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Abstract. These notes are about automorphic forms on GL2(R)+, and the applications
of their theory to problems in number theory and geometry. We cover three pieces of the
theory: the connection to representation theory and the classification of (g,K)-modules for
GL2(R)+, the application via the Selberg trace formula to prime geodesic theorems, and the
further use of those to prove averaging results about class numbers of real quadratic fields.
We follow the references of Bump and Langlands for the general theory of automorphic
forms and representations, and Sarnak’s articles and Hejhal’s book for the applications of
the trace formula.
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1. Introduction

One extremely useful way to think about modular forms is as sections of line bundles
on modular curves. In particular, a classical holomorphic modular form of weight 2k for a
congruence subgroup Γ ⊂ SL2(Z) is the same thing as a meromorphic section of (Ω1

X(Γ)/C)⊗k

with certain restrictions on the poles (see [23, Ch. 1]). One constructs a line bundle ω which
is the pushforward on X(Γ)/C of the sheaf of differentials on the universal elliptic curve,
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2 KENZ KALLAL

and defines the modular forms of weight k to be the global sections of ω⊗k (for even k this
coincides with the definition as k-fold differentials via the Kodaira–Spencer isomorphism).
With this viewpoint, there is a systematic way to compute dimCMk(Γ,C) or dimC Sk(Γ,C),
by applying the Riemann–Roch theorem and computing the genus of X(Γ) using Riemann–
Hurwitz. This type of technique does not appear in this paper. Instead, this paper will partly
be about the theory of automorphic forms, especially on GL2(R), of which the holomorphic
modular forms are an example. If we decide that computing dimMk and dimSk is a good
test of how useful a viewpoint on modular forms is, then the theory of automorphic forms
certainly passes the test: one can derive formulae for dimSk using the Arthur-Selberg trace
formula, which in fact also gives formulae for the traces of all the Hecke operators acting on
Sk (one modern reference is [13], but it was done by Selberg [21]; see also Duflo–Labesse [5]).
This belongs to the theory of automorphic forms on GL2(AQ), where the Hecke operators
are most naturally defined. The theory of automorphic forms is the setting of one side of the
conjectural Langlands correspondence. The Arthur–Selberg trace formula itself is moreover a
crucial tool underpinning many results in the Langlands program: for instance, the Jacquet–
Langlands correspondence, the base change lift, and the Langlands–Tunnel theorem, all of
which are key features of Wiles’ and Taylor–Wiles’ proof of Fermat’s last theorem. This is to
say that when it comes to modular forms, there is more to life than sections of line bundles
on modular curves.

This paper is not about the Langlands program, and in fact we will not discuss automorphic
forms on adelic groups at all. Instead, we write about something which is more concrete in
two ways:

(1) We will only consider the group GL2, as opposed to arbitrary reductive algebraic
groups.

(2) We will take R-points rather than AQ-points.

Despite the simplicity of this situation compared to the general adelic context, it is still of
obvious arithmetic significance: the Maass forms and holomorphic modular forms can still
be seen as automorphic forms on GL2(R). In this paper, we explain the use of the Selberg
trace formula in this setting, where it may be used to relate the spectral theory of the
Laplace-Beltrami operator ∆ on a compact Riemann surface of genus g ≥ 2 to the asymptotic
behavior of the number of (prime) geodesics of bounded length onX. This technique may also
be extended to the case of noncompact finite-volume quotients of the upper half-plane (e.g.
the uncompactified modular curves Y (Γ)), where one must take into account the continuous
part of the spectrum of ∆. We will also discuss a fascinating application to arithmetic, also
discovered by Sarnak: such a prime geodesic theorem for uncompactified modular curves
results in an asymptotic formula for averages of class numbers of real quadratic fields, one of
the most successful attempts to decouple the regulator from the class number in the classical
Gauss–Siegel asymptotic formula.

In the interest of length, we have made the choice to include enough technical arguments
from analysis to fully prove everything relating to the cuspidal part of the spectrum, and
omit everything that requires knowledge of the Eisenstein series.

These notes are organized as follows. In the short Section 2, we will follow Bump [3,
Ch. 2] in explaining how to view modular forms and Maass forms as automorphic forms
on GL2(R), and set the stage for the application of representation theory. In Section 3,
we follow Bump [3, Ch.2-3], Langlands [16], and Knapp [12] in carrying out the necessary
representation-theoretic and analytic arguments to establish the necessary basic results in
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infinite-dimensional representation theory of GL2(R), though our proofs are built to gener-
alize to arbitrary reductive Lie groups. In that section, we will see that understanding the
decomposition of the right regular representation of GL2(R)+ hinges on understanding the
spectrum of the Laplace–Beltrami operator on quotients of the Poincaré upper half-plane. In
Section 4, we discuss the Selberg trace formula following Hejhal [10], prove it fully under the
assumption that Γ is hyperbolic and Γ\H is compact, and explain how to apply it following
Sarnak’s thesis [19].

2. Automorphic forms on GL2(R)

Life begins with the upper half-plane

H = {x+ iy ∈ C : y > 0},

on which the holomorphic modular forms and Maass forms are functions. The way to
view them as automorphic forms on GL2(R) is as follows. Acting on the left by fractional
linear transformations, the connected component GL2(R)+ acts transitively on H (if the
determinant is negative then H gets sent to the lower half-plane). The map

GL2(R)+ → H

g 7→ g(i)

is therefore surjective. One checks explicitly that the stabilizer of i is

Z◦K◦ = R×>0 · SO2(R) ⊂ GL2(R)+,

where Z ∼= R× is the center of GL2(R), i.e. the subgroup of scalar matrices, K = O2(R)
is a maximal compact subgroup of GL2(R), and Z◦ and K◦ are their respective connected
components. The subgroups ZK,Z◦K◦ ⊂ GL2(R) are closed1. So as a 2-dimensional
manifold, we have

H ∼= GL2(R)+/Z◦K◦ ∼= PGL2(R)+/SO2(R) ∼= PGL2(R)/O2(R) ∼= GL2(R)/ZK.

Since ZK is not normal in GL2(R), this does not equip H with any Lie group structure,
but this isomorphism still preserves the action of GL2(R) on the left. And for any discrete
subgroup Γ ⊂ GL2(R) acting nicely enough2 on H, the quotient Γ\H can be seen as a double
coset space

Γ\GL2(R)+/Z◦K◦.

When Γ expresses a level structure on the set of isomorphism classes of elliptic curves, this
double coset space is, compared to the modular curve Y (Γ), an equally valid way of thinking
about the corresponding moduli problem. For example, if Γ = SL2(Z), then this double
coset space is clearly in natural bijection with the set of full-rank lattices in R2 ∼= C up to
isomorphism given by multiplication by a nonzero complex number. Recall

1For example, because it consists of the 2 × 2 invertible matrices of the form

(
a b
−b a

)
; being of this form

is clearly a closed condition in R4, so after intersecting with GL2(R) it is closed.
2“nicely enough” just needs to be “so that the quotient actually is a manifold. We can take this to be the
weak version of “properly discontinuous” in which each x ∈ H has a neighborhood U such that the set of
g ∈ Γ such that gU ∩ U 6= ∅ is finite.
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Definition 2.1 (Maass forms). Let k ≥ 0 be an integer and χ : Γ → C× a character. A
Maass form of weight k and character χ is a smooth function

f : H→ C

satisfying

f(γz) = χ(γ)

(
cz + d

|cz + d|

)k
f(z)

for all

γ =

(
a b
c d

)
∈ γ,

∆kf = λf

for some constant λ, where ∆k is the weight-k Laplacian

∆k = −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

∂

∂x
,

and also satisfying a polynomial growth condition at the cusps of Γ\H.

The point of the above observations is that the Maass forms of weight3 0 can be considered
as elements of the complex Hilbert space

L2(Γ\GL2(R)+/Z◦K◦, χ) = L2(Γ\PGL2(R)+/K◦, χ)

consisting of the measurable functions f : GL2(R)+ → C with the property that4

f(γguκ) = χ(γ)f(g)

for all γ ∈ Γ, g ∈ GL2(R)+, u ∈ Z◦, κ ∈ K◦ and∫
Γ\PGL2(R)

|f(x)|2 dx <∞

where dx is the Haar measure on PGL2(R). Since K,K◦ are compact, the choice of whether
to quotient out by K◦ in the domain of integration is irrelevant.

This L2 space is really only useful insofar as we can use representation theory to study
it. We would want to define a left action of GL2(R)+, via right regular representation
(g · f)(x) = f(xg). The problem with this is that K◦ is not in the center of GL2(R)+, so
this action would not take L2(Γ\GL2(R)/ZK, χ) to itself.

This is maybe the motivation for removing the requirement of K-invariance, and consid-
ering the larger Hilbert space

H = L2(Γ\PGL2(R)+, χ),

which admits a left-action of GL2(R)+ (namely the right regular action). The space of
smooth vectors for this action is

C∞(Γ\GL2(R)+/Z◦, χ),

defined in the obvious way. It is a general fact that the smooth vectors are dense:

3We are about to explain the representation-theoretic reason for the definition of Maass forms of general
weight.
4We can also add a choice of “central character” ω : Z → S1 with the obvious change to the definition, but
this is not very relevant to the current discussion. The inclusion of the χ is just to reassure the reader that
modular forms with Nebentypus character can be dealt with in this setting.
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Lemma 2.2. Let π : G→ End(H) be a representation of a Lie group G into a Hilbert space
H. The space of smooth vectors for this representation, H∞, is dense in H.

Proof. The method is by convolution by a smooth function φ ∈ C∞c (G). Let

π(φ)v =

∫
G

φ(g)π(g)v dg,

which is well-defined for all v ∈ H because φ is compactly supported. In the toy model where
π is the left regular representation and H = L2(G), this is the same as convolving a function
in that L2 space with φ.

Let g be the Lie algebra of G. For any v ∈ H, φ ∈ C∞c (G), and X ∈ g, we have

d

dt

∣∣∣∣
t=0

π(exp(tX))π(φ)v =
d

dt

∣∣∣∣
t=0

π(exp(tX))

∫
G

φ(g)π(g)v dg

=
d

dt

∣∣∣∣
t=0

∫
G

φ(g)π(exp(tX)g)v dg

=
d

dt

∣∣∣∣
t=0

∫
G

φ(exp(−tX)g)π(g)v dg

=

∫
G

(
d

dt

∣∣∣∣
t=0

φ(exp(−tX)g)

)
π(g)v dg

where the differentiation under the integral sign is okay because φ and d
dt

∣∣
t=0
φ(exp(−tX)g)

are compactly supported on G. So the action of g on π(φ)v is well-defined and results in
another thing of the form π(φ′)v, where φ′ = d

dt

∣∣
t=0
φ(exp(−tX)g) is also in C∞c (G) and

supported in the support of φ. It follows that the same argument we just did applies
arbitrarily many times, which shows that π(φ)v ∈ H∞.

Now the point is that we can approximate a given v ∈ H with these smooth vectors π(φ)v.
Let v ∈ H, ε > 0, and take an open set U ⊂ G around the identity with the property that
|π(g)v − v| < ε for all g ∈ U . This is possible because the function g 7→ |π(g)f − f | is
continuous. By general theory of smooth manifolds, there exists a φε ∈ C∞(G) such that φ
is supported on U , and

∫
G
φε = 1. Then

|π(φε)v − v| =
∣∣∣∣∫
G

φε(g)(π(g)v − v) dg

∣∣∣∣ ≤ ∫
G

φε(g)ε ≤ ε.

Since we showed that π(φε)v ∈ H∞, this shows that H∞ is dense in H, as desired. �

So the Maass forms and modular forms of weight zero and character χ live in the dense
subspace of smooth vectors

C∞(Γ\GL2(R)/ZK, χ) ⊂ L2(Γ\GL2(R)/ZK, χ) ⊂ L2(Γ\GL2(R)+/Z◦, χ).

In fact, L2(Γ\GL2(R)/ZK, χ) is precisely the set ofK-fixed vectors in L2(Γ\GL2(R)+/Z◦, χ),
in other words the K◦-isotypic subspace for the trivial representation of K◦. To see the
modular forms and Maass forms of arbitrary weight, we must look at all the K◦-isotypic
subspaces. This is a general technique in representation theory: when you have a Hilbert
space representation of a group G, restrict it to a maximal compact subgroup K and use
the representation theory of compact groups to your advantage. In our case, there are two
reasons why it is more convenient to think about the connected component G = GL2(R)+

rather than GL2(R):
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(1) It is more naturally connected to the upper half-plane, since the fractional linear
transformations of negative determinant take the upper half-plane to the lower half-
plane

(2) The maximal compact subgroup K◦ ⊂ GL2(R)+ is abelian, whereas K = O2(R) is
not.

These things don’t make a big difference, because PGL2(R)/O2(R) ∼= PGL2(R)+/SO2(R),
and it isn’t hard to write down the irreducible representations of O2(R) by induction from
SO2(R).

We started with the weight-0 modular and Maass forms of character χ, which are in the
trivial K◦-isotypic subspace of L2(Γ\PGL2(R)+, χ). The irreducible unitary representations
of K◦ = SO2(R) ∼= S1 are all 1-dimensional and given by the characters κθ 7→ eikθ for k ∈ Z,
where κθ ∈ SO2(R) is a counterclockwise5 rotation by θ ∈ [0, 2π). So by the Peter–Weyl
theorem, we have a decomposition as a Hilbert space direct sum

L2(Γ\PGL2(R)+, χ) =
⊕
k∈Z

L2(Γ\PGL2(R)+, χ, k)

where L2(Γ\PGL2(R)+, χ, k) is theK-isotypic subspace corresponding to the character κθ 7→
e−ikθ of K◦. Generalizing the fact that C∞(Γ\PGL2(R)+/SO2(R), χ) contains the Maass
forms of weight 0, the smooth vectors in these K-isotypic components correspond to Maass
forms of weight k. To get from a function on the upper half-plane to an element of the weight-
k K-isotypic subspace, we can’t simply transfer the function over using the isomorphism H ∼=
GL2(R)+/Z◦K◦, since that function would always be in the isotypic subspace corresponding
to k = 0. Instead, one must twist by the appropriate character of K◦, using the Iwasawa
decomposition. From this we recover the symmetry condition satisfied by Maass forms of
weight k: let L2(Γ\H, χ, k) be the subspace of L2(H) defined by the condition

f(γz) = χ(γ)

(
cz + d

|cz + d|

)k
f(z), γ =

(
a b
c d

)
∈ Γ.

Lemma 2.3. The map

σk : L2(Γ\H, χ, k)→ L2(Γ\PGL2(R)+, χ, k)

given by
(σkf)(g) = e−ikθgf(xg + iyg),

where θg, xg, yg are defined via the Iwasawa decomposition

g =

(
y1/2 y−1/2x

0 y−1/2

)
κθ,

is an isomorphism of Hilbert spaces.

Proof. The fact that this map is a Hilbert space (unitary) map follows from the fact that
the Haar measure on PGL2(R)+ pushes forward under the map PGL2(R)+ → H to the
measure coming from the hyperbolic metric on H. To check this, one just needs to compute
the left Haar measure on {(

y1/2 y−1/2x
0 y−1/2

)
: y > 0

}
.

5N.B.: this convention is the opposite of what is used in Bump, which explains why some of our formulas
differ slightly from his.
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To recover f from σkf , we just take f(x + iy) = (σkf)

(
y x
0 1

)
, which works because

the K-component of this matrix in the Iwasawa decomposition is zero. It just remains
to check that σkf being a eikθ-simultaneous eigenvector for the action of K is equivalent
to f satisfying the symmetry property for Maass forms of weight k. This is because if
σkf = F ∈ L2(Γ\PGL2(R)+, χ, k), then

f(γ · (x+ iy)) = F

((
y′ x′

0 1

))
= F

(
γ

(
y x
0 1

)
κ−1
θ′

)
= eikθ

′
χ(γ)f(x+ iy),

where x′ + iy′ := γ · (x+ iy) and θ′ is defined by the Iwasawa decomposition

γ

(
y x
0 1

)
=

√
y

y′

(
y′ x′

0 1

)
κθ′ .

So we just need to compute θ′ in terms of γ and x + iy. I don’t know how to do it by pure
thought, but the computation isn’t that bad:

κθ′ =

√
y′

y

(
y′ x′

0 1

)−1(
a b
c d

)(
y x
0 1

)
= (yy′)−1/2

(
1 −x′
0 y′

)(
ay ax+ b
cy cx+ d

)
=
|cz + d|

y

(
∗ ∗
cyy′ cxy′ + dy′

)
=

1

|cz + d|

(
∗ ∗
cy cx+ d

)
so

cos θ + i sin θ =
cz + d

|cz + d|
,

and thus

f(γ · (x+ iy)) = χ(γ)

(
cz + d

|cz + d|

)k
f(x+ iy)

as desired. �

So we have provided a natural explanation of the symmetry condition satisfied by the
Maass forms of weight k in terms of the representation theory of PSL2(R)+. Where do the
modular forms fit into this picture? Actually the answer is very simple.

Lemma 2.4. Suppose that f : H → C is a modular form of weight k and character χ for
Γ. Then

yk/2f ∈ C∞(Γ\H, χ, k).

Proof. This is a straightforward observation about the relationship between the symmetry
conditions satisfied by modular forms and Maass forms. In particular,

(=(γ · z))k/2f(γ · z) =
yk/2

|cz + d|k
(cz + d)kχ(γ)f(z) =

(
cz + d

|cz + d|

)k
χ(γ)yk/2f(z)

as required. �
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So from the perspective of representation theory, the theory of modular forms is subsumed
by the theory of Maass forms. Note that we haven’t yet accounted for the entirety of the
definition of a Maass form: we are still missing

(1) The growth condition at the cusps
(2) The requirement of being an eigenvalue for the Laplace operator

When there are no cusps (when Γ\H is compact), (1) is irrelevant; and even then, it won’t
be necessary in our discussion to think about the growth condition because we will only need
the discrete part of the spectrum, and probably only the cuspidal forms. (2) we can think
of in the language of representation theory in terms of a decomposition into eigenspaces for
the Casimir element.

3. The representation theory

Now that we have established the connection that Maass forms and modular forms have
with the right regular representation of GL2(R)+ on L2(Γ\PGL2(R)+, χ), we should study
that representation more systematically.

3.1. The Lie algebra action and Maass–Shimura operators. Since C∞(Γ\PGL2(R)+, χ)
are the smooth vectors in L2(Γ\PGL2(R)+, χ), they admit an action of the universal en-
veloping algebra U(g), induced from the right regular representation of GL2(R) on this L2

space. The Laplacian on the upper half-plane, which we might originally justify as being the
Laplace-Beltrami operator for the Poincaré upper half-plane, turns out to transfer over to
this setting as the Casimir element of U(g). In fact, it is generally true that if you choose a
bi-invariant metric on a Lie group G, then the Laplacian with respect to that metric coincides
with the Casimir element corresponding to the induced inner product on the Lie algebra g.

From now on, the Lie group G is GL2(R)+, with maximal compact K = SO2(R) (this
replaces the previous convention of K being a maximal compact of GL2(R)). The center
of U(g ⊗ C) is Z = C[∆, Zg], where ∆ is the Casimir element with respect to the Killing
form. We can choose a Cartan subalgebra hC ⊂ g⊗C, given by the diagonal matrices. It is
spanned over C by

Zg =

(
1 0
0 1

)
, H =

(
1 0
0 −1

)
.

Note that here the center of G, Z = R×>0, is distinguished in our notation from the Lie
algebra vector sitting on top of it, Zg.

The real subspace consisting of real diagonal matrices is also spanned over R by Z and H,
and is a Cartan subalgebra of g. We should be aware that the exponential map sends this
choice of h to the abelian subgroup of G given by diagonal matrices with positive entries.
This is inconvenient for us, because we want this to contain a maximal compact of G (so
that we can compare the action of H to the action of a maximal compact). It does contain
such a maximal compact, but only of GL2(C): those elements are

exp(iθH) =

(
eiθ 0
0 e−iθ

)
.

We need to perform a change of variables to make the entries real. The canonical way of
doing this is to conjugate by the Cayley transform

C = −i+ 1

2

(
i 1
i −1

)
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and if we set Ĥ = CHC−1 we have

exp(iθĤ) =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
= κ−θ ∈ K = SO2(R).

Despite the fact that the actual matrix Ĥ =

(
0 −i
i 0

)
is not as nice, we prefer to use this one

because a decomposition of a K-finite representation of G into K-isotypic subspaces should
correspond to a decomposition into eigenspaces of H. Since the compact abelian Lie group
K is just S1, such a K-finite representation V of G decomposes as an algebraic direct sum

V =
⊕
k∈Z

V (k)

where V (k) is the isotypic component corresponding to the 1-dimensional representation of
K given by the character

κθ 7→ e−ikθ.

If V is the space of K-finite vectors in L2(Γ\G,χ), then in the previous section we saw that
Maass forms and modular forms of weight k and character χ for Γ can be thought of as
elements of V (k). By virtue of the way we changed variables via the Cayley transform, this

decomposition is also an eigenspace decomposition for the action of Ĥ, since

iĤv =
d

dt

∣∣
t=0

exp(itĤ)v

=
d

dt

∣∣
t=0
eiktv

= ikv

for v ∈ V (k), which means that V (k) is exactly the k-eigenspace of the action of Ĥ ∈ g⊗RC
on V .

Back in the setting of H and Z rather than their Cayley-transformed siblings, it is conve-
nient that g⊗C is reductive: it splits into

sl2(C)⊕C · Z,

where we know that sl2(C) is simple (e.g. from the theory of its root system) and CZ is
abelian. In particular, there is a maximal abelian subalgebra of sl2(C) spanned by H (or

Ĥ), and a root space decomposition

sl2(C) = C ·H ⊕C · L⊕C ·R,

where

L :=

(
0 0
1 0

)
, R :=

(
0 1
0 0

)
span the −2 and +2 root spaces, respectively (since they are eigenvectors for the adjoint
action of H with [H,L] = −2L and [H,R] = 2R). This is just the standard root space
decomposition for the semisimple Lie algebra sl2(C). If we conjugate by the Cayley transform
(which is in SL2(C) which of course has a well-defined adjoint action on sl2(C)) we get a
slightly less standard root space decomposition

sl2(C) = C · Ĥ ⊕C · L̂⊕C · R̂,
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which has the advantage that the abelian subalgebra C · Ĥ acts nicely on the decomposition
of V into K-isotypic subspaces. We still have

[Ĥ, L̂] = −2L̂, [Ĥ, R̂] = +2R̂

so since the decomposition of V into V (k)’s is a weight-space decomposition for V , the

operator L̂ decreases the H-eigenvalue by 2, and R̂ increases it by 2. Translating to the
language of functions on the upper half-plane, these produce differential operators which
raise and lower the weight of Maass forms by 2.

When we think about GL2(R)+ instead, the only difference is that the Lie algebra has
nontrivial center, namely C · Zg. But since this is in the center, it necessarily acts on
everything via the adjoint action by 0. And in the case we care about, namely the space
of K-finite vectors in L2(Γ\PGL2(R)+, χ), the action of Z and thus Zg is also trivial. So
these issues about the center will not be important for us, and all the important features
that have to do with the Lie-algebra are contained in the subalgebra sl2C.

In the automorphic forms learning seminar, B. Lawrence asked the following question,
which is really at the heart of the theory of this right regular representation, and what
distinguishes the Maass forms that come from holomorphic modular forms (see Lemma 3.2)
from the others.

Question 3.1. If you take a generic Maass form, and repeatedly apply R̂ or L̂, does it
eventually vanish?

The answer to this question is key to the distinction between the two main types of
infinitesimal equivalence classes of representations of G: the principal series and the discrete
series representations. The basic idea is that the distinction is based on whether f comes
from an (anti-)holomorphic modular form.

Lemma 3.2. Let f ∈ C∞(Γ\G,χ, k) be nonzero.

(1) L̂f = 0 if and only if y−k/2σ−1
k f is a holomorphic modular form.

(2) R̂f = 0 if and only if yk/2σ−1
k f is an antiholomorphic modular form.

Proof. In the coordinates on G coming from the Iwasawa decomposition

g =

(
u

u

)(
y1/2 y−1/2x

y−1/2

)
κθ,

the Maass–Shimura differential operators may be explicitly given by

R̂ = e−2iθ

(
iy
∂

∂x
+ y

∂

∂y
− 1

2i

∂

∂θ

)
L̂ = e2iθ

(
−iy ∂

∂x
+ y

∂

∂y
+

1

2i

∂

∂θ

)
so for a function F ∈ C∞(Γ\H, χ, k), we have

σk+2R̂σkF =

(
iy
∂

∂x
+ y

∂

∂y
+

1

2
k

)
F

σk−2L̂σkF =

(
−iy ∂

∂x
+ y

∂

∂y
− 1

2
k

)
F.
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So as maps from C∞(Γ\H, χ, k) to k ± 2, the Maass differential operators are given by

R̂ = (z − z)
∂

∂z
+

1

2
k

L̂ = −(z − z)
∂

∂z
− 1

2
k

F ∈ C∞(Γ\H, χ, k) being killed by R̂ is therefore equivalent to yk/2F (considered abstractly
as a function on H) being killed by (z − z) ∂

∂z
, since

(z − z)
∂

∂z
(yk/2F ) = yk/2R̂F.

By the Cauchy–Riemann equations, this is equivalent to yk/2F being antiholomorphic. Sim-
ilarly, F being killed by L̂ is equivalent to y−k/2F being holomorphic. �

We have now further understood the Lie algebra action on the right regular representa-
tion on the smooth vectors of L2(Γ\G/Z, χ). This will be necessary to understand how it
decomposes into irreducible components.

3.2. Decomposition into irreducible subspaces. We want to analyze how the right reg-
ular representation (π,H) decomposes into irreducible components. Since it is unitary, by
Zorn’s lemma it suffices to show that any closed subrepresentation contains an irreducible
subrepresentation. The full problem is quite difficult, because of the presence of the contin-
uous spectrum, which is part of the spectrum of ∆ given by a direct integral of Eisenstein
series. So we only consider two cases which are actually relevant to us.

(1) In the easiest case, Γ\H is compact, and there is no continuous spectrum. This ex-
cludes the case where Γ is a congruence subgroup of SL2(Z), so it seems like it is not
very relevant to arithmetic. However, it is relevant to geometry: by the uniformiza-
tion theorem for compact Riemann surfaces, the compact Riemannian manifolds Γ\H
(when this space is actually compact) account for all the compact Riemann surfaces
of genus g ≥ 2.

(2) In a somewhat more complicated case, Γ is a congruence subgroup of SL2(Z). In this
case, Γ\H = Y (Γ) is not compact, and has some finite number of cusps. The non-
cusp part of L2(Γ\G/Z, χ) is given as a direct integral of Eisenstein series, and we will
not discuss it. Instead, in this case, we will consider the right regular representation
on the cuspidal part L2

cusp(Γ\G/Z, χ) which is defined by the further restriction of
going to zero at the cusps. It is of course not enough to restrict to “vanishing at the
cusps,” since elements of L2 are only considered up to equality almost everywhere,
and besides they are not a priori functions on the compactified modular curve: one
way to rigorously define a cuspidal element of L2 is by using Fourier expansions at
the cusps of Γ\G.

Remark 3.3. If we want to keep going forward with the most general χ : Γ → S1, we need
to keep straight what the notion of cuspidal should be. The definition of cuspidal is obvious
when χ|Γ∩N = 1: in that case, f is periodic, so we say that f is cuspidal at ∞ if∫

(Γ∩N)\N
f (ng) dn = 0
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for almost all g. The function g 7→ f(γg) = χ(γ)f(g) is also periodic, so f is said to be
cuspidal at the cusp ξ∞ if ∫

(Γ∩N)\N
f
(
ξ−1ng

)
dn = 0.

When χ has finite image (true of the most important case, when χ is a nebentypus character)
and χ|Γ∩N 6= 1, f is periodic with respect to horizontal translations, but not by everything
in Γ ∩N : one must restrict to the kernel, which is the constant Fourier coefficient at ∞ is

f(∞) =
1

µ((kerχ ∩N)\N)

∫
(kerχ∩N)\N

f(ng)

=
1

µ((kerχ ∩N)\N)

∑
γ∈(kerχ∩N)\(Γ∩N)

∫
(Γ∩N)\N

f(γng)

=
1

µ((kerχ ∩N)\N)

 ∑
γ∈(kerχ∩N)\(Γ∩N)

χ(γ)

∫
(Γ∩N)\N

f(ng)

= 0.

If χ does not have finite image, this exact argument doesn’t work: there are convergence
issues. A reasonable way to proceed is to use the Iwasawa decomposition G = N × A ×K
and define

F (nak) = χ(n)−1f(nak),

which really is periodic with respect to the translations in Γ∩N . Since χ has infinite image,
any extension to N ∼= (R,+) must be of the form

χ :

(
1 t
0 1

)
7→ e2πiλχ ,

where λχ is irrational. So f has a Fourier expansion which is e2πiλχ times the Fourier
expansion of f , and thus has no constant term (here we are transferring over to H, i.e. fixing
a coordinate in K, to be able to talk about Fourier expansions in elementary terms).

The above remark is the reason for

Definition 3.4. A function f ∈ L2(Γ\G,χ) is cuspidal at ∞ if χ|Γ∩N 6= 1 or otherwise if∫
(Γ∩N)\N

f(ng) dn = 0

for almost all g ∈ G. It is cuspidal if g 7→ f(ξ−1g) is cuspidal at ∞ as an element of
L2(ξΓξ−1\G/Z, χ) for enough ξ ∈ SL2(Z) such that {ξ∞} exhausts all cusps of Γ.

We will establish, regardless of the compactness of Γ\H, that the relevant Hilbert space
representation of G = GL2(R)+ decomposes as a Hilbert space direct sum of irreducible
representations. The key point in these arguments is the judicious use of the spectral theorem
for compact self-adjoint operators. These compact operators will be obtained by convolution
by smooth functions.

From now on, we adapt the convention that (π,H) is the unitary Hilbert space right regular
representation of G on the space L2(Γ\G/Z, χ) in the case of compact quotient, and on the
cuspidal part of that space otherwise. The following two lemmas were proved in greater
generality by Langlands [16], but the basic ideas are contained in these proofs for GL2(R).
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The first is an obligatory estimate. The reader should feel free to skip it, but be aware that
it is the only place where the cuspidality is an input. So the difficulties of the continuous
spectrum are due to the failure of this estimate to hold when not restricted to the cuspidal
part.

Lemma 3.5. Suppose φ ∈ C∞c (G) and Γ ⊂ SL2(Z) is a congruence subgroup. Then there
exists a constant Cφ,Γ,χ depending only on φ, χ and Γ such that

‖π(φ)f‖L∞ ≤ Cφ,Γ,χ‖f‖L2

for all f ∈ L2
cusp(Γ\G/Z, χ).

Proof. The simplest way to carry out an estimate like this is to construct a crude approxima-
tion of a fundamental domain for Γ\G/Z, from the standard knowledge of how Γ\H works.
The Siegel set defined via the Iwasawa decomposition

Gc,d :=

{
u

(
y1/2 y−1/2x

0 y−1/2

)
κ : 0 ≤ x ≤ d, y ≥ c, u ∈ Z, κ ∈ K

}
contains a fundamental domain for SL2(Z)\G if c, d > 0 are chosen correctly. Choose them
correctly, and fix those values. Depending on the choice of Γ, there is a list of finitely many6

ξi ∈ SL2(Z) which take ∞ to each of the cusps, and thus⋃
i

ξiGc,d

contains a fundamental domain for Γ\G. Therefore, it suffices to show that

sup
g∈Gc,d

|(π(φ)f)(g)| ≤ Cφ,Γ,χ‖f‖L2

for some Cφ,Γ,χ only depending on φ,Γ, χ. This suffices, because for ξ ∈ {ξi} ⊂ SL2(Z), the
function

F : g 7→ f(ξ−1g)

is in L2
cusp(ξΓξ−1\G/Z, χ). Applying the bound over Gc,d to this function, we have

sup
g∈Gc,d

|(π(φ)F )(g)| ≤ Cφ,ξΓξ−1,χ‖F‖L2 .

The right hand side is equal to Cφ,ξΓξ−1,χ‖f‖L2 , and the left hand side is equal to supg∈ξGc,d |(π(φ)f)(g)|.
So if we can establish this inequality for the sup over Gc,d for arbitrary congruence subgroups
Γ and c, d > 0, then we have

sup
g∈G
|(π(φ)f)(g)| ≤ (max

i
Cφ,ξΓξ−1,χ)‖f‖L2

as desired. For convenience, suppose that Γ ∩N is generated by(
1 n0

0 1

)
where n0 ∈ Z. Now we have a canonical choice of fundamental domain for (Γ ∩ N)\N ,
namely

NΓ =

{(
1 x
0 1

)
: 0 ≤ x < n0

}
.

6since there are finitely many cusps
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Using the Iwasawa decomposition, there is a fundamental domain for (Γ∩N)\G/Z given by
NΓ × A×K, where

A =

{(
y 0
0 1

)
: y > 0

}
.

To carry out this estimate, we rewrite π(φ) as an integral operator and estimate the kernel.
In particular, for arbitrary g ∈ G,

(π(φ)f)(g) =

∫
G

φ(g−1h)f(h) dh

=

∫
(Γ∩N)\G/Z

∑
γ∈Γ∩N

∫
Z

f(γhu)φ(g−1γhu) dy = u dh

=

∫
(Γ∩N)\G/Z

f(h)
∑

γ∈Γ∩N

χ(γ)

∫
Z

φ(ug−1γh) du dh

=

∫
NΓ×A×K

f(h)
∑
n∈Z

χ

((
1 n0n
0 1

))∫
Z

φ

(
g−1

(
1 n0n
0 1

)
h

)
du dh.

The integral over Z is necessary even in the absence of a central character, since we need it
to be invariant under multiplication by elements of Z.

Since χ extends to a character of N ∼= (R,+), we can by abuse of notation define

Φg,h(t) = χ

((
1 n0t
0 1

))∫
Z

φ

(
ug−1

(
1 n0t
0 1

)
h

)
du

a smooth function on R. So we have written π(φ) as an integral operator

(π(φ)f)(g) =

∫
NΓ×A×K

f(h)
∑
n∈Z

Φg,h(n).

The main task is therefore to estimate∑
n∈Z

Φg,h(n).

for h ∈ NΓ × A×K and g ∈ Gc,d.
Since φ is compactly supported on some compact set Ω ⊂ G,

φZ(g) =

∫
Z

φ(ug) du

is supported on ZΩ, where we can assume that Ω ⊂ SL2(R). Since φZ is invariant under Z,
we can also assume that g, h ∈ SL2(R). Therefore

g(ZΩ)h−1 ∩N = gΩh−1

since everything in gΩh−1 and N has determinant 1. It follows that Φg,h is compactly
supported. Hence Φg,h ∈ C∞c (R), which means Poisson summation applies:∑

n∈Z

Φg,h(n) =
∑
n∈Z

Φ̂g,h(n),

hence

(π(φ)f)(g) =

∫
NΓ×A×K

f(h)
∑
n∈Z

Φ̂g,h(n).
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Fourier transforms of smooth compactly-supported functions are nice, because they decay
very fast, in fact faster than any polynomial7. So when n 6= 0 the terms in this sum can be
controlled, which is what we do next. We need our bound to work over arbitrary y-coordinate
for h and yg ≥ c, though, so we need to take this apart a little more. Writing

h = uh

(
yh xh
0 1

)
κh, g = ug

(
yg xg
0 1

)
κg

we have (sine χ is unitary and φZ is Z-invariant)

|Φ̂g,h(n)| =
∣∣∣∣∫ ∞
−∞

χ

((
1 n0t
0 1

))
φZ

(
u−1
g uhκ

−1
g

(
y−1
g yh y−1

g (xh + n0t− xg)
0 1

)
κh

)
e−2πint dt

∣∣∣∣
=

∣∣∣∣∫ ∞
−∞

χ

((
1 n0t
0 1

))
φZ

(
κ−1
g

(
y−1
g yh y−1

g (xh + n0t− xg)
0 1

)
κh

)
e−2πint dt

∣∣∣∣
=

∣∣∣∣∫ ∞
−∞

χ

((
1 n0t
0 1

))
φZ

(
κ−1
g

(
y−1
g yh y−1

g n0t
0 1

)
κh

)
e−2πint dt

∣∣∣∣
= |yg|

∣∣∣∣∫ ∞
−∞

χ

((
1 n0ygt
0 1

))
φZ

(
κ−1
g

(
y−1
g yh n0t
0 1

)
κh

)
e−2πinygt dt

∣∣∣∣
= |yg|

∣∣∣∣∫ ∞
−∞

φZ

(
κ−1
g

(
y−1
g yh n0t
0 1

)
κh

)
e−2πi(n−λχn0)ygt dt

∣∣∣∣ .
This quantity is |yg| times the Fourier transform, evaluated at yg(n− λχn0), of the function

Fg,h : t 7→ φZ

(
κ−1
g

(
y−1
g yh n0t
0 1

)
κh

)
which is compactly supported and smooth for fixed g and h by the same argument as above.
Also, Fg,h is identically zero for y−1

g yh outside of some compact set in R>0: φZ is supported
on ZΩ for some compact Ω ⊂ SL2(R), and

K(ZΩ)K ∩
{(
∗ ∗
0 1

)}
is compact8, which means that the set of (y−1

g yh, t) ∈ R>0 × R for which Fg,h(t) 6= 0 is

contained in a compact set, hence the set of possible y−1
g yh is contained in a compact set9 as

well. We have shown
|Φ̂g,h(n)| = |yg||F̂g,h(yg(n− λχn0))|,

so since Fg,h ∈ C∞c (R) and only actually depends on κg, κh, y
−1
g yh and φ,Γ, for any N

|Φ̂g,h(n)| �κg ,κh,y
−1
g yh
|yg||yg(n− λχn0)|−N

where the implicit constant varies continuously in κg, κh, y
−1
g yh (it also depends on N but

we will only need one value of N). But we have shown that this constant may be chosen
to be 0 when y−1

g yh is outside of a compact subset S ⊂ R>0, which means (by taking the

7This is an exercise in integration by parts.
8It is the continuous image of K × Ω ×K under the map that multiplies all the coordinates together and
then normalizes so that the bottom-right coordinate is 1. One then intersects this with the closed condition
that the bottom-left coordinate is 0, which is fine.
9The image of a compact set under the continuous projection map is compact
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maximum of a continuous function on the compact set K ×K × S) there is a constant Bφ,Γ

depending only on φ,Γ such that

|Φ̂g,h(n)| ≤ Bφ,Γ|yg|1−N |n− λχn0|−N .

for all h, g (we haven’t yet used any restriction to fundamental domains). As a result,
choosing N = 2 so that the sum converges, there is a constant Bφ,Γ.χ such that∣∣∣∣∣∣∣

∑
n∈Z

n−λχn0 6=0

Φ̂g,h(n)

∣∣∣∣∣∣∣ ≤ |yg|−1Bφ,Γ

∑
n∈Z

n−λχn0 6=0

|n− λχn0|−2 ≤ Bφ,Γ,χ|yg|−1.

Since we are assuming g ∈ Gc,d, we have |yg| ≥ c, so the contribution of this term to
(π(φ)f)(g) is∣∣∣∣∣∣∣

∫
NΓ×A×K

f(h)
∑
n∈Z

n−λχn0 6=0

Φ̂g,h(n) dh

∣∣∣∣∣∣∣ ≤ c−1Bφ,Γ,χ

∫
NΓ×A×K

|f(h)| dh.

Unfortunately, this is not enough to bound anything, since f is not compactly supported.
However, we have already shown, for the purpose of controlling the constant, that the g, h

such that Φg,h (and thus the same is true of Φ̂g,h) is nonvanishing must satisfy y−1
g yh ∈ S for

some compact set S = [a, b] ⊂ R>0. Since we are only considering g with yg ≥ c, this means
that only h with

yh ≥ ac

contribute anything at all to the integral defining (π(φ)f)(g). So in fact we have the bound∣∣∣∣∣∣∣
∫
NΓ×A×K

f(h)
∑
n∈Z

n−λχn0 6=0

Φ̂g,h(n) dh

∣∣∣∣∣∣∣ ≤ c−1Bφ,Γ,χ

∫
0≤xh<n0
yh≥ac

|f(h)| dh.

The domain of integration here can be covered by finitely many translates of a fundamental
domain for Γ\G/Z (this is easily seen using the upper half-plane, and then taking products
of everything with K which doesn’t change the volume). So there is some positive integer N
depending only on Γ such that this contribution is bounded by c−1Bφ,Γ,χN‖f‖L1 . This L1-
norm is actually finite and bounded above by ‖f‖L2 <∞, because the fundamental domain
has finite volume (so it follows from Cauchy–Bunyakovski–Schwarz inquality).

There is still a possibility that the restriction to n ∈ Z such that n− λχn0 6= 0 has forced
us to leave out a term. This is where cuspidality is used. There are two cases:

(1) χ|Γ∩N has finite image
(2) χ|Γ∩N has infinite image. This case is not relevant, because then λχ is irrational, so

n−λχn0 cannot vanish, and the contribution we have already estimated accounts for
everything.

If χ|Γ∩N is trivial, then λχ = 0 and this just means we have left out the n = 0 term. That
term is ∫

(Γ∩N)\G/Z
f(h)Φ̂g,h(0) =

∫
(Γ∩N)\G/Z

f(h)

∫
N

φZ(g−1nh) dn dh
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=

∫
(Γ∩N)\G/Z

f(h)

∫
N

φZ(g−1n−1h) dn dh

=

∫
NΓ

∫
(Γ∩N)\G/Z

f(h)
∑

γ∈Γ∩N

φZ(g−1n−1γ−1h) dh dn

=

∫
NΓ

(π(φ)f)(ng)

= 0

since π(φ)f is assumed cuspidal at ∞. The same argument works as long as χ has finite
image. In that case, we may replace Γ with kerχ and repeat the same argument (from
the very beginning). In real life, where χ is a Nebentypus character, kerχ is a congruence
subgroup, but we have not depended on Γ actually being a congruence subgroup anywhere
in this argument. �

Proposition 3.6. Let φ ∈ C∞c (G). Then the convolved operator π(φ) is a compact operator
on H.

Proof. First, we consider the case of compact quotient. In that case, for f ∈ L2(Γ\G/Z, χ)
and h ∈ G, we have

(π(φ)f)(h) =

∫
G

φ(g)(π(g)f)(h) dg

=

∫
G

φ(g)f(hg) dg

=

∫
G

φ(h−1g)f(g) dg

=

∫
F

∑
γ∈Γ

∫
Z

φ(h−1γgu)χ(γ)f(g) du dg

=

∫
F
K(g, h)f(g) dg,

where

K(g, h) =
∑
γ∈Γ

∫
Z

φ(h−1γgu)χ(γ) du

and F is a fundamental domain10 in G for Γ\G/Z. The fact that φ ∈ C∞c (G) means that
K(g, h) is smooth in g and h, and Γ\G/Z being compact therefore implies that

K ∈ L2(F × F).

So π(φ) is a Hilbert–Schmidt operator on L2(Γ\G/Z, χ) ∼= L2(F) [where the isomorphism is
as Hilbert spaces], and is therefore compact.

10These fundamental domains are already familiar from the theory of SL2(Z) acting on H. Starting with
a fundamental domain FH for the action of Γ on H, the construction of which is well-known, you can just
translate over to G using the Iwasawa decomposition. This is the same reason why there is no question that
if Γ\H is compact, so is Γ\G/Z.
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In the case of noncompact quotients, to prove the statement, we need to check that π(φ)
restricts to a well-defined operator on L2

cusp(Γ\PGL2(R), χ). In other words, if∫
(Γ∩N)\N

f (γng) dn = 0

for all g ∈ G and γ ∈ SL2(Z), then we need to check that∫
(Γ∩N)\N

(π(φ)f) (γng) dn = 0.

This is not hard to check:∫
(Γ∩N)\N

(π(φ)f) (γng) dn =

∫
(Γ∩N)\N

∫
G

φ(h)f (γngh) dh dn

=

∫
G

φ(h)

∫
(Γ∩N)\N

f (γngh) dn dh

= 0

where the Fubini/Tonelli justification can be made using the fact that (Γ∩N)\N is compact
and φ is compactly supported.

The argument we have written down so far is not a priori a valid argument for why
π(φ)|L2

cusp
is compact (indeed, if it worked without modification, then there would be no

need to restrict to the cuspidal part). The reason is that when Γ\G/Z is not compact,
K(·, ·) is not guaranteed to be in L2(F×F). The additional technical observation that must
be made is that there is a constant Cφ depending only on φ such that

‖π(φ)f‖L∞ ≤ Cφ‖f‖L2

for all f ∈ L2
cusp(Γ\G/Z, χ). This is what we did in Lemma 3.5, and it is where the assump-

tion of cuspidality is used.
There are two ways of establishing the compactness of π(φ)L2

cusp
from here. The first,

which I learned from Lang, involves more functional analysis. The basic point is that for
any x ∈ G, Lemma 3.5 says that the linear functional

Tx : L2
cusp(Γ\G/Z, χ)→ C

given by

f 7→ (π(φ)f)(x)

is bounded. By the Riesz representation theorem, it follows that for all such x, there exists
a qx ∈ L2

cusp(Γ\G/Z, χ) such that Tx(f) = 〈f, qx〉. The map x 7→ qx from G to L2
cusp has

bounded image, because by Lemma 3.5

‖qx‖L2 =
√
〈qx, qx〉 =

√
Tx(qx) =

√
(π(φ)qx)(x) ≤

√
Cφ‖qx‖L2

so ‖qx‖L2 ≤ Cφ for all x. Also, since L2
cusp(Γ\G/Z, χ) ∼= L2

cusp(F) has a countable orthonor-

mal basis11 {ui}, we can write

qx =
∑
i≥0

gi(x)ui,

11L2(F) is separable by general theory, and L2
cusp is a closed subspace and thus separable too.
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where gi is a priori just a map of sets G→ C. The fact that gi(x) = 〈qx, ui〉 = ui(x) means
that the functions gi(x) are actually measurable functions on G and, since measurability
respects products and limits,

x 7→ 〈qx, qx〉 =
∑
i

gi(x)2

is a measurable bounded function on G. Restricting it to a fundamental domain F for
Γ\G/Z, which has finite volume, and using the Hilbert space isomorphism L2

cusp(Γ\G/Z, χ) ∼=
L2

cusp(F), the function x 7→ 〈qx, qx〉 is therefore in L1(F). When g(x, y) is the characteristic
function of U × V the product of measurable sets in X, we have∫

F

∫
F
g(x, y)qx(y) dy dx =

∫
F
χU(x)

∫
F
χV (y)qx(y) dy dx

=

∫
F
χU(x)〈χV , qx〉 dx

=

∫
F
χU(x)(π(φ)χV )(x) dx

<∞
so this iterated integral is well-defined as long as g(x, y) is a step function on F ×F . By the
Cauchy–Bunyakovsky–Schwarz inequality12 and Lemma 3.5, we have (still only as long as g
is a step function, which is the only case in which we have established the left hand side is
a real thing) ∣∣∣∣∫

F

∫
F
g(x, y)qx(y) dy dx

∣∣∣∣ ≤ ‖g‖L2

√∫
F

∫
F
|qx(y)|2 dy dx

where the right hand side is well-defined from our previous observation that x 7→ 〈gx, gx〉 is
in L1(F). So the linear map

L2(F × F)→ C

densely defined on the step functions and given by

g 7→
∫
F

∫
F
g(x, y)qx(y) dy dx

is continuous where it is defined and is therefore extends to all of L2(F × F). By the Riesz
representation theorem, there exists a Q(·, ·) ∈ L2(F × F) such that∫

F

∫
F
g(x, y)qx(y) dy dx =

∫
F

∫
F
g(x, y)Q(x, y) dy dx

for all step functions g. If we choose the step function g correctly, we see that this implies
that qx = Q(x,−) in L2

cusp(F) for almost all x ∈ F . Therefore, we really can write

(π(φ)f)(x) = Txf =

∫
F
f(y)Q(x, y) dy

for almost all x ∈ F . Since Q is by definition an element of L2(F × F), this means that
π(φ) is Hilbert–Schmidt and therefore compact.

Note that the only time the assumption of cuspidality was used was to establish the
estimate ‖π(φ)f‖L∞≤ Cφ‖f‖L2 , and this was only used to show that the evaluation-at-x

12technically speaking, one has to repeat the proof to deduce what follows.
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functional was bounded. The rest of the proof is not dependent on the specifics of the
situation at all, and is a general technique in functional analysis. �

Once we have our hands on these compact operators, we may prove that H decomposes
as a finite-multiplicity Hilbert space direct sum of irreducible subspaces. The proof of the
decomposition from the compactness of these operators is not long, but is more technically
involved than most proofs of this type. It is reproduced here from [3, Theorem 2.3.3], but
according to [14], the argument originally appeared in [6]. I have tried to elucidate a little
bit more than the standard references what the motivation behind the argument is.

Theorem 3.7 (Gelfand–Graev–Pjateckii-Shapiro, 1966). Let (π,H) be the right regular rep-
resentation of G on H = L2

cusp(Γ\G/Z, χ). Then we have a discrete decomposition of H as a
Hilbert space orthogonal direct sum of irreducible representations of G

H =
⊕
i

πmii .

Proof. The basic technique of the proof is the same as usual: let H′ be a nonzero closed
subspace of H which is closed under the action of G. We will show that H′ contains a
nontrivial irreducible representation of G, which will show by Zorn’s lemma13 (via the fact
that π is unitary) that the desired decomposition exists (though not a priori with finite
multiplicity).

There exists a choice of φ ∈ C∞c (G) such that π(φ) is not only compact but also self-adjoint
on H. Such a φ just needs to have

φ(g−1) = φ(g)

for all g ∈ G, since then (again using the fact that π is unitary)

〈π(φ)v, w〉 =

∫
G

φ(g)〈π(g)v, w〉 dg

=

∫
G

φ(g)〈v, π(g−1)w〉 dg

=

∫
G

φ(g)〈v, π(g)w〉 dg

= 〈v, π(φ)w〉.
A φ satisfying this condition is easily cooked up using the usual theory of bump functions on
manifolds, for instance, by taking a bump function φ0 supported on a compact set U ⊂ G
and then letting

φ(g) = φ0(g) + φ0(g−1).

The fact that the multiplicities are finite does not lie deeper than the rest of the state-
ment: by the spectral theorem for compact self-adjoint operators, π(φ) diagonalizes and has
eigenvalues going to zero, so each eigenspace with nonzero eigenvalue is finite-dimensional.
Also, from its definition, π(φ) restricts to a well-defined G-intertwining operator on each
irreducible component πi, where it must act as a scalar by Schur’s lemma. This scalar only

13By Zorn’s lemma, there is a maximal set of mutually orthogonal closed subrepresentations of π. Since
π is unitary, the orthogonal complement of the Hilbert space direct sum of all those subrepresentations is
also a closed subrepresentation, and showing that it has a nontrivial irreducible closed subrepresentation
contradicts the maximality statement from Zorn’s lemma; it follows that the orthogonal complement is zero,
and thus the desired orthogonal decomposition into irreducible Hilbert space representations exists.
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depends on i, so the fact that the nonzero eigenvalues have finite multiplicity implies mi <∞
as well, as long as π(φ) doesn’t act by zero on πi. This could technically happen, but can be
avoided easily, by choosing some nonzero f ∈ πi and then choosing14 φ ∈ C∞c (G) such that
|π(φ)f − f | is small enough that π(φ)f cannot vanish.

Now for the construction of the nontrivial irreducible subspace of H′. By assumption,
there exists some 0 6= f ∈ H′, so by choosing φ such that π(φ) is compact and self-adjoint
and π(φ)f 6= 0 (which we have already shown how to do), the operator

π(φ)|H′

is also compact, nonzero, and self-adjoint. By the spectral theorem for compact self-adjoint
operators, it therefore has some nonzero eigenvalue λ with finite dimensional eigenspace
Vλ ⊂ H′. It is true from the definition of π(φ) that π(φ) has a well-defined restriction to
any subrepresentation, but it is not true that Vλ is G-invariant: the action of G does not
actually commute with π(φ). Still, Vλ is useful in the construction, because π(φ) is supposed
to restrict to each πi ⊂ H′ to something diagonalizable, where the λ-eigenspace is Vλ ∩ πi.
Motivated by this, the trick is to take L0 ⊂ Vλ to be the minimal nonzero subspace of Vλ of
the form Vλ ∩ H′0 where H′0 is a closed subrepresentation of H′ (this is well-defined because
Vλ is finite-dimensional). The minimal H′0 such that L0 = Vλ ∩ H′0 ought to be irreducible
and nonzero. To construct it, just take the intersection of all such H′0:

V :=
⋂

H′0⊂H′
L0=Vλ∩H′0

H′0.

Since 0 6= L0 ⊂ V, the definition guarantees that V 6= 0, and it remains to show that V
is irreducible. It is irreducible because of the minimal nature of its construction: if it had
a proper subrepresentation V1, then V1 ∩ Vλ has to be properly contained in L0 by the
minimality of V. Unless V1 = 0, this contradicts the minimality of L0. So we just need
to show that V1 can be chosen so that V1 ∩ Vλ 6= 0. Since π is unitary, we actually have
V = V1 ⊕V2 for closed subrepresentations Vi. Taking intersections with Vλ, we have

L0 = V ∩ Vλ = (V1 ⊕V2) ∩ Vλ = (V1 ∩ Vλ)⊕ (V2 ∩ Vλ).

The key point is the last equality, which is because f1 + f2 ∈ V ∩ Vλ, for fi ∈ Vi, means
that π(φ)f1 + π(φ)f2 = λf1 + λf2. Since the Vi are acted on by π(φ), this implies fi ∈ Vλ
too, as desired. Since L0 6= 0, at least one of Vi ∩ Vλ is nonzero, so we are done. �

The reason why this technical analysis-heavy argument (which uses in a crucial way the
existence of these compact operators and thus the fact that we are restricting to the cuspidal
part) is necessary is that one cannot simply construct an irreducible subrepresentation by
taking the G-span of a nonzero vector: the resulting subspace is not necessarily closed. So
one must take the closure to obtain a bona-fide Hilbert space subrepresentation, but this new
object is not necessarily irreducible. One needs to show that this closure has the Artinian
descending chain condition. The canonical way to do this is to intersect with Vλ and use
finite-dimensionality of Vλ, which is essentially the same strategy as the version of the proof
we have written down.

14To do that, just use the fact that π is continuous, so there exists a neighborhood U of the identity in G
such that |π(g)f − f | < ε for all g ∈ U . We may take φ compactly supported in U such that

∫
G
φ = 1, which

is enough.
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Remark 3.8. The results of this section hold with essentially the same proofs if we add also
a choice of central character ω : Z → S1, according to which f must also tranform upon
translation by elements of Z. The more difficult generalization to arbitrary reductive Lie
groups has also been done: see [16]. The basic ideas in those proofs are the same as the ones
for GL(2).

3.3. Explicit decomposition into irreducible components. Now that we know H splits
as a Hilbert space direct sum of irreducible unitary representations of G, we ought to be
very interested in the following question.

Question 3.9. Which isomorphism classes of irreducible representations appear in the de-
composition of H?

To deal with the general problem of classifying irreducible unitary representations of reduc-
tive Lie groups, Harish-Chandra [7, 8, 9] and others developed the theory of (g, K)-modules
and infinitesimal equivalence.

Since the right regular representation is unitary, we may restrict our attention to that
case. It turns out to also be useful to restrict to the category of admissible representations.

Definition 3.10. A Hilbert space representation V of G is admissible if, in its decomposition
into irreducible representations of a maximal compact K, each irreducible representation has
finite multiplicity.

This restriction does no harm, because of

Theorem 3.11 (Harish-Chandra, 1953, 1954). Every irreducible unitary representation of
a connected reductive Lie group G is admissible.

Proof. See [12, Theorem 8.1]. �

Harish-Chandra first proved this theorem in 1953 [7], and later improved it with an explicit
bound on the dimension of H(k) [9]. In our case, we only really need the special case

Theorem 3.12. Every irreducible subrepresentation of H is admissible, where H is the right
regular representation of G = GL2(R)+ on L2

cusp(Γ\G/Z, χ).

Proof. A proof for GL(2) can be found in Bump [3, Theorem 2.4.3]. There are two main
inputs, only one of which we have justified:

(1) The compactness of the integral operators π(φ).
(2) The commutativity of the Hecke algebra15 H = C∞c (K\G/K, σ) for any character

σ : K → S1.

The first step is to prove that the K-isotypic subspace H(k) is irreducible as an Hk-module,
where Hk is the Hecke algebra C∞c (K\G/K, eikθ). This is proved directly. Once this is done,
points (1) and (2) come into play. By the usual technique, we may select a φ ∈ C∞c (G) such
that π(φ) is a compact self-adjoint operator on H and is nonzero on H(k). It may further
be chosen to actually be in Hk By the spectral theorem, π(φ) has a nonzero eigenvector
in H(k), with nonzero eigenvector and finite-dimensional eigenspace. By the commutativity

15This Hecke algebra is the set of compactly-supported smooth functions f : G → C satisfying f(h1gh2) =
σ(h1h2)f(g). The ring structure is given by convolution. One shows quite directly in the case of GL(2) that
this algebra is commutative (see [3, Proposition 2.2.8]). Without the character, it is true by a technique due
to Gelfand (see [3, Theorem 2.2.3] and [4, Ch. 47], on the general theory of Gelfand pairs).
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of Hk and the fact that π(φ1)π(φ2) = π(φ1 ∗ φ2), it follows that this eigenspace of π(φ) is
Hk-invariant. Since H(k) is supposed to be irreducible as an Hk-module, this means that
everything in Hk acts as a scalar on H(k), and that H(k) is finite-dimensional, as desired.

In fact, H(k) cannot be more than 1-dimensional, since we may repeat the same argument
on the span of a single eigenvector. �

So the unitary admissible irreducible representations of GL2(R)+ are all we need to classify
if we want to understand H. One extremely useful way to carry out such a classification is
to use

Definition 3.13. Let G be a Lie group with Lie algebra g and maximal compact sub-
group K. A (g, K)-module is a Hilbert space V with a Lie algebra action of g and a Lie
group action of K. It must be K-finite, in the sense that V is the algebraic direct sum of
finite-dimensional K-subrepresentations (i.e. every element of V is K-finite), and satisfy a
compatibility condition between the actions of K and g:

(1) For X ∈ k ⊂ g the Lie algebra of K and f ∈ V ,

X · f =
d

dt

∣∣∣∣
t=0

exp(tX) · f.

(2) g ·X · g−1 · f = (Ad(g)X) · f for g ∈ K.

Given a Hilbert space representation of a Lie group G, one obtains a (g, K)-module by
taking the K-finite16 vectors in that representation. It is a theorem that the K-finite vectors
are smooth and dense [3].

Definition 3.14. Two admissible Hilbert space representations of a Lie group G are in-
finitesimally equivalent if their corresponding (g, K)-modules are isomorphic.

Langlands [15] proved the Langlands classification, a classification up to infinitesimal
equivalence of irreducible representations, for a broad class of reductive Lie groups.

Infinitesimal equivalence in the category of admissible representations is useful for our
purposes because of the following two-step strategy for classifying irreducible admissible
unitary representations of a Lie group.

step 1: Determine the isomorphism classes of irreducible (g, K)-modules.
step 2: Determine which of those isomorphism classes contain a (g, K)-module coming from

a unitary representation of G.

This strategy holds water in a very general setting because of the following results.

Theorem 3.15 (Harish-Chandra, 1953). Let G be an arbitrary connected reductive Lie
group. Suppose two admissible unitary irreducible representations (π,H), (π′,H′) are in-
finitesimally equivalent. Then they are isomorphic.

Proof. The fact that π, π′ are unitary is used via the fact that g acts via skew-adjoint opera-
tors. This proof is essentially the same as [12, Corollary 9.2]. The special case for GL2(R)+

may be found in [3, Theorem 2.6.6].
The main part of the proof is in seeing that one can renormalize the isomorphism of

(g, K)-modules ϕ : HK−fin → H′K−fin to force it to be an isometry (this uses the fact that
these are unitary representations). To do this, renormalize ϕ such that |ϕ(f)| = 1 for some

16v ∈ π is K-finite if the space spanned by π(g)v for g ∈ K is finite-dimensional
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0 6= f ∈ HK−fin(σ) with length 1. Since (g, K)-modules are orthogonal algebraic direct sums
of finite-dimensional K-isotypic subspaces, and π is unitary, there exists an abstract linear
operator

B : HK−fin → HK−fin

acting independently on the K-isotypic components such that

〈ϕv, ϕw〉 = 〈Bv,w〉

for all v, w ∈ HK−fin (this is the usual trick from finite-dimensional linear algebra on each
finite-dimensional K-isotypic orthogonal component). If we can show that B acts by a scalar
λB, we are done, since then

|ϕ(v)| =
√
〈ϕ(v), ϕ(v)〉 =

√
λB|v|,

and λB = 1 from setting v = f .
To prove that B acts by a scalar λB, it suffices to show that B commutes with the action of

g: once this is established, we know B commutes with k ⊂ g and thus with K; this means that
B restricts to K-intertwining maps on the finite-dimensional K-isotypic components. Choose
an arbitrary such component H(σ). Since it is finite-dimensional, B has an eigenvector in
H(σ), so B − λ : HK−fin → HK−fin has nontrivial kernel and is g-intertwining. Since HK−fin

is irreducible as a g-module, it follows that B = λ =: λB, as desired.
Finally, the fact that B commutes with the action of g is because

〈Bπ(X)v, w〉 = 〈ϕ(π(X)v), ϕ(w)〉
= 〈ϕ(π(X)v), ϕ(w)〉
= 〈π(X)ϕ(v), ϕ(w)〉
= −〈ϕ(v), ϕ(π(X)w)〉
= −〈Bv, π(X)w〉
= 〈π(X)Bv,w〉

for any v, w ∈ HK−fin and X ∈ g.
So (and this is the key point) the abstract isomorphism ϕ of K-finite vectors can be chosen

to be an isometry, and thus can be extended to a g-intertwining isometry H → H′ because
the K-finite vectors are dense.

For the second part, the fact that the extension of ϕ is G-intertwining comes from the fact
that it is g-intertwining, using the fact that exp is surjective and

π(exp(X))v =
∞∑
n=0

1

n!
Xnv.

This part doesn’t even need the unitary assumption (and in fact we already used this argu-
ment to deduce that g-intertwining operators are K-intertwining). �

So a given infinitesimal equivalence class can only have at most one unitary representation
in it up to isomorphism. In other words, the map

{Admissible unitary representations of G}
isomorphism

→ {Admissible unitary representations of G}
infinitesimal equivalence

is a bijection. This fact is not true without the inclusion of the word “unitary.”
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In fact, we may work directly with admissible (g, K) modules because of the following
general result.

Theorem 3.16 (Harish-Chandra, ??). Let G be a connected reductive Lie group. Then every
admissible (g, K)-module is isomorphic to HK−fin for some admissible representation H of G.

Apology. I have been assured that this is true, but I do not know a reference. In the special
case of GL2(R)+, this is done in [3, §2.6] via parabolic induction. The same method surely
works in the general context. �

Corollary 3.17. The canonical map

{Admissible (unitary) representations of G}
infinitesimal equivalence

→ Admissible (unitary)(g, K)−modules

infinitesimal equivalence

is a bijection.

The reality is that for the purposes of studying the decomposition of the right regular
representation of G on L2

cusp(Γ\G/Z, χ), Theorem 3.16 is not necessary in practice, because
once we classify the (g, K)-modules, we just need to ask how they can show up in this
representation. So the only thing on which we logically depend is Theorem 3.15, which we
have proved in full generality.

Now we restrict our attention exclusively to G = GL2(R)+. Step 1 of the strategy is
a purely algebraic exercise. It is an “exercise” precisely because of the way that we have
chosen K and h ⊂ G to be compatible, meaning that the (g, K)-module structure is deter-
mined completely by how the four generating matrices, two of which are already completely
determined, act.

Theorem 3.18. An irreducible admissible (g, K)-module for GL2(R)+ is determined by the
following information:

(1) The Zg-eigenvalue and the ∆-eigenvalue (this is the same as “the action of Z =
C[∆, Zg] = Z(U(g))”)

(2) The set of characters of K that appear in the decomposition as an algebraic direct
sum V =

⊕
V (k) (the “K-type”).

In particular, dimC V (k) ≤ 1 for all k ∈ Z.

Given what we know about g and its root space decomposition, it’s clear what the possible
K-types are: either the set of all k ≥ k0 or k ≤ k0 of some given parity ε ∈ Z/2Z (these are
called the discrete series representations, and they appear in L2(Γ\G/Z, χ) in the first case
as being generated by yk0/2f , where f is a holomorphic modular form of weight k0, or in the
second case as being generated by y−k0/2f , where f is an antiholomorphic modular form of
weight k0), the set of all k ∈ Z of parity ε (these are called principal series representations
and are generated by appropriate Maass forms), or the set of all k ∈ Z of parity ε bounded
above by k0 and below by −k0. Things must look this way because of the relations

R̂L̂ =
k

2

(
1− k

2

)
−∆

and

L̂R̂ = −k
2

(
1− k

2

)
−∆.
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This further implies that things can only die if the ∆-eigenvalue is of the form ±k
2

(
1− k

2

)
for some k ∈ Z.

It is easy to pin down how many times the discrete series and principal series show up
in L2(Γ\G/Z, χ), even without constructing examples of arbitrary (g, K)-modules. The
principal series inside there are in bijection with the linearly independent Maass forms which
are not eventually killed by raising or lowering. The pairs of discrete series are in bijection
with the holomorphic modular forms. In fact, for arbitrary eigenvalues of ∆ and Zg, not
just the ones that occur for Maass forms, it is possible to construct these (g, K)-modules via
parabolic induction, and to find unitary examples, but this is not relevant.

What about the finite dimensional ones? The next thing we do is construct them explicitly,
and show more abstractly that they cannot be unitary unless they are one-dimensional.

Since Z and ∆ are in the center of U(g), by Schur’s lemma, they act by scalars on any
irreducible (g, K)-module. Call them µ (the Z-eigenvalue) and λ (the ∆-eigenvalue). The
classification of (g, K)-modules for G says that a finite-dimensional irreducible (g, K)-module
V is determined by the following pieces of data:

(1) its dimension
(2) µ

If the dimension is d, then (by the classification) in fact we must have

V =
⊕

n≡k mod 2
−k<n<k

V (n)

where k = d+ 1, and the ∆-eigenvalue must be

λ =
k

2

(
1− k

2

)
.

It turns out that given any choice of d and µ, we can construct a (g, K)-module with
those parameters. One way to do this is by induction from the Borel subgroup of upper-
triangular matricies. At least this is the only way I know how to construct the discrete
series representations for arbitrary17 λ and µ. But for the finite-dimensional (g, K)-modules,
there is a slightly more concrete way to construct them directly. The first observation is
that as soon as we have constructed a (g, K)-module (π, V ) of dimension d = k − 1 and
Z-eigenvalue µ, we can immediately construct (g, K)-modules of the same dimension and
arbitrary Z-eigenvalue. That is because of the one-dimensional representation of G, called
(det)r given by

gv = (det g)r · v.
This is well-defined whenever r is an arbitrary complex number, since det g is always a
positive real number. We will view (det)r as its induced (g, K)-module.

Lemma 3.19. Suppose (π, V ) is an irreducible (g, K)-module with ∆-eigenvalue λ and Z-
eigenvalue µ. Then (det)r ⊗ π is also an irreducible (g, K)-module, and has ∆-eigenvalue λ
and Z-eigenvalue µ+ 2r.

Proof. This boils down mostly to thinking about what (det)r⊗π is as a (g, K)-module. The
elements of K all have determinant 1, so the action of K is the same as that on V . In our
situation, the (g, K)-module V will always be induced by a representation of G. But we

17If λ is the Laplace eigenvalue of a Maass form, then of course you can construct the representation that
way. But those eigenvalues only account for a discrete subset of R.
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might as well think about this tensor product abstractly in the category of (g, K)-modules.
In this category, I think one is supposed to define the tensor product of (g, K)-modules
using the product rule. For this reason, in the special case where ψ has dimension 1 and π
is arbitrary, we define the Lie algebra action by

(ψ ⊗ π)(X)v = (ψ(X) + π(X))v.

So for the action of g in the (g, K)-module π ⊗ (det)r, we may compute explicitly

Zv = µv +
d

dt

∣∣
t=0

det(I + tZ)rv

= µv +
d

dt

∣∣
t=0

(1 + t)2rv

= (µ+ 2r)v

which shows at least that Z still acts by a scalar, only this time equal to µ+ 2r. Also,

Rv = π(R)v +
d

dt

∣∣
t=0

det(I + tR)rv

= π(R)v

and similarly for L,H, and all elements of K. So, as claimed, nothing except the scalar by
which Z acts is changed (in particular the action of ∆ is determined by that of H,R,L).
Also, by looking at the decomposition of π ⊗ (det)r into K-isotypic subspaces, we see that
the raising and lowering operators behave the same way, and since Z still acts by a scalar,
π ⊗ (det)r is still irreducible. �

Remark 3.20. I haven’t thought about how generally Lemma 3.19 can be made to work. I
think it should work for GLn, but I’m not sure about general reductive Lie groups.

So it suffices to construct a single finite-dimensional (g, K)-module of every dimension,
and we will see that every possible (according to the classification) equivalence class actually
occurs. To do this construction, just let V be the two-dimensional C-vector space spanned
by the symbols X and Y , with the standard action of GL(V ) ∼= GL2(C). Consider the
symmetric (d− 1)-th power

Symd−1V = V ⊗(d−1)/〈v1 ⊗ · · · ⊗ vd−1 − vσ(1) ⊗ · · · ⊗ vσ(d−1)〉σ∈Sd−1
.

In this situation, there is no reason to view Symd−1V as being anything other than the d-
dimensional C-vector space of homogeneous degree-d polynomials in the formal variables X
and Y , with the standard action of GL2(C). This is finite-dimensional, so all the vectors are
smooth and K-finite. So the associated (g, K)-module is the same as a vector space, and
has a weight-space decomposition

Symd−1V = C · π(C)−1Xd−1 ⊕C · π(C)−1Xd−1Y ⊕ · · · ⊕C · π(C)−1Y d−1.

To check that this is indeed a weight space decomposition, we just need to check that
XrY d−1−r is an H-eigenvector (with eigenvalue depending on r). In fact, we might as well
manually write down the action of

g = C · Z + C ·H + C · L+ C ·R.
In particular,

Z ·XrY d−1−r =
d

dt

∣∣
t=0

(1 + t)d−1XrY d−1−r = (d− 1)XrY d−1−r,
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so as expected Z acts by a constant, which happens to be d− 1. Similarly,

H ·XrY d−1−r =
d

dt

∣∣∣∣
t=0

(
1 + t 0

0 1− t

)
XrY d−1−r

=
d

dt

∣∣∣∣
t=0

(1 + t)r(1− t)d−1−rXrY d−1−r

= (2r − d+ 1)XrY d−1−r

so this is, as claimed, an eigenspace decomposition for the action of H (and we also see that
the weights range from −d + 1 to d − 1, taking on only values which have the same parity
as d− 1). The theory of root systems already shows from this that the raising and lowering
operators are supposed to go between the weight spaces of weights differing by 2 without
killing anything (unless one is lowering a lowest-weight or raising a highest-weight vector),
which shows already that this is an irreducible (g, K)-module of desired dimension. Just for
kicks, we might as well compute the action:

R ·XrY d−1−r =
d

dt

∣∣∣∣
t=0

(
1 t
0 1

)
XrY d−1−r

=
d

dt

∣∣∣∣
t=0

Xr(tX + Y )d−1−r

= (d− 1− r)Xr+1Y d−1−(r+1)

and

L ·XrY d−1−r =
d

dt

∣∣∣∣
t=0

(
1 0
t 1

)
XrY d−1−r

=
d

dt

∣∣∣∣
t=0

(X + tY )rY d−1−r

= rXr−1Y d−1−(r−1).

Notice that this is consistent with the fact that R should vanish on heighest-weight (i.e.
r = d − 1) and L should vanish on lowest-weight (i.e. r = 0). Recall also that general
computations already tell us that the ∆-eigenvalue is

λ =
k

2

(
1− k

2

)
where k = d+ 1. So we have shown

Theorem 3.21. The equivalence class of irreducible (g, K)-modules of dimension d and
Z-eigenvalue µ contains

Symd−1(C2)⊗ (det)
µ−d+1

2 .

However, we should be aware that few of these, if any, can appear in the right regular
representation, because they are not unitarizable. In particular, for d > 1, none of these
finite-dimensional (g, K)-modules come from a unitary representation of G (and thus cannot
contribute to the regular representation, since that representation is unitary).

Lemma 3.22. No irreducible unitary representation of GLn(R)+ has dimension > 1.
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Bump’s proof. Such a representation is a continuous open group homomorphism

π : GLn(R)+ → Un(R)

with compact image. It restricts to another map

SLn(R)→ Un(R)

with the same properties, so that SLn(R)/ ker(π|SLn(R)) is compact. It is a general result in
group theory that SLn(R) is simple (as a group, not just a Lie group; I don’t know how to
prove this). So π is trivial on SLn(R). It follows that π must factor through the determinant
map, since that map provides a splitting

GLn(R)+ ∼= SLn(R)×R×>0.

The only unitary irreducible representations of the (abelian!) group R×>0 are 1-dimensional,
so we are done. �

Bump’s proof is incomplete, however: it is not true a priori that the image is compact
(homomorphisms of Lie groups, even compact Lie groups, are not necessarily closed). Later
I will add a corrected version.

The upshot is that only three kinds of irreducible subrepresentations can show up in the
right regular representation we are interested in:

(1) The 1-dimensional irreducible representation on which g acts by an imaginary power
of det g. This occurs exactly once, and with multiplicity 1. The imaginary power
depends on the central character, so since we have been assuming there is trivial
central character, this is just the subspace of functions which are equal to a constant
function almost everywhere on a fundamental domain for Γ\G.

(2) The principal series representations, generated by a Maass form which never van-
ishes upon repeated applications of the Shimura–Maass weight-raising and lowering
operators.

(3) The (limits of) discrete series representations, generated by the holomorphic modular
forms and their conjugates.

Items (1) and (3) are much easier in terms of representation theory than (2). (1) is clearly
not worth saying much more about – it just accounts for essentially constant functions. The
discrete series representation π coming from a modular form of weight k is easy for us to
understand, because the highest weight vector in π is a modular form of weight k, and is
killed by the weight-lowering operator, and therefore also by RL. But

RL = −∆ +
k

2

(
1− k

2

)
in U(g) (this is for example by explicit computation with the Casimir element), which means
that the action of ∆ is by k

2

(
1− k

2

)
. The Zg-eigenvalue is 1 since we have chosen the

convention of trivial central character, and the K-type is determined by the weight of f .
The conjugate of a holomorphic modular form with character χ leads in the same way to

the discrete series representations which are eventually killed by iterates of the weight-raising
operator.

On the other hand, the Laplacian eigenvalues of Maass forms are not well-understood.
In fact, this is a very deep part of the theory. For instance, according to the Langlands
conjectures, Maass forms of eigenvalue 1/4 are supposed to be attached to even 2-dimensional
Galois representations. The exact statement of such a conjecture looks like
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Conjecture 3.23. Let f be a Maass cusp form of weight 0 and ∆-eigenvalue 1/4 and Fourier
coefficients {an}. In other words,

f(x+ iy) =
∞∑
n=1

any
1/2K0(2πny) cos(2πnx).

Then there is an even Galois representation

ρ : Gal(Q̄/Q)→ GL2(C)

such that
ap = Tr(ρ(Fropp))

for all rational primes p such that ρ is unramified at p.

The extra assumption of weight 0 is reduntant, since it is a general fact that Maass forms
of weight 1 not coming from modular forms have ∆-eigenvalue strictly greater than 1/4.

Compared to the case of modular forms, fewer statements relating Galois representations
to Maass forms are currently known unconditionally (for example, Booker–Strömbergsson–
Venkatesh [2] were able to attach Maass forms to even Galois representations, but this work
was conditional on Artin’s conjecture).

This conjecture is not known to be true, and the list of eigenvalues for ∆ itself is not
well-understood. For example, it is not known in general what the multiplicity is of the
eigenvalue 1/4 is.

So the next step in understanding the decomposition of the representation L2
cusp(Γ\G/Z, χ)

is to try to derive asymptotics on the eigenvalues {λi}. As we saw above, the list of these
eigenvalues is the exact piece of information remaining in order to fully understand the list
of irreducible representations that actually appear in this decomposition. Since ∆ acts by a
scalar λ on these irreducible principal series subrepresentations π, which all have a K-finite
(and thus smooth) vector of weight επ ∈ {0, 1} (obtained by raising or lowering an arbitrary
one). So it suffices to study the eigenvalues of the Laplacian acting on weight-0 and weight-1
Maass forms.

In the next subsection, we will follow Bump in deriving a basic quantitative result in this
direction, namely Bessel’s inequality ∑

λ−2
i <∞,

which implies that λi → ∞ because the negative eigenvalues are only finitely many (they
must come from modular forms of weight 0 or 1).

The last section of these notes are about the Selberg trace formula, which can be used
to prove more precise asymptotics on the asymptotic growth of the λi. As far as I know, it
is much more difficult to control the multiplicities of these eigenvalues than it is to control
their growth.

3.4. Green’s functions and the spectrum of the Laplacian. The useful technical input
in this section towards proving some quantitative results about the ∆-eigenvalues is the
construction of the appropriate Green’s function. It is easier to deal with this type of issue
by dealing directly with the upper half-plane rather than with representation theory, because
this allows us to think concretely about geodesics and their lengths. There is no real difference
between this setting and the setting of weight-k Maass forms, since in that case one is
assuming some kind of invariance under Γ, K and Z anyway
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Let ε ∈ {0, 1}. As remarked in the last section, to understand what Laplace eigenvalues
can appear for Maass forms of any weight not coming from holomorphic modular forms, it
suffices to understand the eigenvalues of ∆ acting on the Maass forms of weight ε.

The insight is actually something we have used before, but in a slightly less abstract way.
Since ∆|H(ε) might not be positive (it may have nontrivial 0-eigenspace when ε = 0), we first
add a positive constant s > 0. The plan of attack is to construct a Hilbert–Schmidt operator
on H(ε) whose eigenvalues contain18 the {(λi + s)−1} (presumably with the eigenvectors the
same as those of ∆ε), so that we are guaranteed that∑

(λi + s)−2 <∞

and thus also ∑
λ−2
i <∞

where the sum omits all i such that λi = 0. The goal is therefore to construct a Hilbert-
Schmidt kernel with the right properties, that is a function Gs,ε(·, ·) ∈ L2(Γ\H,Γ\H) with
the property that if f : H→ C is a Maass form of weight ε and ∆ε-eigenvalue λ, then∫

Γ\H
Gs,ε(z, ζ)f(ζ) dµ(ζ) = (λ+ s)−1f(z).

In other words, we need to construct G such that

(3.24)

∫
Γ\H

Gs,ε(z, ζ)(∆ε + s)f(ζ) dµ(ζ) = f(z)

for all smooth functions f on Γ\H.
The key insight is that in order for this to happen, we expect that for all ζ,

(∆ε + s)zGs,ε(z, ζ) = 0.

Why do we have this expectation? The reason is not rigorous (because we haven’t proved
the conclusion yet, and because G is a priori not smooth), but this is the heuristic given by
Bump [3, §2.3]. If we actually have

∑
(λi+s)−2 <∞, then we may define an operator called

(∆ε + s)−1 which acts by (λi + s)−1 on the λi-eigenvector of ∆i; and our result means that
this operator and its inverse extend to all of L2(Γ\H, χ). If the orthogonal eigenbasis for ∆ε

we have been using the whole time is called {φi}, then Equation (3.24) amounts to saying
that

Gs,ε(z, ζ) =
∑

(λi + s)−1φi(z)φi(ζ)

and thus

(∆ε + s)zGs,ε(z, ζ) =
∑

φi(z)φi(ζ).

(though in reality this is nonsense — this is not a valid element of L2(Γ\H × Γ\H)) is
supposed to act on functions like the Dirac delta distribution. In other words,∫

(∆ε + s)Gs,ε(z, ζ)f(ζ)dµ(z) dµ(ζ) = f(z).

Though the reasoning is nonsense, it makes sense to ask that Gs,ε(z, ζ) satisfy the differential
equation

(∆ε + s)zGs,ε(z, ζ) = 0

18though in reality they will be exactly equal to this list
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for all ζ, and to blow up when |z − ζ| → 0. The actual reasoning for why this would imply
Equation (3.24) is more technically involved, but at its core is really the same thing in
disguise: integration by parts. Before doing anything, we make the simplifying assumption
that Gs,ε only depends on the hyperbolic distance between z and ζ, i.e. that

Gs,ε(z, ζ) = g(r),

where

r =

∣∣∣∣z − ζz − ζ

∣∣∣∣ .
We will get the blowing-up of g as r → 0 to be logarithmic in r. The rigorous technical

justification for asking for these conditions is

Proposition 3.25. Suppose that g : (0, 1)→ R is smooth with logarithmic growth as r → 0
in the sense that g(r) = c log(r) + O(1) as r → 0 for some constant c, f : H → C smooth
and compactly supported, and

(∆ε + s)zg

(
z − ζ
z − ζ

)
= 0

for all z 6= ζ. Then for all z ∈ H,∫
H

Gs,ε(z, ζ)(∆ε + s)zf(ζ) dµ(ζ) = f(z).

Proof. This is an exercise in changing coordinates and applying Stokes’ theorem. See [3, p.
182-183]. The proof in Bump also applies when ε = 1, with an extra integration by parts. �

Constructing the function g with the required properties is an exercise in applying the
theory of regular singular points of second-order differential equations. The condition (∆ε +

s)g
(
z−ζ
z−ζ

)
enforces the differential equation

g′′(r) +
1

r
g′(r)− 4s

(1− r2)2
g(r) = 0

when ε = 0, and something similar when ε = 1. Either way, if we enforce some boundary
condition as r → 1, then the theory of regular singular points provides us with a solution
with a logarithmic singularity near 0.

We did this over H, but we need the same thing to hold if we replace H with Γ\H. Doing
this is a matter of averaging

Gs,ε,Γ(z, ζ) =
∑
Γ∈Γ

χ(γ)−1

(
cz + d

|cz + d|

)−ε
Gs,ε(z, γζ)

so that Gs,ε,Γ(z, ζ) ∈ C∞(Γ\H, ε) and we can view it as an element of C∞(Γ\H) in the same
way we would view a Maass form f . In this case, the same kind of argument shows that for
f ∈ C∞(Γ\H), ∫

Γ\H
Gs,ε,Γ(z, ζ)(∆ε + s)f(ζ) dµ(ζ) = f(z).

So Gs,ε,Γ is a Hilbert–Schmidt (because the logarithmic singularity on the diagonal is not
enough to make its L2 norm diverge) kernel for the resolvent, which proves that∑

λi 6=0

λ−2
i 6= 0.
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4. The trace formula

The most general formulation of the Arthur–Selberg trace formula is a computation of
the traces of the compact operators π(φ) which were so useful in studying the right regular
representation on L2(Γ\G/Z, χ) (here G can go much farther than GL2). In the context of
G = GL2, where it was first discovered by Selberg [21], it is usually described in slightly less
general terms (often using the language of the upper half-plane). We will give essentially
complete proofs for compact quotient, but only statements in the noncompact finite-volume
case, because of the difficulties posed by the continuous spectrum. The full details of the
finite-volume case have been explained in the literature, for example in Hejhal’s book [10]
in the language of the upper half-plane. The general Arthur–Selberg trace formula and its
applications are described in much greater generality in Arthur’s notes [1].

4.1. Compact quotient. Suppose that Γ\G is compact and let φ ∈ C∞c (G). Here we are
mostly thinking about G = PSL2(R). The trace formula is a computation of the trace of
the Hilbert–Schmidt operator

π(φ) =

∫
G

φ(g)π(g) dg.

Recall that it is Hilbert–Schmidt because of the identity

π(φ)f(g) =

∫
F
f(h)

(∑
γ∈Γ

χ(γ)φ(g−1γh)

)
dh,

where F is a fundamental domain for Γ\G. So the relevant Hilbert–Schmidt kernel is

Kφ(g, h) =
∑
γ∈Γ

χ(γ)φ(g−1γh).

Lemma 4.1. If the Hilbert–Schmidt operator with kernel Kφ(g, h) is trace-class, then its
trace is ∫

Γ\G
Kφ(g, g) dg.

Proof. This is a general fact. Since this is a Hilbert–Schmidt kernel, i.e.

Kφ(·, ·) ∈ L2(Γ\G× Γ\G)

(we are grateful for the compactness assumption here), we may write

Kφ(g, h) =
∑

aiφi(g)φi(h)

for a Hilbert space orthonormal basis {φi} of L2(F) (namely, the one that diagonalizes the
compact operator π(φ)). So its action on L2(F) ∼= L2(Γ\G,χ) is by φi 7→ aiφi, and we have
(under the trace-class assumption)

Trπ(φ) =
∑

ai

=
∑

ai〈φi, φi〉

=

∫
F

∑
aiφi(g)φi(g) dg

=

∫
F
Kφ(g, g) dg
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as desired. �

The most basic form of the Arthur–Selberg trace formula is simply a computation of this
integral, and the observation that it is equal to the trace of this operator. Suppose that
L2(Γ\G,χ) decomposes into irreducibles as

L2(Γ\G,χ) ∼=
⊕

πmii .

The Arthur–Selberg trace formula in this situation is

Theorem 4.2. If π(φ) is trace-class, then∑
i

miTr

(∫
G

φ(g)πi(g) dg

)
︸ ︷︷ ︸

spectral side

=
∑
γ∈{Γ}

µ(Γγ\Gγ)

∫
Gγ\G

f(g−1γg) dg︸ ︷︷ ︸
geometric side

where both are equal to Trπ(φ), {Γ} is the set of representatives of conjugacy classes of Γ,
and and subscripts denote centralizers.

Proof. The fact that the spectral side equals Trπ(φ) is immediate from the spectral decom-
position of L2(Γ\G,χ) and the fact that the integral operator π(φ) restricts to a well-defined
operator on any G-invariant subspace.

The main part of the proof is the computation of the geometric side, which is, by the
previous lemma, a computation of the integral∫

G

Kφ(g, g) dg.

This computation is reproduced from [1, §1]:∫
G

Kφ(g, g) dg =

∫
Γ\G

∑
γ∈Γ

φ(g−1γg) dg

=

∫
Γ\G

∑
γ∈{Γ}

∑
δ∈Γγ\Γ

φ(g−1δ−1γδg) dg

=
∑
γ∈{Γ}

∫
Γγ\G

φ(g−1γg) dg

=
∑
γ∈{Γ}

∫
Γγ\Gγ

∫
Gγ\G

φ((g1g2)−1γg1g2) dg1 dg2.

Of course, elements of Gγ act by conjugation by the identity on γ, so the outer integral is the
integral of a constant function, hence we can ignore g1 and the integral, simply multiplying
by µ(Γγ\Gγ). �

If φ is selected to have the appropriate decay properties, guaranteeing convergence, then
the trace-class assumption is satisfied. This is the reason for the technical conditions that
appear in specific instances of the trace formula. In most cases where this point of view on the
trace formula is taken, the conjugacy classes in Γ are separated into parabolic, hyperbolic,
elliptic, and identity terms (in each case the centralizer looks different). This is why the
explicit forms of Selberg’s trace formula in the literature have so many terms, and why
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there is always the work of computing or bounding terms of all different types, even under
compactness assumptions.

From the “spectral side equals geometric side” form of the trace formula, there are basically
two ways to directly leverage it in this setting:

(1) Cook up a test function φ such that the spectral side is something you want to know
about the Laplace eigenvalues, and the geometric side is something you can estimate.

(2) Cook up a test function φ such that the geometric side is something you want to
know about lengths of prime geodesics on a hyperbolic Riemannian surface, and the
spectral side is something you can estimate. This is reasonable because conjugacy
classes in the fundamental group are supposed to correspond to closed geodesics.

Before we execute on these two promises, we should state the form of the trace formula
typically used when dealing directly with the upper half-plane. In that case, the analysis is
really the same, but we replace G with G/K ∼= H (now one can repeat everything with H
instead of G and replace the Haar measure on G with the measure induced by the appropriate
normalization of the hyperbolic metric on H; the fact that dg is invariant under G is replaced
by the fact that the hyperbolic measure is invariant under isometries).

At first, it might be difficult to understand how Selberg’s trace formula for the upper
half-plane is the same thing as what I have explained above. However, the relationship is
actually quite direct. The test function φ ∈ C∞c (G) has the property that

φ((σg)−1(σh)) = φ(g−1h)

for all σ ∈ G. In particular, the map G×G→ R given by

(g, h) 7→ φ(g−1h)

is invariant under multiplying both coordinates by the same element of PSL2(R). So when
we restrict to the setting of the upper half-plane where the K-coordinate is trivial, we replace
the test function φ with a smooth function

φ : H×H→ R

invariant under PSL2(R) = Isom(H) acting on the diagonal; the Hilbert–Schmidt kernel
Kφ(·, ·) is therefore replaced with

Kφ(z, ζ) =
∑
γ∈Γ

χ(γ)φ(z, γζ).

Remark 4.3. Though we haven’t formulated everything yet, this formula alone should seem
like promising progress towards using the trace formula to describing the asymptotics of the
Laplace eigenvalues of Maass forms, or at least the trace of the resolvent of ∆ + s; in this
setting one would use the Green’s function Gs,ε for φ, so that the resolvent is given by the
Hilbert–Schmidt kernel Gs,ε,Γ.
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The proof of Theorem 4.2 translates over without change to this situation, but now it is
easier to write things down explicitly19. Due to the desire for explicitness, it is useful to
think about these things as integrals on fundamental domains.

Theorem 4.4. Suppose Γ ⊂ PSL2(R) such that Γ\H is compact, and let φ ∈ C∞(H×H)
be such that

φ(z, ζ) = Φ0 (dH(z, ζ)) = Φ

(
|z − ζ|2

=(z)=(ζ)

)
for some Φ ∈ C∞c (R). Let Lφ be the Hilbert–Schmidt operator on L2(Γ\H, χ) given by the
kernel Kφ(z, ζ) =

∑
γ∈Γ φ(z, γζ). Then

TrLφ =
∑
γ∈{Γ}

∫
F [Γγ\H]

φ(z, γz) dµ(z)

where F [Γγ\H] is a fundamental domain for Γγ acting on H.

Proof. The proof is identical to that of Theorem 4.2, except it stops right before the last
step and is in the language of the hyperbolic measure on H rather than the Haar measure
on PSL2(R):

TrLφ =

∫
Γ\H

Kφ(z, z) dµ(z)

=

∫
Γ\H

∑
γ∈Γ

φ(z, γz) dµ(z)

=

∫
Γ\H

∑
γ∈{Γ}

∑
δ∈Γγ\Γ

φ(z, δ−1γδz) dµ(z)

=

∫
Γ\H

∑
γ∈{Γ}

∑
δ∈Γγ\Γ

φ(δz, γδz) dµ(z)

=
∑
γ∈{Γ}

∫
Γ\H

∑
δ∈Γγ\Γ

φ(δz, γδz) dµ(z)

=
∑
γ∈{Γ}

∫
Γγ\H

φ(z, γz) dµ(z)

as desired. �

Making Theorem 4.4 explicit requires expanding both the geometric and spectral sides
further. Since we are already on this topic, let’s continue expanding the geometric side.

We have assumed that Γ is hyperbolic, so the main term is for the hyperbolic elements of
Γ (the only other one is the identity).

19The “reason” why the Selberg trace formula is more “explicit” than the full Arthur–Selberg trace formula
is because now φ may be written as a function of a single real variable, namely the hyperbolic distance
between the two coordinates. The reality is that the more general version can be treated explicitly as well:
in applications to the Langlands program when one is exploiting the Arthur–Selberg trace formula on adelic
groups, one chooses the test function at each place, typically choosing a matrix coefficient of some kind at
the infinite place.
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Lemma 4.5. If γ ∈ Γ ⊂ PSL2(R) is hyperbolic, its centralizer is cyclic, and it is conjugate
in PSL2(R) to a unique element of the form z 7→ N(γ)z, where

logN(γ) = inf dH(γz, z)

Proof. It’s a standard fact that every element of SL2(R) is conjugate (in SL2(R)) to an
element of the form (

x 0
0 x−1

)
,

(
1 x
0 1

)
, κθ.

From knowledge of the upper half-plane, only the first kind of conjugacy class is hyperbolic.
One computes explicitly that the centralizer of such a diagonal matrix is just the group of
diagonal matrices in SL2(R). So the centralizer of γ in Γ is equal to the subgroup of Γ
consisting of diagonal matrices. This subgroup embeds as a discrete subgroup of R×, so it
must be cyclic. Finally, we observe that for

γ =

(
x1/2 0

0 x−1/2

)
,

we have

inf
z∈H

dH(γz, z) = inf
z∈H

dH(xz, z)

= inf
z∈H

∫ x=(z)

=(z)

1

y
dy

= log(x)

as desired. �

So when γ ∈ Γ is hyperbolic, there is an η ∈ PSL2(R) such that η−1γη acts by z 7→
N(γ)z, and the centralizer of η−1γη is generated by η−1γ0η, where without loss of generality,
N(η−1γ0η) = N(γ0) > 1. The orbital integral corresponding to γ is∫

F [Γγ\H]

φ(z, γz) dµ(z) =

∫
η−1F [Γγ\H]

φ(ηz, γηz) dµ(z)

=

∫
F [η−1Γγη\H]

φ(ηz, γηz) dµ(z)

=

∫
F [Γη−1γη\H]

φ(ηz, γηz) dµ(z)

=

∫
F [Γη−1γη\H]

φ(z, η−1γηz) dµ(z)

=

∫
F [Γη−1γη\H]

φ(z, η−1γηz) dµ(z)

=

∫
1≤=(z)≤N(γ0)

φ(z,N(γ)z) dµ(z)

=

∫ N(γ0)

1

∫ ∞
−∞

Φ

(
|(x+ iy)−N(γ)(x+ iy)|2

N(γ)y2

)
dx dy

y2

= 2

∫ N(γ0)

1

∫ ∞
0

Φ

(
(N(γ)− 1)2

N(γ)

x2 + y2

y2

)
dx dy

y2
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= logN(γ0)

√
N(γ)

N − 1

∫ ∞
(N(γ)−1)2/N(γ)

Φ(t)√
t− (N(γ)−1)2

N(γ)

dt.

It’s nice that these numbers N(γ) show up: these are related to lengths of geodesics on Γ\H,
and hence the trace formula will allow us to study the distribution of those lengths.

The identity term is easier. If γ = I ∈ Γ, then∫
F [Γγ\H]

φ(z, Iz) dµ(z) =

∫
Γ\H

φ(z, z) dµ(z) = Φ(0)µ(Γ\H).

Now we should go back and deal with the spectral side in more explicit terms.

Lemma 4.6. Suppose f : H→ C is such that ∆0f = λf for some λ ∈ C. Then∫
H

φ(z, ζ)f(ζ) dµ(ζ) = Λ(λ)f(z),

where Λ(λ) depends only on λ and Φ (and in particular not on z). In fact, Λ is an entire
function of λ.

This proof is taken from [10, Proposition 3.1]

Proof. Since ∆0 respects the action of PSL2(R), z 7→ f(σz) is also a λ-eigenfunction. So if we
can prove the lemma when z = i, then we are done, since then we may choose σ ∈ PSL2(R)
such that σi = z, and then we have∫

H

φ(z, ζ)f(ζ) dµ(ζ) =

∫
H

φ(σi, ζ)f(ζ) dµ(ζ)

=

∫
H

φ(i, σ−1ζ)f(ζ) dµ(ζ)

=

∫
H

φ(i, ζ)f(σζ) dµ(ζ)

= Λ(λ)f(σi)

= Λ(λ)f(z).

By the same argument we may actually choose σ ∈ PSL2(C), and transform the situation
to be situated on the unit disc model of hyperbolic space, where z = 0. By the standard
formulas for how the hyperbolic metric on H translates over to this situation, it suffices to
show that

4

∫
|z|<1

Φ(|z|)f(z)
dx dy

(1− |z|2)2
= Λ(λ)f(0)

where f : {|z| < 1} → C is a λ-eigenfunction for the Laplacian on the the unit disc model.
By averaging and the fact that the measure only depends on |z|, we have∫

|z|<1

Φ(|z|)f(z)
dx dy

(1− |z|2)2
=

∫
|z|<1

Φ(|z|)F (z)
dx dy

(1− |z|2)2

where F (z) := 1
2π

∫ 2π

0
f(zeiθ) dθ. The new function F is useful because it only depends on

|z|. So we can rewrite the integral we are interested in as

2π

∫ 1

0

Φ(r)F (r)r
dr

(1− r2)2
.
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The trick is now to use the same differential equation that let us to Green’s functions: by
differentiation under the integral sign, ∆0F = λF , which in the language of functions on the
disc model we have already seen equates to

F ′′(r) +
1

r
F ′(r)− 4λ

(1− r2)2
F (r) = 0

with initial conditions F (0) = f(0) and F ′(0) = 0 (both of these follow directly from the
definition of F (r) as the average of f on the circle of radius r). By the theory of regular
singular points, we see that there exists a function Gλ(r) [depending only on λ, the only
other thing coming up in the differential equation] such that

F (r) = f(0) ·G(r).

This proves the result, because

2π

∫ 1

0

Φ(r)F (r)r
dr

(1− r2)2
= f(0) · 2π

∫ 1

0

Φ(r)Gλ(r)r
dr

(1− r2)2

and the integral on the right hand side only depends on λ and Φ. �

It’s useful that this works without requiring that Kφ is a Green’s function. The cost is that
we need to understand the function Λ. Also, note that Gλ(r) is different from the Green’s
function we used in the previous section: this one does not blow up near r = 0.

It isn’t obvious (to me) that Λ is entire from its definition as an integral involving a
function satisfying a differential equation depending on λ. Instead, one uses the result of
Lemma 4.6: to compute Λ, we may choose any test function f we want20, as long as it has
∆0f = λf . This is what allows for

Lemma 4.7. For r ∈ C, we have

Λ

(
1

4
+ r2

)
= h(r),

where

h(r) :=

∫
R

eiru
∫ ∞
eu+e−u−2

Φ(t)√
t− (eu + e−u − 2)

dt du.

In fact, Λ is entire.

Proof. The point is to take the test function (on the upper half-plane, not the disc) f(x+iy) =
=(y)s, where s ∈ C. Then

∆0f = s(1− s)f.
So by Lemma 4.6,

Λ(s(1− s)) =

∫
H

φ(i, ζ)=(ζ)s dµ(ζ).

Taking

s =
1

2
+ ir,

with r ∈ C so that

s(1− s) =
1

4
+ r2,

20this is not a typo. For a brief time, now f will be a “test function” rather than Φ.
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we may use this to compute (substituting t = x2+(y−1)2

y
and then u = log y)

Λ

(
1

4
+ r2

)
= Λ(s(1− s))

=

∫
H

φ(i, ζ)=(ζ)s dµ(ζ)

= 2

∫ ∞
0

∫ ∞
0

Φ

(
x2 + (y − 1)2

y

)
ys−2 dx dy

=

∫ ∞
0

∫ ∞
(y−1)2/y

Φ (t) ys−2 dt

(
√
ty − (y − 1)2)/y

dy

=

∫ ∞
−∞

∫ ∞
eu+e−u−2

Φ(t)eu(s−2) dt

(
√
teu − (eu − 1)2)e−u

du

e−u

=

∫ ∞
−∞

eu(s−
1
2)
∫ ∞
eu+e−u−2

Φ(t)√
t− eu − e−u + 2

dt du

=

∫ ∞
−∞

eiru
∫ ∞
eu+e−u−2

Φ(t)√
t− eu − e−u + 2

dt du

as claimed. This at least makes s 7→ Λ(s(1 − s)) an entire function, hence λ 7→ Λ(λ) is
holomorphic away from λ = 1/4. But Λ is defined and continuous at λ = 1/4, so in fact Λ
is entire. �

The useful thing about this21 is that the function h that shows up here is the inverse
Fourier transform of something that shows up in the geometric side. Let g ∈ C∞(R) be the
Fourier transform (appropriately normalized) of h. In other words,

g(u) =
1

2π

∫
R

h(r)e−iru dr =

∫ ∞
eu+e−u−2

Φ(t)√
t− (eu + e−u − 2)

dt.

Recall that for γ hyperbolic, we computed the relevant orbital integral∫
F [Γγ\H]

φ(z, γz) dµ(z) = logN(γ0)

√
N(γ)

N(γ)− 1

∫ ∞
(N(γ)−1)2/N(γ)

Φ(t)√
t− (N(γ)−1)2

N(γ)

dt.

In our new notation, this becomes

Lemma 4.8. If γ ∈ SL2(Z) is hyperbolic, then∫
F [Γγ\H]

φ(z, γz) dµ(z) =
logN(γ0)

N(γ)1/2 −N(γ)−1/2
g(logN(γ)).

The identity term of the geometric side can also be simplified using this new notation.
This is thanks to

Lemma 4.9. If Φ ∈ C∞c (R), then for any t ∈ R,

Φ(t) = − 1

π

∫ ∞
t

d
dx

∫∞
x

Φ(v)√
v−x dv√

x− t
dx

21I don’t know why this isn’t a coincidence.
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Proof. The proof of this formula is the main part of [10, Proposition 4.1]. I don’t know why it
is not a coincidence. The fact that Φ is compactly supported makes all of our manipulations
below kosher. First, observe that

d

dx

∫ ∞
x

Φ(v)√
v − x

dv = 2
d

dx

∫ ∞
0

Φ(x+ u2) du

= 2

∫ ∞
0

Φ′(x+ u2) du

=

∫ ∞
x

Φ′(v)√
v − x

dv.

So we may compute∫ ∞
t

d
dx

∫∞
x

Φ(v)√
v−x dv√

x− t
dx =

∫ ∞
t

∫∞
x

Φ′(v)√
v−x dv√
x− t

dx

=

∫ ∞
t

∫ ∞
x

(x− t)−
1
2 (v − x)−

1
2 Φ′(v) dv dx

=

∫ ∞
t

Φ′(v)

∫ v

t

(x− t)−
1
2 (v − x)−

1
2 dx dv

=

∫ ∞
t

Φ′(v)

∫ 1

0

x−
1
2 (1− x)−

1
2 dx dv

=

∫ ∞
t

Φ′(v)B

(
1

2
,
1

2

)
dv

=
Γ
(

1
2

)
Γ
(

1
2

)
Γ (1)

∫ ∞
t

Φ′(v) dv

= −πΦ(t),

again using the fact that Φ is compactly supported on R and in reality replacing t with t+ ε
while taking ε→ 0 to deal with the improper integrals. �

Now we can deal with the identity term of the geometric side.

Lemma 4.10. The identity term on the geometric side is∫
F [Γ\H]

φ(z, Iz) dµ(z) =
µ(Γ\H)

2π

∫ ∞
0

rh(r) tanh(πr) dr,

where h is the holomorphic function defined as above.

Proof. Recall from above that∫
F [Γ\H]

φ(z, Iz) dµ(z) = Φ(0)µ(Γ\H),

and from Lemma 4.9 that (substituting eu + e−u − 2 for x)

Φ(0) = − 1

π

∫ ∞
0

d
dx

∫∞
x

Φ(v)√
v−x dv√
x

dx

= − 1

π

∫ ∞
0

d
dx
g(u)

√
eu + e−u − 2

dx

du
du
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= − 1

π

∫ ∞
0

g′(u)

eu/2 − e−u/2
du

Since the spectral side of the trace formula we only have in terms of the inverse Fourier
transform h of g, it is convenient to simplify this further using the formula for the derivative
of the Fourier transform. In fact, using the symmetry of the integral involved,

g(u) =
1

2π

∫
R

h(r)e−iru dr =
1

π

∫ ∞
0

h(r) cos(ru) dr

so differentiating under the integral sign yields

g′(u) = − 1

π

∫ ∞
0

rh(r) sin(ru) dr

hence

Φ(0) =
1

π2

∫ ∞
0

rh(r)

∫ ∞
0

sin(ru)

eu/2 − e−u/2
du dr

=
1

2π

∫ ∞
0

rh(r) tanh(πr) dr,

as desired. �

Putting everything together on both the spectral and geometric side, we finally have the
first version of the Selberg trace formula:

Theorem 4.11 (Selberg, 1956). Assume that Γ is hyperbolic, and that Γ\H is compact. Let
Φ ∈ C∞c (R), and let {λi} be the ∆0-eigenvalues, counted with multiplicity. Defining g as

above, h to be its Fourier transform (normalized as above), and rn =
√
λn − 1/4, we have

∞∑
n=0

h(rn) =
µ(Γ\H)

2π

∫ ∞
0

rh(r) tanh(πr) dr +
∑

I 6=γ∈{Γ}

logN(γ0)

N(γ)1/2 −N(γ)−1/2
g(logN(γ))

where γ0 denotes a generator of the centralizer of γ in Γ.

Proof. Both sides are equal to the trace of the operator Lφ, as defined in Theorem 4.4. The
left hand side (the spectral side) is equal to this trace by Lemma 4.6 and Lemma 4.7. The
first term on the geometric side is the identity term and was computed in Lemma 4.10. The
second term is the hyperbolic term and its computation ends with Lemma 4.8. �

Of key importance for applications is that one can choose h instead of Φ. Once h is
chosen, we may obtain g by taking the Fourier transform, and Φ from that via Lemma 4.9.
In particular, one sets

g(u) =
1

2π

∫
R

h(r)e−iru dr

and

Φ(t) = − 1

π

∫ ∞
t

g′(u)√
eu + e−u − 2− t

du

As long as the resulting Φ is well-defined and compactly supported, this is kosher. Of
course, we want a bit more freedom in choosing h (Φ being compactly supported is too hard
to satisfy), which can be done simply by approximating by compactly supported functions
and carrying out the same arguments as in the proof of Theorem 4.11. This analysis is
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carried out in [10, §1.7], where it is shown that Theorem 4.11 is true as stated for any test
function h(r) satisfying the properties

(1) h is analytic on |=(r)| ≤ 1
2

+ δ (the point being that the rn live in this region) for
some positive constant δ.

(2) h(r) = h(−r).
(3) |h(r)| � |1 + |<(r)||−2−δ.

In fact, thanks to condition (3), both sides of the trace formula stated in Theorem 4.11 are
absolutely convergent. This uses the strengthening of Bessel’s inequality (see Section 3 for
the proof using the technique of Green’s functions) to the effect that for any ε > 0,∑

λ
−(1+ε)
i <∞.

With only the form of Bessel’s inequality we know (with ε = 1), condition (3) must be
strengthened to |h(r)| � |1 + |<(r)||−4−δ.

One application is to further pinning down the asymptotic growth of the λi. This proof
is taken from [18, Proposition 10].

Theorem 4.12 (Weyl’s law for compact surfaces). Under the same hypotheses on Γ as
above,

#{i : λi ≤ T} ∼ µ(Γ\H)

4π
T

as T →∞.

Proof. Fix β > 0, and take the test function h(t) = e−βt
2
. The spectral side of the trace

formula is the heat kernel ∑
n

e−βr
2
n .

If we can understand the asymptotic behavior of this quantity as β → 0, then we can
expect to understand the λi better. The Fourier transform of h (using the nonstandard
normalization convention we have been using thus far) is

g(t) =
1

2
√
πβ

e−
t2

2β .

Plugging this into the trace formula, we get∑
n

e−βr
2
n =

µ(Γ\H)

2π

∫ ∞
0

re−βr
2

tanh(πr) dr +
1

2
√
πβ

∑
I 6=γ∈{Γ}

logN(γ0)e−(logN(γ))2/(2β)

N(γ)1/2 −N(γ)−1/2
.

Multiplying by e−β/4, we obtain∑
n

e−βλ
2
n =

µ(Γ\H)

2π

∫ ∞
0

re−β(
1
4

+r2) tanh(πr) dr +
e−β/4

2
√
πβ

∑
I 6=γ∈{Γ}

logN(γ0)e−(logN(γ))2/(2β)

N(γ)1/2 −N(γ)−1/2
.

As β → 0, the negative exponential in the hyperbolic term dominated everything else: the
norms of hyperbolic conjugacy classes are all at least 2 so the denominators are bounded
below, and the exponential term clearly dominates the logN(γ0) since N(γ) ≥ N(γ0) as well
as the β−1/2 (because it is negative exponential in 1/β). So the identity term is the only
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one that makes a contribution. For that term, we use the estimate tanh(πr) = 1 +O(e−2πr).
The upper bound on the error integrates to

�
∫ ∞

0

re−β(
1
4

+r2)−2πr dr � 1.

The rest is ∫ ∞
0

re−β(
1
4

+r2) dr = e−β/4 ·
[
−1

2β
e−βr

2

]∞
r=0

=
1

2β
+O(1)

as β → 0. This shows the estimate on the heat kernel∑
n

e−βλn =
µ(Γ\H)

4π
β−1 +O(1)

as β → 0. This implies the desired asymptotic formula for the λi by Karamata’s Tauberian
theorem [11]. �

Weyl’s law generalizes to where there are non-hyperbolic terms as well. This was an
application of an estimate of the geometric side to gain fine control over the spectral side.
Indeed, the previous bound coming from Bessel’s inequality is only enough to say {i : λi ≤
T} � T 2, so this is a substantial improvement.

On the other hand, once one can control the spectral side, it is also possible to use it to
deduce things about the geometric side. Intrinsic to the compact Riemannian manifold Γ\H
are the lengths of the closed geodesics on it. Of course, given a geodesic γ, we probably only
want to know the length of γ, and not the geodesics γ(2t), γ(3t), . . ., which trace over the
image of γ multiple times. In other words, we are interested in

Definition 4.13 (Prime geodesics). Let X be a Riemannian manifold. A prime geodesic on
X is a closed geodesic that traces out its image exactly once.

Remark 4.14. On the other hand, if γ(t) is a prime geodesic on X, then X is also equipped
with the time-reversal of γ, namely t 7→ γ(−t). For our purposes, these count as different
prime geodesics even though they trace out the same image.

Just as we are interested in the asymptotics of the prime numbers, we are interested in
the asymptotics of lengths of prime geodesics on Γ\H.

Moreover, we have a bijection

{hyperbolic conjugacy classes of Γ} → {closed geodesics on Γ\H}

taking a conjugacy class represented by a hyperbolic element γ ∈ Γ to the closed geodesic
given by the projection to Γ\H of the arc of the geodesic on H connecting the two fixed
points (on the real axis) of γ constituting a fundamental domain of the action of 〈γ〉 on that
geodesic. Note that the length of the closed geodesic corresponding to a hyperbolic γ ∈ Γ is
given by (for any z in the geodesic connecting the two fixed points)

dH(z, γz) = logN(γ),

and the length of the underlying prime geodesic is logN(γ0), where γ0 is a generator of the
centralizer of γ in Γ. This provides an opportunity to apply the trace formula to study these
quantities. I learned about this application from Sarnak’s thesis [19], where he explains a
somewhat more general result.
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Theorem 4.15 (Selberg, 1956). Suppose Γ\H is compact. Then

#{prime geodesics τ on Γ\H : len(τ) ≤ log T} ∼ Li(T )

as T →∞.

This proof is reproduced from Sarnak’s thesis.

Proof. This time, the test function of choice is a little more complicated. Let T.ε > 0,
and define the Fejér kernel (or its Fourier transform depending on the convention) to be
kT (x) = 1− |x|/T for 0 ≤ |x| ≤ T and 0 elsewhere. Also, take an even (Schwartz) function
ψ ∈ C∞c (R) supported in [−1, 1] with

∫
R
ψ = 1, and define the dilations in the usual way

ψε(x) = ε−1ψ(x/ε).

This way, the ψε (i.e. the corresponding convolution operators) are supposed to be an

approximation to the identity. Since ψ is Schwartz, so is ψ̂ and its derivative. For 1 ≤ p ≤ ∞,
the Lp norms of those are all Oψ(1) (in particular, they are finite and depend only on ψ).

Also, since these functions are all even, there is no distinction between the Fourier trans-
form and the inverse Fourier transform. So we define

g(x) = gT,ε(x) = (kT ∗ ψε)(x),

which is supposed to be a series of smoothed-out approximations to the Fejér kernel, and
thus

h(x) = ĝT,ε = T

(
sin(Tx/2)

Tx/2

)2

· ψ̂(εx).

First, we estimate the identity term. Since tanh(πr) ≤ 1 and(
sin(Tr/2)

Tr/2

)2

≤ 1,

we have ∫ 1

0

rh(r) tanh(πr) dr �ψ

∫ 1

0

T d(r2)

�ψ T.

And since h(r)� 1
Tr2 ψ̂(εr), we may also estimate via integration by parts∫ ∞

1

rh(r) tanh(πr) dr �
∫ ∞

1

h(r) d(r2)

�
∫ ∞

1

1

Tr2
ψ̂(εr) d(r2)

=
1

T

[
ψ̂(εr)

]∞
r=1
− 1

T

∫ ∞
1

r2 d

dr

[
ψ̂(εr)

r2

]
dr

�ψ
1

T
+

1

T

∫ ∞
1

εψ̂′(εr) dr +
1

T

∫ ∞
1

ψ̂(εr)
dr

r

=
1

T
+

1

T

∫ ∞
ε

ψ̂′(r) dr +
1

T

∫ ∞
ε

ψ̂(r)
dr

r

�ψ
1

T
+

1

T
log

(
1

ε

)
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where in the last step we are using the fact that ψ̂ is Schwartz. Adding up the two contri-
butions

∫ 1

0
+
∫∞

1
, we have the estimate on the identity term∫ ∞

0

rh(r) tanh(πr) dr � T +
1

T
log(1/ε).

The test function is engineered to yield essentially a truncated (and weighted) version of a
sum involving the lengths of geodesics. In particular, the hyperbolic term is∑

I 6=γ∈{Γ}

logN(γ0)

N(γ)1/2 −N(γ)−1/2
gT,ε(logN(γ)).

All the terms with logN(γ) ≥ T + ε vanish straightaway (because gT,ε = kT ∗ ψε vanishes
for those values by definition of the convolution), so this is a sum over the geodesics we are
actually interested in, namely those with logN(γ) < T + ε (the difference between T and
T + ε won’t really matter). Recall that convolution by ψε approximates the identity, in the
send that ε→ 0, ‖gT,ε − kT‖L∞(R) ≤ ε independently of T . So the trace formula reads∑

τ

τ0

eτ/2 − e−τ/2
kT (τ) +O

( ∑
τ≤T+ε

τ0

eτ/2 − e−τ/2
ε+ T +

1

T
log(1/ε)

)
,

where τ ranges over the lengths, with multiplicity, of closed geodesics on Γ\H, and τ0 is the
length of the underlying prime geodesic. The spectral side is∑

n

T

(
sin(Trn/2)

Trn/2

)2

ψ̂(εrn).

Since the sequence of λn ≥ 0 is discrete and tends to infinity, all but finitely many of the rn
are real. Moreover, the contribution of the terms where rn is real to the spectral side is∑

n≥0
λn≥ 1

4

T

(
sin(Trn/2)

Trn/2

)2

ψ̂(εrn) =

∫ ∞
0

T

(
sin(Tr/2)

Tr/2

)2

ψ̂(εr) d(#{n : rn < r})

�ψ,Γ T +
1

T
log

(
1

ε

)
,

where this estimate is obtained using the fact that #{n : rn < r} �Γ r
2 (Theorem 4.12) and

the same technique we used to estimate the identity term. So the terms where λn ≥ 1/4 are
absorbed into the O(T + T−1 log(ε−1) error. Writing rn = itn for the finitely many n with
λn < 1/4, the analysis of the spectral side is now reduced to22

−4
∑
n≥0
λn<

1
4

sin2(Titn/2)

Tt2n
ψ̂(εitn) = −4

∑
n≥0
λn<

1
4

sin2(Titn/2)

Tt2n

∫
R

ψ(r)e−εtnr dr

= −4
∑
n≥0
λn<

1
4

sin2(Titn/2)

Tt2n

[
‖ψ‖L1 +

∫ 1

−1

ψ(r)(e−εtnr − 1) dr

]

22Using the assumption that ‖ψ‖L1 = 1 and suppψ ⊂ [−1, 1], plus the fact that tn ≤ 1/2 for each n and
ex − 1� x for x bounded above.
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= −4
∑
n≥0
λn<

1
4

sin2(Titn/2)

Tt2n
[1 +O(ε)]

=
∑
n≥0
λn<

1
4

e−Ttn + eTtn − 2

Tt2n
[1 +O(ε)]

=
∑
n≥0
λn<

1
4

[
eTtn

Tt2n
+O

(
1

T

)]
[1 +O(ε)]

=
∑
n≥0
λn<

1
4

eTtn

Tt2n
+O(εeT/2 + T−1).

So the trace formula reads∑
n≥0
λn<

1
4

eTtn

Tt2n
=
∑
τ≤T+ε

τ0

eτ/2 − e−τ/2
(kT (τ) +O(ε)) +O

(
T +

1

T
log

(
1

ε

)
+ εeT/2

)
.

Using the trivial bound23

#{τ : τ ≤ x} �Γ e
x

(which also implies that there is a well-defined positive smallest length of a closed geodesic),
we may estimate ∑

τ≤T+ε

τ0

eτ/2 − e−τ/2
�Γ (T + ε)eT+ε � e1.1T ,

where the dependence of the implied constant on Γ comes from both the implied constant
from the trivial bound and from the length of the shortest geodesic on Γ\H (also in the last
bound we have used that ε→ 0). Setting ε = e−1.1T , the trace formula now reads∑

n≥0
λn<

1
4

eTtn

Tt2n
=
∑
τ≤T

τ0

eτ/2 − e−τ/2
(

1− τ

T

)
+O (T )

as T →∞. Note that (again using the trivial bound)∑
τ≤T

τ0

eτ/2 − e−τ/2
− τ0

eτ/2
≤
∑
τ≤T

τ

eτ/2 − e−τ/2
− τ

eτ/2

=
∑
τ≤T

τ

e3τ/2 − eτ/2

23See [10, Proposition 2.5]. The point is that every hyperbolic conjugacy class has a representative γ
whose underlying geodesic on H meets the canonical fundamental domain F [Γ\H], and we know that
dH(z, γz) = logN(γ) for z ∈ γ. The conjugacy classes of log-norm at most x therefore all have the property
that they have a representative γ such that dH(z0, γF) ≤ x + diamF where z0 is some point in F fixed
beforehand. In other words, γF ∩ Bx+diamF (z0) 6= ∅, and thus γF ⊂ Bx+2diamF (z0). The number of γ ∈ Γ
that satisfy this last inequality (which we have shown is an upper bound for the number we are interested
in) is (by covering a subset of Bx+2diamF (z0) with disjoint translates of F and looking at areas) at most
µ(Bx+2diamF (z0))/µ(F), so the trivial bound follows from the fact that the area of a hyperbolic disc of radius
r is asymptotic to πer as r →∞.
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�Γ

∫ ∞
0

xe−3x/2 d(#{τ < x})

�Γ −
∫ ∞

0

ex
d

dx

[
xe−3x/2

]
dx

�
∫ ∞

0

(1 + x)e−x/2 dx

� 1

so that difference is absorbed in the error and we have (after multiplying by T )∑
n≥0
λn<

1
4

eTtn

t2n
=
∑
τ≤T

τ0

eτ/2
(T − τ) +O

(
T 2
)
.

For small h > 0 (going to 0 as T →∞), we can take the difference quotient of both sides as
a function of T . On the left hand side, that is∑

n≥0
λn<

1
4

etn(T+h) − etnT

ht2n
=
∑
n≥0
λn<

1
4

etnT (tnh+O(h2))

ht2n

=
∑
n≥0
λn<

1
4

etnT

tn
+O(heT/2)

(where we have used the fact that t0 = 1/2 is the largest of the tn’s). And the right hand
side becomes ∑

τ≤T

τ0

eτ/2
+

∑
T<τ≤T+h

τ0

eτ/2

(
T + h− τ

h

)
+O((T + h)2/h)

which means that (since the terms in the sum
∑

T<τ≤T+h are all positive)∑
τ≤T

τ0

eτ/2
≤
∑
n≥0
λn<

1
4

etnT

tn
+O

(
heT/2 + T + h+

T 2

h

)
.

Taking the difference quotient from the left, we get (by the same arguments) the same thing
on the left hand side and on the right hand side except for the

∑
T<τ≤T+h term is negated,

so in fact ∑
τ≤T

τ0

eτ/2
≥
∑
n≥0
λn<

1
4

etnT

tn
+O

(
heT/2 + T + h+

T 2

h

)
.

Setting h = Te−T/4, we obtain∑
τ≤T

τ0

eτ/2
=
∑
n≥0
λn<

1
4

etnT

tn
+O

(
TeT/4

)
.
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The contribution of the non-prime geodesics here is bounded by∑
τ0≤T

τ0

∞∑
k=2

e−kτ0/2 �Γ

∑
τ0≤T

τ0e
−τ0

=

∫ T

0

xe−xd(#{τ0 < x})

�Γ T +

∫ T

0

ex
d

dx

[
xe−x

]
dx

�Γ T
2

(using the trivial bound again) which is absorbed into the error term, and hence we can
rewrite the expression from the trace formula with the geometric side purely in terms of
lengths of prime geodesics, namely

(4.16)
∑
τ0≤T

τ0

eτ0/2
=
∑
n≥0
λn<

1
4

etnT

tn
+O

(
TeT/4

)
.

This lets us conclude via the usual technique of integration by parts. Let F (T ) be the
quantity equal to both sides of Equation (4.16). Then the thing we are interested in is
(using both the left and right hand sides of Equation (4.16) and the fact that F vanishes for
small enough inputs)

#{τ0 < T} =

∫ T

0

x−1ex/2 dF (x)

= T−1eT/2F (T )−
∫ T

α

F (x)
d

dx

[
x−1ex/2

]
dx

= T−1eT/2F (T )−
∫ T

α

∑
n≥0
λn<

1
4

etnx

tn
+O

(
xex/4

)(−x−2ex/2 +
1

2
x−1ex/2

)
dx.

where α > 0 is smaller than the length of the shortest prime geodesic. The part of the
integral that gets multiplied by O(xex/4) is

�
∫ T

α

xex/4
(
−x−2ex/2 +

1

2
x−1ex/2

)
dx�

∫ T

α

(x−1 + 1)e3x/4 dx

�α e
3T/4

and the rest is

#{τ0 < T} = T−1eT/2F (T )−
∫ T

α

∑
n≥0
λn<

1
4

etnx

tn
d(x−1ex/2) +O(e

3
4
T )
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= T−1eT/2

∑
τ0≤T

τ0

eτ0/2
−
∑
n≥0
λn<

1
4

etnT

tn

+

∫ T

α

x−1ex/2
∑
n≥0
λn<

1
4

etnx dx+O(e
3
4
T )

=
∑
n≥0
λn<

1
4

∫ T

α

e(tn+ 1
2)x

x
dx+O(e

3
4
T ).

Plugging in log T instead of T and changing variables (u = e(tn+1/2)x) in the integral, we get
the desired

#{τ0 < log T} =
∑
λn<

1
4

Li
(
T tn+ 1

2

)
+O(T 3/4)

(which gives us what we want because t0 = 1/2 and all the other tn’s are smaller). �

Remark 4.17. The error term in Sarnak’s thesis is actually O(T 3/4(log T )2), which originates
from the fact that his error term after the Tauberian differentiation argument is O(T 2eT/4)
as compared to our O(TeT/4). The most likely explanation for this is that there is a mistake
in my own replication of his argument. Either way, the asymptotics are the same. In any
event, the refinement of the final error term is mostly about the exponent on T , and is the
subject of a lot of important and more recent work (see e.g. [17] where the key point is to
use the Weil bounds on Kloosterman sums to gain information about the cancellation in the
error term) outside the scope of this paper.

Remark 4.18. By the uniformization theorem and Gauss–Bonnet, the surfaces Γ\H account
for all compact Riemann surfaces of genus g ≥ 2. In fact, they account for the compact
2-dimensional Riemannian manifolds with constant negative curvature. So even this most
basic form of a prime geodesic theorem is about something concrete and interesting. Note,
too, that for positive curvature there are usually too many geodesics for this to make sense:
take S2 with the usual metric, for instance.

4.2. Remarks on noncompact finite-volume quotients. Without the assumptions we
made in the previous section, the trace formula must be modified to account for the following
two issues:

(1) Γ might have elements which are not hyperbolic or the identity. So the full trace
formula has an elliptic term and a parabolic term.

(2) Γ\H might not be compact. This brings in issues relating to the continuous spectrum
and therefore Eisenstein series.

These extra terms (from elliptic, parabolic, and Eisenstein series) are not a big deal, in the
sense that Weyl’s law and the prime geodesic theorem above can still be proved in the same
way: those extra terms end up being absorbed in the error.

That being said, the proofs of the generalizations of these facts are essentially the same,
once one proves the necessary facts about Eisenstein series. Those facts are outside the scope
of these notes, which are already far too long. They are proved in [10, Ch. 2] and [19], and
in fact Theorem 4.15 holds for finite-volume quotients of H, including the affine modular
curve Y (1).
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4.3. Class numbers of real quadratic fields. The Maass forms are supposed to have
something to do with arithmetic, at least those of Laplace eigenvalue 1/4. However, Sarnak
[20] found another interesting application to arithmetic, via the prime geodesic theorem for
finite-volume quotients of H. He applied it to the uncompactified modular curve Y (Γ),
where Γ = Γ(p). The lengths of geodesics on this modular curve are the same as regulators
of quadratic fields with discriminant divisible by p. Since the argument is essentially the
same conceptually but slightly less complicated, we will restrict our attention to Y (1)

Theorem 4.19 (Sarnak, 1981). ∑
eRd≤x

h(d) ∼ Li(x2)

as x → ∞, where the sum is over discriminants d of orders of quadratic fields, Rd denotes
the narrow regulator and h(d) denotes the narrow class number.

Proof. For any ` > 0, there is a natural bijection{
SL2(Z)-equivalence classes of primitive binary

quadratic forms f such that 2Rdisc(f) = `

}
→ {prime geodesics on Y (1) of length `}

formed in the following way. Given a primitive binary quadratic form f = aX2+bXY +cY 2 ∈
Z[X, Y ] of positive discriminant, the two roots of f(X, 1) have a canonical ordering as(

−b+
√

disc(f)

a
,
−b−

√
disc(f)

a

)
.

So you can take the geodesic γ on H going from the first root to the second root, then obtain
a prime geodesic on Y (1) by looking at a fundamental domain of the action of StabSL2(Z)(γ)
on γ. One computes directly that the length of the resulting prime geodesic is 2Rdisc(f) and
that this is bijective. Note that we are still following the convention that the time-reversal
of a prime geodesic is not necessarily the same one: taking the time-reversal on the right
hand side of the bijection corresponds to negating all the coefficients on the left hand side
(since then the ordered pair of roots will be reversed).

Now that the bijection with prime geodesics is established, we may compute∑
Rd≤log x

h(d) = #

{
SL2(Z)-equivalence classes of primitive binary

quadratic forms f such that 2Rdisc(f) ≤ log x2

}
= #{Prime geodesics on Y (1) of length ≤ log x2}
∼x→∞ Li(x2)

as a consequence of Theorem 4.15 (which we have remarked is also valid for finite-volume
quotients). �

This result was a big step towards the long-open question of decoupling the regulator from
the class number in the Gauss–Siegel asymptotic formula for

∑
d<x h(d) log εd [22] and its

consequences and refinements (e.g. for Γ = Γ(p)) are elaborated on further in [20]

Remark 4.20. Here is a vague question. The class numbers of real quadratic fields come
up when applying the trace formula to Maass forms, as seen in this application. When
applying the trace formula to spaces of holomorphic modular forms to compute traces of
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Hecke operators, it is the class numbers of imaginary quadratic fields that show up. Is this
a coincidence? Does it generalize?
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