzp( )/ E)

and (after checking the Hecke-equivariance, which we omit) we see that the target consists of

(c + d — e)-overconvergent forms of level I'g(p®). O

2.1.7 The Atkin-Lehner algebra

In the above sections, we completely omitted any discussion of the Hecke action at p. As
discussed at the beginning of this chapter, it is the Atkin-Lehner operators that we expect to be
compact, and this is the crucial feature that allows for the construction of the “D” eigenvariety
using the eigenvariety machine of Buzzard [Buz2007]. As in Section 2.1.1, the reason why they
are compact is that they improve overconvergence. In fact, the automorphic definition of what
an Atkin-Lehner Hecke operator at p is is essentially engineered to make this true. Let 7" be
the diagonal torus of G(F,) = GL,(Q,), and take Tj as before. In a fairly general context (i.e.
without our hypotheses that force G(F},)), the Atkin-Lehner operators are defined to be some
representatives z of 7'/T;, which satisfy |a(z)| > 1 for all simple roots a € X*(7'). This is all
well and good, but in our context this can be said completely explicitly: T'/T}, has a system of
representatives given by the diagonal matrices whose diagonal entries are integer powers of p .

The Atkin-Lehner operators are defined as follows

Definition 2.1.25 (Very special case of Definition 2.4.3 of [Loe2011]). Define the set of Atkin-
Lehner elements of T to be

a1
p
s

= _ ;> ajforalli < j

(679

p

For z € ¥t and r > 0, the Atkin-Lehner action of z on the space of r-overconvergent auto-
morphic forms of weight x on G is defined (by translating via the isomorphism (Indgg X)Gr-an =
griocan (W, X)) by taking

& (Ny, x) — €70 (N, x),

frs fo(nw— 2z nz).

It is straightforward to check that this is well-defined (in fact it would even be well-defined

for z € X%, which is the same as ¥ except we only require o; > «; for i < j), as z271(+)z

~ Z;(nfl)/Q

preserves affinoid polydiscs around 0 in the affinoid whose points are N = . Since (as
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discussed in Section 2.1.5) the r-automorphic forms are just finite tuples of elements of these
function spaces, we just define the Hecke action componentwise”’. The point of asking z € X1+

is the following:

Proposition 2.1.26. For z € X", the corresponding Atkin—Lehner action on overconvergent

modular forms for G improves overconvergence, and is therefore compact.

Proof. This is true for the same reason that z € X' define well-defined operators on the r-
overconvergent forms (i.e. do not worsen overconvergence). In particular, conjugation by 2
multiplies the various entries of n € N by p®~ for various i < j. Since z € X, this will in
fact always multiply by a positive integer power of p, and therefore will take 7-locally analytic

functions to (r + 1)-locally analytic functions. In other words, z improves overconvergence. [

Remark 2.1.27. In November, Chenevier told me that many of these things could be made
simpler if one takes the representation-theoretic perspective of locally analytic induction rather
than the perspective of locally analytic functions on conjugate unipotent radical. However,
we remark here that all the proofs we have provided here regarding the basic phenomena for
overconvergent automorphic forms have blatantly disregarded Chenevier’s advice: both Propo-
sition 2.1.26 and Proposition 2.1.24, while fairly simple conceptually, use explicit computations
with those analytic functions valued only on N,. I'm not sure whether this means I have missed

a key point; probably not, as the map from one to the other is just restriction to N.

Finally, now that we have defined the Atkin-Lehner action, we add (but do not bother proving,
as usual) that all the prime-to-p-Hecke-equivariant isomorphisms above are also equivariant

under the Atkin-Lehner operators.

2.1.8 Atkin-Lehner theory and refined automorphic representa-

tions

In this final section, we go back to the theory of modular forms and explain the relevance of
accessibly refined automorphic representations to the theory of systems of Hecke eigenvalues.

In Atkin-Lehner theory (see for instance [Bel2021]), the point is that for a new eigenform
f(z) € Sp(T'1(N), C), the resulting oldforms f(z), f(pz) € Si(I'1(Np),C) have the same
system of Hecke eigenvalues for 7}, (¢, Np) = 1, and Uy, (¢) ¢|N, and therefore have the same
attached p-adic Galois representation (which is just the same as that of f), but they are NOT the
same. Therefore, the choice of a level-/Np system of eigenvalues for the Hecke algebra

C[{Ur, (O) }ov U{Te} e.np)=1 U{Up}]

20f course the finiteness is not crucial here: we can just compose any function valued in €% (N, y) with
the map coming from z
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occuring in the modular forms is the same as a choice of Galois representation that occurs there,
plus the data of U,-eigenvalue. By explicitly computing the characteristic polynomial of the
matrix of U, acting on the span of f(z) and f(pz), it is easy to check that this eigenvalue must
be one of the two roots of

X% —a,X + ep(p)p™t,

where a,, is the T),-eigenvalue of f and €, is the Nebentypus character of f. In general it is not
known whether this polynomial always has two distinct roots, but the question can typically be
completely avoided by just looking at forms with slope not equal to (k — 1) /2. The forms of slope
equal to (k — 2)/2 are also typically avoided, because all the newforms of level Np, m > 1 have
slope equal to that (see for example [Ogg1969, Lemma 4(c)]). When these two bad cases, we have
the “twin forms” that Gouvéa—Mazur [Maz1997, GM1998] use to produce their “infinite fern”
inside Galois deformation spaces: the point is that when two different modular forms induce the
same p-adic Galois representation, studying the local geometry of the image of the eigenvariety
inside the relevant Galois deformation space (and in particular proving the transversality of
the branches coming from the twin forms) can allow one to prove that the modular points are
Zariski-dense in the Galois deformation space. See [GM1998,B6¢2001,Che2011,Che2013] for
more details on this. While we will use the concept of twin forms in the ping-pong, the geometry
of the infinite fern itself will not be relevant, so we do not provide any details.

Rather, the point of this section is to clarify the representation-theoretic interpretation
of the choice of U,-eigenvalue in terms of accessible refinements. Given the newform f €
Sk(I'1(N), C), the attached automorphic representation ¢ of GLy(Q) has 7, equal to an
unramified (irreducible) principal series (1, x2) for some smooth unramified character y;®x> :
T — C* [LW2012]. Since it is irreducible, we have

7T(Xl? X2) = 7T(X27 Xl)a

for example by [B71977]. Thus the data of 7 also comes with two choices, namely the choice of
how to order y; and x». Since x1(p) and x2(p) have the property that when you multiply them
by p*~1)/2, they are also the roots of the Satake polynomial

X? = a, X + en(p)p* !,

this choice of ordering is naturally equivalent to the choice of ordering of the two U,,-eigenvalues
in the oldform space generated by f. This is all a special case of the general definition

Definition 2.1.28. An accessible refinement at p of an automorphic representation 7 is a choice of
smooth character x1®x2 : 7(Q,) — C* such that there is an embedding 7, — Indg%&i?p) ®
X2)- Equivalently (by the adjunction between parabolic induction and Jacquet module, e.g. in

[BZ1976]), it is a choice of X1 ® X2 which is a subquotient of the Jacquet module Jp (7).
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The point of an accessible refinement is that it is a convenient automorphic representation-
theoretic way of capturing the Atkin-Lehner eigenvalues (beyond what we just did, see for
instance [Ye2019, Lemma 4.5.2], [BC2009a, Ch. 6]).

By the fact that the Atkin—-Lehner action can be read off the Jacquet module, the classical
eigenforms parametrized by the eigencurve, namely the p-stablized newforms of [Eme2006b, Def-
inition 4.4.1], are in canonical bijection with the accessibly refined automorphic representations
(7, x), where 1 is unramified, and 1 (p) is directly related (up to some constant power of p that
will depend on the normalization conventions for induction and the Jacquet module anyway) to
the choice of U,-eigenvalue. The fact that y; must be unramified encapsulates the fact that for
m > 2, the only relevant forms of level I'; (Np™) are the newforms — correspondingly, for an
automorphic representation of level I'; (Np™~1), there is only one accessible refinement (1, x2)
with x; unramified.

For groups compact at infinity, there is no need for the extra restriction on 3

2.2 Construction of Eigenvarieties, a la Emerton-Newton-
Thorne
2.2.1 Two alternative constructions

Take G as in the previous section. Emerton’s definition of the tame level-K¥ eigenvariety for G

is as follows:

Definition 2.2.1 (Definition 0.6 of [Eme2006b]). Let T be the rigid space over Q, parametrizing
p-adic characters of 7'(Q,,), let T? := T¥"**h be the spherical”' Hecke algebra for K* away from
p, and fix an isomorphism ¢ : Q, — C. The eigenvariety &' (G, K") is the Zariski-closure in

(SpecT?)"€ x T

of the set of systems of eigenvalues of refined p-adic classical automorphic representations, that

is, the set of points in

Hom(T”,Q,) x Hom(T(Q,), Q)

such that there exists an accessibly refined automorphic representation (7, x) of G such that
Too = W is allowable such that the first coordinate is equal to the system of eigenvalues of T*
acting on 75", and the second coordinate is y - ¢, where 1) is the highest weight of 'V with
respect to the upper-triangular borel of G(F}).

I'This means you forget all the finitely-many places away from p at which K" is not a hyperspecial maximal
compact.
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Emerton also defines another rigid subspace of (SpecT?)" x T by using his Jacquet module
for locally analytic representations. In particular, recall that the whole space of locally analytic

p-adic automorphic forms
HO(KP7 E)Qp—loc. an.

is an F-Banach space that admits a locally analytic action of the locally Q,-analytic group
G(Fy) = GL,(Q,). In fact, it is admissible in the sense of [Eme2017, Definition 6.1.1], by
[Eme2006b, Theorem 2.2.22]. Therefore, taking the Jacquet module (defined in generality by
Emerton in [Eme2006a]) with respect to the upper-triangular Borel B of GL,,(Q,), we obtain
an essentially admissible (see [Eme2017, §6.4]) locally analytic representation of the diagonal
torus 7'(Q,).

Js (H°(K?, E)a,t0c.an ) -

By definition of essential admissibility (see [Eme2006b, Proposition 2.3.2]), this module is the
same as a coherent sheaf on 7. In analogy with the eigenvariety machine of [Buz2007], one can
take the image A of T? in the endomorphism ring of this sheaf. Then consider the relative Sp
(defined for example in [Con2006])

Spr(A).

Given that the Jacquet module is supposed to pick up all the systems of eigenvalues of overcon-
vergent forms (see [Loe2011, 3.10.3], which is in any event a consequence of Proposition 2.1.23),
and given the construction of [Buz2007], we can maybe expect this to be the same as &(G, K*)
via the natural closed embedding

Spy(A) — (SpecT?)" x T.

First, we note that one of the inclusions is easy:
Proposition 2.2.2. Sp(A) D &(G, K*) as analytic subsets of (SpecT?)"™ x T

Proof. This is a direct consequence of the combination of Proposition 2.1.21, [Eme2006b, Propo-
sition 2.3.3(3)] (which is itself a direct consequence of the definition), the left-exactness of
Emerton’s Jacquet module functor ([Eme2006a, Theorem 4.2.32]), the fact that Emerton’s Jacquet
module coincides with the classical one in the case of smooth representations, and the fact that
the Hecke action can be read off of the Jacquet module. [

Therefore, to prove the conjectured equality, it suffices to show that the classical points
(i.e. those systems of eigenvalues coming from accessibly refined classical p-adic automorphic
representations) are Zariski-dense in Sp,(.A). This was technically unknown at the time of
[Eme2006b], butwe will prove it using the technique of (at least locally) explicit comparison

with Buzzard’s “D” eigenvariety.
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2.2.2 Accumulation of classical points

The point of how to prove the accumulation property of the classical points in Sp(.A) is to
observe that the points that are classical because of numerical non-criticality are already enough:
not only do they accumulate at all classical points, but actually at all points of locally algebraic
(classical) weight. The entire technique for how to do this is borrowed from [BHS2017], although
one must technically redo the arguments since in that paper they are done for the “patched
eigenvariety.”

Technically, we cannote deduce any relationship between the eigenvariety Sp,(A) and the
“D” eigenvariety constructed by Buzzard [Buz2007] and Loeffler [Loe2011] until we know the
accumulation of classical points. However, we can still abstractly observe parallels between
the constructionsthat will help us prove things. The main thing to do is to find the spectral
variety in the Jacquet module construction. In particular, the restriction morphism v : 7 —
W, where W = Hom(T'(Z,), G,,), together with evaluation at a choice of z € ¥t (which
shouldn’t matter but we take the obvious choice of z = diag(p" !, p"~2,...,p, 1)), provides the
composition

Spr(A) = T =W x Gy,

This identifies Sp,(A) with a cover of the Fredholm variety ), for the (compact by Propo-
sition 2.1.26) z. Take the admissible affinoid cover {U,};c; of the Fredholm variety whose
existence is guaranteed by [Buz2007, Theorem 4.6]. This cover has the property that the image
of U; in W is an open affinoid W;, and U, is a finite cover of IV;. By the finiteness of the map
Spr(A) = T — W x G,,, we may pull back the U;’s to an admissible affinoid cover {V;};c; of
Sp7(A), in which case V; is finite over I;. It follows from a general lemma in rigid geometry
(see [Tai2016, Lemma 2.1.2]) that (the connected components of) the V;’s provide a basis of
affinoids for the canonical topology on Sp(.A), and hence for every z, € Sp;(.A), they provide

a neighborhood basis for zj.

Proposition 2.2.3. Fix zy € Sps(A) such that k(zy), namely the projection to W, is locally
algebraic. Fix someV = V; in the affinoid neighborhood basis of z, described above. Then the

classical points are Zariski-dense in V.

Proof. We will construct a Zariski-dense subset of classical points in I/ by constructing a subset
whose associated refinements are numerically non-critical in the sense of [NT2021, Definition
2.9, Remark 2.21].

The valuation of the value at p of one of the n coordinates of the 7 -coordinate is by definition
an analytic function on the affinoid V. Since affinoids behave as if they are compact, these
valuations are all bounded, say by some number B,

By definition of numerically non-critical, and by finiteness of the map from V' to W, this

means we just need to find Zariski-dense set of classical weights (k1, ..., k) in W; such that the
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k;’s are increasing and k; 1 — k; is larger than the bound By. There are many of these weights,
and in fact they can be made to accumulate at x(zy) by adding large powers of p to the integer
weights defining the algebraic part of x(2) (the smooth part can just be taken to match that of
k(z0)). Indeed, done appropriately, this can make the (k;41 — k;)’s all positive and larger than
B.

In any event, now that we have these numerically non-critical points which are Zariski-dense
in V, we use the numerical non-criticality criterion for classicality [Eme2006a, Theorem 4.4.5].
One must compare the notion of numerical non-criticality from [NT2021, Definition 2.9] to
Emerton’s notion of non-critical slope, and this requires some fiddling with modulus characters.
But we choose not to make this explicit here due to lack of space and also the fact that even if
the correct definition of numerical non-criticality was off by a few modulus characters here and

there, the above boudnedness argument would still work. O]

Since the classical points need to have locally algebraic weight (by definition), we conclude
the desired result:

Theorem 2.2.4. The classical points are Zariski-dense and self-accumulating in Sp,(A). In other
words, Spy(A) = &(G, K7).

We are also allowed to assume that & is reduced. In fact, it is already true (see [NT2021,

Proposition 2.22(1)]), but it does not harm us to just take the associated reduced E-rigid space.

2.2.3 Classicality theorems, d’apres Chenevier and Newton-Thorne

The classicality result [Eme2006a, Theorem 4.4.5] that was used to prove Theorem 2.2.4 uses
Verma module techniques. The following classicality theorem, which we will use in the next
chapter to deduce the analytic continuation of symmetric power functoriality, also does. For the

reason of lack of space, we do not give any real details of the proof.

Proposition 2.2.5 (Lemma 2.30 of [NT2021]). Let z € & (G, K*) be a point whose associated
p-adic Galois representation is absolutely irreducible at all the places above p, and whose T -
coordinate § is regular and locally algebraic. If every triangulation of the associated p-adic Galois
representations at places above p are all non-critical in the sense of [BC2009a, Definition 2.4.5],

then z is classical.

Proof. The proof is fully explained in [NT2021, Lemma 2.30]. There are several ingredients,
but fundamentally it is an argument about twin/companion points. One uses the analytic
continuation of triangulations from [KPX2014] together with [BHS2017, Lemma 2.11] (the proof
of which also uses [KPX2014]), to show that the algebraic part of ¢ is strictly dominant. The
other technical input is the theory of [0S2015], which provides a way (a functor called F§)
of taking locally analytic induction of representations of Lie algebras in the BGG category O
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[Hum2008], together with an adjunction from [Bre2015] between F5 and Emerton’s Jacquet
module. This allows you to study the subquotients of .J B(ﬁ] O(K*, E))q,-ocan. Using Verma
module techniques. By explicit description of the Jordan-Holder factors of Verma modules, the
fact that the Jordan-Holder factor indexed by w = 1 always appears with multiplicity 1, one
argues that the only elements of H O(K PE ))Qp-loc.an. with such a parameter actually come from

the w = 1 Jordan-Holder factor, and are therefore locally algebraic. O

The argument of Proposition 2.2.5 is quite similar to that of [Che2011, Proposition 4.2], where
Verma module techniques and analytic continuation of p-adic Hodge theory data is also used.
Chenevier’s version uses weaker information about the analytic continuation from the famous
paper of Kisin [Kis2003], since [KPX2014] was not yet available. On the other hand, it uses
stronger Lie-theoretic information, namely the BGG resolution (whereas no deep information
about Verma modules at all is used in the proof of Proposition 2.2.5 — everything can be found
in the introductory chapters of [Hum?2008]). By incorporating the BGG resolution argument
into the proof of Proposition 2.2.5, the result could most likely be made slightly stronger.
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Chapter 3

Analytic continuation of symmetric

power functoriality

“These p-adic Hodge theorists seemed to me
like an order of monks, who were able to
reveal the hidden design of a tapestry by

examining it one thread at a time.”

Mark Kisin, [Kis2019]

This chapter is about the proof of the following theorem [NT2021, Corollary 2.33]. As usual,
let ¢ : Qp — C be an isomorphism.

Theorem 3.0.1. Let 2, 2, be classical points on the eigencurve that live on the same irreducible
component of &c,. Suppose that these come from refined automorphic representations (7o, Xo),
(76, X0) for GLo, which further satisfy

1. The refinements X, x are numerically non-critical and n-regular (see [NT2021, Definition
2.23]).

2. The Zariski-closures of the images of 1, ,, T . O Gq, contain SLo.

Then Sym™ 'r, , is automorphic if and only if Sym™ 'r,, , is.

3.1 The trianguline variety

The argument is based on looking at an irreducible component of an eigenvariety inside an
irreducible component of the trianguline variety (to be defined), and using the usual things about
trianguline deformations of Galois representations (together with the key input of vanishing of

adjoint Selmer group, which is the main theorem of previous work of Newton-Thorne [NT2020])
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to prove that in fact the two things are smooth of the same dimension and locally isomorphic at
the points we are interested in. We do NOT discuss [NT2020] at all in this mémoire.

Remark 3.1.1. In [NT2021], everything is made slightly more complicated in the preliminary
section because there is no assumption on the splitting type of p in the CM field F'. In the actual
situation that this must be applied in, p is totally split in F’, so the fields “F}, F;” are really just
Q, (at least this is my understading of the situation). This is particularly nice because it means
that we can technically get away with only using the theory of (y, I')-modules for Gq,, i.e. the
stuff that is proved in your book with Bellaiche [BC2009a], rather than needing additional input
from Nakamura and others. It is also convenient (though doesn’t really simplify any of the

arguments)

The theory that underlies all of this is the link between the local geometry of the pseudochar-
acter varieties and deformation theory, which is developed in your paper on pseudocharacters
[Che2014] (implicitly the pseudocharacters we use here have always been the so-called “determi-
nants”, which we need in order to deal with pseudodeformations of a residual pseudocharacter
over a characteristic p field — it would be incorrect to use the pseudocharacters that I actually
know about).

The following theorem is essentially what is stated and proved in your work [Che2014] (the
only difference is that the W (k) is replaced with O where F is allowed to be anything that
accommodates the given residual character, making this statement slightly more general, but

the proof is identical):

Theorem 3.1.2 (Chenevier). Let I be a finite extension of Q,, with residue field kg, and fix a
conjugate self-dual pseudocharacter T of G p g with coefficients in k.

1. The functor from the category of complete local Noetherian O g-algebras with residue field
kg to Set given on objects by

A — the set of continuous conjugate self-dual pseudocharacters Gpg — A lifting T

is representable by the “universal pseudodeformation ring” R(T), a complete local Noetherian

Og-algebra.

2. The functor from the category of E-rigid spaces to Set given by
Y > the set of residually constant pseudocharacters G s — O())with residual pseudocharacter 7
is represented by the F-rigid space
X- = (SpfR(7))",
where (—)"8 denotes the rigid generic fiber in the sense of Berthelot.
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3. The functor from the category of E-rigid spaces to Set given by
Y — the set of pseudocharactersG s — O()) of dimension n

is represented by the F-rigid space
X, = |_|(SptR(7))",

where the T run over the set of all residual determinants of dimension n.

4. For any closed point x € X,, of residue field x(x) (a finite extension of E), the completed
local ring Ox, . represents the functor' from the category of complete local Noetherian
k(x)-algebras with residue field x(x) to Set given by

A — the set of conjugate self-dual pseudocharacters Gy s — A lifting D,,,

where D, : Gps — r(x) is the pseudocharacter corresponding to the point .

The same theorem is also true if we replace G s with Gq,and get rid of the words “conjugate
self dual” everywhere. For any place v|p of F™, denote by X,, , the rigid space representing the
functor of analytic families of pseudocharacters of G, = Gq,. Obviously the space itself does

not depend on the choice of v, but the restriction map’ X,, — X,, , does depend on v.

Definition 3.1.3. For any place v[p of F'*, let X}, be the absolutely irreducible locus in X, ,,
i.e. the locus on which the universal pseudocharacter Gq, — O(X,,,) is absolutely irreducible
(you proved that it is an open subspace in [Che2014]). Define the open subspace X2 C X,
via the pullback

p—irr irr
xn Hv\p xn,v

| !

xn — Hv\p %n,v

i.e. by imposing an absolute irreducibility condition at each v|p.

The absolute irreducibility condition is useful because in that case the deformations of a
pseudocharacter are the same thing as a deformations of the unique irreducible representation

'T think it is kind of interesting how deformation theory comes up in two ways in this type of result: once in the
sense of characteristic-0 lifts of a positive characteristic objects, in order to define the rigid space we are interested
in, and then the second time in the sense of lifts from characteristic zero to characteristic zero in order to deal with
the local geometry of this rigid space.

2Given via the functorial description by the X,,-family of pseudocharacters of G, given by restricting to
G, C GF,s the universal pseudocharacter.
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that corresponds to it (we can even use the pseudocharacters of [BC2009a] rather than determi-
nants since we really only care about the equal characteristic zero case, in which case this is a
standard fact, a consequence e.g. of the fact that complete local rings are henselian).

As a consequence of this and the usual identification between the tangent space of Galois

deformation functor and first Galois cohomology of adjoint representation, we have

Lemma 3.1.4. For a closed point z € [],, XI" with corresponding tuple of isomorphism classes

vlp Fnp

of Galois representations (.., )v|p»

T. ][ % = P H' (Gq,.adp- ).
v|p

vlp

A closed point z € XP~' is certainly absolutely irreducible, since it is absolutely irreducible
when restricted to Gq, = G, C Gps. This is convenient, but note that the computation of
T,XP~ js not completely obvious in the same way as Lemma 3.1.4, because in Theorem 3.1.2(4)
the pseudodeformations must also be conjugate self-dual. For this reason, it is convenient’ to
introduce the group scheme G,, of [CHT2008, §2].

Obviously the definition might as well be made over Z, but we will only have use for the

version defined over F (i.e. the base change to E of the Z-version).

Definition 3.1.5. Define the E-group scheme
G, = (GL,, x GLy) x {1, J}

where J acts on GL,, x GL; by (g, ) — (- g" 7', ). Let v : G, — GL; be the character®
defined on the (GL,, x GL;) x {1}-component by projection to GL;, and on the other component
by the negation of the projection to GL;.

The point of all this is that n-dimensional conjugate self-dual Galois representations (and

deformations thereof) are supposed to be related to homomorphisms into G,,. In fact, we have:

Lemma 3.1.6 (Clozel-Harris-Taylor). Let E'/ E be a finite extension, and let p : Gpg — GL,,(E’)
be an absolutely irreducible representation such that p¥e' =" = p°. Then up to GLn(Qp)-conjugacy,
there is exactly one homomorphism

ﬁi GF+,S — Q’n(E’)

*though unlikely really necessary — at this point I think Newton and Thorne are just showing off
#To check that v is a group scheme homomorphism: by the universal property of semidirect products, it suffices
to prove that

v(J - (g,1) = v(D)v((g, p)v(J) ™"
which is true because the left hand side is v(y - g " =%, i) = p1 and the right hand side is also y since v/(J) = —1.
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satisfyingvop = 61*”5}@/F+ forsomea € {0,1} and p~ ' ((GL,(E") x GL{(E")) x {1}) = Grs’;
in fact the value of a is uniquely determined by p.

Proof. This is some combination of various lemmas in [CHT2008, §2], except I will use slightly
more concrete language.

Let us fix a basis for (E’)®" for the n-dimensional vector space involved here, and use it to
produce a matrix B for the F'[G s]-linear isomorphism p"e'™" — p°. By Schur’s lemma, and
the absolute irreducibility assumption, the matrix B is unique up to scaling by element of (E’)*.

Furthermore, taking the transpose of B, we have an isomorphism
BT . pc,v N penflj
which (by writing down explicitly what the equivariance condition means) is also an isomorphism

C

BT:pV617"—>p,

ie. BT satisfies exactly the same E'[G s]-linearity condition as B, and hence there is some
a € (E')* such that
B=aB'.

Taking the transpose of both sides, we obtain a? = 1,i.e. « = 41. Both possibilities are possible,
and the value of o (obviously uniquely determined by p) will affect the value of a.

In any event, the E'[Gr s|-linearity of B gives us the condition

p(g)"te(g)' ™" = B p(cge) B (3.1)
for every g € G s. Furthermore, since €(c) = —1, we can rewrite the condition B = +1BT as
B=(-1)"-(=""Y(¢))B" (3.2)

where b € {0, 1} is uniquely determined by p (b depends on « as well as the parity of n, and
thus ultimately only on p).
Anyhow, the homomorphism p : Gp+ s — G,,(E’) a priori has to satisfy

plg) = (p(g),e(g) ", 1)

for all ¢ € G'ps. This is a perfectly well-defined homomorphism so far, and our only job is

to think about how it can be extended to Gz+ s. The extension is determined by its value on

5All such homomorphisms will be assumed to satisfy this last condition, without any comment.
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complex conjugation ¢ € G+ 5 \ Grs. By hypothesis, the value on complex conjugation is
ple) = (A, (=1)"(=e(0)" ™), J) = (A, (=1)* ", ),
for some A € GL,,(E’). In order for this to define an actual homomorphism, it must satisfy
1= o) = (AAT (1) (=e(c) =), 1, 1),

i.e.

A= (=1)"(=e(e) AT,

and it must have the property that for g € G s, the two possible ways of writing down p(gc)

agree:
plge) = p(g)p(c)
= (p(g), E(g)l_n7 1) ) (A> (_1>a( €<C)1_n)7 J)
= (p(9)A, (=1)*(—e(ge)' ™), J)
and

= (A, (=1)%(—=€(e)'™), J) - (p(cge),e(g)' ", 1)
= (Ap(cge) " le(g) " (= 1) (—e(ge)' ™), J),

so the only condition is

)T,fl )1711

p(g)A = Ap(cge) " e(g

Y

ie. Ais E'|GFg|-equivariant from p®Ve! ™" to p, which is the same as being from p¥e! ™™ to p°.
By Schur’s lemma, the only possibility is for A = B up to a multiplicative constant, and, by
Equation (3.2), the only option that can happen is b = a.

The only thing it remains to verify is that all the possible p, defined by p = (8B, (—1)*(—¢(c)

1-n
for § € (E')*, are all conjugate under GL,,(Q,). Indeed, if we conjugate by M € GL,(Q,), i.e.

):J)
(M,1,1) € G,(Q,), we end up with something whose value at g is
(Mp(g) M, e(g)" ™", 1).

This won’t even be a valid p unless M € Q; , since p is absolutely irreducible (by Shur’s lemma,

the centralizer of the image of p is just the scalar matrices). And if M =m € Q: , the effect on
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p(c) = (B, (—1)°(—e(c)t™™), J) is to take it to
(m?B, (=1)"(=e(c)'™"), J).

Since Qp is algebraically closed, this accounts for all scalar multiples of B, as desired. O]

Since complete local rings are henselian [Ray1970], by the standard theorems (e.g. [BC2009a,
Ch. 1)), the conjugate self-dual deformations of the pseudocharacter corresponding to a given
closed point z € X2~ all correspond to a unique conjugate self-dual deformation of the
corresponding irreducible representation p, : Grs — GL, (Qp). By generalizing Lemma 3.1.6
to the case of deformations, Newton-Thorne show that these conjugate self-dual deformations
correspond to deformations of p, (defined in the obvious way), which I will explain later. First, I
define all of these things fully and explain why the tangent space of the deformation functor for

a p can be written in the usual way using Galois cohomology.

Definition 3.1.7. For a homomorphism p : Gp+ s — G,(E') satisfying v o p = (—:1_”5‘;/F+,
define:

« The deformation functor D; from the category of complete local Noetherian E’-algebras
with residue field £’ to Set defined on objects by

Dj(A) = {0 : Gp+ g = Gu(A) lifting p : voo = € "% ps }/ ker(GLy(A) = GL,(E'))

« The adjoint representation adp is defined via the adjoint action of G,,(E’) on the E'-points
of the Lie algebra of GL,,. It is easy to see that GL,,(E’) C G, (E") acts by the usual adjoint

action (conjugation of matrices), GL; (E") acts trivially, and .J acts by z +— —xz .

The following is supposed to be true:

Lemma 3.1.8. Let p : Gp+ s — G,(E') be a homomorphism satisfying v o p = el_”él“m/pr. Then
Ds(E'le]) = H' (G s, adp).

Proof. Exactly the same argument as in [Che2010, Lecture 3, Proposition 3.3]) can be made to
work; you just need to think a little bit more precisely about how the non-identity component acts

in the adjoint action (since in that case you cannot just think about everything as a matrix). [J

Anyway, I do not think that this identification in terms of cohomology is actually useful,
and the H' here might as well just be another name for the tangent space. In any event, we
now carry out the final step of identifying this deformation functor with the pseudodeformation
functor that we know is related to 7, X2~ thanks to Theorem 3.1.2(4):
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Lemma 3.1.9. Let z € X" be a closed point of residue field r(z). Then we know from
[BC2009a, Ch. 1] that the corresponding k(z)-valued pseudocharacter comes from a unique
absolutely irreducible conjugate self-dual representation p, : Gps — GL,(k(2)), and from
Lemma 3.1.6 that there is a (unique up to scalar constants modifying the image of complex conju-
gation) corresponding p, : Gp+ s — Gn(k(2)). Then the Zariski tangent space T,X2~"™ may be

computed from the deformation theory of this homomorphism:
T.X07m > HY(Gp+ 5,adp,).

Proof. Since complete local rings are henselian, [BC2009a, Lemma 1.4.3] and Theorem 3.1.2(4)
tell us that 7, X2~ is isomorphic to the tangent space of the conjugate self-dual deformation
functor of p, (since in particular the conjugate self-dual pseudodeformation functor of Trp, is
isomorphic to the conjugate self-dual deformation functor of p,). We claim that this deformation
functor is in turn isomorphic to D, which would imply the claim thanks to Lemma 3.1.8. This
is what is done in [NT2021, Lemma 2.12], which is easy for us now because we have essentially
spelled out all the missing details from [CHT2008] in our proof of Lemma 3.1.6.

There is an obvious map from D, to the conjugate self-dual deformation functor of p.,
given by restricting to G s and projecting to GL,, (this results in something conjugate self-dual

thanks to the analysis in Lemma 3.1.6 — the proof of this part works just as well over an arbitrary

ring).

« Injectivity: Let 01,05 € D, (A) for some complete Noetherian local (z)-algebra A with
residue field #(z). Suppose that 7qr,, 001|a, s and mar, 002, s are conjugate under some
M € ker(GL,(A) — GL,(k(2))). We need to deduce that oy, 05 are also conjugate by M,
and the only thing left is to show that o4 (c), 02(c) are conjugate by M. After conjugating
one of them by M, we can assume that 7gr, 0 01|g,. s = TaL, ©02|¢, ¢ =: 7, and consider
the operator (7ar, © 01(c))(mgL, © 02(c)) "t € GL,(A). Again by the same reasoning as
in the proof of Lemma 3.1.6 (but extended to arbitrary base ring), 7y, © 0;(c) are A[G . s]-
equivariant isomorphisms 7Ve!™" — 7¢, and therefore (g, © 01(c))(7aL, © 02(c)) !

centralizes the image of a residually absolutely irreducible representation of G ¢ valued

in GL,,(A). In this situation, Schur’s lemma in the form of [CHT2008, Lemma 2.1.8] (easy
exercise in induction on length of Artinian algebras) shows that there is an v € A* such
that o (c) = aos(c). But since 01, 09 are both lifts to A of the same p,, we know that

a =1 mod my. This is very nice, because since A is henselian, it implies « has a square

rootin 1 mod my C ker(GL,(A) — GL,(k(z))), which we can then further conjugate

o9 by to get ;.

« Surjectivity is easier: as soon as we have a conjugate self-dual deformation of p, with
coefficients in A, we can construct the coresponding element of D, (A) by the same

procedure as Lemma 3.1.6.
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Anyhow, since the identifications work in the exact same way, the natural diagram

X0 — 5 HY(Gp+g,adp,)

! !

T(rcsz)v‘p Hv|p %va — ®U|p H' (GQp7 ade‘GFv)

commutes.

The key point in all of this is to analyze the relationship between the eigenvariety and the
“trianguline locus” both sitting inside of the character variety X,, X 7,,, which we will be able to
do inside the open locus X2~ x 78 where we can interpret the points as being isomorphism
classes of conjugate self-dual n-dimensional absolutely irreducible representations of G g
together with the data of some characters which are meant to play the role of a triangulation at
each p-adic place, and therefore think about the local geometry of both of these objects in terms
of deformation theory.

Of course, thinking about the geometry of the trianguline locus will require us to use the
results of [KPX2014] regarding spreading-out of triangulations, which in turn requires us to start

irr

out with a globally-defined analytic family of p-adic Galois reprensentations. Moreover, X",

is not necessarily equipped with a global universal family Gq, — GL,(O(X}"))): the theory
from [Che2014, §4.2] only guarantees the existence of a global Azumaya algebra A (i.e. the

T

universal Cayley-Hamilton quotient) over %g’v such that there is a universal representation

T

Gq, — A* inducing pointwise the pseudocharacters in XJ",

via taking reduced trace — there is
no reason for A to be globally split. On the bright side, for any closed point z € X}",, the absolute
irreducibility of ~ implies that the stalk A, splits (as Oxir  is a henselian local ring), and hence

there is an affinoid subdomain ¢ of X}}", containing z and carrying a universal representation
Gq, = GL,(O(U)). The exact same argument applies to the global character variety X2
We will use the existence of these universal representations locally on the pseudocharacter
varieties without comment.

Now it is finally time to make precise what we meant by “trianguline locus™:

Definition 3.1.10. Define the (local) trianguline locus A, C %;?U X Ty to be the Zariski closure
of the set of points (p, d) such that p is trianguline of parameter 6. We will only be interested
in the intersection of A, with affinoid open subdomains of X}\", x 7y, small enough to have
an associated universal representation (in order to use [KPX2014]) and 9 is regular (in order to

relate the local geometry of the trianguline locus to deformation theory).

Of course, the purpose of all of this is that the refined automorphic representations that
define classical points on our eigenvarieties will live in X,, X 7 and be trianguline at all places
of F'* over p, and so we will ultimately be interested in the global version:
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Definition 3.1.11. Define the (global) trianguline locus in X};", % T, to be

A = ﬂ res, T (A,).
vlp

For the same reasons as before, we are only interested in this construction when intersected
wit affinoid opens U where U/ C XE~"" x 7€ and U is small enough to admit a universal
representation. In fact, since we will be interested in understanding the local geometry of
A based on the local geometry of the various A, we will further ask that I/ is contained in

ﬂv‘presv_l(uv), where U, are nice affinoid opens as described in the definition of A,,.

Anyway, we can now start with understanding the local geometry of A, inside the regular
locus.

Proposition 3.1.12. Let v|p be a place of ', and let z € A, N X", x T be a closed point

n,v

corresponding to a pair (p., d,) such that p, is trianguline of parameter §,. Then

T.A, C H}; 5 (Gq,.adp.),

71,00

where this H. . . denotes the set of k(2)|c]-valued deformations that are trianguline of parameter
tri,0, g p

0, and is viewed as a subspace of
T.(X7, x T,%) = H'(Gq,, adp.) © T5.7,7%

(though NOT necessarily in the obvious way — there is additional information about the tangent

direction at the parameter 0, that is involved here)

Proof. First of all, the statement of the result is fairly intuitive: the tangent space of the trianguline
locus should be interpreted as trianguline elements of the ambient tangent space. Since the
map from the ¢,-trianguline deformation functor to the deformation functor of p, is injective
and relatively representable ([BC2009a, Proposition 2.3.6, 2.3.6], using in a crucial way the
regularity hypothesis), we can realize Htlri,éz(GQp7 adp,) as the tangent space of an actual
universal deformation ring R, s, which admits a surjection from @xn,vXan (as this is the
universal deformation ring of p, by Theorem 3.1.2). Therefore, the desired existence of the
dotted arrow in the diagram

T.(Xno X Tnw) +—— T.A,

)

Htlri,éz (GQp7 adpz)

would be implied by the existence of the dotted arrow in the diagram
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O:{n,v ><7—n,v77~' OA?J’Z

sz 75z

To argue that this is true, we use [KPX2014], the point being that the desired dotted line is
essentially given by taking a global triangulation of the universal representation on &/ N A,
for a small open affinoid subdomain U of X,,, x 7 containing 2. Indeed, if such a global
triangulation actually existed, then we would immediately have the desired dotted line by the
universal property of 12,5 (as the local triangulation would give us a 9) A,,--valued trianguline
deformation® of p, of residual parameter ¢.), and the fact that the diagram commutes is then
a consequence of the universal property of @%n,uxTn,u,z (itself being identified with a certain
universal deformation ring thanks to Theorem 3.1.2).

However, the results of [KPX2014] are not so strong as to automatically give us such a
global triangulation of the universal representation near z. Instead, this triangulation takes
place over a rigid space A/ equipped with a proper birational morphism f to A, N . Indeed,
[KPX2014] constructs this f : Al — A, NU by first taking the normalization and then a
series of proper birational morphisms defined locally by birational projective morphisms of
schemes (e.g., blowups), and in particular [KPX2014, Corollary 6.3.10] provides a filtration of the
global (¢, I')-module DLg’ A (J*(Plina,)) by coherent submodules that become a bona fide global
triangulation’ over the preimage in A/ of the set of points of &/ N A, which are trianguline of
the given parameter (part of the content of the corollary from [KPX2014] is that this is the set of
points of a Zariski open subdomain), and furthermore restrict to the actual unique triangulation
of the image under f. The KEY POINT here is that this global triangulation over an open set of
A, thanks to the fact that this open set contains all preimages of z, provides us (again via the

universal property of 17, ;) with a morphism

sz,fsz — H OA;,Zb

zleT

where 7 is any finite set of preimages of z in A/ (technically in order to do this we need to
make sure that the residue fields of all the points are the same, which we can accomplish just by
increasing the size of the base field F so that all of the points we are interested in have residue
field E). The point is that (again regardless of the choice of T' # () the natural diagram

®N.B.: here we are also using the fact that the set of points of A, N that are actually trianguline is open in
A, NU whenever U is an affinoid open of the regular locus. This is part of the content of the main theorems of
[KPX2014], or, in the context of our hypothetical discussion about the existence of a local triangulation, implicitly
part of the assumptions.

"Recall that the coherent submodules definining a bona fide global triangulation must furthermore be direct
summands; this is only guaranteed over a particular open set.

90



Oxn,vxﬂz,,mz OAWZ Hz;GT OA{”Z;

}

sz 762

commutes (easy to check using universal property of @xw xTn.o,> as a deformation ring, from
Theorem 3.1.2). To prove the existence of the dotted arrow, it therefore suffices to choose 7" such
that the natural map
@Av,z — H (/9\A§J,z§
zleT
is injective (injective maps of local rings are monomorphisms in the category of local rings).
To do this, we just construct 7" by starting with the fiber {Z;, .. ., Z,,} of z in the normalization
of Y N A,, and then just arbitrarily choosing a preimage of each Z; (recall from above how Al

was constructed). The point is that

m
On,z = H Om,z}’
i=1
where A, NU denotes the normalization, is injective (taking normalization is compatible with
taking completed stalks, and every reduced local ring injects into its normalization); and the

remaining coordinatewise maps

Oxr: = Oaye

are injective because a projective birational morphism of reduced schemes is injective on stalks
(obvious as the stalks all live in the field of rational functions), and this injectivity is then
preserved by taking completions (use [EGA, EGA I, Corollaire 3.9.8], which applies because
the stalk of the base scheme has completion which is a domain thanks to the fact that affinoid
algebras are excellent® and all the schemes we are looking at in between the normalization and
A! are normal by assumption’). O

Remark 3.1.13. Note that the hypotheses of [KPX2014, Corollary 6.3.10] include the assumption
that the pointwise triangulations you start out with are “strictly trianguline,” i.e. unique with
the given parameter. This might be slightly weaker than “regular,” but in any event without
[KPX2014] it seems doubtful that Theorem 3.0.1 can be proved with similar methods without
the regularity hypotheses.

Armed with this description of the local trianguline locus, we are able to deduce some strong
information about the relationship between the global trianguline locus and the eigenvariety

8according to [FvdP2004] this is somewhere in [BGR1984] but I have only found it in [BKKN1967]. Given this
reference is in German, no wonder I did not know this useful fact beforehand...
9c.f. MSE186547
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near nice enough classical points. This uses as a KEY INPUT the main theorem of [NT2020].

Proposition 3.1.14. Let (7, x) be an accessibly refined automorphic representation of G,,( A p+)
that has the priviledge of providing a classical point z on the eigenvariety &, (this is basically a
condition on the level of ). Suppose furthermore that z is non-critical and regular, and thatrm|GFﬁ
is irreducible for all v|p. Then the following hold:

1. The global trianguline locus A is regular at z.

2. &, is locally isomorphic to A near z via the canonical inclusion of &, into X,, X Tp,.

Proof. Define
Htl (GF+75,adﬁ;)

11,0
to be the subset of H'(Gp+ g, adr,,) = Dy (k(z)[e]) constisting of elements which are tri-

anguline deformations of TM|GFG when restricted to each v|p, i.e. (recall Lemma 3.1.9 and the
commutative diagram that follows),

Htlri,éz (Gp+ s, adry,) = ﬂ resv_lHtlri,éz,v (Gq,: adTW,L|GFﬁ ).

vlp

By Lemma 3.1.9 and Proposition 3.1.12 (using the regularity hypothesis in a crucial way here),
the Zariski tangent space to the global trianguline locus A at z is contained in Hy; 5 (Gp+ s, adry,,)
considered as a subspace of T, (XP™™ x 7€) = H!(Gp+ 5,adr,,) & T.7¢. Now we apply the
non-criticality hypothesis to obtain via [BC2009a, Proposition 2.3.4] that the natural map

1 —~
Htri,éz (GF+,S; adTﬂvb) — T52| Wn

X
ZP

is injective (elements of the kernel have triangulation of parameter living in £ C E|[¢|, are hence
de Rham at each v, and therefore count as elements of'’ }(G F+,adr,, ), which vanishes by

the main theorem of [N'T2020]). It follows from our two observations that
dim T, A < dimW,,.

But since we have all sorts (Zariski-dense-set worth) of classical points accumulating at z in A,

there is an affinoid open neighborhood V C &, contained in A, and hence
dim, A > dim &,,.

Combining this with the basic fact that dim &, = dim %, and the general fact that dim 7, A >
dim, A, we finally see that A is regular at z of the same dimension as &,,. Therefore, in some

°The reason we can write “f” instead of “g” here is that r, , is automatically generic (any N is automatically
zero) thanks to [Car2012]
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open affinoid neighborhood V'’ of 2, A has exactly one irreducible component passing through 2.
We conclude from this and the fact that VV — A is a closed embedding that V also has only one
irreducible component passing through 2, and that &, is locally isomorphic to A near z. [

Applying this theorem to an irreducible component of &, and an irreducible component of
&> mapping into the same deformation space except with symmetric powers, we may deduce

Theorem 3.0.1. This is done in the next section.

3.2 Passing to definite unitary groups

The first field that we are supposed to construct is this one:

Lemma 3.2.1. There exists an abelian CM extension F'/Q such that every prime dividing Np
splits in F', [(F')" : Q] is even, and F'/(F')" is everywhere unramified.

Proof. At first, I thought that this would be an easy consequence of class field theory, but indeed I
found that this proved harder than it first seemed. Instead, the technique of explicit construction
using compositum of quadratic fields, which you explained in your office a few weeks ago, works
fine (though note that what you said the second time around wasn’t quite enough, the point
being that F” needs to be everywhere unramified over (F’)", not just at the primes above ¢| N p;
in fact what I ended up doing is closer to what I said than to the Krasner’s lemma argument you
gave, it’s just that I accidentally reversed a divisibility and caused a true thing to seem false).

Our field F” will be of the form Q(v/a, v/b) where a > 0 and b < 0 are squarefree. This
is nice because it is automatically CM abelian over Q, and the maximal totally real subfield is
quadratic extension of Q. We just need to guarantee that Q(y/a) and Q(v/b) are split over all
rational primes ¢|Np, and that Q(y/a, V/b) is everywhere unramified over Q(+/a). In particular,
it cannot be the case that there are rational primes ¢ that ramify in Q(+/b) but not in Q(\/a),
since then any prime p|¢ of Q(y/a) would have to ramify in Q(v/a, v/b). Therefore (modulo
shenanigans at 2 that we will be able to ignore by assuming WLOG that N is even), a must be
divisible by b (this is the divisibility that I accidentally reversed in your office two days ago). We
therefore change notation to b = —d and a = —dn, where d, n > 0 are positive integers that we
will choose.

Let d > 0 be a squarefree positive integer such that the Legendre symbol

()

for all primes ¢| Np. In fact, to avoid problems at 2, [ also ask that —d = 1 mod 4. This is a
consistent system of congruences, since at £ = 2 the first condition just says that d is odd. Such

a d exists by Sunzi’s remainder theorem (together with, say, Dirichlet’s theorem on primes in
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arithmetic progressions). The point is that (by the Dedekind—-Kummer criterion) every ¢|Np
then splits in Q(v/—d). We then choose a squarefree positive integer n > 0 such that n = —1
mod 4Np and (n,d) = 1. This is possible again for example by Dirichlet’s theorem on primes
in arithmetic progression. Then nd satisfies exactly the same congruence conditions that we
asked —d to satisfy, and therefore all £|2Np also split in Q(v/nd). By the surjectivity of Galois
restriction maps restricted to decomposition groups, we conclude that all rational primes ¢|2Np
split in

F = Q(\/@, V—d).

Moreover, we can rewrite I as a compositum of linearly disjoint quadratic fields with coprime

discriminant'’

F'=Q(V-n,v~d) = Q(v-n) - Q(vV~d),

from which it follows that
Arq = Agmm/ePana;
By the formula for relative discriminants in towers, we conclude that
n%d?

F* 2T
NSQ ) AF//(F/)+ = AF’/QA(F,)JF/Q - n2d2 =1

and hence that F” is everywhere unramified over its maximal totally real subfield, as desired. [J

Apologies for all the waffle in the proof of Lemma 3.2.1; as we now both agree, it is a very

easy exercise.

Remark 3.2.2. The construction in Lemma 3.2.1 is also interesting because it allows us to
construct a large family of real quadratic fields with nontrivial class group (consistent with

Cohen-Lenstra).

Now I describe the eigenvariety notation to be used. Let C be an irreducible component of

the cuspidal tame level N Coleman—-Mazur eigencurve &, let W be the usual weight space
W = Hom((Z/NZ)* x Z},Gn(—))

in the sense of [Buz2004], and let W C W be the connected component containing the image
of C under the weight map x : & — W (i.e. the one corresponding to the discrete part of
the nebentypus-weight-character'” eye, : (Z/NZ)* x (Z/qZ)* — Q; >~ C* that all the
forms parametrized by C share). As you remember, at some point I was confused about the

following definition due to the strange wording in [NT2021], so I now make it really explicit. Let

'the requirement that the discriminants are coprime is where we are happy that we required everything to be
split at 2 and (n,d) = 1.
2Here q is the usual notation, as in [LWX2017], for p when p is odd and 4 when p = 2
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en:(Z/NZ)* — 6; = C* be the constant /N-nebentypus of C. Then by the classical theory
of Galois representations associated to modular forms, the universal pseudocharacter over C
has determinant varying over C given by

(det p). = (en 0 (Gq = Gal(Q(Cn)/Q) = (Z/NZ)7)) - (k(2) - (& = ) © Xeyelo,

where Xcydo 1 Gq — Z; is the p-adic cyclotomic character and 2 € C. Note that this family
Gq — O(C)* factors through the weight map «, as it comes from the family ' : Gq — O(W)*

given by the exact same formula (except x(z) is replaced now by the variable parametrizing W).

Definition 3.2.3. The character y : Gq — O(W)* is defined to be just like X/, except we get

rid of the extra “z — z” to make it cleaner. In other words, x is X' (2 = 271) 0 Xeyelo = X Xc_yho

Question 3.2.4. Doesn’t this mean there is a typo — in [NT2021, Theorem 2.33] it should say

1

“the determinant of the universal pseudocharacter over C is ex” rather than e 'y ? Of course I

suppose what Newton-Thorne say would be correct if the convention for a classical weight k

form z is that x(z) = x > 2* rather than 2¥72,

In the technical constructions that follow, the key point about y that we will need to use is
not really its full definition, but rather that it is unramified away from Np, and globally on W
of finite order (hence “potentially unramified”) when restricted to the inertia I, for any ¢| N (in
fact the order on inertia is globally on W bounded by ¢(V)).

Lemma 3.2.5. There is a finite étale morphism of rigid spaces ) : W — W and an analytic family

of characters ¢ : G — O(W)* with the following properties:
1. v is unramified at all but finitely many places of F”

2. For each place v|p of (F')", 1 is unramified at at least one of the two places v|v of F’

3. Y = n*(xle,)

Proof. Define the set gp as a subset of the set of places of F” lying over p, by making an arbitrary
choice of one out of the two #v for each place v|p of (F')*. Therefore, {7]|p} = S, LI §1§ We
will satisfy (2) by constructing 1 to be unramified at all places in S,,. Now define the family of
continuous characters
L: Hoxé — O(W)*
olp

by

This is clearly the type of thing that we want, but we need to extend it to an analytic family of
Hecke characters in order to extract a Galois character by class field theory. We show this is
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possible (up to possible finite étale cover of W) by using the theory of rigid character varieties

established in [Buz2004]. f u € Oy, C [, (’);%, for any

uy € Op uge € O;ic both come (via the canonical embeddings/isomorphisms) from the same

element u, € O(X

p, the two local components

s where v is the place of (F”)" below ¢ and ¢¢ (in particular w, is the image
of u under the canonical embedding into (F”);"). By the compatibility of Galois restriction with
field norms under local class field theory, and the fact that all places v|p of (F’)™ are split in F”,

we have

L(u) = H X(Artpr (uz)) ™"

veSe
F! -1
veSg

= [T x(Art oy ()™
vlp

— [T x (Artq, (Ng)%”»l
vlp

FF
= x | Artq, HNEQP) Uy

vlp

(in all of this there is ambiguity up to conjugation by an element of Gq for the decomposition
group of Gq in which the local Artin map lands, but it doesn’t matter since x is a character).
Therefore, if u € O(XF,)+ satisfies Ng')+u = 1, then L(u) = 1 € O(W)* (the product of local

norms over p is just the p-component of the global norm). The kernel of Ng o |ox . being a
(F7)

finite-index subgroup of O ;... (since the image is contained in the finite group O = {+1}),
which itself is a finite-index subgroup of O, by Dirichlet’s unit theorem (F'/Q is CM), is
therefore a finite-index subgroup of O, contained in the kernel of L. By Chevalley’s theorem
on congruence subgroups [Che1951, Théoréme 1] (the same one I used in my letter to you back
in October), there is an ideal m = [ |
of F”) such that

m /
weoo P of I (from now on w always ranges over places

ker L D %w N OFy,

where %, C A}, is the compact open subgroup

U= [[ Q+7r0m) | x| T] 05 | < [ I] 2

w<oo w< o0 w\oo
My >0 My =0

Let %7 be the away-from-p part of %, (defined the same way except for w/|p the coordinates
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must all be 1), and define the profinite groups

1105

X

g (™)
Both H and H' are abelian profinite groups that admit a finite direct sum of copies of Z, as an
open subgroup: indeed, this is already true of [ [, OF. , so it is true of H'; and H’ is embedded
in H as a closed subgroup via the canonical embedding [[,,,, Or;, — Af, (which is well defined
after taking quotients because elements of %, N Of, C [[,,, Op C Aj, arein O, - %?), but
in fact H' has finite index in H, by the finiteness of ray class groups (see e.g. [Lan1994]), so it is
an open subgroup of H — in particular we have shown that H and H' are both abelian profinite
groups with ZZ™ as an open subgroup, i.e. they are both of the form Z$™ x (finite abelian group).
So by [Buz2004, Lemma 2(iv)], the restriction map

r: Hom(H, G,,(—)) — Hom(H', G,,(—))

is a finite étale morphism of rigid spaces. The point of what we did above was that our
wip O — O(W)* vanishes on %, N OF, and there-
fore factors through to a W -family of characters of H’, i.e. a rigid analytic morphism W —
Hom(H’, G,,(—)). Taking the fibered product with r, we get the pullback square

original family of characters L : []

W’ ! s W

! !

Hom(H, G,,(—)) —— Hom(H', G,,(—))

the base-changed morphism 7 being finite étale because r is. The base-changed morphism
W’ — Hom(H, G,,) is then an extension of L to all of H, in the sense that it defines (by

universal property of these Hom spaces) a continuous W’-family of characters
L' A%, — OW")*
which is 1 on (F’)* and %*, and satisfies

Llle ox, =1 (L)

lp ¥ FY,
By global class field theory, L’ gives rise to a Galois character
A G — O(WH*~.
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The conjugate
A G — O(W')~

can also be given via class field theory from L’ o c. Without loss of generality, we shrink the
modulus m so that m, is invariant under ¢, hence we can assume that L’ o c is still trivial on
'?. By local-global compatibility of class field theory, and the definition of L, we conclude that

0" (X|ap o Artp) - L' (Lo N, 0x =1

Fy
Moreover, since x is (globally on W) unramified away from Np, and all the ramification over
primes dividing N comes from a ray class character modulo /V (the NV-part of the nebentypus),

we can furthur shrink m so that y is also trivial on %7, and hence the character
0" (xla,, o Artp) - L' - (L' oc) - O(W')*

is trivial on (F")*, %/, and Hw‘ » (’)}X,l,u By finiteness of ray class groups and class field theory, we
have concluded that *(x/|q,, )AA® is globally on W of finite order. Since the character variety
of a finite group is discrete, by replacing W’ with any connected component W’ (doesn’t change
the fact that 7|y~ is finite étale since W is connected), we can assume that n*(x|q,, )AA® is
actually the constant family given by a finite-order character G — (E’)* (for some finite
FE’'/Q,). In other words, A~! does the trick, up to the trivial W’-family corresponding to some
finite-order character. It also follows from its definition and class field theory that ) is unramified
almost everywhere and unramified at each place in gp. So we are reduced to the constant case,
where this becomes a more straightforward exercise in class field theory: Newton-Thorne cite
something somewhat more general in [BLGGT2014], but I will just do it.

To ease the notation, let us relabel w := n*(x|g,,)AN® : G — (E')* (abusing notation to
replace the constant family over W’ by the single field-valued character it is pulled back from).
Since G’z has index 2 in G )+, we can extend w to & : G(pry+ — (E')* by setting w(c) = 1.
This corresponds via class field theory to the Hecke character w o Art s+, and the fact that w
extends w implies (by compatibility via class field theory of Galois restriction and field norms)
that

wo Artp = (63 ) Art(F/)+) o NZ;,)+.

In particular, if we can extend the finite-order (hence ray-class) character w o Art(p+ to a
ray-class character w on A which is unramified at each place in S, then this simply translates

to
wo Artp = w - <c~uoc)

and so the Galois character corresponding to & finishes the job (after further base-changing W’
to the coeflicient field of this extension, which of course might have to be bigger than F’). It
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remains to see that we can actually extend w o Art(z+ in such a fashion. This is explained in
[HSBT2010, Lemma 2.2] I think, but it is not hard anyway: the point is that

(F/)X ‘A(XF/)+ ) H(FI):; ) HOX;U AP,

w|oo w|p

where J£? is a compact open of A% such that £7 N A (py+ = N{;/)Jr@/p, is a finite-index

subgroup of A, to which & o Art(p/)+ can be extended via the requirement of being trivial on

(F") T oo (F") 25 I L Oy » and J£P because all of four of these sets, when intersected with
A(XF,)+, give something on which wo Art s+ is trivial. We now have several choices of extension

w all the way up to A}, (if we allow coefficients in some finite £”/FE), and thanks to what we
just did, any one of those is guaranteed to produce a Galois character ¢ : Gp» — (E”)* which is
unramified at the places over p and almost all of the other places, such that 7*(x|q,, ) A = @°
(where now 7 : W =W Xq, E" — W is the final choice of finite étale morphism), and hence
oA~ is the desired character 1. ]

Remark 3.2.6. The constructions made in the papers cited by Newton-Thorne in the proof
above are more complicated than what we did, because they need to account for the full detail
of Weil’s construction of p-adic Hodge-Tate Galois character corresponding to algebraic Hecke
character. But in our situation, all of the Hodge—Tate weights are zero, so no procedure of
“transfer of algebraic weights from oo to p” was necessary for us and the constructions were
more transparent.

We retain the notation 1) for the character of Lemma 3.2.5.
Lemma 3.2.7. There exists a solvable Galois CM extension F'/Q containing F' such that
1. F/F7 is everywhere unramified
2. Every rational prime dividing Np splits in F'
3. Y|, is unramified at every finite place of F' not lying over Np.

Proof. This one I prove using class field theory rather than technique of explicit construction.
By its construction, ¥ has the property that for all finite places w not lying over p, there is a
(finite-index) open subgroup H,, C I, such that ¢)|y, = 1. Let S be the finite set of places w of
F’ not lying over Np such that H,, # I,,. By class field theory, there exists an abelian extension
F” of (F")* which is split over all the infinite places of (F’)" and over all the finite places lying
over any rational prime /| Np, and such that F' := F” - (F”)" has inertia group at places above
w contained in H,, for all w € S (use local-global compatibility of class field theory, continuity
of idéle norm, and [AT2009, Ch. X, Theorem 4]; in particular note that the set of local conditions
we have asked for is finite, since ) is a priori only ramified at finitely many places). Then F
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satisfies (1) [formal consequence of the same property for F’/(F’)" since F”, F’ are linearly
disjoint] (2) [primes that split in two fields split in the compositum] and (3) [by construction]. It
is also a CM extension [this was the point of asking F”’/(F’)" is split at infinity, i.e. that F" is
totally real].

However, there is no reason for the extension F'/Q we have constructed to be Galois. We fix
this by replacing F" with its Galois closure over Q. Since splitting types are unchanged upon
taking the conjugate field by elements of Gq, F"/(F’)*, and since the new F” contains the old
one, the ramification properties above still hold, with /" /Q and hence F'/Q Galois. In fact,
F/Q is solvable. The reason is that £/ /(F’)" is a compositum of various G q-conjugates of the

old F”, which is abelian over (F”)™ since each of those conjugates are. This concludes. O

The three lemmas above provide the base-change infrastructure we need to do the analytic
continuation arguments in [NT2021, Theorem 2.33]. As usual, let S be the set of primes of F'*
dividing Np, and S, the subset of those lying over p. For v € S, denote v, 0° the two places of
F above v. We have the usual rigid space

T = Hom((F7)*, Gm(—))

that is used to parametrize parameters of triangulations of 2-dimensional conjugate self-dual

representations. Similarly, let
To == Hom(Q, /Z, , Gn(—))

be the relevant space of parameters for the Coleman-Mazur eigencurve & of tame level N. In
reality, we will base-change by the finite étale morphism 7 and work with

%Z:%XW/WV

in order to accommodate the family of characters constructed in Lemma 3.2.5. Finally, let X,
be the usual Q,-rigid space parametrizing 2-dimensional pseudocharacters of Gq unramified
outside /Np (meaning that the inertia outside Np is contained in the kernel defined in the usual
way, or, what is equivalent, pseudocharacters of Gq n,), and let X, be the usual Q,,-rigid space
parametrizing conjugate-self-dual 2-dimensional pseudocharacters of G 5. The point is that
we then have a well-defined morphism (Galois restriction, as should correspond to base change
on the automorphic side)

b: Xy xq, To — %2 xq, Tz
given by
(7', ILL) —> (TlGF,S & w,g(i)a (,uv © Ngﬁp ’ wg(t)’GFﬁ © ArtFﬁ)vESp) '
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The norms on the side of i being due to the fact that norms correspond under class field theory
to Galois restriction.

Anyhow, to conclude the analysis, we need to have a full understanding of triangulations of
2-dimensional Galois representations.

Lemma 3.2.8. Let p : Gq — GL(Q,) be a de Rham representation with distinct Hodge—Tate
weights ki < ko with WD(p)®* = x1 @ xa, with x; : Wq, — Q; distinct continuous characters.
In this situation, there are only finitely many triangulations of p. In fact:

1. If p is not potentially cristalline, then it has only one triangulation. There is a canonical way
to choose the ordering of x1 and X so that this triangulation is numerically non-critical of
parameter

(z7™%x1 0 Artq,, z 7"y, 0 Artq,).
2. If p is potentially crystalline and indecomposable, then p has two triangulations, of parameters
(7 x1 0 Artq,, X2 0 Artq,)

and
(7% x2 0 Artq,, 27" x1 0 Artg, ).

Both are numerically non-critical

3. If p is decomposable as p = 1)1 @ 1), where 11,1V are Hodge—Tate of weights k1, ko, then p
has two triangulations: a critical one of parameter

(7% x5 0 Artq,, 27" x1 0 Artq,)
and a non-critical one of parameter

(x7™%y 0 Artq,, z 7%y, 0 Artq,).

Proof. In all of the cases, the point is to consider the filtered (¢, N, Gq,)-module

Dpu(p) = DPSt(DIig<p))a

and use the fact that a triangulation of p is the same as a filtration of this by subobjects in the
category of filtered (¢, N, Gq,)-modules [Ber2008], i.e. a choice of 1-dimensional subobject.
As is typical, the key point of the analysis will be to sort out the cases when this subobject is
weakly admissible (i.e. comes from a subrepresentation of p), which is why the hypotheses are
organized via reducibility phenomena of p.
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In the situation that p is not potentially cristalline, the monodromy operator N is nontrivial.
Therefore, in Dy (p), there is exactly one subobject, namely ker V. Moreover (now I carry
out standard exercise in basic theory of Weil-Deligne representations), the fact that (r, N) :=
VVD(p)F“’b'SS = X1 D X2 with nontrivial NV means that (letting e;, es be spanning vectors for the
lines acted on by 1, x2, well-defined up to scalars as 1, x2 are distinct, and using N # 0 to
assume WLOG that N (e3) # 0 — this is what provides the canonical ordering of x1, x2)

7(g)N(e2) = pfa(g)m(g)N(eQ)

by definition of what a Weil-Deligne representation is. In particular, Wq, acts by scalars
on N(es), so since N is nilpotent, we can assume (by scaling appropriately) N(es) = ey, and
x1=x2-(|"|q,© Artéi ). In particular, ¢ is already semisimple since it has distinct eigenvalues'’

e Xi(ArtQp(p)), i=1,2.

In fact, oo = py;. Since N # 0, Dpy(p) has just a single nonzero subobject, namely the one
spanned by e;. The fact that D (p) is an admissible filtered (o, NV, Gq, )-module is an additional
condition on the relationship between ¢ and the Hodge-Tate weights. The slopes of the Newton
polygon are just v,(¢1) and v,(p2) + 1 (in that order), and the slopes of the Hodge polygon
are ki, k2 (in that order). Since D, (p) is weakly admissible, the endpoints of the Hodge and
Newton polygons have to agree, i.e.

]Cl + k’g = 21}1)((;01) + 1.

This implies v,(¢1) < ko, hence (see [NT2021, Lemma 2.7, 2.8]) the triangulation we have
constructed (the one given by the subobject spanned by e;) is numerically non-critical of the
claimed parameter.

Now we consider the situation where p is potentially cristalline, i.e. N = 0, and irreducible.
In this situation, D, has exactly two subobjects'*, namely the two lines on which ¢ acts by
x1(Artq(p)), x2(Artq(p)). As before, call these two lines Q,¢1, Q,¢2. If p is irreducible, then
neither one of these subobjects get to be weakly admissible (else p would have a subobject).
Since they are one-dimensional, not being weakly admissible is the same as having Newton
strictly BELOW Hodge, i.e.

Up(‘ﬂz‘) < kl; S k?? 1= 1727

3] won’t make it explicit ever again, but this stuff comes from the definition of WD(p) in terms of D .

“Here we are using the fact from the elementary theory of Weil-Deligne representations, namely that being
Frobenius semisimple can be checked on a single lift of Frobenius; if we wanted we could have used this last time
as well.
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where k. is the Hodge-Tate weight of Qpei. In other words, both of the triangulations are
numerically non-critical, and so they have exactly the claimed parameters.

If p is potentially cristalline and reducible, but not indecomposable, the same type of analysis
works, but we need to include an extra step to rule out the possibility that one of the two
triangulations is critical (which of course is necessary to even know what the parameter is, since
we need to know what order the Hodge—Tate weights come in). The key point is that exactly
one of the subobjects Qpel and Qpeg are weakly admissible (if both were, then p would be the
direct sum of two subobjects, and if none were, then p would be irreducible). Without loss of
generality, suppose that Qpel is the weakly admissible one. Then the same argument as before
shows that the triangulation Qp€2 is noncritical. In other words,

Fil"" "' Dyq(p) N Q,e2 = 0.
To prove that Qpel is noncritical, we need to prove that

Fil"" "Dy (p) N Q,e1 = 0.
But if this intersection were nonzero, then we would have

Fllkl + Dpst (P) = Qpel )

and thus
Dyi(p) = Qper @ Qpen

as an object in the category of filtered (y, NV, Gq,)-modules. But since Dyq(p) is weakly
admissible, and Qpel is weakly admissible, the same is true of Qpeg, a contradiction (see
[Con1999a, Proposition 8.2.10]). We conclude that both triangulations are noncritical and of the
desired form.

In the last case (when p is decomposable), we have the same two triangulations, and since
D, (including its Hodge filtration) is compatible with direct sums, its clear that Qpel is the
triangulation with Hodge-Tate weight k; (i.e. the noncritical one) and Q¢ is the one with
Hodge-Tate weight ks (i.e. the critical one). ]

The point of Lemma 3.2.8 is that we will use it to show that all triangulations of the symmetric
power are noncritical (this property is preserved under taking symmetric powers by [Che2011,
Example 3.26]) and therefore be able to apply the classicality result Proposition 2.2.5. Anyhow,
we now finally restate and prove Theorem 3.0.1

Theorem 3.2.9 ((NT2021], Theorem 2.33). Fix an isomorphism ¢ : Q, = C. Let (o, Xo), (7, Xo)
be accessibly refined automorphic representations of GLy(Aq), and let n > 2. Let 2, 2, be the
corresponding classical points on &,. Suppose the following are true:
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1. xo is noncritical and n-regular.

2. X, isn-regular.

3. The Zariski closures of rr,,(Gq,) and rx,,(Gq,) contain SL,.
4. 2y, % lie on the same irreducible component of &, xq, C,.

Then automorphicity of Sym™ 1, , implies automorphicity ofSym”flrﬂ{)’L.

Proof. The point is to use the diagram of rigid spaces that we have constructed above,

%ox%%%xﬁ

1i=iX idT z‘zT

& x7 To &

The two points 2y, z, start out on the same irreducible component of the bottom-left corner
(technically we need to be careful about lifting to an irreducible component of the base-change
of the irreducible component to 7; but this kind of thing is taken care of by Brian Conrad’s
general theory of irreducible components of rigid spaces). We want to apply [NT2021, Corollary
2.28] (the one that makes the analytic continuation work for symmetric powers from rank-2
definite unitary group to rank-2). To do this, we need a guarantee that b 0 i(z), b 0 i(z) lie
on the same irreducible component of &5. This is immediate by hypothesis (4), as long as the
irreducible component € C & x, Tg containing zo, z, is mapped to i5(&) under b o 7. This is
in turn is essentially base change (twisted by v.(.)) from GL;(Aq) to GLy(Ap), followed by
descent from GL2(Ar) to Go(A p+), where Gy is the rank-2 definite unitary group that comes
from the data we defined above. There are two wrinkles in this that must be smoothed over:

+ This base change/descent argument only works when given an actual automorphic repre-
sentation, i.e., only on classical points on C. But this is okay because the classical points
Zy are Zariski dense: so if we show that i o b(Zy) C iy(&3), we know the same is true of
i 0 b(C) (iy is a closed embedding).

« Let z € Z; come from an accessibly refined automorphic representation (7, x). The
base-change step

T~ T @ ]!

is okay because F'/Q is solvable. To do the descent step, however, we need an assurance
that 7p is cuspidal, i.e. that 7, |, is irreducible. This is immediate from hypothesis (3).
Also, the construction of 1 ensures that 7 ® 11! is conjugate-self dual, which of course
is necessary to apply descent (the theorem being cited is [Lab2011, Théoréme 5.4]).
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The inclusion bo7(C) C iy(&) having now been established, and boi (), boi(2}) lying on the
same irreducible component of &5, we can use [NT2021, Corollary 2.28] (the analytic continuation
result for definite unitary groups, which uses the vanishing of the adjoint Selmer group and the
smoothness argument I explained a few weeks ago), in conjunction with Lemma 3.2.8 (which
shows explicitly that all triangulations of r, , are noncritical, thanks to hypothesis (3) which
guarantees that the last case in Lemma 3.2.8 cannot happen) to see that 7, has a symmetric power
lift 7/, an automorphic representation for G,,(Ap+). In fact, 7/, and any finite base change
thereof is again cuspidal, thanks again to the irreducibility of the symmetric power Galois
representation ensured by hypothesis (3). It follows that we can base change 7/, to GL,,(AF)
to get a cuspidal automorphic representation, thus being able use soluble descent (the exact
meaning of “soluble descent” to be made more precise in the next section) to GL,,(Aq). After

untwisting by the appropriate power of 1., we obtain the desired automorphicity. O]

3.3 Bonus details on base-change

In the previous section, there are some potentially confusing points regarding descent and base

change, which we clear up here.

 The brand-new result of Clozel and Rajan [CR2021] is not actually used — only the cyclic

prime order case, which is already correct in [AC1989].

« If we follow to the letter the arguments of [BLGHT2011], the proof uses the fact that all
2-dimensional Galois representations are essentially self-dual. At first this may seem to be
an obstacle to extending the techniques of Newton-Thorne to the case of GL(3), but in
fact the added irreducibility hypotheses that apply in our setting make this unnecessary
(of course it forces us to rely on the omnipresent “big image” hypotheses of [NT2021]).

Still, we prove the second bullet point since it is an interesting fact.

Lemma 3.3.1. Let K be an arbitrary number field. Then for any continuous representation

p Gk — GL2(QP),

p is essentially self-dual. In fact,
p=pY ®detp.

Proof. This is thanks to the identity

() e )
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which shows that the change of basis

()

provides the desired isomorphism. Indeed, the result is true for any 2-dimensional representation

of any group with coeflicients in any field. O]

Let ¢ be a fixed choice of isomorphism ¢ : Qp — C, and let F//Q be a solvable CM extension.
At the end of the proof of Theorem 3.0.1, we were armed with the following data:

« A regular algebraic cuspidal automorphic representation 7y of GLy(Aq), satisfying the
property that Sym™ 'r, |, is irreducible.

« Aregular algebraic cuspidal conjugate self-dual automorphic representation 7,, of GL,, (A r)
(obtained by a bunch of steps of descent and base change between GL,,, and rank-m definite

unitary group, m € {0, n}) satisfying the property that
L = Symn_l'rﬂo,L’Gpu

ie. Sym"_lrﬂO7L|GF is automorphic.

It is ultimately our goal to show that Sym”flrmb (an extension of Sym"ilrmJG » from the finite-
index subgroup G'r C (Gq) is automorphic, and this is where the lemmas of [BLGHT2011, §1]
come in. The first step is to show that Sym"‘lrﬂO,L|GF . is automorphic, and this is the role
that is played by [BLGHT2011, Lemma 1.5] (essentially just the solvable descent theorem of
[AC1989] in the cyclic degree 2 case plus some details).

Lemma 3.3.2. Sym"ilrmeGFJr is automorphic, and in particular corresponds to a regular alge-

braic cuspidal essentially self-dual automorphic representation of GL,, (A p+).

Proof. The assumptions on the automorphic representations involved, plus Lemma 3.3.1 (and
the easy consequence of it for a symmetric power of a 2-dimensional representation), plus the
fact that Sym”_lrﬂ07L\GF . comes from restricting a Galois representation of domain G'q and
therefore its determinant has values not depending on the choice of complex conjugation (as it
is Gal(F'* / F)-invariant), imply that the hypotheses of [BLGHT2011, Lemma 1.5] hold.

For the purpose of making sure I know the full detail, I will now plagiarize the proof of
[BLGHT2011, Lemma 1.5], adapted for this setting (i.e. with the various variables replaced with
what you plug in).

In order to apply the cyclic-degree-2 case of the Arthur—Clozel descent theorem [AC1989,
Theorem 4.2], we need to check that 7,, 2 7,,°. It suffices to check that the corresponding Galois

representation rz, , : Gr — GL,(Q,) satisfies the same property. But this is immediate from
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the fact that r=; , has the privilege of extending all the way to a representation with domain Gq,
namely Sym” 7, , (or even G+ would have been okay). This way, we apply Arthur—Clozel
and produce the descent 7p+ of 7, to GL,, (A p+), which a priori gets to be regular algebraic
cuspidal.

However, this is not enough: we know that Tt extends 77 ,, but we do not know that it
agrees with Sym”flrmbbF . (indeed, we will need to twist by an appropriate character to get
this to be true), nor do we know that it is essentially self-dual. First, we check that the descent
7+ is essentially self-dual (this obviously remains true after a character twist so it is okay to do

this verification right away). Since 7, is conjugate-self-dual, we have

\ c n—1 1

Fns = T € =T €
where ¢ denotes the p-adic cyclotomic character (this is part of the statement of how the
Galois representations corresponding to automorphic representations work — see [BLGHT2011,
Theorem 1.2]).

The Galois representation Tz, .1s an extension of 7z, , to G+, so we conclude that the two

representations of G g+

\ 1

n—
T L7 TT{-FﬁL ’LE

r

agree on Gp C G+, and hence differ”” by a Q-valued character of Gal(F/F™), i.e. mp+ is
essentially self-dual (the condition that the Hecke character corresponding to v has the same
value on —1 in each of the archimedean places of F'* is obvious from class field theory and
the fact that F' is an imaginary quadratic extension of the totally real field 7'7)'°. The exact
same argument (using the same sublemma proved in the footnote) also shows that since the
representation . , of G+ agrees with Sym”_lrﬂo7L|GF . on Gp, they differ by a character
of Gal(F/F™), and hence by twisting 7+ by the corresponding Hecke character, we obtain
the desired essentially self-dual automorphic representation of GL,,(A r+) that corresponds to
Sym"ilrm% |GF+ ) O

ILet p1, p2 be two irreducible finite-dimensional representations of a group G valued in the same finite-
dimensional k = k-vector space V, and suppose that they agree on a normal subgroup H C G such that G/H
is abelian. Suppose furthermore that they remain irreducible when restricted to H. For any g € G, consider the
linear operator ¢, : V — V given by p1(g)p2(g) . For h € H and v € V, we have

p1(h)egv = p1(hg)p2(g) ™ v = @ngpa(h)v.

Infact, ppy = @4 since 4 only depends on the coset gH and G/ H is abelian, so we conclude that ¢ is intertwining
between irreducibles p; |y and p2|H. By Schur’s lemma we conclude that ¢, acts by a scalar, and hence that p1, p2
differ by a character of G/H. This applies in our situation because all of our automorphic representations are
cuspidal, and hence all of our Galois representations are irreducible

1Here our argument is allowed to differ slightly from that of [BLGHT2011, Lemma 1.5] — in that lemma, there
is no guarantee that the representation “r” (in our case that role is played by Sym"_lrﬂo,L|GF . ) is irreducible, so
an added assumption that r is self-dual up to character twist must be added. For this reason, I thought that it would
be necessary to use Lemma 3.3.1, but now I think it should be okay.
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Finally, the exact same type of argument as in Lemma 3.3.2 allows us to go all the way down
to Q (this time it is [BLGHT2011, Lemma 1.3] that we will follow).

Lemma 3.3.3. Sym" 7, , is automorphic, corresponding to an essentially self-dual representation

of GL,(Aq).

Proof. In Lemma 3.3.2, we produced a regular algebraic cuspidal essentially self-dual automorphic

representation 7+ 7 of GL,, (A p+) such that

n—1 .
Sym rﬂo,L'GF+ - 7a7rF+,L-

Taking a subextension Q C E C F't such that F'/ E is cyclic of prime degree (always possible as
F*/Q is solvable), wewill prove that Sym™ 'r, |, is automorphic corresponding to a regular
algebraic cuspidal essentially self-dual automorphic representation of GL,,(A g). By induction
this suffices to prove the desired statement.

Now the rest of the argument goes down exactly the same as in Lemma 3.3.2 (where we
didn’t need an induction as F'/ F'" is already cyclic of degree 2).

Since 7, , comes from restricting a representation of G’z (in fact Gq), it is invariant under
Gal(F't/E). Therefore, so is 7p+, so by [AC1989, Theorem 4.2], and all the irreducibility we
have for all of our Galois representations, it descends to an automorphic representation 75 of
GL,, (A g) which is regular algebraic cuspidal. It is essentially self-dual, thanks to the fact that
Tz, isirreducible and essentially self-dual (same argument as in the footnote of Lemma 3.3.2).
Again by the same argument as in Lemma 3.3.2, we can twist 7z by a Hecke character to obtain a
regular algberaic cuspidal essentially self-dual automorphic representation of GL,, (A ) whose

corresponding Galois representation is exactly Sym™ 'r,, ,|G . [l

technically we had to twist by a character, but let us just keep this name for it
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Chapter 4

Ping-Pong

“The game’s afoot.”

King Henry V, Shakespeare’s Henry V

We now fill in the remaining details of the proof of Theorem 1.1.6. This is what [NT2021]
call “ping-pong” Other than the actual table tennis game which is played between various
components of the eigencurve over a boudnary annulus of weight space, it mostly consists of
verifying that level 1 forms, as well as the auxilliary forms that appear in ping-pong, are going to
satisfy the hypotheses required in the general machinery Theorem 3.0.1 of analytic continuation
of symmetric power lifts.

The most “fun” part is this curious lemma that boils down to explicit analysis of mod p
modular forms for some small values of p. It would be interesting to see whether this lemma

can be generalized to higher-rank groups, or perhaps to Hilbert modular forms.

Lemma 4.0.1 (Lemma 3.5 of [NT2021]). Let f be a level 1 cuspidal eigenform of weight k > 2.
Then every accessible refinement of  at the prime p = 2 is numerically non-critical and n-regular

for everyn > 2.

Proof. A refinement at 2 is just the data of an ordering of the two Frobenius eigenvalues

associated to f at 2, i.e. a choice of root of
X?% — g X 421

where a5 is the T5-eigenvalue of f. In other words, it is a choice of eigenform in the space
of oldforms for I'y(2) generated by f(z) and f(2z) (conjecturally there are always two such
choices). Let «, 3 be the two U,-eigenvalues, i.e. the two roots of X? — a;X + 287! in Q,.
Without loss of generality (there is definitely at least one eigenvector), suppose that there is an

eigenform ¢ in our oldform space coming from f with Us-eigenvalue c.
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Assume for the sake of contradiction that vs(a) = 0, i.e. that ¢ is ordinary. Let g be an
element of the Hida family passing through g, where g is an ordinary 2-adic overconvergent
eigenform for I'g(2) of classical weight 2. By Coleman’s classicality criterion (alternatively I
think this is also part of the statement of Hida theory), g is classical (here we use the fact that it
is in weight 2 and not weight 1, as 2 minus 1 is positive, hence bigger than the slope of § which
is zero). Alternatively, we could have used [Ser1973, Théoréme 11] to arive here. But since the
only weight-2 modular form for I'y(2) is the Eisenstein series', and we have restricted to the
cuspidal locus, this is a contradiction, hence g was not ordinary to begin with.

This implies that every accessible refinement of 7 at 2 is numerically noncritical. Indeed:

« Suppose that U, has at least two eigenvectors in the space of oldforms coming from f.
Then by what we just said (applied to v as well as 3, since they both have a corresponding
eigenform g we can look at), ve(),v2(/5) > 0. But since «, 3 are the two roots of
X2 — ay X + 271, we also know vy () + v2(8) = k — 1, so we have

va(a), v5(8) < b — 1,

i.e., both accessible refinements of m are numerically non-critical.

« Suppose that U, has just one eigenvector in the space of oldforms coming from f, WLOG
with eigenvalue a. Of course, since we have assumed U; is not diagonalizable, we have
a = 3, and hence both o and [ have positive 2-adic valuation, which implies

ve(a) < k —1,

i.e. the single accessible refinement of 7 at 2, namely the one coming from the eigenvector

for «, is numerically non-critical.

The above was “full detail” for the single sentence of [NT2021] that goes “Numerical non-
criticality of every refinement is immediate from the fact that there are no cusp forms of level 1
that are ordinary at 2”

Now it is time to prove the regularity claim, which is the fun part. First, I just remark that
n-regularity of every accessible refinement of 7, for all n > 2 is implied by the claim that a/3
is not a root of unity”, which we now go ahead and prove. Assume for the sake of contradiction

that /3 is a root of unity.

To be completely honest I just checked the dimensions explicitly using SAGE, which returns 1 after both
queries dimension_modular_forms(GammaO(2),2) and dimension_eis(Gamma0(11),2).

?Here is the full detail: The actual definition of an n-regular accessible 2-adic refinement x = x1 ® x2 of 7 is
that the corresponding triangulation of Diig(rmw) has parameter (J;,d2) satisfying 67" /65 & N for any n (so
that all the symmetric powers of the triangulation are regular in the usual sense and we can apply the tools of
deformation theory to study the image of the eigenvariety under the symmetric power map). To check the claim I
made requires us to do two things: to understand explicitly the relationship between the accessible refinement x
and the two Frobenius eigenvalues «, 3; and to understand explicitly the relationship between  and the parameters
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As we all know, «, 3 are the Frobenius eigenvalues in the 2-adic Weil-Deligne module
1re(:;52 (15 '75). By definition of the global Galois representation 7, ,, (in particular the definition
of what the characteristic polynomial of Frobenii are supposed to be), these eigenvalues map
under ¢, ' o 15 to the Frobenius eigenvalues of the 2-dimensional (-adic Galois representation
Ty ’GQQ , for any rational prime /. First set ¢/ = 3. In that case, the global Galois representation
Tz, has the property that its mod-3 semisimplification has Frob,-eigenvalues adding up to a
mod 3 € F3 C F3, of course. But we further know (by [Ser1975, Théoréme 3], the proof of which
was first published in [Joc1982, Theorem 4.1] using trace formula techniques) that the mod-3
system of Hecke eigenvalues ® of f is equal to 0°” (V) for some system of Hecke eigenvalues W
occuring in the mod-3 modular forms of level 1 in weight between 2 and 3 4 1 = 4. Of course,
by the explicit structure theory of mod-3 modular forms in level 1 (see [SD1973, Theorem 3]
and especially the first sentence of [SD1973, p. 19]), the only such system of Hecke eigenvalues
is the one associated with £, mod 3 = 1 € F;][g]], i.e. it is the ¥ given by

U(T,) = o3(n) mod 3

(note that 1 is not a normalized eigenform, since the g-coefficient is zero and not 1, so the
computation of VU is either done by applying the formula based on g-expansions, or by lifting to
E,, dividing by 240, and reading off Fourier coefficients — there is no harm in doing this thanks
to [AS1986a, Proposition 1.2.3]). Note that even though E; mod 3 = 1, the associated system
of Hecke eigenvalues V is not trivial. Anyway, putting this all together, we conclude that’

a; mod 3 = &(Ty) = (0°V)(Ty) = 2"03(2) = 2“(1 +8) =0 € F3.
Since the Frob,-eigenvalues of . ,, are none other than ¢3 ' 15(cv), 13 12(3), which we just saw

have to add up to zero when reduced modulo 3, and since «/f3 is a root of unity (and hence
13 (/) € Og, ) we conclude that

_ (0%
W3 1= L31L2 (B) € [L63 N (—1 +m@63).

In particular, —ws is a root of unity in Q4 which is congruent to 1 modulo the maximal ideal.

of the triangulation that comes from it. The first thing is accomplished by [NT2021, Lemma 2.18], which says that
the accessible refinement  induces an increasing filtration of the Weil-Deligne module 1recg22 (15 7o) with graded
pieces given by ;| - |7'/% o Artq,,t = 1,2 — this proves that the Frobenius eigenvalues «, 3 are given in terms of
x by xi(p)p/?,i = 1,2 (see [BC2009a, Proposition 2.4.1]). The second thing is accomplished by [NT2021, Lemma
2.8], which gives us a triangulation with parameter &;(x) = y;(x)|z|~/2z". Now we conclude: /3 not a root of
unity implies that x1 (p)/x2(p) is not a root of unity, which implies that (x1/x2)"™ # 1 for all n > 1, which implies
that 6, /65 € =N, as desired.

%In reality for this particular step, using Serre-Tate was a bit overkill — we could have just thought directly
about the systems of Hecke eigenvalues mod 3 associated to powers of A thanks to [SD1973, Theorem 3].
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This implies that —ws is a 3-power root of unity’, and hence that o/ is —1 times a 3-power
root of unity.

Now we repeat the same game except all of the systems of eigenvalues and modular forms
will be modulo 5 instead of modulo 3 (we are still interested in the Frobenius at 2 though). This
is slightly harder, since as mod ¢ no longer needs to be 0 now that ¢/ = 5. In particular, we
need to use more information about exactly what the mod-¢ Galois representations associated
to cusp forms congruent to Eisenstein series look like. Luckily this is standard knowledge
from [SD1973]. Again, let ® be the mod-5 system of Hecke eigenvalues associated to f. By
[Ser1975, Théoréme 3] (though now that ¢ > 3 [AS1986b, Theorem 1.3] would also do the trick),
there exists a system of Hecke eigenvalues W appearing in the mod-5 modular forms of level 1 in
weight 2,4, 0r6 = 5 + 1 such that & = §° (V) for some v > 0. Since the only such systems are
those associated to £, and Ej (these are the only modular forms of level one in Z[[g]] of weight
at most 6), there are only two possibilities for W, namely V(T,,) = o3(n) or ¥(T,,) = o5(n).
Note that none of these will have ¥(T3) = 0,as 1 + 23 = 9 and 1 + 2° = 33 are both not zero
modulo 5. So to figure out the ratio of the Frobs-eigenvalues, we work a little bit harder by
using the fact that the mod-5 Galois representation coming from a cusp form with system of
Hecke eigenvalues congruent to that of £, mod 5 is always conjugate to

(of course the idea of thinking about it this way comes straight from [SD1973], but none of
the nontrivial calculations of that paper are necessary here — once the traces of Frobenius are
what you want, which is obvious thanks to g-expansions, you are done by Chebotarev and
Brauer—Nesbitt as usual). Here € is the 5-adic cyclotomic character, which takes Frob, to 2.
Therefore, the Frob, eigenvalues of ¥ are either {1,247'} or {1,2°7!}. We conclude (since
23,2% = £2 mod 5) that the root of unity

Lsly " (%) = (&1) - (a 5-power root of unity)

(the argument is the same as last time, using the fact that +i are lifts of +2 from F5 to Q;).
Since ¢, are all isomorphisms of fields, we conclude that if a//3 is a root of unity, then it is at the
same time —(a 3-power root of unity) and (+7)(a 5-power root of unity). This is impossible, for
example because the first thing implies after applying ¢, ' that it is of the form ermilatar) €

“Indeed, write —w3 = (3.(}; with (3, M) = 1. The only 3-power root of unity in F3 is 1, s0 ¢(§. =1 mod m,
which implies by assumption that (§;, = 1 mod m is a M-th root of unity in Q3. By Hensel’s lemma (here we use
the fact that (3, M) = 1), the only such thing is 1, which implies that —w3 = (. is a 3-power root of unity.
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; b
and the second thing implies that it is of the form eQm(i%J’?y), but we can never have

1 a 1
fora,b, x,y € N.

]

Remark 4.0.2. Obviously it is the work of Ash-Stevens that we would have to use in order
to have any hope of generalization. However, we remark that the proof here could have been
written down much earlier than Ash-Stevens came out in 1986, since the result about everything
coming from weight < ¢ + 1 up to twist was known by Serre and Tate [Ser1975] in level 1 at
least as early as 1975, and the explicit analysis of mod-¢ modular forms in level 1 had by then
certainly already been carried out by Swinnerton-Dyer [SD1973]. On the other hand, if we use
the approach of Ash-Stevens, the condition ¢ > 3 is needed to make the theory go through (this
is assumed throughout [AS1986b] due to the hypotheses in [AS1986a, Theorem 1.3.5]). Although
they fail to make explicit what they are using, Newton-Thorne probably thought about this
using Ash-Stevens, which explains why they used the primes 5 and 7; and Richard Taylor in his
course [Ye2021] probably thought about it the way explained above with the primes 3 and 5°).

Remark 4.0.3. Since « and 3 are roots of a polynomial with coefficients in Q, note that the
huge number of choices of isomorphisms ¢s, ¢3, t5 is not really relevant here, up to possibly

switching «, 3.

Lemma 4.0.1 gives us most of the hypotheses we need to do analytic continuation for level
1 forms, but we are still missing something that tells us that the image of the 2-adic Galois
representations corresponding to the overconvergent modular forms that we will care about will
have image containing SL, when restricted to Gq,. For the purposes of ping-pong, we will need
to know this about some things which are not of level 1. First, a lemma about irreducibility is
required (it will be very nice to know that things are irreducible before trying to prove they have
big image). Before doing this, we need to understand the Galois representations associated to
ordinary modular forms a bit better. Technically all we need is contained in the original papers
of Mazur-Wiles [MW1986] and Wiles [Wil1988], but Newton-Thorne chose to do everything
using the general theory for GL,, stated in the general language of accessible refinements as in
[Tho2015,Ger2019]. Here I essentially follow them, but note that their way of thinking about
this is necessarily different (and less complicated than) Wiles and Mazur-Wiles, the point being

that in the 1980s when those papers were written, they did not have access to the theorem of

SIndeed, Lynnelle cites [Ser1987] in the notes — this paper is about observations made by Serre long before
the existence of Ash-Stevens, and for the reference regarding the fact that everything is up to twist something in
weight at most £ 4 1, he cites [Ser1975], where the fact is stated in level 1 without any restriction on ¢; Serre’s
proof is unpublished but appears in more generality in [Joc1982], which indeed uses trace formula techniques as
claimed by [Ser1975]
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Colmez-Fontaine, and therefore had a harder time proving that things were reducible®. The

following lemma is our expanded version of [NT2021, Lemma 3.5(1)].

Lemma 4.0.4. Let w be a cuspidal automorphic representation of GLa(Aq) of weight k > 2, p
an arbitrary rational prime, and v : Qp — C an arbitrary isomorphism of fields. Then TW,L|GQP is

reducible if and only if 7 is .-ordinary.

Proof. One direction, the fact that (-ordinary implies reducible, follows from the fact (from
[MW1986, Wil1988]) that the Galois representation associated to an ordinary (at p) modular
form is upper-triangular when restricted to Gq,. Let me deduce this for myself, using the easier
arguments of [Tho2015, Ger2019] that utilize the more advanced p-adic Hodge theory now
available thanks to Colmez-Fontaine. The fact that 7 is ¢-ordinary just means that 7 has an

accessible refinement y; ® X2 : 15(Q,) — Q: with the property that

vua@p'?) =0, ule@p’?) =k-1

(since by [NT2021, Lemma 2.18] such a refinement provides a filtration of the Weil-Deligne
with associated graded x| - [7'/% o Artg’ @ xaf - [7'/? o Artq,” and this is what we read
off the Frobenius eigenvalues from; note that this extra 1/2 added to the valuations ensures
that the convention of [Tho2015] for ordinary automorphic representations agrees with the
usual thing for modular forms). Recall that the notion of x = x; ® Y2 being an accessible
refinement depends on ¢: it says that the complex representation 7, admits an embedding
into the normalized induction igLQ(Lx), so all this stuff on the automorphic side is using ¢
just as much as the Galois representation 7, is. In any event, the filtration of the Frobenius-

F=ss — pecTate(,~17,) produced from Y induces

/2 and y,(p)p'/*
(direct consequence of definition of the WD-module from the D). To prove that 7”,w|GQp is

semisimple Weil-Deligne module WD(rr,|cq )
a filtration of Dy (s, |cq,) With associated gradeds having Frobenii x1(p)p

reducible, we just need to show that the first step in the filtration is weakly admissible in the
sense of Colmez-Fontaine (so that it corresponds to a bona fide subobject of the local Galois
representation we are interested in). Since Dpst(rm|gqp) is weakly admissible, we just need to
prove that the subobject D’ C Dy (rr,|cq, ) With ¢ = X1 (p)p'/? has Newton-polygon-endpoint
at most the Hodge-polygon-endpoint (the opposite inequality is taken care of by the weak
admissibility of the big object). But this is obvious, since v,(x1(p)p'/?) = 0 and the Hodge-Tate

weights 0, k£ — 1 are both nonnegative.

®Eknath Ghate explained to me the idea of their argument, which was by analytic continuation from a trés
Zariski dense subset of a Hida family, where the forms in this dense subset are of weight 2 and arbitrarily deep
level at p and can therefore be linked to abelian varieties (Jacobian of modular curve, say X1 (p™)) where the usual
analyses can be made.

"N.B. there is a typo in the statement of [NT2021, Lemma 2.18], at least according to the convention for the
direction of the local Artin reciprocity map given in the introduction.
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For the converse, the key point is the classification of de Rham (i.e., potentially semistable)
p-adic characters of Gq,: they are, up to finite order, of the form 1) - e %, where 1 : Gq, — Z;
has |¢)(I)| < oo and k is the Hodge-Tate weight. See for example [FM1995, §10] or [BC2009b,
Proposition 8.3.4] (apply it to the restriction of the character to a finite-index subgroup over
which it becomes semistable) — the point is just the classify the weakly admissible 1-dimensional
filtered (¢, IV, Gal(K/Q,))-modules. If the 2-dimensional p-adic Galois representation rr,|cq,
is reducible, then there are exactly two Jordan-Holder factors (i.e. projection to the diagonal in
suitable basis), and they are de Rham as r , ’GQp is Hodge-Tate. As a result, since the Hodge-Tate
weights are 0 and k& — 1 (so the same is true of the two Jordan-Holder factors by looking at Dyt
in exact sequences) the Frobenius-semisimple guy WD (7 ,|Gq,)" % is just ¢; & e’ " for
some 1/, 1), which are Z; -valued characters. Applying the local Langlands correspondence
(Weil-Deligne modules being built from irreducibles the same way that admissible smooth
representations are build from supercuspidals) with the Tate normalization, we see that 7, is a
subquotient of the normalized parabolic induction of (¢ 0 Artq, )| - |2 ® (12 0 Artq, )| - [*/*7F,
and is therefore ordinary (as this refinement provides the Frobenius eigenvalue v, o Artq, (p)
via the recipe of [NT2021, Lemma 2.18], which is what we just applied in reverse, and this is
necessarily a p-adic unit thanks to where v; is valued). O

Thanks to Lemma 4.0.4 and the fact that the ordinary locus is excluded from the cuspidal
version of the eigencurve in the p = 2, N = 1 case that we are using, the following lemma will

tend to apply for all the classical forms we are interested in:

Lemma 4.0.5. Let p : Gq, — GL»(Q,) be an irreducible representation which is Hodge—Tate
with distinct Hodge—Tate weights. Then one of the following must be true:

1. The Zariski closure of p(Gq,) contains SL»(Q,).
2. The representation p is induced from a character of an index-2 closed subgroup of Gq,.

Proof. Let H C GLy be the Zariski closure of the image of p. This is an algebraic subgroup of GLs.
Since p is irreducible, /1 is moreover a reductive algebraic group: indeed, any unipotent normal
subgroup H' C H is trivial (the definition of unipotent is that every nonzero representation has
a nonzero fixed vector, so the H'-fixed vectors of V, being a nontrivial submodule [since H' is
normal] of the simple module V', must be all of V), which is the definition of reductive.

Also, since the Hodge-Tate weights of p are distinct, the Sen operator ® € gl, ® C,, is
diagonalizable with two distinct eigenvalues in Z. By [Sen1973, Theorem 1], applied to the
group Gqu C Gq, (the hypothesis of algebraically closed residue field is required in [Sen1973]
— thanks to Tongmu He for pointing this out to me), the Lie algebra of H, when base-changed
to C,, contains ®. In fact, this implies that the Qp-linear subspace Lie(H) C gl, contains an
element &’ which is diagonalizable over Q,, with distinct eigencalues. One way to prove this is

as follows: consider the commutative diagram
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Lie(H) ® C, =% 2

|

charpoly =2

Q,

where the vertical maps are the obvious inclusions (which are dense because a Q,, is dense

Lie(H)

in C, and Lie(H) is a finite-dimensional Qp-vector space, equipped with, say, the sup norm
according to some basis), and the charpoly map is just (—Tr, det) (i.e. it takes a matrix to
the full information of the coefficients of its charpoly). Let Vo, C Cg be the set of points of
the form (—2a, a®) for a € C,. This is a closed set, since C,, is a topological ring and V¢, is
the zero locus of the continuous function (z,y) — y — 2?/4. Define Vg, C Q; as being the
set of points of the form (—2a, a?) for a € Qp. It is obviously contained in V¢, (in fact it is
equal to V¢, N Ei but we will not use this). The reason for defining these closed subsets is
that it expresses exactly the condition for a 2 x 2 matrix to have charpoly with exactly one
root over the algebraically closed field in question. If Lie(H) contains no element which is
diagonalizable with distinct eigenvalues (i.e. has charpoly with two distinct roots), that is the
same as saying that charpoly(Lie(H)) C Vq,. Since Vg, C Vi, which is a closed subset of C2,
and Lie(H) C Lie(H) ® C, is dense, we conclude that

charpoly(Lie(H) ® C,) C V¢,,

which contradicts the fact that ® € Lie(H) ® C, has distinct eigenvalues. We conclude the
existence of an element ' € Lie(H ) which is diagonalizable over Qp with distinct eigenvalues.
It might have been possible to avoid this step by simply base-changing everything to C,, but I
felt it would be easier to just do this rather than check that everything we care about is preserved
by this base change.

By conjugation by an element of GL»(Q,,) (which obviously doesn’t affect the hypotheses
since this is just a change of basis that will not affect the isomorphism class of the representation),

ki 0 .
€ Lie(H),
(5 2) e

where ky # ko are the Hodge-Tate weights of p. According to [Bor1991, §7.3(2)] (which is really
part of the basic theory of diagonalizable group schemes, as in [Bor1991, §8]), this implies that

t _
HQ{(I t):tl,tQEQp,t’ftgzl},
2

where p, ¢ € Z are coprime such that k; /ky in lowest terms is —¢/p. In particular, H contains

we can therefore assume that
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an element diag(t;, t2) where t; # t5, and in fact contains the torus

)\Gm;)HCGLQ

A(t) = (t_q tp) |

Let Ty C H be a maximal torus of the reductive group H such that 7% contains A. Such a

given by

maximal torus exists, for example by [Con2022a, Lemma 2.2]. For the same reason, we can take
a maximal torus 7" of GLy(Q,) such that

ANCTyCT.

By [Con2022b, Theorem 23.2.2], there exists g € GLo (Q ) such that gT'¢g" is the diagonal torus

of GLQ(QP). Since
(e
g
11 ] t1
()= (")

when t; # t, we can assume (without changing our definition of A, and especially the fact that

implies that

A contains a diagonal element with distinct entries) that 7" is the diagonal torus. Now there are

two possibilities:

1. Suppose that H® is a torus, which forces Ty = H° (as tori are connected). Then (as H
always normalizes H° since conjugation by a fixed element is a morphism of algebraic
groups H — H) we know that H normalizes T. Moreover, we proved above that
Ty C T contains a diagonal element of GLy(Q,) with distinct entries, and hence that
the centralizer of 7% in GLQ(Q ) is exactly the diagonal torus 7" (here I have used that
Ty C T and done a computation with matrices). As a formal consequence of the fact
that H normalizes T, we know that H normalizes the centralizer in GLQ(Q ) of Ty, and
hence that H normalizes the diagonal torus of GL2(Q,). Since p is irreducible, we know

H is not contained in the diagonal torus. The normalizer of the maximal torus being

* *

where w is the unique nontrivial Weyl group element, we conclude that p~'(H NT)) is

an index-2 closed subgroup G’k of Gq, (K a quadratic extension of Q,), and hence (for
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example by explicit definition of induction) that p is induced from the character y; of G

plGr = (Xl > :
X2

Indeed, if v € Gq, \ Gk, then x, and x; are conjugate to each other under +, since for

pygy ) = (M1 y
X2(9)

“1y [ x2(9)
p(vg7 )—< m(g))

(explicit matrix computation using the fact that p(vy) € wT).

given by

any g € Gk,

is the same as

. In the case that H® is not a torus, by the weight space decomposition (see e.g. [Mil2018,
§18.15] — we have no problems as H° is a connected reductive group over Qp), there must
be a nontrivial root with respect to the maximal torus T4, i.e. ®(H®, T}) # (. In that case,
if we take the root groups corresponding to a root and its inverse (which always exists
since root data for reductive groups are closed under negation, as it can be written as a
special case of reflection — see [Con2022c]), we end up with two copies of G, living in
GLs. In fact, these two copies of G, are automatically root groups for GLs (the T -root
spaces they come from in Lie(H) C gl, are automatically 7-root spaces, and all the root
spaces are 1-dimensional and the root groups are always just G, so they can’t get bigger
on the way upstairs to GLy). By [Con2022c, example 1.4], these two copies of G, in GL,
are just the upstairs and downstairs unipotent radical, which together generate SL,. Since
these subgroups started their life as root groups coming from Lie(H ), we have SL, C H,
as desired.

The two possibilities above account for both possibilities in the claim. O

In the p = 2, N = 1 case (where the ordinary forms are automatically excluded), the first

option in Lemma 4.0.5 will always be satisfied for classical level 1 forms of weight k£ > 2, as I

now explain

Lemma 4.0.6. Let 7 be the everywhere unramified cuspidal automorphic representation of GLy(Aq)
associated to a level 1 cusp form f of weight k > 2. Let p = 2. Then the Zariski closure of the

image of |G, contains SLs.

Proof. In the proof of Lemma 4.0.1, we argued that f cannot be ordinary. It follows from

Lemma 4.0.4 that 7, |GQp is irreducible. We also know that it has distinct Hodge-Tate weights

0, k — 1 (this is where we use k& > 2). Therefore, by Lemma 4.0.5 , we just need to rule out the
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possibility that r7r7L|GQp is induced by a character ¢ : Gx — Q; , for K a quadratic extension of
Q,. Suppose that this is the case. Since f is of level one, the representation TN|GQP is unramified,
and hence ¢ and K/Q,, are unramified. This hypothesis is absolutely crucial, because it implies
that ¢) has an extension to Gq, (by local class field theory — note that technically we only
used the fact that 1) was unramified, as the CFT argument works even if K /Q, is ramified). By
Mackey theory (or just by explicit analysis of the definition of the induced representation), the
fact that ¢) has an extension to Gq, implies that r,r7L|GQp = Indgi"w is actually reducible. This
contradicts the fact (deduced above from Lemma 4.0.4) that it is actually irreducible. [

Without any assumptions on the level or the choice of prime p, the exact same argument

can be made to work, as long as we add in a regularity hypothesis.

Lemma 4.0.7. Let w be the cuspidal automorphic representation of GL2(Aq) associated to a
cusp eigenform [ of weight k > 2. Suppose also that TM|GQP is irreducible and that m, admits a

3-regular refinement. Then the Zariski closure of the image ofrW7L|GQp contains SL(Q,).

Proof. Thanks to the irreducibility hypothesis, and the fact that £ > 2 (so the Hodge-Tate
weights are distinct), by Lemma 4.0.5, we just need to rule out the case where ., ’GQP is induced
from a character ¢ of Gk, K/Q, a quadratic extension. So far this proof is the same as that
of Lemma 4.0.6, but now we need to use the hypothesis about the refinement instead of the
level-1 hypothesis. By [NT2021, Lemma 2.18] and local-global compatibility as usual, the
refinement x = y1 ® x2 : 12(Q,) — Q; provides a filtration of WD(r,,|cq, ) with graded

pieces x1| - |7'/? 0 Artq,, x2| - | */? o Artq,. Moreover, the assumption that T'r.|Gq, is induced

from v implies (by compatibility of Dy with induction) that WD(r,,[cq,) = Ind%ﬁ”wm}(.
Since
wa, B N
(e ) | = vl @ 0l )

Wi
(where v € Wq, \ Wk), we conclude (without loss of generality choosing the first direct
summand for where ;| - |7'/? lands) e.g. by Schur’s lemma that

lwe = (xal - 7% 0 Artq, ) |y -

But this implies (since extensions from Weil group to Galois group are unique) that ¢ : G — 6;

actually extends to a character of Gq,, namely x| - =12 o Artq,. Therefore, ¥|w, = |y,
and thus by Equation (4.1) and the fact that the second graded piece of the filtration of this
induced module is x»| - |71/ 0 Artq,, we also have

w‘WK = (X2’ ' |71/2 © ArtQp)|WK'

We conclude that x; and y» agree on the index-2 subgroup Gx C Gq,, and therefore that
X3 = x2. This contradicts the assumption that  is 3-regular (see [NT2021, Definition 2.23]),
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thus ruling out the case that TW7L|GQP is induced and implying that the Zariski closure of its
image contains SLs thanks to Lemma 4.0.5 as argued above. O

There is no advantage to stating Lemma 4.0.7 for p = 2, N = 1, but NB the whole ping-
pong argument takes place on the eigencurve for p = 2, N = 1 and therefore we only need
Lemma 4.0.7 in that case.

Now to finish things off with the actual ping-pong argument, which is taken directly from
Newton-Thorne (all the details are essentially there).

Let p = 2 and N = 1. In this situation, [BK2005] implies that &5, restricted to the boundary
annulus |8| < |w| < 1 of weight space (note that only the connected component of YV matters,
as the Nebentypus of a modular form of level 2 is always going to have y(—1) = 1), becomes a
disjoint union of annuli, that is,

N8 < wl < 1) =| | X,
=1

where £ : X; — {|8] < |w| < 1} is an isomorphism of Q,-rigid spaces. Moreover, the
slopes of points in X;(Q,,) are known explicitly: if z € X;(Q,), then the slope s(2) is equal to
iv,(w(k(2))) (here w denotes the isomorphism between the connected component of weight
space and the open unit disc, which on points just takes a character x of Z, and sends it to
X(5) — 1 — at least this is the convention used in [BK2005]). In the proof of Lemma 4.0.1, we
also proved that all the points of &, are NOT ordinary, and hence thanks to Lemma 4.0.4 the
local irreducibility we need in Lemma 4.0.7 will always be satisfied. This is very good, because
it implies that all we really need to do analytic continuation of symmetric power functoriality
on & is the regularity hypothesis. Managing this hypothesis is the reason we like level 1 forms,
and it is the reason why ping-pong must be done. It is also the fundamental reason why the
modularity lifting stuff in the second half of [NT2021] is necessary.
Anyhow, time for ping-pong:
Theorem 4.0.8. Let f, g be cusp eigenforms of level 1 and weight > 2, and let n > 3. Suppose

n—1

that Sym™ ' f exists. Then so does Sym™ ™ 'g.

Proof. The key point is that every irreducible component C of & has the property that x(C) is
Zariski-open in weight space, and therefore C meets at least one of the X;’s. The reason for
this is that (as we mentioned at the beginning of Chapter 3) &, and any irreducible component
thereof (by [Con1999b, Theorem 4.3.2]), is a finite cover of a Fredholm variety: a particular fiber
over weight space being empty is equivalent to all the nontrivial coefficients of a particular
characteristic series being zero simultaneously, which defines a proper Zariski-closed subset of
weight space.
The first step is to analytically continue symmetric power functoriality from f to a conveniently-

chosen point in X;, where X is (as “justified” by the previous paragraph) one of the boundary
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annuli described above. Since a point of X, is uniquely determined by its image under x, we can
define such a point by prescribing the weight. Without bothering to deal with nebentypus (it
won’t be necessary), let us just take a very large integer k (the point of it being large is so that the
form we get will be classical and we can apply all the nice things we just proved) and consider
the weight-character  in the connected component of W that is defined by x(5) = 5*~2. To
figure out how large k needs to be to guarantee that the point z;;, € X; such that x(zs;) = x is
classical, we first need to figure out what the slope is. In order to even have y be in the boundary
annulus |8| < |w(x)| < 1 on which the result of [BK2005] works (and therefore even have z,
in the first place), we must have
V(5" — 1) = 2,

which is guaranteed as long as k is odd. In this situation, since z;; € X;, the slope of z¢, is
equal to ivy (52 — 1) = 2i. For Coleman [Col1996] to guarantee us the classicality of z;x, we
would like to have k large enough that

k—1> 2.

We will also want to take the twin form, for which the usual condition 2i # (k—1)/2, (k—2)/2
is useful. This condition is also useful because it guarantees that the slopes of the two accessible
refinements are different, and hence (via the relationship between the slope of a refinement and
the value at p that I explained explicitly earlier®) that every accessible refinment is n-regular for
all n. For this reason, we might as well ask that k is large enough that

k—2 .

5 > 2i.
As discussed above, Coleman’s classicality criterion tells us that 2y, is classical, coming from
an admissibly refined cuspidal automorphic representation (7, y) unramified away from 2. By
what we just said, this refinement (and any other) is n-regular for all n. It is also numerically
noncritical (but this is just because nothing is ordinary, in the same way as in the beginning of the
proof of Lemma 4.0.1). By Lemma 4.0.7, the Zariski closure of the image of r,,7L|GQp contains SLs.
By Lemma 4.0.1 and Lemma 4.0.6, the same is true for f and the automorphic representation it
corresponds to. Therefore, the analytic continuation machinery mostly explained in my previous
letter says that existence of Sym” ' f implies the same thing for the modular form coming from
2f k-

Now take the twin 2% ;. The corresponding Galois representation is the same except possibly
twisted by a character, so we don’t need to do any work to check that the Zariski closure of the
image of Gq, contains SL,. Similarly, the construction (again the paragraph at the bottom of
[NT2021, p. 56]) of the twin form implies that 2}, is classical of weight k — 1 — 27 and that

8The ratio of elements of Q; with different valuations cannot be a root of unity.
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the two slopes are distinct and hence all refinements are n-regular for all n. So (for the exact
same reason as above), 2, also has a symmetric power lift. But 2y, lives in a totally different
boundary annulus than z;, ! Since it is of weight x just like z4 4, and of slope k — 1 — 27, we
know that

Z},k € Xk—1-2)/2-

Note also that everything applies in reverse (even though there are slight asymmetries in
the statement of the analytic continuation machine, we have verified all the hypotheses for all
the forms involved so there is no issue). So if we know the automorphy of Sym"‘lz;g ,» then we
can also conclude the automorphy of f. We apply the reverse-version of what we just did to
g: letting j be such that g € X, the argument above tells us that for all sufficiently large odd

numbers £’ (how large depends only on j), there is a

2o € X(k—1-2j)/2

n—1_s

such that automorphy of Sym"™ "z , implies that of g. Since z, ; and 2/ ; both satisfy all the
hypotheses of the analytic continuation machine, and since the annuli X are irreducible, all
we need to do is prove that we can choose k and £’ so that 2] ;, 2 ; live in the same X (so

nflz/

that automorphy of Sym" ™"z, ; is implied by that of Sym"flz}yk and we are done). But this is

straightforward, as we just need the following three things:
1L k>; 0,
2. k">, 0,and
3. (k—1—-2¢)/2= (K —1-2j5)/2.

The third condition is equivalent to k = k' 4+ 2(i — j), so it is clear that the sought-after k, &’
exist. O]

122



Bibliography

[Abb2010]

Ahmed Abbes, Eléments de géométrie rigide. Volume I, Progress in Mathemat-
ics, vol. 286, Birkhauser/Springer Basel AG, Basel, 2010. Construction et étude
géométrique des espaces rigides. [Construction and geometric study of rigid
spaces], With a preface by Michel Raynaud. MR2815110

[AC1989] James Arthur and Laurent Clozel, Simple algebras, base change, and the advanced

[AIS2014]

[AM2004]

[AS1986a]

[AS1986b]

[AT2009]

[B5¢2001]

[BC2009a]

theory of the trace formula, Annals of Mathematics Studies, vol. 120, Princeton
University Press, Princeton, NJ, 1989. MR1007299

Fabrizio Andreatta, Adrian lovita, and Glenn Stevens, Overconvergent modular
sheaves and modular forms for GLy,p, Israel J. Math. 201 (2014), no. 1, 299-359.
MR3265287

Ahmed Abbes and Abdellah Mokrane, Sous-groupes canoniques et cycles évanes-
cents p-adiques pour les variétés abéliennes, Publ. Math. Inst. Hautes Etudes Sci.
99 (2004), 117-162. MR2075884

Avner Ash and Glenn Stevens, Cohomology of arithmetic groups and congruences
between systems of Hecke eigenvalues, ]. Reine Angew. Math. 365 (1986), 192-220.
MR826158

, Modular forms in characteristic | and special values of their L-functions,
Duke Math. J. 53 (1986), no. 3, 849-868. MR860675

Emil Artin and John Tate, Class field theory, AMS Chelsea Publishing, Providence,
RI, 2009. Reprinted with corrections from the 1967 original. MR2467155

Gebhard Bockle, On the density of modular points in universal deformation spaces,
Amer. J. Math. 123 (2001), no. 5, 985-1007. MR1854117

Joél Bellaiche and Gaétan Chenevier, Families of Galois representations and Selmer
groups, 2009. MR2656025

123


http://www.ams.org/mathscinet-getitem?mr=2815110
http://www.ams.org/mathscinet-getitem?mr=1007299
http://www.ams.org/mathscinet-getitem?mr=3265287
http://www.ams.org/mathscinet-getitem?mr=2075884
http://www.ams.org/mathscinet-getitem?mr=826158
http://www.ams.org/mathscinet-getitem?mr=860675
http://www.ams.org/mathscinet-getitem?mr=2467155
http://www.ams.org/mathscinet-getitem?mr=1854117
http://www.ams.org/mathscinet-getitem?mr=2656025

[BC2009b]

[Bel2019]

[Bel2021]

[Ber2008]

[BGR1984]

[BHS2017]

[BK2005]

[BKKN1967]

[BL1993]

[BLGGT2014]

[BLGHT2011]

Olivier Brinon and Brian Conrad, CMI summer school notes on p-adic Hodge theory
(preliminary version), 2009. Lecture notes. Clay Mathematical Institute Summer

School, Honolulu, Hawaii. https://math.stanford.edu/~conrad/papers/notes.pdf.

Joél Bellaiche, Global applications of eigenvarieties, 2019. Math-
overflow question https://mathoverflow.net/questions/75144/

global-applications-of-eigenvarieties.

Joél Bellaiche, The eigenbook—eigenvarieties, families of Galois representations,
p-adic L-functions, Pathways in Mathematics, Birkhduser/Springer, Cham, 2021.
MR4306639

Laurent Berger, Equations différentielles p-adiques et (¢, N')-modules filtrés, 2008,
pp. 13-38. Représentations p-adiques de groupes p-adiques. I. Représentations
galoisiennes et (¢, I')-modules. MR2493215

S. Bosch, U. Giintzer, and R. Remmert, Non-Archimedean analysis, Grundlehren
der mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences], vol. 261, Springer-Verlag, Berlin, 1984. A systematic approach to rigid
analytic geometry. MR746961

Christophe Breuil, Eugen Hellmann, and Benjamin Schraen, Une interprétation
modulaire de la variété trianguline, Math. Ann. 367 (2017), no. 3-4, 1587-1645.
MR3623233

Kevin Buzzard and L. J. P. Kilford, The 2-adic eigencurve at the boundary of weight
space, Compos. Math. 141 (2005), no. 3, 605-619. MR2135280

R. Berger, R. Kiehl, E. Kunz, and Hans-Joachim Nastold, Differentialrechnung
in der analytischen Geometrie, Lecture Notes in Mathematics, No. 38, Springer-
Verlag, Berlin-New York, 1967. MR0224870

Siegfried Bosch and Werner Litkebohmert, Formal and rigid geometry. I. Rigid
spaces, Math. Ann. 295 (1993), no. 2, 291-317. MR1202394

Thomas Barnet-Lamb, Toby Gee, David Geraghty, and Richard Taylor, Potential
automorphy and change of weight, Ann. of Math. (2) 179 (2014), no. 2, 501-609.
MR3152941

Tom Barnet-Lamb, David Geraghty, Michael Harris, and Richard Taylor, A family
of Calabi-Yau varieties and potential automorphy II, Publ. Res. Inst. Math. Sci. 47
(2011), no. 1, 29-98. MR2827723

124


https://math.stanford.edu/~conrad/papers/notes.pdf
https://mathoverflow.net/questions/75144/global-applications-of-eigenvarieties
https://mathoverflow.net/questions/75144/global-applications-of-eigenvarieties
http://www.ams.org/mathscinet-getitem?mr=4306639
http://www.ams.org/mathscinet-getitem?mr=2493215
http://www.ams.org/mathscinet-getitem?mr=746961
http://www.ams.org/mathscinet-getitem?mr=3623233
http://www.ams.org/mathscinet-getitem?mr=2135280
http://www.ams.org/mathscinet-getitem?mr=0224870
http://www.ams.org/mathscinet-getitem?mr=1202394
http://www.ams.org/mathscinet-getitem?mr=3152941
http://www.ams.org/mathscinet-getitem?mr=2827723

[BM2002]

[Bor1979]

[Bor1991]

[Bre2015]

[Buz2004]

[Buz2007]

[BZ1976]

[BZ1977]

[Cal2013]

[Car2012]

[Cas2001]

[CH2013]

[Che1951]

[Che2004]

Christophe Breuil and Ariane Mézard, Multiplicités modulaires et représentations

de GLy(Z,) et de Gal(Q,,/Q,) enl = p, Duke Mathematical Journal 115 (2002),
no. 2, 205-310. With an appendix by Guy Henniart. MR1944572

A. Borel, Automorphic L-functions, Automorphic forms, representations and L-
functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977),
Part 2, 1979, pp. 27-61. MR546608

Armand Borel, Linear algebraic groups, Second, Graduate Texts in Mathematics,
vol. 126, Springer-Verlag, New York, 1991. MR1102012

Christophe Breuil, Vers le socle localement analytique pour GL,, I, Math. Ann.
361 (2015), no. 3-4, 741-785. MR3319547

Kevin Buzzard, On p-adic families of automorphic forms, Modular curves and
abelian varieties (Progress in Mathematics, vol. 224), 2004, pp. 23-44. MR2058640

, Eigenvarieties, L-functions and Galois representations (London Mathe-
matical Society Lecture Note Series, vol. 320), 2007, pp. 59-120. MR2392353

L N. Bernstein and A. V. Zelevinskii, Representations of the group G L(n, F'), where
F is a local non-Archimedean field, Uspehi Mat. Nauk 31 (1976), no. 3(189), 5-70.
MR0425030

L. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive p-adic
groups. I, Ann. Sci. Ecole Norm. Sup. (4) 10 (1977), no. 4, 441-472. MR579172

Frank Calegari, Congruences between modular forms, 2013. Lecture notes from
AWS course.

Ana Caraiani, Local-global compatibility and the action of monodromy on nearby
cycles, Duke Math. J. 161 (2012), no. 12, 2311-2413. MR2972460

Bill Casselman, The L-group, Class field theory—its centenary and prospect
(Tokyo, 1998), 2001, pp. 217-258. MR1846460

Gaétan Chenevier and Michael Harris, Construction of automorphic Galois repre-
sentations, II, Camb. J. Math. 1 (2013), no. 1, 53-73. MR3272052

Claude Chevalley, Deux théorémes d’arithmétique, Journal of the Mathematical
Society of Japan 3 (1951), 36—44. MR44570

Gaétan Chenevier, Familles p-adiques de formes automorphes pour GL,,, ]. Reine
Angew. Math. 570 (2004), 143-217. MR2075765

125


http://www.ams.org/mathscinet-getitem?mr=1944572
http://www.ams.org/mathscinet-getitem?mr=546608
http://www.ams.org/mathscinet-getitem?mr=1102012
http://www.ams.org/mathscinet-getitem?mr=3319547
http://www.ams.org/mathscinet-getitem?mr=2058640
http://www.ams.org/mathscinet-getitem?mr=2392353
http://www.ams.org/mathscinet-getitem?mr=0425030
http://www.ams.org/mathscinet-getitem?mr=579172
http://www.ams.org/mathscinet-getitem?mr=2972460
http://www.ams.org/mathscinet-getitem?mr=1846460
http://www.ams.org/mathscinet-getitem?mr=3272052
http://www.ams.org/mathscinet-getitem?mr=44570
http://www.ams.org/mathscinet-getitem?mr=2075765

[Che2005]

[Che2010]

[Che2011]

[Che2013]

[Che2014]

[CHT2008]

[CM1998]

[CM2009]

[Col1989]

[Col1996]

[Col1997a]

[Col1997b]

[Col2005]

, Une correspondance de Jacquet-Langlands p-adique, Duke Math. J. 126
(2005), no. 1, 161-194. MR2111512

, The infinite fern and families of quaternionic modular forms, 2010. Lecture

notes from course at IHP Galois trimester. http://gaetan.chenevier.perso.math.

cnrs.fr/coursihp.html.

, On the infinite fern of Galois representations of unitary type, Ann. Sci. Ec.
Norm. Supér. (4) 44 (2011), no. 6, 963-1019. MR2919688

, Représentations galoisiennes automorphes et conséquences arithmétiques
des conjectures de langlands et arthur, 2013. Mémoire d’habilitation a diriger des
recherches (Université Paris XI).

, The p-adic analytic space of pseudocharacters of a profinite group and

pseudorepresentations over arbitrary rings, Automorphic forms and Galois repre-
sentations. Vol. 1, 2014, pp. 221-285. MR3444227

Laurent Clozel, Michael Harris, and Richard Taylor, Automorphy for some l-adic
lifts of automorphic mod | Galois representations, Publ. Math. Inst. Hautes Etudes
Sci. 108 (2008), 1-181. With Appendix A, summarizing unpublished work of
Russ Mann, and Appendix B by Marie-France Vignéras. MR2470687

R. Coleman and B. Mazur, The eigencurve, Galois representations in arithmetic
algebraic geometry (Durham, 1996), 1998, pp. 1-113. MR1696469

Frank Calegari and Barry Mazur, Nearly ordinary Galois deformations over arbi-
trary number fields, J. Inst. Math. Jussieu 8 (2009), no. 1, 99-177. MR2461903

Robert F. Coleman, Reciprocity laws on curves, Compositio Math. 72 (1989), no. 2,
205-235. MR1030142

, Classical and overconvergent modular forms, Invent. Math. 124 (1996),
no. 1-3, 215-241. MR1369416

, Classical and overconvergent modular forms of higher level, J. Théor.
Nombres Bordeaux 9 (1997), no. 2, 395-403. MR1617406

, p-adic Banach spaces and families of modular forms, Invent. Math. 127
(1997), no. 3, 417-479. MR1431135

, The canonical subgroup of E is Spec R[x]/(xP + mx), Asian J.
Math. 9 (2005), no. 2, 257-260. MR2176608

126


http://www.ams.org/mathscinet-getitem?mr=2111512
http://gaetan.chenevier.perso.math.cnrs.fr/coursihp.html
http://gaetan.chenevier.perso.math.cnrs.fr/coursihp.html
http://www.ams.org/mathscinet-getitem?mr=2919688
http://www.ams.org/mathscinet-getitem?mr=3444227
http://www.ams.org/mathscinet-getitem?mr=2470687
http://www.ams.org/mathscinet-getitem?mr=1696469
http://www.ams.org/mathscinet-getitem?mr=2461903
http://www.ams.org/mathscinet-getitem?mr=1030142
http://www.ams.org/mathscinet-getitem?mr=1369416
http://www.ams.org/mathscinet-getitem?mr=1617406
http://www.ams.org/mathscinet-getitem?mr=1431135
http://www.ams.org/mathscinet-getitem?mr=2176608

[Con1999a] Brian Conrad, Irreducible components of rigid spaces, Ann. Inst. Fourier (Grenoble)
49 (1999), no. 2, 473-541. MR1697371

[Con1999b] , Irreducible components of rigid spaces, Ann. Inst. Fourier (Grenoble) 49

(1999), no. 2, 473-541. MR1697371

[Con2006] , Relative ampleness in rigid geometry, Ann. Inst. Fourier (Grenoble) 56

(2006), no. 4, 1049-1126. MR2266885

[Con2022a] , Algebraic groups I. grothendieck’s theorem on tori, 2022. Lecture notes

from Math 252, Stanford University. Based on notes by Sam Lichtenstein. http:
//virtualmath1.stanford.edu/~conrad/252Page/handouts/grthm.pdf.

[Con2022b]

, Linear algebraic groups I, 2022. Lecture notes from Math 252, Stanford
University. Based on notes by Sam Lichtenstein.http://virtualmath1.stanford.

edu/~conrad/252Page/handouts/alggroups.pdf.

[Con2022c] , Math 249b. root datum for split reductive groups, 2022. Lecture notes
from Math 249B, Stanford University. http://virtualmath1.stanford.edu/~conrad/

249BW16Page/handouts/rootdatum.pdf.

[Con] , Modular forms, cohomology, and the Ramanujan conjecture. Unpublished

draft book (typically known under the name “brian. pdf”).

[CR2021] Laurent Clozel and Conjeeveram S. Rajan, Solvable base change, J. Reine Angew.
Math. 772 (2021), 147-174. MR4227590

[Del1971] Pierre Deligne, Formes modulaires et représentations [-adiques, Séminaire Bourbaki.
Vol. 1968/69: Exposés 347-363, 1971, pp. Exp. No. 355, 139-172. MR3077124

[dJ1998] A.]. de Jong, Erratum to: “Crystalline Dieudonné module theory via formal and
rigid geometry” [Inst. Hautes Etudes Sci. Publ. Math. No. 82 (1995), 5-96 (1996);
MR1383213 (97f14047)], Inst. Hautes Etudes Sci. Publ. Math. 87 (1998), 175.
MR1659266

[DL2016] Hansheng Diao and Ruochuan Liu, The eigencurve is proper, Duke Math. J. 165
(2016), no. 7, 1381-1395. MR3498869

[DS1974] Pierre Deligne and Jean-Pierre Serre, Formes modulaires de poids 1, Ann. Sci.
Ecole Norm. Sup. (4) 7 (1974), 507-530 (1975). MR379379

[DT1994] Fred Diamond and Richard Taylor, Nonoptimal levels of mod | modular represen-
tations, Invent. Math. 115 (1994), no. 3, 435-462. MR1262939

127


http://www.ams.org/mathscinet-getitem?mr=1697371
http://www.ams.org/mathscinet-getitem?mr=1697371
http://www.ams.org/mathscinet-getitem?mr=2266885
http://virtualmath1.stanford.edu/~conrad/252Page/handouts/grthm.pdf
http://virtualmath1.stanford.edu/~conrad/252Page/handouts/grthm.pdf
http://virtualmath1.stanford.edu/~conrad/252Page/handouts/alggroups.pdf
http://virtualmath1.stanford.edu/~conrad/252Page/handouts/alggroups.pdf
http://virtualmath1.stanford.edu/~conrad/249BW16Page/handouts/rootdatum.pdf
http://virtualmath1.stanford.edu/~conrad/249BW16Page/handouts/rootdatum.pdf
http://www.ams.org/mathscinet-getitem?mr=4227590
http://www.ams.org/mathscinet-getitem?mr=3077124
http://www.ams.org/mathscinet-getitem?mr=1659266
http://www.ams.org/mathscinet-getitem?mr=3498869
http://www.ams.org/mathscinet-getitem?mr=379379
http://www.ams.org/mathscinet-getitem?mr=1262939

[Dwo01962]

[E1k2019]

[Eme2006a]

[Eme2006b]

[Eme2017]

[Eme2021]

Bernard Dwork, On the zeta function of a hypersurface, Inst. Hautes Etudes Sci.
Publ. Math. 12 (1962), 5-68. MR159823

Noam D. Elkies, Math 229x: Introduction to analytic number theory, 2019. Lecture
notes from Harvard graduate course. https://people.math.harvard.edu/~elkies/
M229.18/index.html.

Matthew Emerton, Jacquet modules of locally analytic representations of p-adic
reductive groups. 1. Construction and first properties, Ann. Sci. Ecole Norm. Sup.
(4) 39 (2006), no. 5, 775—-839. MR2292633

, On the interpolation of systems of eigenvalues attached to automorphic
Hecke eigenforms, Invent. Math. 164 (2006), no. 1, 1-84. MR2207783

, Locally analytic vectors in representations of locally p-adic analytic groups,
Mem. Amer. Math. Soc. 248 (2017), no. 1175, iv+158. MR3685952

, Langlands reciprocity: L-functions, automorphic forms, and Diophantine
equations, The genesis of the Langlands Program, 2021, pp. 301-386. MR4274535

[FM1995] Jean-Marc Fontaine and Barry Mazur, Geometric Galois representations, Elliptic

curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993), 1995, pp. 41—
78. MR1363495

[FvdP2004] Jean Fresnel and Marius van der Put, Rigid analytic geometry and its applications,

[Ger2019]

[GfGPS1990]

[GJ1972]

[GJ1979]

Progress in Mathematics, vol. 218, Birkhduser Boston, Inc., Boston, MA, 2004.
MR2014891

David Geraghty, Modularity lifting theorems for ordinary Galois representations,
Math. Ann. 373 (2019), no. 3-4, 1341-1427. MR3953131

I. M. Gel’ fand, M. L. Graev, and 1. L. Pyatetskii-Shapiro, Representation theory
and automorphic functions, Generalized Functions, vol. 6, Academic Press, Inc.,
Boston, MA, 1990. Translated from the Russian by K. A. Hirsch, Reprint of the
1969 edition. MR1071179

Roger Godement and Hervé Jacquet, Zeta functions of simple algebras, Lec-
ture Notes in Mathematics, Vol. 260, Springer-Verlag, Berlin-New York, 1972.
MR0342495

Stephen Gelbart and Hervé Jacquet, Forms of GL(2) from the analytic point
of view, Automorphic forms, representations and L-functions (Proc. Sympos.
Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, 1979, pp. 213-251.
MR546600

128


http://www.ams.org/mathscinet-getitem?mr=159823
https://people.math.harvard.edu/~elkies/M229.18/index.html
https://people.math.harvard.edu/~elkies/M229.18/index.html
http://www.ams.org/mathscinet-getitem?mr=2292633
http://www.ams.org/mathscinet-getitem?mr=2207783
http://www.ams.org/mathscinet-getitem?mr=3685952
http://www.ams.org/mathscinet-getitem?mr=4274535
http://www.ams.org/mathscinet-getitem?mr=1363495
http://www.ams.org/mathscinet-getitem?mr=2014891
http://www.ams.org/mathscinet-getitem?mr=3953131
http://www.ams.org/mathscinet-getitem?mr=1071179
http://www.ams.org/mathscinet-getitem?mr=0342495
http://www.ams.org/mathscinet-getitem?mr=546600

[GM1998]

[Gou1988]

[HC1968]

[HSBT2010]

[HT2001]

Fernando Q. Gouvéa and Barry Mazur, On the density of modular representations,
Computational perspectives on number theory (Chicago, IL, 1995), 1998, pp. 127~
142. MR1486834

Fernando Q. Gouvéa, Arithmetic of p-adic modular forms, Lecture Notes in Math-
ematics, vol. 1304, Springer-Verlag, Berlin, 1988. MR1027593

Harish-Chandra, Automorphic forms on semisimple Lie groups, Lecture Notes in
Mathematics, No. 62, Springer-Verlag, Berlin-New York, 1968. Notes by J. G. M.
Mars. MR0232893

Michael Harris, Nick Shepherd-Barron, and Richard Taylor, A family of Calabi-
Yau varieties and potential automorphy, Ann. of Math. (2) 171 (2010), no. 2, 779-
813. MR2630056

Michael Harris and Richard Taylor, The geometry and cohomology of some simple
Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton Univer-
sity Press, Princeton, NJ, 2001. With an appendix by Vladimir G. Berkovich.
MR1876802

[Hum2008] James E. Humphreys, Representations of semisimple Lie algebras in the BGG

[JL1970]

[IN2019]

[Joc1982]

[JS1976]

[Kat1973]

[Kis2003]

category O, Graduate Studies in Mathematics, vol. 94, American Mathematical
Society, Providence, RI, 2008. MR2428237

H. Jacquet and R. P. Langlands, Automorphic forms on GL(2), Lecture Notes in
Mathematics, Vol. 114, Springer-Verlag, Berlin-New York, 1970. MR0401654

Christian Johansson and James Newton, Parallel weight 2 points on Hilbert modu-
lar eigenvarieties and the parity conjecture, Forum Math. Sigma 7 (2019), Paper
No. e27, 36. MR4010559

Naomi Jochnowitz, Congruences between systems of eigenvalues of modular forms,
Trans. Amer. Math. Soc. 270 (1982), no. 1, 269-285. MR642341

Hervé Jacquet and Joseph A. Shalika, A non-vanishing theorem for zeta functions
of GL,,, Inventiones Mathematicae 38 (1976/77), no. 1, 1-16. MR432596

Nicholas M. Katz, p-adic properties of modular schemes and modular forms, Modu-
lar functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp,
Antwerp, 1972), 1973, pp. 69-190. MR0447119

Mark Kisin, Overconvergent modular forms and the Fontaine-Mazur conjecture,
Invent. Math. 153 (2003), no. 2, 373-454. MR1992017

129


http://www.ams.org/mathscinet-getitem?mr=1486834
http://www.ams.org/mathscinet-getitem?mr=1027593
http://www.ams.org/mathscinet-getitem?mr=0232893
http://www.ams.org/mathscinet-getitem?mr=2630056
http://www.ams.org/mathscinet-getitem?mr=1876802
http://www.ams.org/mathscinet-getitem?mr=2428237
http://www.ams.org/mathscinet-getitem?mr=0401654
http://www.ams.org/mathscinet-getitem?mr=4010559
http://www.ams.org/mathscinet-getitem?mr=642341
http://www.ams.org/mathscinet-getitem?mr=432596
http://www.ams.org/mathscinet-getitem?mr=0447119
http://www.ams.org/mathscinet-getitem?mr=1992017

[Kis2019]

[KL2005]

[KM1985]

[KPX2014]

M. Kisin, Memories of Jean-Marc and his mathematics, Gaz. Math. 162 (2019),
18-20. MR3965745

Mark Kisin and King Fai Lai, Overconvergent Hilbert modular forms, Amer. ].
Math. 127 (2005), no. 4, 735-783. MR2154369

Nicholas M. Katz and Barry Mazur, Arithmetic moduli of elliptic curves, Annals
of Mathematics Studies, vol. 108, Princeton University Press, Princeton, NJ, 1985.
MR772569

Kiran S. Kedlaya, Jonathan Pottharst, and Liang Xiao, Cohomology of arith-
metic families of (i, I')-modules, J. Amer. Math. Soc. 27 (2014), no. 4, 1043-1115.
MR3230818

[Lab2011] J.-P. Labesse, Changement de base CM et séries discrétes, On the stabilization of

[Lan1970]

[Lan1994]

the trace formula, 2011, pp. 429-470. MR2856380

R. P. Langlands, Problems in the theory of automorphic forms, Lectures in modern
analysis and applications, III, 1970, pp. 18-61. Lecture Notes in Math., Vol. 170.
MR0302614

Serge Lang, Algebraic number theory, 2nd edition, Graduate Texts in Mathematics,
vol. 110, Springer-Verlag, New York, 1994. MR1282723

[LO1977] Jeffrey Lagarias and Andrew Odlyzko, Effective versions of the Chebotarev density

[Loe2011]

[LW2012]

[LWX2017]

[Maz1997]

theorem, Algebraic number fields: L-functions and Galois properties (Proceed-
ings of a Symposium, University of Durham, Durham, 1975), 1977, pp. 409-464.
MR0447191

David Loeffler, Overconvergent algebraic automorphic forms, Proc. Lond. Math.
Soc. (3) 102 (2011), no. 2, 193-228. MR2769113

David Loeffler and Jared Weinstein, On the computation of local components of a
newform, Math. Comp. 81 (2012), no. 278, 1179-1200. MR2869056

Ruochuan Liu, Daqing Wan, and Liang Xiao, The eigencurve over the boundary of
weight space, Duke Math. J. 166 (2017), no. 9, 1739-1787. MR3662443

Barry Mazur, An “infinite fern” in the universal deformation space of Galois
representations, 1997, pp. 155-193. Journées Arithmétiques (Barcelona, 1995).
MR1464022

[Mil2018] James Milne, Reductive groups, 2018. Online notes. https://www.jmilne.org/math/

CourseNotes/RG.pdf.

130


http://www.ams.org/mathscinet-getitem?mr=3965745
http://www.ams.org/mathscinet-getitem?mr=2154369
http://www.ams.org/mathscinet-getitem?mr=772569
http://www.ams.org/mathscinet-getitem?mr=3230818
http://www.ams.org/mathscinet-getitem?mr=2856380
http://www.ams.org/mathscinet-getitem?mr=0302614
http://www.ams.org/mathscinet-getitem?mr=1282723
http://www.ams.org/mathscinet-getitem?mr=0447191
http://www.ams.org/mathscinet-getitem?mr=2769113
http://www.ams.org/mathscinet-getitem?mr=2869056
http://www.ams.org/mathscinet-getitem?mr=3662443
http://www.ams.org/mathscinet-getitem?mr=1464022
https://www.jmilne.org/math/CourseNotes/RG.pdf
https://www.jmilne.org/math/CourseNotes/RG.pdf

[MW1986]

B. Mazur and A. Wiles, On p-adic analytic families of Galois representations,
Compositio Math. 59 (1986), no. 2, 231-264. MR860140

[NT2020] James Newton and Jack Thorne, Adjoint selmer groups of automorphic galois

[NT2021]

[Ogg1969]

[0S2015]

[Pan2020]

[Pil2013]

[Ray1967]

[Ray1970]

[Ray1974]

[Sai1997]

[Sat1963]

[Sch2011]

[Sch2013]

representations of unitary type, To appear in J. Eur. Math. Soc. (2020).

, Symmetric power functoriality for holomorphic modular forms, Publ.
Math. Inst. Hautes Etudes Sci. 134 (2021), 1-116. MR4349240

Andrew P. Ogg, On the eigenvalues of Hecke operators, Math. Ann. 179 (1969),
101-108. MR269597

Sascha Orlik and Matthias Strauch, On Jordan-Hoélder series of some locally analytic
representations, ]. Amer. Math. Soc. 28 (2015), no. 1, 99-157. MR3264764

Lue Pan, A note on overconvergence of hecke action, arXiv preprint
arXiv:2012.11845 (2020).

Vincent Pilloni, Overconvergent modular forms, Ann. Inst. Fourier (Grenoble) 63
(2013), no. 1, 219-239. MR3097946

M. Raynaud, Passage au quotient par une relation d’équivalence plate, Proc. Contf.
Local Fields (Driebergen, 1966), 1967, pp. 78—-85. MR0232781

Michel Raynaud, Anneaux locaux henséliens, Lecture notes in mathematics,
vol. 169, Springer, 1970.

, Géométrie analytique rigide d’aprés Tate, Kiehl,---, Table Ronde
d’Analyse non archimédienne (Paris, 1972), 1974, pp. 319-327. Bull. Soc. Math.
France, Mém. No. 39-40. MR0470254

Takeshi Saito, Modular forms and p-adic Hodge theory, Invent. Math. 129 (1997),
no. 3, 607-620. MR1465337

Ichird Satake, Theory of spherical functions on reductive algebraic groups over
p-adic fields, Inst. Hautes Etudes Sci. Publ. Math. 18 (1963), 5-69. MR195863

Peter Scholze, The Langlands-Kottwitz approach for the modular curve, Int. Math.
Res. Not. IMRN 15 (2011), 3368-3425. MR2822177

, The local Langlands correspondence for GL,, over p-adic fields, Invent.
Math. 192 (2013), no. 3, 663-715. MR3049932

131


http://www.ams.org/mathscinet-getitem?mr=860140
http://www.ams.org/mathscinet-getitem?mr=4349240
http://www.ams.org/mathscinet-getitem?mr=269597
http://www.ams.org/mathscinet-getitem?mr=3264764
http://www.ams.org/mathscinet-getitem?mr=3097946
http://www.ams.org/mathscinet-getitem?mr=0232781
http://www.ams.org/mathscinet-getitem?mr=0470254
http://www.ams.org/mathscinet-getitem?mr=1465337
http://www.ams.org/mathscinet-getitem?mr=195863
http://www.ams.org/mathscinet-getitem?mr=2822177
http://www.ams.org/mathscinet-getitem?mr=3049932

[SD1973]

[Sen1973]

[Ser1962]

[Ser1967]

[Ser1973]

[Ser1975]

[Ser1981]

[Ser1987]

[Ser1989]

[Shi1994]

[Sil1994]

H. P. F. Swinnerton-Dyer, On [-adic representations and congruences for coefficients
of modular forms, Modular functions of one variable, III (Proc. Internat. Summer
School, Univ. Antwerp, 1972), 1973, pp. 1-55. Lecture Notes in Math., Vol. 350.
MR0406931

Shankar Sen, Lie algebras of Galois groups arising from Hodge-Tate modules, Ann.
of Math. (2) 97 (1973), 160-170. MR314853

Jean-Pierre Serre, Endomorphismes complétement continus des espaces de Banach
p-adiques, Inst. Hautes Etudes Sci. Publ. Math. 12 (1962), 69-85. MR144186

, Local class field theory, Algebraic Number Theory (Proceedings of an
Instructional Conference, Brighton, 1965), 1967, pp. 128—-161. MR0220701

, Formes modulaires et fonctions zéta p-adiques, Modular functions of

one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972), 1973,
pp- 191-268. Lecture Notes in Math., Vol. 350. MR0404145

, Valeurs propres des opérateurs de Hecke modulo [, Journées Arithmétiques
de Bordeaux (Conf., Univ. Bordeaux, 1974), 1975, pp. 109-117. Astérisque, Nos.
24-25. MR0382173

, Quelques applications du théoréme de densité de Chebotarev, Publications
Mathématiques de I'Institut des Hautes Etudes Scientifiques 54 (1981), 323-401.
MR644559

, Sur les représentations modulaires de degré 2 de Gal(Q/Q), Duke Math.
J. 54 (1987), no. 1, 179-230. MR885783

, Abelian l-adic representations and elliptic curves, 2nd edition, Advanced

Book Classics, Addison-Wesley Publishing Company, Advanced Book Program,
Redwood City, CA, 1989. McGill University lecture notes written with the collab-
oration of Willem Kuyk and John Labute. MR1043865

Goro Shimura, Introduction to the arithmetic theory of automorphic functions,
Publications of the Mathematical Society of Japan, vol. 11, Princeton University
Press, Princeton, NJ, 1994. Reprint of the 1971 original, Kané Memorial Lectures,
1. MR129139%4

Joseph H. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate
Texts in Mathematics, vol. 151, Springer-Verlag, New York, 1994. MR1312368

132


http://www.ams.org/mathscinet-getitem?mr=0406931
http://www.ams.org/mathscinet-getitem?mr=314853
http://www.ams.org/mathscinet-getitem?mr=144186
http://www.ams.org/mathscinet-getitem?mr=0220701
http://www.ams.org/mathscinet-getitem?mr=0404145
http://www.ams.org/mathscinet-getitem?mr=0382173
http://www.ams.org/mathscinet-getitem?mr=644559
http://www.ams.org/mathscinet-getitem?mr=885783
http://www.ams.org/mathscinet-getitem?mr=1043865
http://www.ams.org/mathscinet-getitem?mr=1291394
http://www.ams.org/mathscinet-getitem?mr=1312368

[Sil2009] , The arithmetic of elliptic curves, 2nd edition, Graduate Texts in Mathe-

matics, vol. 106, Springer, Dordrecht, 2009. MR2514094

[SS2003] Elias M. Stein and Rami Shakarchi, Complex analysis, Princeton Lectures in
Analysis, vol. 2, Princeton University Press, Princeton, NJ, 2003. MR1976398

[Tai2016] Olivier Taibi, Eigenvarieties for classical groups and complex conjugations in Galois
representations, Math. Res. Lett. 23 (2016), no. 4, 1167-1220. MR3554506

[Tat1967] John Tate, p-divisible groups, Proceedings of a Conference on Local Fields
(Driebergen, 1966), 1967, pp. 158-183. MR0231827

[Tho2015] Jack A. Thorne, Automorphy lifting for residually reducible [-adic Galois represen-
tations, J. Amer. Math. Soc. 28 (2015), no. 3, 785-870. MR3327536

[TO1970] John Tate and Frans Oort, Group schemes of prime order, Ann. Sci. Ecole Norm.
Sup. (4) 3 (1970), 1-21. MR265368

[Urb2011] Eric Urban, Eigenvarieties for reductive groups, Ann. of Math. (2) 174 (2011), no. 3,
1685-1784. MR2846490

[Wei1956] André Weil, On a certain type of characters of the idéle-class group of an algebraic
number-field, Proceedings of the international symposium on algebraic number
theory, Tokyo & Nikko, 1955, 1956, pp. 1-7. MR0083523

[Wil1988] A. Wiles, On ordinary A-adic representations associated to modular forms, Invent.
Math. 94 (1988), no. 3, 529-573. MR969243

[WXZ2017] Daqing Wan, Liang Xiao, and Jun Zhang, Slopes of eigencurves over boundary
disks, Math. Ann. 369 (2017), no. 1-2, 487-537. MR3694653

[Ye2019] Lynnelle Ye, Slopes in Eigenvarieties for Definite Unitary Groups, ProQuest LLC,
Ann Arbor, MI, 2019. Thesis (Ph.D.)-Harvard University. MR4197772

[Ye2020] , A modular proof of the properness of the coleman—mazur eigencurve,
arXiv preprint arXiv:2010.10705 (2020).
[Ye2021] , Math 249b, winter 2021: Newton-thorne symmetric power automorphy

lifting, 2021. Lecture notes from course taught by Richard Taylor, Stanford Uni-

versity.

[EGA] Alexander and Jean Dieudonné Grothendieck, Eléments de géométrie algébrique, Publi-
cations Mathématiques de I'THES. 1960-1967.

133


http://www.ams.org/mathscinet-getitem?mr=2514094
http://www.ams.org/mathscinet-getitem?mr=1976398
http://www.ams.org/mathscinet-getitem?mr=3554506
http://www.ams.org/mathscinet-getitem?mr=0231827
http://www.ams.org/mathscinet-getitem?mr=3327536
http://www.ams.org/mathscinet-getitem?mr=265368
http://www.ams.org/mathscinet-getitem?mr=2846490
http://www.ams.org/mathscinet-getitem?mr=0083523
http://www.ams.org/mathscinet-getitem?mr=969243
http://www.ams.org/mathscinet-getitem?mr=3694653
http://www.ams.org/mathscinet-getitem?mr=4197772

[SGA3.] Philippe and Polo Gille Patrick (ed.), Schémas en groupes (SGA 3). Tome I. Propriétés
générales des schémas en groupes, Documents Mathématiques (Paris), vol. 7, Société
Mathématique de France, Paris, 2011. Séminaire de Géométrie Algébrique du Bois
Marie 1962-64. A seminar directed by M. Demazure and A. Grothendieck with the
collaboration of M. Artin, J.-E. Bertin, P. Gabriel, M. Raynaud and J-P. Serre. Revised
and annotated edition of the 1970 French original.

134



	Abstract
	Acknowledgements
	Introduction
	Langlands functoriality
	Galois representations associated to automorphic forms
	Algebraic Hecke characters and Galois representations
	Hodge–Tate decomposition of Weil's p-adic representations associated to Algebraic Hecke characters, and the Fontaine–Mazur conjecture for GL1

	The Sato–Tate conjecture

	Eigenvarieties
	The concept of a p-adic overconvergent automorphic form
	Overconvergent modular forms, à la Katz and Coleman
	The level at p à la Katz and Coleman
	Weights and weight space
	Classical p-adic automorphic representations
	Overconvergent p-adic automorphic forms
	Interlude: the level at p à la Buzzard–Chenevier–Loeffler–Ye
	The Atkin–Lehner algebra
	Atkin–Lehner theory and refined automorphic representations

	Construction of Eigenvarieties, à la Emerton–Newton–Thorne
	Two alternative constructions
	Accumulation of classical points
	Classicality theorems, d'après Chenevier and Newton–Thorne


	Analytic continuation of symmetric power functoriality
	The trianguline variety
	Passing to definite unitary groups
	Bonus details on base-change

	Ping–Pong
	References

