CLASS FIELD THEORY

KENZ KALLAL

ABSTRACT. These notes are the result of my study of class field theory in a
reading project under the supervision of Mark Kisin. This project was sup-
ported by summer 2019 HCRP (Harvard College Research Program) funding.
In these notes, I’ve done my best to get directly to the point of being able
to prove the main results of local and global class field theory, without the
involvement of too much abstract machinery like the cohomology of the ideles.
To do this, most of the exposition follows the second part of Lang’s classic text
on algebraic number theory. I've also included a section on the basic methods
of explicit class field theory, in the case of local fields (Lubin—Tate theory) and
imaginary quadratic number fields (complex multiplication).
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1. HCRP FINAL REPORT

1.1. Research goals, accomplishments, and challenges. The main goal of this
project was to learn the statements and proofs of local and global class field theory.
The approach I followed was close to the historical one, which follows a global-to-
local strategy. For most of the core material on this topic, I followed the canonical
book by Lang [9], as recommended by Professor Kisin. One way to motivate the
statements is as follows: to generalize Dirichlet’s theorem on primes in arithmetic
progressions to the primes in generalized ideal classes, we define the Hecke L-
functions analogously to the Dirichlet L-functions, except with respect to characters
of the generalized ideal class group I(m)/ Py, generalizing the usual group (Z/mZ)*.
From the finiteness of I(m)/Py,, one can show that L(s,x) converges slightly to the
left of s = 1 when x is nontrivial. The only remaining step is then to show that
L(1,x) # 0. This can be done directly, but the important question is whether it
can be done using a formula analogous to the one for Dirichlet L-functions, namely
[T, L(s,x) = ¢q(¢.)(8) up to some entire factors. To do this, one can show the
existence of an abelian extension K /k whose Galois group is isomorphic to I(m)/ Py
via the Artin map, thereby proving a natural correspondence between Hecke and
Artin L-functions in the abelian case. The relevant theorem of class field theory is
the existence theorem, which is best stated in terms of the topological group of
idéles Jg.

Theorem 1.1. Let k be a number field and H an arbitrary open subgroup of Ji /K.
Then there exists an abelian extension K/k such that the Artin map Ji/k* —
Gal(K/k) has kernel H.

Going the other way, it is useful to know that Artin L-functions converge on
a right half-plane past 1 (to do this it suffices to show that the abelian Artin L-
functions are all Hecke L-functions for some modulus). One reason it is useful is that
in the abelian case, it can be used to prove the Chebotarev density theorem,
a further generalization of Dirichlet’s theorem on primes in arithmetic progression
which has the following consequence:

Theorem 1.2. FEvery abelian extension of k is uniquely determined by the set of
primes of k which split completely in the extension.

The desired fact that every abelian Artin L-function is equal to a Hecke L-
function can be proved using the global reciprocity law of class field theory:

Theorem 1.3. Let K/k be an abelian extension. Then for any admissible modulus
m for K/k, the Artin map induces an isomorphism I(m)/PyN(m) — Gal(K/k).

Though the motivation for these statements may be seen to be about the relation-
ship between two different types of L-functions each with desirable properties (the
Hecke L-functions having good convergence properties and the Artin L-functions
having a good relationship with a certain Dedekind ¢ function), the actual state-
ments of Theorems|[I.3]and [[.T]immediately lead to another story, namely the class
field correspondence:

Theorem 1.4. The abelian extensions of k are in bijection with the open subgroups

of Ji/k* via the map K — N(Ji/k>).
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Theorems and [[4] follow the theme that the abelian extensions are deter-
mined by information given by the kernel of their respective Artin map. The-
orem is particularly interesting because it gives a description of the abelian
extensions of k in terms of the arithmetic of k itself, stated in terms of the topology
of the idele class group.

There’s another important theme in the main statements of class field theory,
namely that of local-global compatibility. From the ideélic Artin map Ji, — Gal(K/k)
we can extract the local Artin maps k¢ — Gal(K/k) via the embeddings k) — Ji,
and prove the image of the local Artin map is the decomposition group of v, which
is to be expected since it is naturally identified with Gal(K, /k,). So we get local
Artin reciprocity:

Theorem 1.5. The local Artin map induces an isomorphism k.S /N(K*) — Gal(K,/k,).

The local statement is enormously helpful in finishing off the proof of the global
existence theorem. It also leads to a whole part of the theory which relates the
kernel of the Artin map to the ramification behavior of primes.

Gaining a thorough understanding of how to prove these statements took up the
first half of the summer. Even from this global-first approach where the cohomo-
logical tools are pretty light, I picked up a number of tools in the process:

General constructions of L-functions for number fields
Adeles and Ideles, and the basic theory of topological groups
Group cohomology

Kummer theory

The second half of the summer, I learned about questions for which the surround-
ing theory is somewhat more modern. Neither local nor global class field theory
can be very explicit in general (at the ramified primes the local reciprocity map is
difficult to define explicitly. In the global theory, the existence theorem is noncon-
structive). But in some special cases, the abelian extensions K /k can be described
explicitly. For abelian extensions of local fields, the answer is given by Lubin-Tate
theory, which for a local field k decomposes k2P into the compositum of the maxi-
mal unramified abelian extension k" and a totally ramified extension k, which is
constructed (based on a choice of uniformizer 7) by adjoining the torsion points of
a Lubin-Tate formal group law on the maximal ideal of the separable closure of k.
The group law may be defined in terms of power series in two variables, specifically
so that adjoining the torsion points means adjoining roots of Eisenstein polynomials
(thus creating the totally ramified extension k). This can be motivated by looking
at the special case of totally ramified extensions of Q,. I learned about this topic
from a book chapter of Serre [I, Ch. VIJ.

In the global case, the only known explicit generalization of Kronecker—Weber
is in the imaginary quadratic case k = Q(v/—d). The idea is to consider all the
elliptic curves E' whose endomorphism ring has extra endomorphisms coming from
multiplying the corresponding lattice A C C by elements of Oy, (such elliptic curves
are said to have complex multiplication by Oy). The main result relating to explicit
class field theory is that the maximal unramified abelian extension of & is explicitly
equal to k(j(E)), and that in most cases, every finite abelian extension of k is
contained in an extension of the form k(j(F),x;) where the x; are coordinates of
torsion points of E. This was the most challenging topic for me this summer,
because of its reliance on technical results from the theory of elliptic curves. I used
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three sources for complex multiplication and elliptic curves: Silverman’s books
[13, [14] and Serre’s other chapter [I, Ch. XIII].

1.2. Personal implications. Thanks to the HCRP funding, this summer was a
great time of mathematical development for me. It allowed me to crystallize my
understanding of the core concepts of algebraic number theory, and to gain technical
competence with concepts which were new to me: not only the statements of class
field theory, but also universally important tools, including the more general types
of zeta functions and L-functions, Kummer theory, group cohomology, topological
group theory, infinite Galois theory, and elliptic curves. The difficulty of my foray
into elliptic curves also forced me to realize the importance that algebraic geometry
will have in my future studies of number theory, and how crucial mastering as much
of the subject as I can will be in the next two years. As a result, I have started a
thorough reading of Vakil’s introductory text [16].

1.3. Implications for my senior thesis. Though I don’t have any fully fleshed-
out ideas for my senior thesis topic, this project was influential for my thesis in that
it allowed me to gain the technical competence to tackle more advanced projects
in number theory. It also influenced me strongly in the direction of doing a senior
thesis in the general area of number theory. Within that, there are a lot of places
my study of algebraic number theory can lead, especially once I learn algebraic
geometry properly. One very interesting topic which I have only seen glimpses
of (from the theory of the j-invariant and separately from concrete applications
like sums of 4 squares) is the theory of modular forms, which play an important
role in the conjectural generalization of class field theory given by the Langlands
correspondence. I might also be interested in topics in arithmetic geometry like
étale cohomology (and its application to the Weil conjectures). Of course, this is
strongly conditional on my knowledge of algebraic expanding substantially over the
next year.

1.4. Interaction with my faculty sponsor. Professor Kisin and I met in person
twice over the summer. The first time was after I read most of the class field
theory content of Lang’s book (by then we were already in communication over
email about all the questions I had about the material). The main questions I
had at this meeting were about how class field theory can be done explicitly. As
a result, Professor Kisin recommended I read chapters by Serre in the classical
book of Cassels and Frohlich, the first on local class field theory and the second
on complex multiplication. The exposition in both of these chapters is written at
a higher level than in Lang’s book, and it took some time for me to understand
even the one on local class field theory. For complex multiplication, it was hard
for me to get started due to my relative unfamiliarity with the theory of elliptic
curves. At our second in-person meeting, Professor Kisin stressed the usefulness of
the abstractions of algebraic geometry in dealing with objects like elliptic curves in
a more canonical way. He recommended a book of Katz—Mazur [7] and an article
of Deligne-Rapaport [4]. Both of these are somewhat beyond the reach of my
technical understanding of algebraic geometry, but motivated my current project
of reading Vakil’s classic text on algebraic geometry. In the end, it was from the
more concrete books of Silverman that I was able to understand the details of the
theory of complex multiplication.
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1.5. Use of funds. The HCRP award was used to support my living expenses

(room and board) for the summer of 2019. Other than books, there were no ex-
penses directly related to the project.
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2. INTRODUCTION
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3. L-FUNCTIONS

3.1. Hecke L-functions and generalized ideal class groups. Recall from the
basics of analytic number theory (see for example [B, dirichlet.pdf]) the con-
struction of the Dirichlet L-function, first on the right half-plane R(s) > 1 via the
absolutely convergent series

L(s,x) = > _ x(n)n™*

n>1

where x is a Dirichlet character mod m. In particular, y is a complex character
of the finite abelian group (Z/mZ)* which lifts to a function N — C* by taking
x to be zero on all n € N not coprime to m. These L-functions are useful for
estimating the asymptotic growth of the prime-counting function 7(z;a mod m)E|
(see for example [5, pnt_q.pdf]), because of the fact from the representation theory
of finite abelian groups that for (a,m) =1,

m(z;a mod m) = Zx(a) 1 Z x(®)7(z;b mod m),
X p(m) be(Z/mZ)*

and the estimatd?]
log L(s,x) = > x(p)p~* + Oy, (1)
p

for 1 < s < sp. By observing (e.g. by the method of partial summation) that the
L-series for nontrivial characters converge uniformly for R(s) > 0 and showingﬂ
that L(1,x) # 0, one can conclude at least the original statement of Dirichlet’s
theorem on primes in arithmetic progressionsﬁ

Theorem 3.1. Let m € N and a be an integer such that (a,m) = 1. Then the set
of primes congruent to a mod m have Dirichlet density 1/¢o(m) in the set of all
primes. As a consequence, there are infinitely many such primes.

As usual in algebraic number theory, the question becomes how to generalize
questions about congruence classes of primes to arbitrary number fields. Let K be
a number field. The usual way of doing this is to order the ideals of Ok according to
their norm. Then one can use the Dedekind zeta function, defined by the absolutely
convergent Euler product

(k(s) = H W: Z (NI)™*

0#£pCOxk 0#£ICOK

IThe prime-counting function 7(z;a mod m) is just the number of primes < z congruent to a

mod m.
2This uses the Taylor expansion for log(l 4+ z) and the absolutely-convergent Euler product
L(s,x) =11 — 1 Note that this involves a choice of branch for the complex logarithm

P 1-x(p)p~*
when x is not real.

3The fact that L(1,x) # 0 is usually considered the main nontrivial step in the proof of Dirichlet’s
theorem. One way to do it is to observe that up to some entire factors, Hx L(s,X) = CQ(¢m) (8)
4Adapting the proof of the prime number theorem (see [5l pnt.pdf]) to the machinery of L-
functions of Dirichlet characters instead of the {-function can also yield the same statement for
natural density, with error bounds depending on the strength of a zero-free region for an analytic
continuation of L(s, x) as an entire function.
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for R(s) > 1, where the product is over all nonzero prime ideals, and the sum is
over all nonzero ideals. One can continue (i to a meromorphic functiorﬂ with only
simple poles at s = 0,1. Armed with the appropriate analytic object, Landau [8]
showed the generalization of the prime number theorem to the number of prime
ideals of norm at most x via the usual contour integrals involving (- /Cx and the
Perron integral formula. Given the success of adapting the prime number theorem,
how might Dirichlet’s theorem on primes in arithmetic progressions be generalized
to the prime ideals of Og? Let m be a nonzero ideal in Ok. Analogously to
considering the primes coprime to a fixed modulus m € Z, we consider the prime
ideals in the group I(m) of fractional ideals coprime to m. For any nonzero prime
p C Ok, let m(p) denote the multiplicity of p in the factorization of m. At the
very least, we should mod out by the subgroup of principal fractional ideals (a) of
Ok such that v,(a — 1) > m(p) for all nonzero primes p. In effect, we quotient
by open subgroups (necessarily open neighborhoods of 1) with respect to each
nonarchimedean valuation. For the archimedean valuations, C* has no nontrivial
open subgroups, and R* has only the subgroup of positive real numbers. This has
finite index in R*, so we might as well also require that the group of principal ideals
(o) we quotient by has v(a) > 0 for some predetermined set of real valuations v.
This discussion is summarized in the following definitions:

Definition 3.2. A modulus m of k is a finite formal product of nonarchimedean
and real valuations of k. In particular,

where all but finitely many of the m(v)’s are zero and m(v) > 0 for all v. At all real
places v|m, we might as well require m(v) = 1. Equivalentlyﬂ we can separate the
nonarchimedean from the real places and define a modulus to be a nonzero integral
ideal mg, together with a collection of real places my.

Let m = mgmy, be a modulus of k.

Definition 3.3. I(m) denotes the (abelian) group of fractional ideals of Oy, coprime
to mg.

Definition 3.4. P, denotes the subgroup of I(m) consisting of all principal frac-
tional ideals («) such that vy(a — 1) > m(v,) for all p|mg, and v(a) > 0 for all
VMoo

Definition 3.5. Define the generalized ideal class group to be I(m)/Py,. This is
also sometimes called the ray class group of m.

5This is done by proving a functional equation analogous to the one for the Riemann zeta function.
Hecke did it directly using the higher-dimensional Poisson summation formula. Later, Tate used
Poisson summation on the ring of adeles to achieve the same result. For both of these proofs
see [9, Ch. XIII, XIV]. The order and residue of the pole at s = 1 comes down to estimating

the number of elements of Ok of norm at most z. It turns out (see [II Ch. VII, §5]) that the
271 (27)"2h i Rk

lhilVIdK|

respectively, hi is the class number, Rk is the regulator, pg is the group of roots of unity in K,
and dg is the absolute discriminant of K.

6The equivalence is due to the unique decomposition of nonzero (integral) ideals of Ok into
nonzero primes.

residue is equal to where 71, 2ry are number of real and complex embeddings,
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Example 3.6. The option to require that the ideals in P, are generated by ele-
ments which are positive with respect to some valuations is concretely useful. Recall
that the original motivation was to generalize the group of residues (Z/mZ)* to
the ideals coprime to m. To achieve this as a special case of the generalized ideal
class group, we must include the real valuation of Q in the modulus m. In par-
ticular, let £ = Q, m be a positive integer, and m be the modulus whose finite
part is mZ and whose infinite part is the single real valuation v, : Q@ — R. Then
I(m)/Py = (Z/mZ)* via the following isomorphism: each element a € I(m) can
be written uniquelyr_;l in the form (a/b), where a/b > 0 and is in reduced form, while
a,b are both coprime to m. Send (a/b) to the residue (@ mod m)(b mod m)~!.
The kernel of this homomorphism is the set of ideals (a/b) such that a = b mod m
and a/b > 0. This is precisely Py, so this map induces the desired isomorphism
of abelian groups. Note that if we did not require v, |m, the resulting generalized
ideal class group would have index 2 in (Z/mZ)*.

Example 3.7. The generalized ideal class group deserves its name: If we set m = 1,
then I(m) is the group of fractional ideals of Oy, and P, is the group of principal
ideals. In particular, in this special case the generalized ideal class group coincides
with the class group I/ Pg.

The attempt to generalize Dirichlet’s theorem on arithmetic progressions can be
easily stated:

Question 3.8. Are there infinitely many nonzero primes p C Oy in each residue
class in I(m)/Py? Do the primes in each class all have the same Dirichlet density?

Like the ideal class group, we will show that the generalized ideal class group
is finite (in fact we will use the finiteness of the class group along the way). Once
we know I(m)/P, is finite, we can leverage the representation theory of finite
abelian groups in the same way as in the proof of Dirichlet’s theorem on primes in
arithmetic progression. This will establish the connection between the L-functions
coming from characters of I(m)/P, and the nonzero prime ideals in I(m) with
particular residues. Now that we have the desired group of ideal classes, we can
define the appropriate characters and L-functions.

Definition 3.9. A Hecke character modulo m is a complex character of the abelian
group I(m)/Py,.

Definition 3.10. Let x : I(m)/Py — C* be a Hecke character. The corresponding
L-function is defined on the half-plane R(s) > 1 by

-y
L(s,x) = Igz(;k X(I)(NI)™* = g 1—x(p)(Np)—s’
(I,m)

where the sum is over all nonzero (integral) ideals of Ok coprime to m.
To build a theory analagous to that of the Dirichlet L-function, two ingredients
are still missing;:

e The finiteness of the generalized ideal class group
e For nontrivial , the convergence of L(s, x) on a right half-plane containing
1, and the nonvanishing of L(1, x).

"The uniqueness follows from the fact that ZX = {+1}.
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The first ingredient comes down to a simple dévissage argument.

Theorem 3.11. Let m be a modulus of k. Then I(m)/Py, is finite. In particular,
it has

thS(mOO)
(0% : (OK)m]

elements, where hy, is the class number of k, s(mu) is the number of real places
included in m, and (O )wm is the group of units o € O such that v,(a—1) > m(p)
for all nonarchimedean vy|m and v(a) > 0 for all real vimy.

i = [Ty — 1y(Npym®=

plmo

Proof. Let a € Ii, and via the Chinese remainder theorem choose an a € Oy such
that p™®) | for all pjm. Then in I;/P, each element [a] has a representative in
I(m) given by a~'a. In particular, the homomorphism I(m) — I/ P induced by
the natural inclusion I(m) — Ij, is surjective. So we have an isomorphism of finite
abelian groups

We are interested in I(m)/Py, and we have only concluded that a quotient of this
is finite. Now the relevant inclusion of groups is

Py C I(m) N Py

This time, we have the homomorphism k* N I(m) — (P, N I(m))/Py given by
a — [(a)]. It is surjective by definition of Py, and its kernel is O}k, where kpy,
denotes the subgroup of k* consisting of all & such that v,(a — 1) > m(p) for all
plmgy and v(«) > 0 for all v|ms. So we have another isomorphism, this time

(kN I(m))/(Of k) = (P N I(m))/ Py

So in fact it suffices to show that (k* NI(m))/(O; kw) is finite. Stronger than this,
it’s clear from the definitions that actually (k* NI(m))/(kn) is already finite. This
is because of the homomorphism

(N 1(m) = [T (Onp/p™®0wp)* x [T R*/RE,

plmo VMoo

defined by taking o (whose valuation at all p|mg is necessarily zero) to its residue
class in each term of the product. In particular, Oy, is a DVR, so the residue mod
pm(”)Okyp of any « is invertible if and only if « has zero p-adic valuation. For the
real places we let the v-coordinate of the image of « be the residue of v(«).

This homomorphism is surjective by the weak approximation theorerrEf and its
kernel is visibly ky,. So in fact there is an isomorphism

(kA I(m))/(km) = ] (Onp/p7PO0rp)* x [T R*/RE,.

plmo Moo

8There are only finitely many finite places corresponding to pi,...,pn, and archimedean places
v1,...,vp dividing m. For any choice of a; € OkXp for all 1 < ¢ < N and 3; € R* for all
1 < ¢ < M, weak approximation guarantees the existence of an x € kX such that z = oy

mod p;n(pi)okm and = — (; has small enough absolute value so that v;(x) has the same sign as
X
kypi?
it follows that z is the desired preimage. We also know that = € I(m) since its p-adic valuation is
zero for all p|m.

v§(B;). Since the units in Oy, ,, /p?(r'i)(’)kmi are the same as the residues of the elements of O
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The right hand side is finite. Each archimedean local factor clearly has size 2
(there are 2 equivalence classes depending on the sign of the representative). The
nonarchimedean factor corresponding to pjmgy has sizeﬂ

25(m) TT(Np — 1)(Np) ™)1,
plm

It follows immediately that (k* N I(m))/(O; kw) is finite, and its size is
(kN I(w)) k| 2707 TT 1 (Np — 1)(Np) (P

07 /(ka N OF)| [0 (O )m]
Finally, the index [0} : (O} )w] is clearly finite: (O, )m is the intersection of

finitely many subgroups of O;°, namely the subgroups 1 + pm(p)O; for the p|mg
and the subgroups consisting of units of positive absolute value with respect to the
real v|meo. It suffices to showm that each of these subgroups has finite index in
O;. This is easily seen for the archimedean places, since such an absolute value
induces a group homomorphism O] — R*/R>o = Z/27Z whose kernel is exactly
the subgroup of elements a € O} such that v(a) > 0. For the nonarchimedean
valuations vy, just recall that

— X —
OF /(L +pmP Oy = Oy /(1 +p" PO y),

but (mx is compact, while 1 + pm(p)@ is open, so the index is finite. Putting
it all together, we have computed the size of the generalized ideal class group
[L(m)/(I(m) N Py
[(I(m) N Pr)/ Pl

[(I(m) N Pr)/ Prl

[E* NI (m) /(O k)|

hy28(meo) Hp\m(Np — 1)(Np)m(p)—1
- [0 (O )m] ’

as claimed. O

[I(m)/ Pr| =

3.2. Chebotarev’s density theorem and the global reciprocity law. It re-
mains to show that L(1, x) # 0 for characters x of I(m)/Py. In the case of (Z/mZ),
the canonical way of doing this involves finding an Euler product expansion for
[ 1, L(s, x) valid on the usual right half-plane $(s) > 1 which agrees up to some en-
tire factor which doesn’t vanish at 1 with the Euler product for {g(c,.)(s). Though
they both satisfy functional equations and can be extended meromorphically to the
whole complex plane, it suffices only to do this slightly to the left of 1. Once this

9Recall (the fact we’ve used already) that O:p/(l + pm(p)(’)k,p) = (Ok,p/pm(*’)(’)k,p)x, and
(14 p"Ok,p) /(1 + p" 1Ok ) = O p /PO . As a result, (O /p™PI Oy )| = [OF /(1 +
PO )| = O, /(14 POk, p)| - [Okp /PO p | ™)1 = (O /PO, p X |- |O 1p /PO p| PV~ =
(Np — 1)(Np)™®) =L,

10This is a basic fact from group theory: If Hy, Hy are subgroups of G, then the cosets of H; N Ha

are of the form g(H1 N H2) = gH1 NgHs for g € G. In particular, they are determined by a coset
of H; and a coset of Ha, so in fact [G: H1 N H2] < [G : H1][G : Ha] < oo.
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is done, analytic continuation tells us that none of the L(s, x) can have a zero at
s = 1 because this would delete the simple pole of (q(,,)- To generalize this, we
must find an extension K/k such that [ L(s,x) agrees with (x(s) up to some
entire factors not vanishing at 1. In dealing with this issue, we will see that all the
fundamental issues of global class field theory will crop up.

In the special case of k = Q and I(m)/Pyn = (Z/mZ)*, the field extension K/Q
was Galois with Galois group (Z/mZ)*. In fact, the isomorphism

(Z2/mZ)” — Gal(Q(¢m)/Q)

is given by the Artin map p — [%}

In particular, the bijectivity of the Artin map means that the characters of
(Z/mZ)* are the same as the characters of Gal(Q((y,)/Q). Thus, in this case we
can redefine the Dirichlet L-functions to correspond instead to a character of the

Galois group of this particular extension. In particular, they are all of the form

B 1
e ] o

for characters x of Gal(Q((,)/Q), which is where the connection between L-
functions corresponding to characters of the generalized ideal class group (Z/mZ)*
and the zeta-function of the specific field Q((,,)/Q comes from (we will prove this
connection in generality). For Galois groups which are not necessarily abelian, the
Artin map no longer necessarily gives a homomorphism from an ideal group to
the Galois group, but we can still define L-series given an arbitrary representation
of the Galois group (the natural generalization of the 1-dimensional characters of
abelian groups), using the fact that the Artin map still yields a conjugacy class of
the Galois group. This leads to the definition of Artin’s L-functions:

Definition 3.12. Let K/k be a finite Galois extension of number fields, and let p :
Gal(K/k) — GL(V) be a finite-dimensional complex representation of Gal(K/k).
Then the Artin L-series corresponding to p is, up to finitely many local factors
corresponding to the ramified primes,

Artin(g N _ :
Lk’ (5, ) pl;l[k det (idv — (Np)~*p ([KT/IC]))y

well-defined due to the conjugacy-invariance of the characteristic polynomial.

In the case where K/k is abelian, the Artin L-function of an irreducible rep-

resentation of Gal(K/k) has a product expansion [], 17(Np)ix([K—/’“]) where y is
P

a (1-dimensional) character of Gal(K/k). Presumably after collecting more nu-
merical data, Artin conjectured that the equivalence between Dirichlet L-functions
corresponding to characters of the ray class group mod muvs, and Artin L-functions
corresponding to irreducible representations of Gal(Q((,,)/Q) extends in general
via a natural isomorphism of groups (in fact the class field theory isomorphism was
known by his time, but only non-canonically; his conjecture amounted to using the
Artin map as this natural isomorphism).

Conjecture 3.13. Let K/k be an abelian extension, and p a one-dimensional
complex representation of Gal(K/k). Then there exists a modulus m of k and a

character x : I(m)/ Py — C* such that L(s, x) = L‘?(r/t,if“(s, p).
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This is clearly logically equivalent to the technical questions which are answered
by the main theorems of global class field theory:

Question 3.14. Given an abelian extension K/k, does there exist a modulus m
of k divisible by only primes that ramify in K such that P, is contained in the
kernel of the Artin map I(m) — Gal(K/k) and this map is surjective, so that the
Artin map induces an isomorphism between Gal(K/k) and a quotient of the ray
class group mod m? Is there a description in terms of the extension K/k of what
to quotient by?

It’s natural, too, to formulate the converse:

Question 3.15. Given a modulus m of a number field k, does there exist a finite
abelian extension K/k such that all the primes of k ramifying in K divide m, and
the Artin map I(m) — Gal(K/k) is surjective with kernel containing Py, ? This will
yield an isomorphism between Gal(K/k) and a quotient of the ray class group mod
m. Is it possible to achieve an abelian extension K /k inducing such an isomorphism
between Gal(K/k) and any arbitrary quotient of the ray class group mod m?

Remark 3.16. Lang [9, page number] explains why we should expect these questions
to be nontrivial: the Artin map is defined locally at each prime, but the definition
of P, is a global one that has to do with arbitrary elements of k*.

It will turn out that there are remarkably simple answers to both questions,
which are known today as the main results of class field theory. It comes down to
a key technical condition on the modulus:

Definition 3.17. A modulus m of k is admissible with respect to an abelian ex-
tension K/k if

Nf?m/kv

for all B|p and pjm. Of course, this is true for all Plp if and only if it is true for a
single one.

(Ky) C1+pm® 0y,

The most important result is a full answer to Question known as Artin’s
reciprocity law.

Theorem 3.18. Let K/k be an abelian extension, and m any modulus for k ad-
missible with respect to K/k. Let M(m) denote the subgroup of I(m) given by the
relative norms of all the nonzero ideals I C Ok not containing any prime fac-
tors B dividing any plm. Then m is divisible by all the primes ramifying in K,
and the Artin map I(m) — Gal(K/k) is surjective and reduces to an isomorphism
I(m)/Pu9(m) — Gal(K/E).

The answer in Theorem [3.18]leads to another important question, which we will
answer later.

Question 3.19. By Theorem the smallest (with respect to divisibility) ad-
missible modulus of k is divisible by all the ramified primes. It will turn out that it
is only divisible by ramified primes. What is its relationship with the discriminant
dg?

It turns out that Question also has a full answer (in fact in much more
generality) provided by class field theory, known as the existence theorem. It is
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relatively easy to state with the language we have so far, but because of the incon-
venient nature of the generalized ideal class groups (mostly having to do with the
fact that a modulus which is admissible for one extension may not be admissible for
another), we’ll postpone the discussion of this until the language of ideles has been
developed. We will see with very little effort after these technical results have been
proved that there is a correspondence holds between the arithmetic of the field k
and the set of abelian extensions K /k. This is called the class field correspondence,
and we have already caught a glimpse of it (the abelian extensions K /k are in cor-
respondence with the subgroups of the generalized ideal class groups for admissible
moduli given by the kernel of the Artin map I(m) — Gal(K/k)). It is clumsy to
state in terms of ideals again because of the need for the choice of an admissible
modulus which is not consistent across extensions, so we postpone giving a precise
statement until the ideles have been introduced.

Finally, we turn to Question which was the original goal of this section.
The important result on this question, which is indeed considered the most impor-
tant generalization of Dirichlet’s theorem on primes in arithmetic progression, is as
follows:

Theorem 3.20 (Chebotarev density theorem). Let K/k be a finite abelian exten-
sion. Then for each o € Gal(K/k), the set of nonzero primes p of k such that

EL

5 } = o has density 1/[K : k] in the set of nonzero primes of k.

Remark 3.21. In fact, despite the failure of any obvious generalization of Artin’s
reciprocity law in the nonabelian case, Chebotarev’s density theorem actually easily
extends from the abelian case to the general case of Galois extensions: if K/k is
an arbitrary Galois extension, then the Artin map sends a nonzero prime of k to a
certain conjugacy class of Gal(K/k). For any conjugacy class C C Gal(K/k), the
set of primes mapping to C has density |C|/[K : k] in the primes of k.

Proof of Theorem[3.20L When Chebotarev first proved his density theorem, the
full strength of Artin reciprocity was not available to him. Instead, he had to use
the cyclotomic case of the reciprocity law and build up the general case using a
complicated “field crossing argument” (see my math 229x final project or [6, Ch.
6] for a complete description of this method of proof). In fact, it was by adapting
the tools in Chebotarev’s proof that Artin was able to prove his reciprocity law and
thus Conjecture[3:13] In this proof, we will just show why it is a consequence of the
full statements of class field theory, acknowledging that it doesn’t need to depend
on them.

By Artin reciprocity, there exists a modulus m for k divisible by all primes
ramifying in K such that the Artin map I(m) — Gal(K/k) is surjective and its
kernel contains Pp,. In particular, every character y of Gal(K/k) induces a character
X © {K—/k} of the ﬁnit abelian group I(m)/P,,. For any unramified prime p of k,
we may compute the local factor

1

xeGal(’Tk L~ X ([KT/]CD (Np)—¢

HThis finiteness will be important later in the proof, when we use the Artin L-functions for K/k
as Hecke L-functions for a certain modulus.
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of [T, L(s,x o (KR = IL, L?{r/t,ic“(s, X). In particular, we hav

1 > L]/ £ (Bp)

1
0 gy (o

xEGal(K/k) p

1
~ =

Blp

since there are exactly [K : k|/f(B|p) primes lying over p. Multiplying all these
local factors together, we obtain the identity

H L(s, x) H H #m)_s = (k/k(5)

—

X€Gal(K/k) pldr/k Blp

for all s in the right half-plane R(s) > 1. By analytic continuation, the same is true
of the meromorphic functions on both sides of the equation. Since L(s, x o [K—/k})

is the L-function associated with a Hecke chawaucterjEl7 it converges on the right
half-plane R(s) > 1 — 1/[k/Q] when x is nontrivial, and otherwise has a simple
pole at s = 1. Since (g, has a simple pole in the same place, it follows that

L(1,xo [K—/k}) # 0. The conclusion follows easily from this and the representation

theory of the finite abelian group Gal(K/k). Fix a o € Gal(K/k) and let 7(z;0)
be the number of primes of k£ of norm at most x whose corresponding Frobenius is

12The first step comes from a simple manipulation in the representation theory of finite groups.

The Frobenius element [KT/]C] has order fy = f(PBlp) = |Dy| in Gal(K/k) for any Blp, since p is

K/k
P

unramified. As a result, x <[ ]) is an f-th root of unity for all x € Gal(/l?/k). There is one

character of ([KTM]) for each choice of f-th root of unity to send the generator to. Every such
character extends to a character of Gal(K/k) in exactly [K : k|/f ways, so the complex numbers

X <[KT/I€]> run over the f-th roots of unity, each with multiplicity [K : k]/f.

As a result, HX(1*X ([KT/IE]) X)) has exactly the f-th roots of unity as its roots, each root having
multiplicity [K : k]/f. From this we obtain the polynomial identity HX(l - X ([KT/’Q}> X) =
(1 — XF)E:Kl/F  and the identity we use in the first step is obtained by substituting (Np)~* for
X.

13This is where the finiteness of I(m)/Pr is used. Without the finiteness, it’s impossible to extend
the L-function to the left of s = 1.
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equal to o. Using the standard summation by parts technique,

3 (N;)s: /1°O;d<w<y;a>>

* _sdy
—s [ w(y;0)y—°—
1 Yy

[ Z st |

=—s
xEGal(K/k) Y
h ! - —sdy
:_8/1 Z K:k Z x(M)7(y; 7)X(0) | v ?
XEGaT(—I(\/k) T€Gal(K/k)
= ! X ~ . —sdy
T K K] ; x(@) - ( s>/1 > x(mrlyir)y n
x€Gal(K/k) TeGal(K/k)
K/k
1 o s ()
“EH 2 YO gy
x€Gal(K/k) Pl /K

Taking logs of product expansions, we can reformulate this in terms of our L-
functions as

2 (N;)S B [Kl: k] ; X(o)log L(s, x) + O(1).
(57 )= XEGal(K/k)

We’ve shown that L(s, x) converges to some finite nonzero value as s — 17 when
X is a nontrivial character. So we can absorb the contributions of all the nontrivial
characters into the error term, ultimately getting

1 1
[K/zk: (Np)* mlogL(SJHO(l)-

P }Z‘T

But by the Euler product expansion, log L(s, 1) is a bounded additive factor away
from log (i (s) as s — 1. This shows that indeed the Dirichlet density of the primes
with Frobenius element equal to any fixed o is 1/[K : k]. O

Remark 3.22. Though the Chebotarev density theorem is not a direct answer to
Question [3.8] it is most of the way there. The remaining ingredient is the existence
theorem of class field theory, the answer to Question A special case of the
existence theorem says that there exists an abelian extension K/k such that the
Artin map induces an isomorphism I(m)/Py, — Gal(K/k). In that case, the Cheb-
otarev density theorem reduces to the desired statement that there are infinitely
many prime ideals in each generalized ideal class.

Remark 3.23. The key ingredient in the proof of Theorem [3.20] was the fact that the
Artin L-functions for the abelian extensions coincide with Hecke L-functions for a
specific modulus. This is important because the finiteness of the generalized ideal
class group implies that these L-functions actually converge on a right half-plane
left of s = 1. The Artin L-functions (once the ramified local factors have been
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added in) actually do satisfy a functional equation, but it is unknown whether they
always extend to a meromorphic function on the whole complex plane (this is known
as Artin’s conjecture). The convergence of Hecke L-functions (along with Artin
reciprocity) settles this in the case of Artin L-functions of abelian extensions. This
was the only reason we needed to pass through the machinery of Hecke L-functions
and use Artin reciprocity to deduce Chebotarev’s density theorem. Indeed, the
Artin L-functions on their own already satisfy the general product formula

Cie(s) = [ Ls, p) 52

where the product is over all irreducible representations of Gal(K/k).

Chebotarev’s density theorem has a number of interesting consequences. First of
all, if we had proved it in the historical manner without assuming Artin reciprocity,
it’s a trivial consequence of the theorem that the Artin map is surjective. It also
contributes to the overall picture of class field theory in the following way: the class
field correspondence says that an abelian extension is uniquely determined by the
kernel of its Artin map. The Chebotarev density theorem implies that an abelian
extension is also uniquely determined by the primes in the kernel of its Artin map.

Theorem 3.24. Let k be a number field and K1, Ko abelian extensions of k. Let
Spl(K;/k) denote the set of primes of k which split completely in K;. Then the
following are equivalent:
[ ] K1 = KQ.
o Spl(Ki/k) and Spl(Ka/k) differ by a set of Dirichlet density zero in the
primes.

Proof. By the properties of the Artin symbol, a prime p splits completely in K; K5
if and only if it splits completely in K7 and in K5. So,

If the two sets on the right hand side differ by a set of Dirichlet density zero, then
each of their Dirichlet densities must be the same, and this density is the same as
the density of their intersection. By the Chebotarev density theorem, this means
that

[Kl . k] = [K2 : k] = [KlKQ : k}
It follows that K1 = K5, as desired. O

Remark 3.25. Because of the generality in which Chebotarev’s density theorem
holds, the statement of Theorem|[6.3]is actually true for arbitrary Galois extensions.
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4. THE IDELES

4.1. Definitions. Let k& be a number field. The group of ideles of k is a locally
compact topological group which is meant to contain all the information about
the completions of k and the open neighborhoods of 1 in those completions. It is
defined as a restricted product (rather than a direct product) in order to ensure it
is locally compact. Restricted products of topological groups are defined as follows:

Definition 4.1. Let I be an index set, and {G,},er be a collection of locally
compact topological groups. Suppose that for all but finitely many v € I, H, C G,
is a compact open subgroup. Then the restricted product of the G,’s with respect
to the H,’s is the set of all elements (o, )yer € Hvel G, such that o, € H, for all
but finitely many v. For any finite subset S of I containing at least all the v € I
such that H, is not defined, the restricted product contains

H H, x H A,
vel\S ves

where the A,’s are arbitrary open subsets of G,. We define the topology on the
restricted direct product to have these sets as a basis of open sets.

Remark 4.2. The restricted product topology is defined the way it is in order to
force it be locally compact, despite sitting inside the direct product of infinitely
many locally compact groups. In particular, the H,’s are compact, and the A,’s
are locally compact (but there are finitely many). So the open sets in the topology
are all locally compacﬂ The opens A, are included in order to cover the entire
space (else we would have to consider just the product of the H,’s which wouldn’t
be as useful).

One can check that the restricted product topology defines a Hausdorff topolog-
ical group structure on the ideles.

Let k£ be a number field. For each place v of k, we have a locally-compact
completion k,, its locally compact multiplicative group k., and the compact open
unit group @,jv

Definition 4.3. The group of idéles of k, which we will denote by Jj, is the
restricted topological product of the k} with respect to the O, which is defined
for all but the archimedean places.

Jr, comes with a map of sets k* — Jj, given by a — («),, which is well-defined
because any a € k™ has zero p-adic valuation for all but finitely many p. The image
of k™ in Jy is known as the group of principal idéles. Analogously to the ideal class
group of k, we may mod out Ji by the principal ideles to get

Definition 4.4. The idéle class group of k is Cy := Ji/k*.

The idele class group inherits its own topological group structure as a quotient
of the ideles. It will turn out that C} will coincide with certain generalized ideal

l4The product of arbitrarily many compact sets H, is compact by Tychonoff’s theorem. Then
taking the product with finitely many locally compact sets A, keeps it locally compact: if X,Y
are locally compact then we can take the sets U X V' as a basis for the topology of X X Y, and
use the local compactness to observe that U x V = U x V is compact, from which we conclude
the local compactness of X x Y. Note that the product of infinitely many locally compact spaces
is not necessarily locally compact.
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class groups (see the next section), and since it doesn’t depend on any choice of
modulus it will be somewhat more convenient to use in class field theory.

Before discussing the norms on the ideles, it will be instructive to consider the
simpler case of a single completion at a time.

If K/k is a finite extension of number fields, for every v € Mj there may be
several w € M lying over v. However, if K/k is Galois, recall (e.g. from [I1l Ch.
I1, §9]) that Gal(K/k) acts transitively on the valuations w|v, where the action is
defined by o(w) = w o o~! (the inverse inserted to make it a valid group action).
For any two w,w’|v, this means there is some 7 € Gal(K/k) such that w' = wo T
and thus D, = 7Dy 1. Tt follow that NK/k(IA(fU() does not depend on the

choice of w|v. So we may consider for each v € M}, the subgroup of l%UX consisting
of the local norms from any of the completions lying over it.

Definition 4.5. Let v € M. The group of local norms in l;:vX is the group
N i, (KY). By the discussion above we can use any w|v to obtain it.

Remark 4.6. This norm subgroup will be important for the purposes of local class
field theory. We will show using Galois cohomology that N(K) is of finite index
in kY when K/k is abelian. In fact, local class field theory will show that even if
K /k is an arbitrary Galois extension, N(KS) will always coincide with the norm
subgroup of the maximal abelian subextension of K, /k,. So at least in the abelian
case, the finiteness of the “norm index” [k} : N(K.S)] does not require class field
theory. However, the specifics of what this index is one of the important technical
issues in the proofs of class field theory, and a key step in the proof of the local
reciprocity law.

Lemma 4.7. Suppose that [k) : N(K))] < oo. Then actually N(K.) is open in
k). Also, N(Og ) is open in OF .

Proof. The second fact will be the important one in the proof. The norm is con-

~

tinuous with respect to w and v, so N ((’)IX(,w)7 the image of a compact set under

a continuous map, is compact in the metric space k,. So in particular it must be
closed. We have an inclusion of groups

O/ (N(E5) N Og,) € KN (ky),
and thus an inequality of norm indices

05 N(OF )] < [k N(K)] < 0.

So N (@IX(W) is a finite-index closed subgroup of @IX(w Its complement is therefore
a finite union of closed subgroups, and is thus closed, which implies the desired
openness of the norm subgroup. Already this openness implies that N (K¢) contains
an open neighborhood of 1 € k., and hence the whole subgroup is open, as desired.

O

Remark 4.8. The lemma above assumes the finiteness of an index which comes
from harder machinery like cohomology or class field theory. In fact, it’s possible

15The elements of Gal(K. /ky) are just extended by continuity from the elements of D,,. The
norm of an element o of K C Ky down to kv is [[,ep, o(@) = [l,ep o Ha) =
—1 _ N
TNIA(w//I;:U(T OA) = Nkwl/kv
the elements of the upstairs completions gives the equality of norm subgroups.

(t7'a). Applying this equality to the Cauchy sequences defining
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to conclude the openness of the norm subgroup directly: since it’s a subgroup,
it suffices to show that it contains an open neighborhood of 1. To get this open
set, it will suffice to consider only the norms of elements already in l%ff The
archimedean case is easy (in the only nontrivial case, we see that the positive reals
are open in R*). So assume that v is p-adic. The norm map restricts on ]ACZ( to
the [k, : ky]-power map. The p-adic logarithm gives an isomorphism (of additive
and multiplicative topological groups) between a small neighborhood of 0 and a
small neighborhood of 1. So it suffices to show that the multiplication by [k, : ky]
map on a small open ball around 0 in k, hits every point in a (possibly smaller)
open ball around 0. But this is evident, as x/[k, : k,] will be in the range of
the log isomorphism for sufficiently small © € k, (it might need to be smaller to
accommodate any nontrivial p-adic valuation of [ky, : ky]).

The analysis of the norm subgroup in the local case leads up to the same analysis
in the case of the ideles. We can extend the notion of the norm K* — k* to the
ideles Jx — Ji, and examine the norm subgroup in Ji. Once we have shown the
connection between the idele class group and the generalized ideal class group, the
norm subgroups of Ji will be one of the important ingredients in global class field
theory.

The Galois group Gal(K/k) acts on Jgx by permuting transitively the com-
pletions Ky, lying over the ko (each automorphism 7 induces an isomorphism
Ky — Kouw = Kyoo—1). Specifically, if («,), is an ideéle of K, then its image
under the action of o has o(«,) € Kav for its ow-component.

So we should define the norm as follows:

Definition 4.9. Let K/k be a Galois extension of number fields, and a = (a,), €
Jri. Then the norm of a is Ng /() := Haeeal(K/k) o(a).

Under this definition, Ng /() is defined as an element of J, but for any
v € M}, we expect the w-components of N i (a) for wlv to be related to each
other. In particular, the decomposition groups D,, for w|v are all conjugate to each
other and have the same size, namely |Dy| = [K, : ky] = e(w|v) f(w|v). For all
w,w'|v, by the orbit-stabilizer theorem, there are therefore exactly |D,,| elements
of Gal(K/k) sending w’ to w. We can write down exactly what these are in terms
of the decomposition group and a single automorphism sending w’ to w, to observe
that the w-component of N/, (c) has a contribution from each valuation w’|v such
that w' = 7w lying over v equal to

H o(any) = H oT () = H To(Qyy) = TNk i (o) = Ng i ().
oce€Gal(K/k) 0€Dy, €D,/
ow’'=w

It follows that the w-components of Ng () coincide for all w|v and are equal to
H Nkw/l%v (aw).
wlv

So in fact the idele norm is naturally a homomorphism of groups Jx — Ji just
by keeping only one of the w|v-components for each v, equivalently defined in the
following way:

Definition 4.10. The norm down to Ji of an ideéle o = (), € Jk is the element
of Ji whose v-component is [],, N i (Qw).
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Definition [.9] will be useful because it defines the norm directly in terms of
the action of Gal(K/k) on Jg. This will be useful especially in the use of Galois
cohomology to study the norm subgroup of Jg in Jj. But oftentimes Definition [4.10]
is slightly more convenient since it doesn’t require keeping track of the switching
between different valuations extending v.

The norm is in fact a continuous homomorphism of topological groups. The
extra fact that it is continuous is not very hard: we need to check that every
element of the basis of open sets of J;, has open preimage under Ng . : Jx — Jp.
Because of the way the basis of open sets is defined, and the fact that the norm
of a unit is always a unit, it suffices to show that open subsets of k, have open
preimages under the map [[,, Ky — ky given by (ay)w — [T Vi, /i, (0)-
This is clear because this is a pointwise product of the maps that take the norm
of one coordinate. Pointwise products of continuous maps of topological groups
are continuous, and the norms are each continuous in the coordinate they act on
(and thus on the whole product if they leave the other coordinates alone). The
norm subgroup N(Jg) C Ji will be of great importance to class field theory (in
idelic language, the class field correspondence says that the abelian extensions of k
correspond exactly with the open subgroups of Ji/k* via the norm map).

We can also check using [I1, Ch. II, (8.4)] that the notation N/, means the
same thing for elements of Jx and for K*, in that for a € K* the idele norm
coincides with the field norm.

As expected, we have a result on the norm subgroup of Jg.

Lemma 4.11. N(Jk) is open in Jy.

Proof. The norm of Jg is just the union of the norms of the open sets

Jrs= ] Okwx ][ Kuw
weMK\S weS
over all finite subsets S C M}, containing the archimedean places. We can also
choose S so that for any v € My, it either contains all w|v or none of thenﬂ Now
we specifically make use of Definition As a result of that definition and the
fact that the norm subgroup (for either the local field or the units of its valuation
ring) doesn’t depend on the choice of wl|v,

N(Jks) =[] N©Ok.) x [[ N(Kw).

where the first product is over all but finitely many v and the second product is over
the remaining ones. To conclude that N(Jg g) is open, as a result of Lemma
we just need to show that N(@?(w) = @:v for all but finitely many v. In fact, this
is true whenever v is unramified in K, which we will show via group cohomology.
This is also an easy consequence of Hensel’s lemma (see [, hensel]). (]

A key fact in the class field correspondence will be that in fact all the open
subgroups of Ji/k™ are obtained by taking norms from the ideles of some finite
abelian extension K/k. It is part of the main goal of class field theory to show that
the quotient group is in fact isomorphic to Gal(K/k). In this section, we’ll be able
to see that any open subgroup of Cj has finite index. Unlike in the case of the
adeles, it isn’t true that C} is compact.

16¢his choice is convenient but obviously not necessary
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Lemma 4.12. The ideéle class group of k is not compact.

Proof. Recall the product formula for normalized valuations, which says that for

any o € k™,
IT leds =1.
vE My
In general, we may define the absolute value homomorphism (I use this name to
distinguish it from the norm Jx — Ji) |- | : Jr = RZ, given by

[(ew)o| = H vy o

vE My,

This is well-defined because |a,|, = 1 for cofinitely many valuations v by definition
of Ji. The product formula shows that the absolute value homomorphism is trivial
on k* C Ji, so it projects to a homomorphism Cj, — RZ. First, | - | is obviously
surjective (fix all coordinates but one corresponding to an archimedean valuation).
It is also continuous as a map of topological groups, even as defined on the idéles.
The trick is the same as the one for checking that the pointwise product of finitely
many continuous maps is continuous. It suffices to check that it is continuous
on each open subset Ji g = HveMk\S @;v x I1 X for finite sets S of places

veS v
including all the archimedean ones. But | - | restricts on Ji g to a finite product of
absolute values with respect to the v € S. Moreover, |- |, : kS — RZ, is always
continuouﬂ so |- |:Jgs — RZ, can be written as the composition

Ji,s — (Réo)lsl — RZ,

where the first map is into each coordinate via | - |, and the second map is just
multiplying all the coordinates together. Both are continuous (the first is a fact
about continuous maps and direct products, the second is the definition of a topo-
logical group). Since the Ji g are an open cover for Ji and continuity is a local

property, we have concluded that |- | : J, — RZ is continuous. But the continuous
image of a compact space is compact, which RZ is not. So Jj and even Cj, is not
compact. O

That being said, it turns out that the possibility of all values of RZ, is the only
obstruction to Ji/k* being compact.

Proposition 4.13. Let C) be the set of idéle classes of absolute value zero, i.e.
CY = ker|-|. Then CY is compact, and there is an isomorphism of topological
groups Cr, 2 RZ ) x C}.

Proof. The main point of this fact is its reliance on the geometry of numbers (in
fact it is easy to deduce the unit theorem from the statement; we will do this in
the next subsection). Fix a positive real number X and idele class [a] € C) with
la] = A. The goal is to find a representative a of [a] such that each coordinate
of a has absolute value in some compact set depending only on A. To do this we
must multiply a by a suitable element «, € k* (which is allowed to depend on a).
It suffices to ensure that |«4al, is bounded above and below over all v € M}, and

" The continuity is a general fact about metric spaces. By the triangle inequality, |z — y|, <
e = |lzlo — lylol S|z —ylv <e
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a € Ji of norm A. Isolating ay, to get a lower bound |agal, > 1 for example, we
need to choose a, € k* such that

|O‘;1|v < aylo-

for all ﬂ The condition at the nonarchimedean places v, means that we restrict
a; ! to be in the fractional ideal I, = I, pU» (@) At the archimedean places,
the requirement is that under the embedding ¥ — R™ x C™ coming from the
archimedean places, o ! is inside a box of volume

VESeo Hp |avp|vp B Hp(Np)ivp(a”P) N COVOI(Ok)

where covol(A) denotes the covolume of a lattice A embedded in R™ x C™. By
Minkowski’s theorem, for sufficiently large A (where how large depends only on k
and not on a, since the factor of covol(I,) coincides with the one in the numerator
of the volume bound in the theorem), we know there exists a nonzero « € k* such
that |a 1], < |ayl|, for all v € Mj. In other words, if \ is selected sufficiently large,
then any a € Ji of absolute value A has some o, € k* such that

H gy = [Loenr, lavlo B A covol(I,)

|agal, >1

for all v € Mj. Actually, this inequality is already enough to force the absolute
values of a,a to all be bounded above by A, since [], |aqaly, = A. So we have
concluded that if A is chosen sufficiently large, every [a] € Cj of absolute value A
has a representative b € Jy for which 1 < |b,|, < A for each v € My. Recall that
the nonarchimedean absolute values are normalized in such a way that the smallest
possible value of | - |, greater than 1 is Np. But there are only finitely many primes
p with norm less than A\ (every such p must be a divisor of A-Oy), which means that
there is a finite set S C M} which only depends on k for which our representative
b is guaranteed to satisfy |b,|, = 1 for all v € M \ S E In particular every idele
class of norm A has a representative in the compact set

X=[[{zek:1<lzb<Atx ] O)k.v* C i
veS vEME\S

The fact that every idele class of absolute value A has a representative in X means
that for the subset Ay C Ji consisting of all ideles of absolute value A, the projection
A — Ji/k* = Cf has image equal to the image of X. Since X is compact, and
the projection is continuous (CY, is given the quotient topology), we know that the
image of X is compact. That image contains all the idele classes of absolute value
A, the set of which is closed (it is the preimage of the closed set {A\} under the
continuous absolute value map). So the set of idele classes of absolute value \ is
indeed compact.

But we cannot just set A = 1, since our argument works only for sufficiently large
A, depending on k. This is fine, since there is a topological isomorphism between
the set of idele classes of absolute value A and C? given by multiplying by some
fixed choice of idele ay of absolute value A. It’s clearly invertible (with inverse a) '),

18The subscripts might be confusing here. The subscript a on « emphasizes that « depends on
the idele a. The subscript v on a refers to the v-coordinate of a.

BN priori we always had such a set S by virtue of b being an ideéle, but it wasn’t clear that it
can’t grow without bound depending on the value of a and the choice of a.
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and for that reason bicontinuous. So the compactness we proved readily implies
the compactness of C’g. (]

Corollary 4.14. FEvery open subgroup of Cy has finite indez.

Proof. From what we’ve shown, each element of Cj, is determined by its absolute
value and an element of CP. So we have an isomorphism of topological groups

C,g xRiO%C;@

which may explicitly be given by
(a7 )‘) = a- [bAL

where by is a choice of idele of absolute value A which varies continuously with
A. For instance, k has at least one infinite place v.,, so we can set by to have
Voo-coordinate equal to A and all the other coordinates equal to 1 (A — by is
clearly continuous). Then (a,\) — a - [by] is clearly a continuous homomorphism
of topological groups. It has an inverse given by

[a] = (a : b|;|1a b|a|)

which is continuous by the same type of reasoning with topological groups and the
fact that a — |a| is continuous. Armed with the isomorphism C} x RZ; = Cj, we
can see that every open subgroup G of Cj is a union of sets of the form U x V
where U and V' are open subgroups of C} and RZ,, respectively. But the only open
subgroup of RZ, is itself, and C}) is compact so U has finite index in it. It follows
that the index of G in C}, is the same as the index of U in C} and is in particular
finite, as desired. ([l

With this chain of results about the ideéle class group, we’ve caught a glimpse
of what class field theory will later tell us remarkably specific information about.
The open subgroups all have finite index because by the existence theorem, they
are the norm subgroups of finite abelian extensions K /k, whose norm subgroup has
quotient Cy/N(Ck) = Gal(K/k) which is finite.

4.2. Idele classes and generalized ideal classes. The construction of the ideles
of k gives them a natural relationship with the fractional ideals of k. In particular,
by unique factorization a fractional ideal can be described by a choice of integer
valuations at finitely many primes. So we have a well-defined group homomorphism

w S — I
given by

(av)v = Hpvp(aq,)_
p
Note that ¢ doesn’t depend at all on the archimedean places. It is clearly surjective
by definition of Ji, and its kernel is just the set of elements with arbitrary valuations
at the archimedean places and zero valuation everywhere else, i.e. the open set

ker) = Jy5. = H OF, x H kX
ﬂG]V[k\Soo VESo

So 1 induces an isomorphism of abelian groups

Lemma 4.15. Jk/Jk,SN = Ik
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We will play the game of successively restricting and/or quotienting to see what
isomorphisms we can induce between further quotients of (subgroups) of Ji/J s..
and ideal groups, eventually arriving at the desired connection between Cj and
I(m)/ Py, for admissible moduli m of k.

Lemma 4.16. Jk/kXJk’SOC = Ik/Pk

Proof. We already know the map v : J — I is surjective. It suffices to compute
™1 (Py). We claim that it is equal to k*J; s . The inclusion kX J; 5 C =1 (Py)
is clear (by definition of the p-adic valuations, any o € k™ maps under ¢ to aOy, €
Py; as we saw before, Jy g maps to the trivial principal ideal 1-O). On the other
hand, let a € 9 ~1(P;). Then v(a) = (a) for some a € k*, and thus (a"ta) = 1.
It follows that a~1la € kery) = Ji s, and thus a € k*J; s, proving the remaining
inclusion. ([l

Lemma 4.17. For all sufficiently large finite set S C My, containing Soo (with the
size of S depending on k), we have k™ Jy g = Jj.

Proof. If S contains S, we know Ji ¢ D Ji g, and thus Ji/k* J, g can be iden-
tified with a quotient of the finite group Ij/P;. We just need to make sure that
for any such S, if k*Ji g # Jj, then by augmenting S to some larger finite set
S’ D S, we can always get k*Jy g to strictly contain k*Jy g. It’s a typical theme
that actually thinking about the groups k*Jy g is too difficult. Instead, just think
about Ji s large enough that £* doesn’t matter.

Suppose there is an idele a € Ji which is not in k*Jy . Then by enlarging
S to include all places where a is not a unit in the valuation ring, we guarantee
that Ji g0 2 k*Ji,s and thus k*Jy s 2 k*Jp s. Inductively augmenting S and
using the finiteness of Ij, /Py tells us that eventually Ji/k*Jy g is trivial and thus
Ji = kX Ji s for large enough finite S. O

This lemma is a useful consequence which will come up later, but for now we
return to the generalized ideal class group. We just achieved the ideal class group
I,/ Py as a group of idele classes. The goal of the next part of this section will be
to achieve I(m)/Py and its quotient I(m)/Py9%(m) as quotients of Cj. This will
allow us to translate between the ideal-theoretic and idelic statements of class field
theory.

The most obvious first step (one we will need to modify slightly to get things to
work) would be to consider the surjective map Ji(m) — I(m) induced from ¢ by
restriction, where Ji(m) is defined by

Definition 4.18. Let Ji(m) denote the subset of idéles a € Jj such that v(a,) =0
whenever v|my.

All the isomorphisms we find are only algebraic and not topological, since the
generalized ideal class group comes with no natural topology.

Lemma 4.19. v induces an isomorphism Jp(m)/Jy s, = I(m)

Proof. By Lemma the kernel of the surjective map ¢ : Jp(m) — I(m) is
Jr(m) N Js__ . But Js_ C Ji(m) by definition, so the kernel is still just Jg__. O

Lemma 4.20. ¢ induces an isomorphism Jp(m)/knJr s = I(m)/Py.
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™1 (Py) is obvious. On the other hand, suppose a € Ji(m) such that ¢(a) € Py.
Then (a) = («) for some a € ky, so ¥(a~ta) = 1, which means o~ 'a € kery =
Ji,s., and thus a € knJy, 5. as desired. O

Proof. 1t suffices to show that ¢! (Py) = kwJgs.. The inclusion kyJg s, C

To establish I(m)/ Py, as a quotient of Ji /k*, the only thing we can do is consider
the map Ji(m) — Jx/k* induced by the inclusion Ji(m) — Ji.

Lemma 4.21. Ji(m)/k(m) = J,/k*.

Proof. Tt suffices to prove that the induced map 7 : Ji(m) — Ji/k™ is surjective
(the kernel of the map is clearly £* N Jy(m) = k(m)). Let a € Ji. By the weak
approximation theorem, there exists a € £* such that

1 1

o — —
a?)

) ‘av|v

for all vjmg. Then |aa, —1|, < 1 for all such v, from which it follows that aa, € @,:U
for all v|mg, i.e. aa, € Ji(m). This means [a] = [aa,] is in the preimage of 7, as
desired. g

The problem now is that there is no obvious way to write I(m)/ Py = Ji(m)/knJi,s
as a quotient of Jy/k* = Ji(m)/k(m). The trick is to consider Jy, instead of J(m).

)

Definition 4.22. Let J, be the set of ideles a of k such that a, is in the open
set specified by m for all v|m. Specifically, v,(1 — a,,) > m(p) for all pjmg and
v(a,) > 0 for all v|m.

Lemma 4.23. The inclusion Jy — Ji induces an isomorphism Ju [k — Ji /K.

Proof. The proof is essentially the same as that of Lemma Since kX NJy = kn
by definition, it suffices to show the inclusion J,, — Ji induces a surjective map
Jm — Ji/k*. Let a € Ji, and by weak approximation choose « € k* such that

oy (- 1) > m(p) — vp(y )

for all plmy and
1
- —
Ay

1

v ‘av|’u

for all v|ms. The condition at the archimedean places implies that
vp(aay, —1) > m(p),

and the condition at the infinite places implies that |aa,|, > 0 at all v/ms. This
means every element of Jy /k™ has a representative in J,,,, as desired. (Il

We also get an analogue to Lemma We use the following shorthand:
Definition 4.24. Let Wy, be the open subset of Jy, given by
Wa = [[@+pmP0.) x ] RZo x [] O
plmo v|mes vAm
Lemma 4.25. ¢ : Jy, — Ij; induces an isomorphism Jo /Wy = I(m).

Proof. We obviously have 9 (J,) = I(m). On the other hand, the kernel of the
restriction of ¢ to Jy is Ji s, N Jm, which is Wy, by definition. [
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Lemma 4.26. v : J, — Ii induces an isomorphism Juy /kaWn = I(m)/Py,.

Proof. Tt suffices to show that 1 ~(Py) = knW. The inclusion ¥~ 1(Py) 2 knWn
is clear from the definitions. On the other hand, let a € Jy, such that ¥ (a) = (@)
where o € ky. The ¥(ata) = 1 which means that a~la € ker(v|;,,) = Wn by
the previous lemma. (I

Now our situation is much better. We have I(m)/Py & Ju/kaWn, and Jy /Ky =
Ji /K, so since the second isomorphism is induced by the natural inclusion we have
the desired result:

Lemma 4.27. Ji,/k* Wy & Ju/km Wi =2 I(m)/Py.

Proof. The isomorphism Juy /knWn — I(m)/Py has already been described. Be-
cause of how the isomorphism Jy, /ky, — Ji/k™ is defined, subgroup Wy, C Jiu /km
corresponds under this isomorphism to the subgroup Wy, C J/k*. So when we mod
out by this subgroup we get the desired isomorphism Juy /knWn — Ji/k* Wi, In-
deed, if ¢ is the inclusion Jy, — Ji, then (™1 (KX Wy) = EX Wy N Iy = knWy is
clear. (I

Remark 4.28. The isomorphism Jy/k* Wy = I(m)/Py offers a new proof of the
finiteness of I(m)/Py, in light of Corollary

Remark 4.29. Getting from an element of Ji/k* Wy, to an element of I(m)/Py
uses the approximation theorem to first pull back to Juy/kmWn. So the ideal class
corresponding to an idele class without the knowledge of a representative in Jy, is
not convenient to describe.

Remark 4.30. Lemmam gives an expression for I(m)/P,, as a quotient of C} by
an open subgroup. As a result, the idelic statement of the existence theorem proves
the existence of a class field corresponding to the ray class group modulo m.

To use the ideles to do class field theory, recall from Theorem that we’ll need
to write I(m)/PyM(m) as a quotient of Cy, as well. We’'ve done this for I(m)/Py
already, so it suffices to see what 9¥(m) corresponds to under the isomorphism of
Lemma The key idea is that if o € K5 for w|v, then

[K : k]
w(Na) = [K : Hu(e) = = = fulo),
so the norm of an ideéle corresponds to the norm of the corresponding ideal. First,
we go from I(m)/Pn to Ju/kaWh.

Lemma 4.31. Let K/k be a Galois extension of k. Then I(m)/PaM(m) =2 Jy /b Wi N/ Jie (1, m)
where Jg(1,m) is the subgroup of idéles of K consisting of elements whose v-
coordinates are all 1 at v|m.

Proof. The point of the notation Jx(1,m) is just that the values at v|m should all
be trivial since the norms on the ideal side of things are only for ideals coprime to
m. It suffices to show that

Y™ (PaM(m)) = kWi Nic e J i (1, m).

The inclusion of the right hand side into the left we have already shown for ki,
and Wy,. It’s also obvious for Ng /. Ji(1,m), since the v-coordinate of any a €
Nk /kJk (1, m) has v(a,) = 0 whenever v|m and f(w[v) divides v(a,) for all v. It suf-
fices now to prove the other inclusion. Let a € Ji such that ¢(a) = (a) [, 1, pl Flo)ne
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where o € kn, and the n, are arbitrary integers all but finitely many of which are
zero (all norms of fractional ideals of K prime to m are of this form by definition
of the ideal norm). Then

Y(ata) = H pl (Blp)me
pF#mo
For each prime p not dividing m and exactly one 3|p, define the ideéle A € Jx(1,m)
to have vgp-coordinate equal to an arbitrary element of Ky with J3-adic valuation
equal to ny,. At all the other P|p and in fact all other absolute values, take A to
have coordinate 1. Then N/, A has v-coordinate 1 except for when v = v, for
some p not dividing m. In that case, the p-adic valuation of the vy-coordinate is

J(B|p)ny. In particular,
QZJ(NK/k:A) — H pf(m‘p)”p — Lfi(a*la),
pAmo

which means Nk, A and a differ by an element of ker¢) = Wy. As a result,
a € kmWnNg /i Jx(1,m) as desired. O

Checking what this corresponds to in Ji/k* ends up not being very complicated
so long as m is admissible. Recall the definition:

Definition 4.32. m is admissible with respect to K/k if Wy, € N/ Jk .

Lemma 4.33. If m is admissible for K/k, then
Ji/k* Nk = Jo/km Wi Ng /i Jx (1, m) = I(m)/ Py,

Proof. Tt suffices to show that k* N/, Jx N Ju = kaWaNg/pJik(1,m). From
the fact that Wy, is admissible, the inclusion of the right hand side into the left
hand is obvious. For the other, we use the fact from the previous lemma that
koW Nk i Ji (1, m) = 1 (Pp9(m)). So it suffices to show that

Let aNg/wa € k* Nk, Jx. By the approximation theorem, choose 8 € K* so
that 3 is very close to a,, for each w|v with v|m. In particular, recall that for each
v € M}, the map lev K — k) given by taking products of norms is continuous.
So by taking /3 sufficiently close to a,, for each w|v, we can guarantee that [Ny /3 —
Np— (P

laly

Ngraly < min(
when v|me.
Then for each p-adic v|mg, we have [N /18 — aNg/pal, < Np—(®) je,

(4.34) vp(aNg kB — aNg pa) > m(p).

Similarly, for v|mg our construction of 8 guarantees that

. [Niskal ) when vlmo, and [Ny 8—Nicspaly < [Nicspals

(4.35) |aNg /1B — aNgraly < |aNg/raly.
It follows from (4.34)), (4.35) and the fact that aNg ra € Jn that aNg B8 € ky.
It also follows (this time from |Ng /8 — Ng/ral, < |Nkalp) that vy (Ng i) =
Vp(Ng /Ky, ) for all plmg, so that (NK/k571)¢(NK/kG) = WNK/kﬂ*la) € MN(m).
As a result,

Y(aNgka) = b(aNg/pB)U(Ng /B a) € Pud(m)
as desired. [
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Remark 4.36. As usual, our isomorphism between the relevant group I(m)/Py,9t(m)
from class field theory and the quotient Ji./k* Nk /1. Ji depends on the approxima-
tion theorem to get from an idele class to an ideal class. So when an idele class is
not already represented by an element of J,, it isn’t immediately evident what the
corresponding ideal class is.

Remark 4.37. Lemma[1.33]is particularly convenient because it allows one to state
the results of class field theory without the use of a specific modulus of K. It is
valid as long as m is admissible, but in fact this condition is true for many values of
m. We will show in the next section using group cohomology that if v is unramified
in K, then @Ij’v = NK/k@kX,w- So in fact m is admissible if and only if the ramified
places v € M, have the property that 1 + pm(p)@kﬂ, - NKw/kv@IX(,u) when v is
p-adic and R, C Nk, /x, K, when v is archimedean. Recall from Lemma
and the remarks following it that Ng /., K is an open subset of k) containing
1. So each of these norm subgroups contain an open ball around 1. For each
ramified prime p|dg/j, this means there is a minimal nonnegative integer mq(p)
[for all we know at the moment it could still be zero and in fact all the units are
still local norms] such that 1 —&—pm(p)@km C Nk, /k, @ﬁw In the archimedean case,
if v ramifies then the norms are just the norms from C* to R*, in other words
the positive real numbers. As a result, we have a minimal modulus of k which is
admissible for K/k. It is clear that the moduli of k¥ which are admissible for K/k
are precisely those which are divisible by the minimal one. So our isomorphism
I(m)/PaM(m) = Ji/k* Nk /i Ji actually holds for a wide class of moduli m of &.
The important part is that each abelian extension K/k has a well-defined Artin
reciprocity isomorphism from a group of idele classes, due to the existence of an
admissible modulus (by Lemma . So, proving the reciprocity isomorphism for
any admissible modulus is all we will actually want to do.

4.3. More applications.
Lemma 4.38. k* is discrete (and therefore closed) in J.

Proof. Since k* C Jj is itself a subgroup, it suffices to show that 1 is isolated in
Ji as an element of £*. Taking advantage of the ability to make arbitrarily small
open sets at finitely many valuations, we claim that no element of k™ other than 1
can be found in the open set

v=1] wx [[ O,
VES o vEMp\ S

where S, denotes the set of infinite places of k. Recall the product formula for
normalized valuations: if |- |, is the normalized absolute value corresponding to the
place v, and a € k*, then [], |a|, = 1. If « # 1, then a — 1 € k*, so

ITle—1, =1
v
This means it is impossible for « to be in U, since that would require | —1|, < 1 at
all archimedean v, and |a — 1|, < 1 at all nonarchimedean v, since a,1 € Og,,. O
I don’t think I actually need this lemma. Maybe later I’ll add a short note on how

to prove the general version of the unit theorem on S-units using the compactness
theorem we proved above, as well as the finiteness of the class group.
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5. GRouP COHOMOLOGY

Let K/k be a Galois extension of number fields and let w|v be places of them.
Then Gal(K/k) In the previous sections, we saw three quotient groups which we
saw were all related to each other. We also claimed they were crucial to the main
statements of class field theory. They were as follows:

o kS /N, /k, (Kg)

* O¢u/Nk,/k, Ok o

[ ] Ck /NK/k CK
It is therefore useful to consider the general case of an abelian group A (in our case
some object coming from K) along with a group G with an action G — Aut(A)
(in our case G = Gal(K/k)). We are interested in the quotient of AY, the set of
elements of A fixed by G, by the subgroup of it given by the elements of the form
> wec ola) for a € A. We switch to additive notation for the group A even though
in practice for class field theory it will always be multiplicative.

5.1. Generalities on group cohomology and Tate cohomology. EI Let G be
a finite group.

Definition 5.1. A G-module (M, p) is an abelian group M together with a group
homomorphism p : G — End(M). As usual we suppress p and use g - m or gm to
denote the action of g € G on an m € M instead of p(g)m.

We now describe the construction of a chain complex based on G and M. For
each n > 0, let B, be the free Z|G]-module on G™ (N.B. the Z[G]-modules are the
same as G-modules). In particular, B,, is the set of formal Z[G]-linear combinations

E : A(g1,...,9n) €(g1,--9n)
(915+-,9n)EG™

where the e, are the basis elements and the a, are elements of Z[G]. We define
maps d, : B, — B,_1 on the basis elements by

n—1

dn(e(glwwsgn)) = gle(gz,m,gn)+(_1)ne(gl,~~~,9n71)+Z(_1)Ze(91p~,gz‘—17gi9i+1,gi+2,m,gn)'
i=1

One can easily check that d,, o d,41 = 0 for all n > 0. In fact, it is true (but
harder to show) that the sequence --- — By — By — By — Z — 0 is exact
(the map By = Z[G] — Z is just defined by taking the sum of the coefficients).
So taking homology or cohomology now would be useless (it also wouldn’t involve
M at all). Instead, we apply the contravariant functor Homgqg)(—, M) to get the
induced cochain complex

1 2
0 — Homg e (Bo, M) & Homge (B, M) % - |

The fact that this is a valid cochain complex follows directly from the functoriality
of Homgg)(~, M). Now we can take cohomology:

Definition 5.2. Let ¢ > 0. The ¢-th cohomology group is
HY (G, M) :=ker(0"™")/im(5").

201ater I should reframe this in terms of projective resolutions and derived functors
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The only groups we will actually have a need for are HY and H! (though we’ll
have to make a modification to the definition to make it work out).

Remark 5.3. It will be more convenient to view B,, as the set of functions from G™
to M (the coefficients of an element of the free Z[G]-module on G™ just tell you
where to send the elements of G™).

Example 5.4. Let M be a G-module. Then By = Z[G], By is the free Z[G]-module
on G, and d; : By — By is given by
eqg—g— 1L

So the induced map 0! : Hom(By, M) — Hom(By, M) is given by f — fod;. Of
course, a homomorphism from Z[G] to M is determined by where it sends 1, so
Hom(By, M) = M. Then 9! takes the element of Hom(By, M) defined by g + g-m
to the element of Hom(B;, M) defined on the basis elements by

eg—= flg—1)=gm—m.
The map e, — gm — m € Hom(B1, M) is identically zero if and only gm = m for
all g € G. So the zeroth cohomology group is simply
H°(G, M) = kerd' = {m € M|gm =m for all m € M} =: M©.

Example 5.5. The other cohomology group which will be important for us is H®.
From the previous example, the image of 9" is the set of all elements of Hom(By, M)
given by ey — gm — m for some m € M. Now da : By — By is given by

€g1,92 77 J1€g, T €g; — €gig-
So 05 : Hom(By, M) — Hom(Bz2, M), given by f +— f o ds, has kernel equal to the
set of elements h € Hom(B;, M) such that h o dy is identically zero on Bs. This
function acts on the basis elements by

€(g1,92) h(glegz +ég — 69192)'
So h € ker 8 if and only if h(g1eg, +€4, —€g,g,) =, i-€. if h(eg,q,) = g1h(eg,)+h(g1).
So according to the previous remark, H'(G, M) = (ker 8%)/(imd') can be viewed
as the G-module of “crossed homomorphisms”, namely the functions h : G — M
with the property that h(gi192) = g1h(g2) + h(g1), modded out by those of the form
h(g) = gm —m.

Now we examine the functoriality of the H®. First of all, taking the cochain
complex 0 — Hom(By, M) — Hom(By, M) — - - - is functorial in M. In particular,
let My, My be G-modules with a homomorphism f : M; — Ms. Then we have
a map of chain complexes given by taking Hom(B;, M;) — Hom(B;, M) in the
way described by the vertical maps in Figure [I] It’s clear from the description of

0 —— Hom(By, My) =% Hom(By, My) —— -

lh»—)foh J{hb—}fch l

0—— Hom(Bo,Mg)hm}() Hom(By, My) — - -+

FIGURE 1.

the maps that the induced map is a bona fide map of chain complex (the diagram
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clearly commutes), and that taking the cochain complex is a covariant functor from
the category of G-modules to the category of cochain complexes of G-modules. It
remains to show that the induced maps Hom(B;, M1) — Hom(B;, M) induce maps
of cohomology groups. Once this is shown, the functoriality is obvious because of
how the maps are defined on the cohomology classes (in particular we just need to
show the induced maps are well-defined). This follows easily from the commuta-
tivity of the diagram in Figure If h € ker(9° : Hom(B;, M;) — Hom(B;11, My)),
then hod; : Hom(B; 11, M7) is identically zero. The vertical map of cochain com-
plexes takes h to f o h € Hom(B;, M2). The coboundary map on the bottom
part of the diagram, namely 9° : Hom(B;, M) — Hom(B;1, M>), takes this to
fohod; = fo(hod;), which is identically zero in Hom(B;;1, Ms) because h o d;
is identically zero in Hom(B;41, M1). So this map of cochain complexes actually
sends ker &' upstairs to ker ' downstairs. Finally, if h € im(9° : Hom(B;, M) —
Hom(B;41, M7)), then we have h = h/ o d; for some h' € Hom(B;, M1). And the
image of h under the vertical map Hom(B;11, M1) — Hom(DB; 1, M>) is therefore
foh = fo(hod;) = (foh’)od; which is in the image of the downstairs coboundary
map 9 : Hom(B;, Ms) — Hom(B; 11, M3). So we have shown that the induced map
of cochain complexes restricts to a map

ker(0"™! : Hom(B; 1, M1) — Hom(B;y2, M;)) — ker(9"* : Hom(B; 1, Ms) — Hom(B; o, M>))
and to a map
im(9" : Hom(B;, M;) — Hom(B; 11, M;)) — im(0" : Hom(B;, My) — Hom(B; 1, My)),

hence (functorially) inducing the desired map H*(M;) — H*(Ms). What we have
just verified is actually just the easy part of the snake lemma. Let 0 — M; —
Ms — M3 — 0 be a short exact sequence of G-modules. Then for each ¢ > 0 we
get an induced sequence

0— HOHl(BZ‘7 Ml) — HOHl(BZ‘7 Mg) — HOHl(BZ‘7 Mg) — 0.

Since B; is free, the usual flatness arguments apply (or one can just check di-
rectly by pulling things back at the basis elements) to show that this sequence is
also exact. Of course, there are also the coboundary maps for each M;, namely
d; : Hom(B;, M;) — Hom(B;;1, M;). Expanding and rotating the diagram in
Figure [I] gives a commutative diagram with exact rows and columns, shown in
Figure |2l The easy part of the snake lemma gives us the maps between cokernels
and between kernels. Notice that since im(d}) C ker(@j-“), we get an induced
map 977 : coker(9?) — ker(9;7?). Its kernel is just the set of projections of
elements of Hom(B; 1, M) in the kernel of 8;+1. In other words, its kernel is
ker(afrl)/im(@;) = H(G,M;). Similarly, the cokernel is ker(@j“)/im(@}“) =
H*1(G, Mj). So we have another diagram, the one shown in Figure [3| The def-
initions of the horizontal maps as restrictions or quotients of those in Figure
means that the diagram in Figure [3] commutes. So we can apply the snake lemma
to recover the same natural maps H*(G, M,) — H'(G, My) — H'(G, M3) we con-
structed by hand earlier. More importantly, the nontrivial part of the snake lemma
(applied for each 4) gives a long exact sequence

0 — H°(G, M) — H°(G, M) — H°(G, M3) — H (G, M,) — H'(G, My) — H (G, Ms) — H*(G,M;) — - - - .
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0 0 0
HY(G, M) H' (G, My) H'(G, M3)
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coker(9%) ————— coker(0}) ——— coker(9}) —— 0

i+1 i+4+1 i+1
Jor Jor Jor

0 — ker(9+2) —— ker(9572) —— ker(9+2)

l | l

Hi+1(G7M1) Hi+1(GaM2) Hi+2(G; M3>
0 0 0
FIGURE 3.

This long exact sequence will figure into our analysis of the Herbrand quotient, but
only once we develop a slightly different cohomology theory, namely Tate cohomol-
ogy. We do this now.

Recall that we had H°(G, M) = M%, namely the set of elements of M fixed
by G. For the purposes of computing norm indices, we really are interested in
something more like M%/Trg M, where Trgm := deG gm for any m € MH

Definition 5.6. The Tate cohomology groups of (G, M) are defined by H(G, M) :=
MC/TrgM, and H (G, M) := H'(G, M) for all i > 1.

217 should add material on homology and the full definition of Tate cohomology and homology.
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It’s fairly straightforward to get a long exact sequence for Tate cohomology, since
it only depends on adapting the proof for the part of the sequence near H.

Theorem 5.7. Let 0 — M; — My — M3 — 0 be a short exact sequence of
G-modules. This induces a long exact sequence of Tate cohomology groups

H°(G, My) — H°(G, M) — HY(G, M3s) — H" (G, M) — - -

Proof. Because the Tate cohomology groups coincide with the usual cohomology
groups for ¢ > 1, we can define the part of the long exact sequence starting at
ffl(G,Ml) in the same way. Recall that H°(G, M) = M%. First, we explicitly
write down the maps in the part of the usual long exact sequence given by

ME — ME — ME — HY(G, M,).
Recall that the map MjG — Mﬁrl is induced by restriction from the map Hom(By, M;) —
Hom(By, M;41) induced by the map ¢ : M; — M, we started out with. In par-
ticular, it is defined by taking the homomorphism g — gm to the homomorphism
o (g gm) =g+ ge(m). Via the isomorphism Hom(By, M;) = M, this means
the maps M — M, | are just defined by m — ¢@(m).

Let m € TrgM;, so that m = > o gm’ for some m’ € M;. Then p(m) =
> gec 9p(m'), which means p(TreM;) € TrgM;41. In particular, we have induced
maps

ME Tra My S ME [Tra My 5 ME [ Trg M.
Now we need to check that this is exact at MS /TrgM,. The fact that ima C ker 3
is clear from the exactness of M — M — M. On the other hand, let my € MY’
such that 3([ms]) = 0. Then

B(mz2) = Z gms
geG
for some m3 € M3. By the exactness of the original sequence, there exists m} € Mo
such that 8(m}) = ms. Taking traces, we have

g Z gmy | = B(mz) = Trgms.
geG

So >~ ,eq gmy and mo differ by an element of ker 3 = ima, namely a(m1). Both
> geé gmb and myg are invariant under the action of G, so a(m1) is as well. It follows
that m; — gm; € kera for all ¢ € G. But « is injective, so actually m; € ME.
This proves that [m1] € MT/TrgM;, and thus a([m1]) = [ma], proving the second
desired inclusion.

It remains to define the map MS /TrgMs — H'(G, M;), and show exactness at
M§ JTrgMs and H' (G, M;). Consider the exact sequence of cohomology groups

M§ 5 ME 2 HY(G, My).
Consider an arbitrary element deG gmg € TrgMs for mg € Ms. If we show
it is always in ker+, then we can construct the desired map. This is equivalent
to showing it is in imf. By the exactness of the original sequence, there is some
mg € My such that 8(msg) = ms. Then B(Trgma) = Trgmg. Since Trgmg € M,
this means Trg M3 C ker v, and we have an induced map

5 M§ ) TrgMs — HY(G, My).
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The rest of the exactness is easy since we didn’t mod the H'’s out by anything.
For any [msy] € M /Trg My, we have

F(B([m2])) = v(B(mz)) = 0.

And if [ms] € ker 7, then actually y(ms3) = 0 so ms € im(8) and thus [ms] € imf.
This proves exactness at M3G /TrgMs. For the exact same reason, our sequence

ME T My S ME ) Tea My 5 ME ) Tea My 5 HY(G, My) — HY(G, Ms) — -

is exact at H!(G, M;) as well. The rest of the exactness is induced by the exactness
of the long exact sequence for cohomology. O

5.2. Cyclic groups and the Herbrand quotient. For an arbitrary group G,
only H° and H° have any clear arithmetic meaning. But when G is cyclic of
finite order, Tate cohomology becomes much nicer. For example, recall that for an
arbitrary finite group G and G-module M, we have HO(G7 M) = M%/TrgM, but
H' only has a description in terms of “crossed homomorphisms.” In the cyclic case
it’s easy to write down H' explicitly.

Example 5.8. Let G = (o) be a finite cyclic group. If f : G — M is a crossed
homomorphism, then it must satisfy

flo™) = " (o) + F(o" ).
By induction, it follows that for all n > 1,
fle™) =1+ +a" ) f(o).
So f is determined by where it sends o. Moreover, we have
flo) = f(e ) = (1 4+ + o) (o),

so f must also satisfy f(o) € ker Trg =: Mry,,. Finally, for any m € My, we can
define the map f : G — M defined by f(o™) = (1+---+ " )m for 1 <n <|G|.
Then since Trgm = 0, it’s actually true that f(¢”) = (1 + -+ " 1)m for all
n > 1. So for any positive integers x,y we have

f(00¥) = (L4 -+ 0" ) f(o) = 0" f(o¥) + f(0®),

making f a crossed homomorphism. This means that the group of crossed homo-
morphisms is isomorphic to Mry.,. The principal crossed homomorphisms g —
gm — m correspond under this isomorphism to the elements of the form (o — 1)m
for m € M, since an element m of Mr,, corresponds to a principal crossed homo-
morphism if and only if f(o) = on — n for some n € M, which is equivalent to
m € (0 — 1)M. We therefore have a natural identification

HY(G, M) 2 My /(1 - 0)M).

It turns out that (when G is finite and cyclic) the Tate cohomology groups contain
no information other than H' and H°. In particular, the long exact sequence of
Tate cohomology groups loops back around after H'.

'];heorem 5.9. Let G be a ﬁnitf cyclic group. szen for any integer n > 0, we have
H?"(G,M) = H°(G,M), and H*"TY(G, M) = H (G, M).
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Proof. The key fact is the one from homological algebra which says that we can
use any free resolution of Z to compute H ”H In particular, consider the sequence

-2 716 S Z1G) S Z]G) S Z[G) —» Z — 0,

where o is a fixed generator for G and the map Z[G] — Z is just by adding the
coordinates. We need to check that ker(o — 1) = imTrg, ker Trg = im(o — 1), and
ker(f : Z|G] — Z) = im(o —1). The last fact is easy, since if o = id then cg—g = 0,
and otherwise f(og — g) = 0; the other inclusion is because if Y a,0™ € Z[G]
has > a, =0, then > a,0™ = (0 — 1)z is equivalent to specifying the differences
between consecutive by,’s for which z = > b,,6™. The inclusions imTrg C ker(o—1)
and im(o — 1) C ker(Trg) are both obvious, since if 2 € Z[G], then

(0 — )Trge = Trgx — Trgz =0

and
Trg(ox —z) = Trgz — Trg = 0.

The remaining two are also not so hard to do the restrictiveness of G being finite and
cyclic. If x € ker(o—1), then this forces an equality between each of the consecutive
coefficients of z, i.e. z is of the form > ac™. In other words, x = Trg(a). This
proves ker(c — 1) C im(Trg). Finally, one of our previous arguments shows that
ker(Trg) C im(o — 1), as having trivial trace means you can be equal to ox — z just
by specifying that the difference between consecutive coordinates of x differ by the
prescribed coordinate of the given element of ker(Trg).

Now that we know this is a bona fide free resolution, we can use it to compute
cohomology groups. Taking homs, we get the cochain complex

0 — Hom(Z[G], M) — Hom(Z[G], M) — ---
where the maps alternate between h +— ho (o — 1) and h +— hoTrg. As predicted,
we get H(G, M) = ker(h — ho (o —1)). Recall that Hom(Z[G], M) is identified
with M because of how an element f € Hom(Z[G], M) is determined by f(1). So
as a subset of M, we can verify that as befor
HY(G,M)={m & M: (o7)m =1m for all T € G} = M.
We can also see that
ker(0%) = {m € M : ZU"Tm =0 for all T € G} = My,
and
im(0") = {om—m:me M} = (0 — 1)M.
By the periodicity of the definitions of the maps, we get the part of the statement

of the theorem which says that the odd cohomology groups are all isomorphic. In
particular, they are all

H* NG, M) = M, /((c —1)M).
For the even ones, we see that
ker(9) = M¢
22 should add an appendix including all the homological algebra we need

23Though we don’t have to, since this is guaranteed to agree with the old definition of group
cohomology.
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since 93 = 9'. For 0%, note that §%(m) takes 1 to (Trgl)m = Trgm, so
im(9%) = Trg M.
It follows that
H*(G, M) = M® /TrgM
for all n > 1, as desired. In particular,
H>™(G,M) = M®/TreM
for all n > 0. O

So the only two nonisomorphic Tate cohomology groups are H (G, M) and
H'(G,M). Though both of these are often difficult to compute, there’s another
quantity which tends to be simpler:

Definition 5.10. Let M be a G-module. The corresponding Herbrand quotient is
Q(G, M) := [H*(G, M)|/|H*(G, M)|.

Example 5.11. Let M = Z with the trivial action of the finite cyclic group G.
Then MY = M and Trg is multiplication by |G|. So H°(G,Z) = Z/|G|Z and
HY(G,Z) = 0, which means Q(G, Z) = |G|.

Note that the isomorphisms between cohomology groups given by Theorem
have the property that (for example) the induced map H2(G, M;) — H?(G, M>) for
f: My — M, corresponds under the isomorphisms to the induced map HO(G7 M) —
H°(G, My). This is due to the formal definition of H® and the definitions of the
induced maps. As a result, if 0 — M; — My — M3 — 0 is a short exact sequence of
G-modules, the long exact sequence for Tate cohomology (see Theorem loops
around to the “exact hexagon”@ as shown in Figure |4 The Herbrand quotient is

IA{O(G, Ml) —_— HO(G, Mg) —_— I:IO(G,Mg)

| |

HY(G, Ms) «—— HY(G, M,) +—— HY(G, M)

FIGURE 4.

easier to deal with than even the sizes of the individual cohomology groups because
of the following fact, which Lang refers to as the Q-machine.

Corollary 5.12. Let 0 - M; — My — Ms — 0 be a short exact sequence of
G-modules. Then
Q(Gv M3)Q(G7 Ml) = Q(Ga MQ)

as long as any two of the three quotients are defined.

Proof. We use the exactness of the exact hexagon. If two of the quotients are
defined, then each possibly infinite group is stuck between two finite groups in an
exact sequence and is therefore finite. So we may assume all the cohomology groups
are finite.

241 don’t draw it as a hexagon because it doesn’t make sense to do that. The important thing is
that it has 2 sides, coming from the two periods of the long exact sequence, not 6.
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For all i € Z/6Z, let k; denote the size of the kernel of the i-th map in the
hexagon (order them clockwise starting at H°(G, M;) — H°(G, M) when i = 0),
and let m,; denote the size of the image. The exactness of the hexagon means that
k; = m;_1 for all i. As a result,

komo kamo  kymy

ksmg ksms — kymy'
which yields the desired
|H°(G, My)| |HO(G, M3)| _ |H(G, Ma))|
[HY (G, My)| [HY(G, M3)|  |[HY(G, My)]
by the first isomorphism theorem. O

Lemma 5.13. If M is finite, then Q(G, M) = 1.

Proof. Consider the map of abelian groups f : M — (1 — 0)M given by m —
(1 — o)m. Note that an element of M is fixed by G if and only if it is fixed by
o, i.e. if it is in the kernel of f. So f is surjective with kernel M, and we have
[M : M%) = |(1 — o)M]|. Similarly, [M : Mr,,] = |TrgM|. Then the fact that

|M| =M : M®][M® : TragM]|TrgM| = [M : M1y |[Mryg, : (1 — 0)M]|(1 — o) M|
implies that [M¢ : TrgM] = [M1y, : (1 — 0)M] as desired. O

This is all the general machinery we will need to deal with norm subgroups of
cyclic extensions of local and global fields. For the ideles, recall that the Galois
action on Jg permutes the local factors corresponding to w|v transitively. So if
we restrict to the valuations lying over a single v € M}, we are in the following
situation:

Definition 5.14. A G-module M, along with a choice of decomposition into abelian
groups M = [[i-, M;, is semilocal if G permutes the factors M; transitively.

Definition 5.15. If H?:l M; is a semilocal G-module, then for each i < n we have
a decomposition group D; defined to be the subgroup of G consisting of all elements
taking M; to M;. Note that M; is a D;-module.

In the remainder of this section, we will show that the Tate cohomology groups
(and thus the Herbrand quotient) can be computed for (G, M) or for any (D;, M;)
without changing the answer.

Lemma 5.16. Let M = [[/_, M; be a semilocal G-module. Then H°(G, M) =
H°(Dy, M;).

Proof. Let g € G be such that g(M;) = M;. Such an element of G is guaranteed to
exist since M is semilocal. Then if g’ € G such that ¢’(M;) = M;, we must actually
have g~ o ¢/(M;) = M;, so g~tg' € D;. In particular, every element of G taking
M; to M; is of the form g o o where g is the fixed element of G from before and o
is some element of D;. This is just the decomposition of G into left cosets of D;.
The coset gD;, where g(M;) = Mj, is equal to the set of elements of G sending M;
to M]

Fix1<i<n. Letm= 2?21 m; € ME. The fact that m is fixed by all of
G means that if g;(M;) = M;, every element of g;D; must take m; — m;. So
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m; = gj(om;) for all ¢ € D;. The action of g; is an automorphism of M, so this
means m; € MZ-D . Conversely, an element of the form

n
E g5my
j=1

where m; € M; and g¢;(M;) = M; is clearly fixed by G, since the cosets of D;
are permuted by multiplying by an element of G. This means MY is exactly the
set of such elements Z?:1 g;m;. The important thing is that such an element
is uniquely determined by the choice of m; € MiD ‘. so at least the projection
gives an isomorphism M¢ = MiD ‘. Finally, let m; € M; and consider its trace
m; = ,ep, OMi € MiD . This pulls back uniquely under 7 to the element

n

Zgj(mé) = Zgj Z om; = Z Z gjom; = Trg(my).

=1 oceD; j=1lo0€D;

So every element of Trp, M; is the M;-coordinate of an element of Trg M. Similarly,
if m =327, m; €M, its trace is 37, Y5y D ep, grom; where g is chosen so
that g5 (M;) = Mj. The M;-coordinate of that trace is

n n n n
Z Z giom; = Z Z gigi_lagimj = Z Z ogim; = Trp, Zgimj € Trp, M;.
j=1

j=lo€D; j=1lo€D; j=lo€eD;

So the isomorphism 7 : MC = Ml-Di restricts to a bijection TrgM — Trp, M; and
thus an isomorphism H°(G, M) = H°(D;, M;). O

Lemma 5.17. % Let M = [/, M; be a semilocal G-module. Then H'(G, M) =
HY(Dj, M;).

Proof. For each 1 < j < n, choose g; ; € G such that g; ;(M;) = M,. Set g, =
gi,kg;’jl for each 1 < j,k < n so that g;1g;; = gi,x- Consider an arbitrary element
m = > ;m; € M. Then we can write m; = gi,j(m(j)) where m) € M.

i i

25in fact this lemma, like the previous one, is true even if G is not cyclic. Then you need to write
H?' as a quotient by IgM instead of (1 —o)M as in this special case. The proof is then identical.
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Therefore,

Trgm = Z Zggz j (J)

geGJ 1
n .
= Z 229 k093 (mi”)
j=loeD; k=1
n n
= Z Zgj kgwagu gh]( (]))
j=loeD; k=1

95,69i,3Trp, (m?)

I
M=
NE

1

Zgl kTrp, me
j=1

k=1

x>
Il

1

<.
Il

3

So we have decomposed Trgm into its My-components, and Trgm = 0 if and only if
Trp, (Z;;l m(j )> = 0. This means we have a Well—deﬁne group homomorphism

¢ Mrrg = (M;)1vp, given by m — ZJ 1 m(J) The map ¢ is clearly surjective

(mi € (M;)1yp, has preimage m; for example). Let 7 be a generator for G and 7;
a generator for D;. If 7(M;) = M, (j), for each j there is a unique o,(;) € D; such
that

T9i,5 = 9i,7()97(j)-

Then
(1—7)m= Zgi7jm§j) — ZTg mgj)
Jj=1 J*l
= ngm(” Zgz ~(=ymy
Jj=1
= l]m(J) Zgljo—] 1‘
j=1
= Zgi,j(mzj) —aym;” lj))
j=1
Therefore,
—1 .
o((1=7)m Zmu »mg ])E(l—Ti)Mi

since each summand is in the subgroup (1—7;)M;. As aresult ¢ induces a surjective
map ¢ : My, /(1 —=7)M) = (M;)1vp, /(1 —7:)M;). It remains to show injectivity.

26Well-defined up to a choice of g; ;’s.
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Suppose that [m] = {Z?Zl gm-mgj)} € ker . Then
Som? e —m)M; € (1-1)M,
j=1

which means

= [m = 3| = | g m| =0
j=1 j=1

as desired. 0

5.3. Some norm indices. Let K/k be a Galois extension and w|v a choice of
nonarchimedean valuations. In the previous sections we used two facts about norm
indices:

o [k} : N,/ k,Kxl, [(/9\,?71) : NKw/kv(b}X{’w] < oo

e If v is unramified, then @:U = Ngk, /k, @Ix(w
We will prove both of these by explicitly computing the indices in the cyclic case,
using the tools of group cohomology from the previous section. To apply that
theory, notice that the action of Gal(K, /k,) on K, makes K} a Gal(K,/k,)-
module restricting to the Gal(K,, /k,)-module @]X(w Translating between additive
and multiplicative notation, Trqa(k.,, /k,) stands for Nk /i, . Since Ky, /k, is Galois,

we have (K$)Gal(Kuw/ko) = X and (@IX(yw)Gal(Kw/k’”) = (/9\,:” Suppose Gal(K,,/ky)
is cyclic with generator 7. From the previous section, we have

HO(Gal(Ky ko), K3) = kY /N, i, K
H(Gal(Kuw/ko), O ) = Oy [Nk, /1, O

HY(Gal(Ky/ky), K}) ={z e K} : Ng,jeox =1} /{z/te 0 € K}
f[l(Gal(K,w/kv),@[ﬁ’w) ={z e @Ix(w :Ng,kx =1} {z/tex e @Ix(w}

Hilbert’s theorem 90 (just the classical version for cyclic Galois groups) says that
H'(CGal(Ky/ky), KX) = 1. This means that we may compute the desired norm
index for k) by computing the Herbrand quotient Q(Gal(K,,/ky), KS). To do
that it will be useful to know the Herbrand quotient for the units:

Lemma 5.18. If K,,/k, is cyclic, then Q(Gal(Kw/k‘v),@IX(’w) =1.

Proof. Let B be an open Gal(K,,/k,)-submodule of (51X<w By the compactness of
this unit group, we know |(5]X(7w /B| < oo. Using Corollary

Q(Gal(K,/k,), B)Q(Gal(Ky/ky), 0% ,/B) = Q(Gal(K./ky), O )
so by Lemma we have
Q(Gal(K . /ky), B) = Q(Gal(Ky/ky,), OF ,)-

In particular it suffices to compute the Herbrand quotient of any open Gal(K,,/ K, )-
submodule of Q(Gal(Ky /k,), O ,,). To do this, we suppose v = v, and use the
p-adic logarithm along with the cohomology theory of semilocal G-modules. By the

2TWe used this to show that norm subgroups are open. But we also noted that this can be shown
using the p-adic logarithm. Hensel’s lemma also works.
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normal basis theorem, K, has a k,-basis {ws }secal(x,, /k,) Such that 7(w,) = wro
for all o, 7 € Gal(K,,/k,). We can also multiply the wsigma’s by a nonzero elements
of k, of large valuation to ensure that w, is in the domain of the isomorphism given
by the p-adic exponential. Let

A= Z @k’vwo.
oceGal(Ky /ky)

A is a G-submodule of K, (N.B. this abelian group is the additive one). Since the
wy,’s are a normal basis, A is semilocal. The decomposition group D, is just the
set of 7 € Gal(K,/ky) such that 7o = o, i.e. D, = 1. So by Lemma and

Lemma [5.17]
Q(Gal(Ky /ky), A) = Q(L, Ok pwy) = 1

since trivial groups have trivial cohomology. Moreover, A is clearly open in K,
since it is an open box under the sup norm given by the basis {wy},. It was
constructed to lie inside an open ball around 0 small enough for the p-adic ex-
ponential to be a topological isomorphism between it and an open set around
1. Since the action of Gal(K, /k,) is continuous, it respects power series, which
means the logarithm and exponential in fact produce a topological isomorphism of
Gal(K,, /ky)-modules. In particular, since A is an open Gal(K,,/k,)-submodule of
K,, with trivial cohomology with respect to Gal(K,,/k,), we know that exp(A) is
an open Gal(K,,/k,)-submodule of K also with trivial cohomology. Since it is in
a small open ball around 1, we have produced the desired subgroup B = exp(A4) C

0% - O
Lemma 5.19. If K, /k, is cyclic, then [k : Nk /i, Kyl = [Ky @ ky).

Proof. Since H'(Gal(K,,/k,), K) = 1 by Hilbert’s theorem 90, the desired norm
index is
[k - Nk, Kol = Q(Gal(Ky /ky), Ky ).
The Gal(K,,/k,)-submodule (/D\Ix(w C K} has the property that K /(/Q\Ix(w >~ 7 as
Gal(K, /ky)-modules, where the action on Z is trivial. The isomorphism is given
by x — v(x). So by Corollary |5.12]
Q(Gal(Kuw/ky), 2)Q(Gal(Ku. ky), Oft ) = Q(Gal(Ky, k), K5

as long as any two of the quotients are finite. Since the action on Z is triv-
ial, we know Q(Gal(K,/k,),Z) = |Gal(Ky/ky)| = [Kw : ky]. By Lemma [5.18]
Q(Gal(K, ky), Of(’w) =1, so the third quotient is finite and equal to [K,, : k], as
desired. ]

We can also compute the norm index of the units, which we already know is
finite and bounded by [K,, : k,] by the previous lemma.

Lemma 5.20. If K,,/k, is cyclic, then [(5,:1] : NKw/kv@;X(,w] = e(w|v).

Proof. Recall from Lemma that Q(Gal(Kw/kv)K/D\IXQw) = 1, which means it
suffices to compute |H'(Gal(K, /ky,), @Ix(w)| By Hilbert’s theorem 90,

(0% w)Nicy o, = {a/T(@) 12 € KX},
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which means (where 1 — 7 is written in additive notation to make the meaning
clearer; in this case it is the map z — x/7(z))

~

[HY (Gal(Ky k), O ) = (O )i, v, + (1= T)O0% )
=[(1- T)Kw (1 =10k
[(1—7-)KX (1—71)k) (9 wl

w

K kYO )

[(Kt)lj)l—T : (kv OK,w)l—T]

where the third equality is because every element of k) is fixed by 7, so (1 —
7))k = {1}, and the second equality is due to the first and third isomorphism
theorems. Of course, (K.S)1—r = kS since the extension is Galois and cyclic (z =
7(x) means z is fixed by the whole Galois group means x € k, ). For the same reason,
(/cg@gw)l,r = k) as well, since k) is fixed by 7 and kvx(/?\;(w C KX. So the
denominator is [k : k] = 1. For the numerator, Let 7 be a uniformizer for K, so
that uom¢(®?) is a uniformizer for k, for the appropriate choice of ug € @Ix(w Then

K ={ur":ue€ @Ix(,w,n € Z} and k;vX(”)\IX(w = {ume@ln .y ¢ @§7w,n € Z}, so
[K5 kj@;(w] = e(wlv). Tt follows that |H'(Gal(K,/k,), Alx{yw)\ = e(w|v) and
thus [@;v : Nk, /k, @IX(w] = e(w|v) as desired. O

Even though we have only proved these equalities for cyclic extensions, it will
turn out as a result of local Artin reciprocity that they are true for arbitrary abelian
extensions of local fields (the statements for archimedean local fields are obvious
using the definition f =1 and e = 2 if v becomes complex in K). The only specific
result we used is that in the abelian case, if w|v is unramified, then every unit in
k, is a norm from K,,. We'll be able to prove this and its converse in the abelian
case, which will take up the remainder of this section.

Lemma 5.21. Suppose K, /k, is abelian. Then [Oy,., : Nk, /k, Ok w] < e(w|v).

Proof. We will show a divisibility instead the inequality. Since K, /k, is abelian,
we can inductively choose cyclic subgroups of its Galois group then pass to the
quotient to get a chain of fields

kq)CE1C"'EnCKw

such that each E;/E;_; is cyclic, and so are K,,/FE, and F;/k,. For convenience
we write v = vg, ky, = Eg, w = vy41, and Ky, = E,y1. Since E;/k, are finite,
they are all complete with respect to the unique valuation extended from v (which
must be compatible with restriction from w and each other). So we really have
a tower of cyclic extensions of local fields F; with valuations v; with compatible
restrictions. Everything we have done in this section is valid abstractly for exten-
sions of nonarchimedean fields, so there is no need to show that E; is a completion
of an intermediate field. However, even this is clearly true, as K N E; is dense in
E; with respect to w, which restricts to v; on E;. Moreover, E! := KNE; C E;
has completion with respect to v; which is contained in FE; since F; is complete.
In fact, the completion is equal to E; because E; is dense in FE; (so its completion
cannot be dense and properly contained in E;, e.g. using the equivalence of norms
on finite-dimensional vector spaces over a complex field and the sup norm on E;
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over the completion of E!). So in fact we can match our situation exactly with the
one we've dealt with so far, namely a tower of extensions

Ey=kCE{CE,C---CE,CK=E,_,

defined as described, with valuations v = wvg|v1|---|vp|vns1 = w so that after
completing with respect to these valuations we have a (Galois) tower of local fields

Ey=k CE,CE;C---CKy=FE11
with the property that F;/F;; is cyclic. Taking norms down to k,, we have
NE,.1/595,,, C Np,/8,0F, C -+ C Ng,/5,0p, C Og,.
So the desired norm index is
(070 N /1,05 ) = [OF, = Np, 1 /5,08,
= [0%, : Ng,/5,Op,][NE,/5,OFk, : N, ., /5,0F
= e(01|v0)[NE, /5, OF, : NE1/BoNE, .1 /5. OF

n+1]

n+1]'

By the first and third isomorphism theorems, [Ng, /5,0, : Ng,/5,NE, ., /B! (’)Enﬂ]
divides [Op, : Ng, /5, OF, ], which divides e(v,41[v1) by induction. So the norm
index we want divides e(vy|vg)e(vnt1|v1) = e(vny1|v) = e(wlv), as desired. O

Corollary 5.22. If K,,/k, is abelian, and w|v unramified, then every element of
Oy, is a norm from O .

Lemma 5.23. If w|v is ramified and K, /k, abelian, then [@,:,U t Nk /k, @IX(M] >
1.

Proof. Last time, the proof relied on decomposing an abelian extension into a tower
of cyclic extensions, only using the fact that an subextension of an abelian extension
is abelian (and in particular Galois) over the bottom field and under the top field.
This time, we decompose the abelian extension as a compositum of cyclic exten-
sions. Since Gal(K,/k,) is a finite abelian group, it is a product of cyclic groups

.. H; . . . .
H; x --- x H,. Then each fixed field Kll;[”“ is a Galois cyclic extension of k,,
and by the Galois correspondence the composite Kg”“ T Kg#" ’ has Galois
group Mi_; [[,; H; = {1} over k,. So K, is a composite of cyclic subextensions.
If v ramifies in K, then it ramifies in one of these cyclic extensions, which means
that for some 1,

" N
Nng# "3k, Ong‘f‘i ;& Ok,v
L H;
(because the index is equal to e(K}}’*l */ky) > 1). Since

NKw/kv le(,w c NK,I;Ij¢i H Jky O;;l;lj¢z Hj»
it follows that [@,fv : N /k, @ﬁw] > 1 as desired. O
5.4. Other applications. Kummer theory. General statement of Hilbert 90. Us-
ing the long exact sequence to prove Hasse’s local-global principal for norms in
cyclic extensions. Application to quadratic forms.
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6. GLOBAL CLASS FIELD THEORY

Recall the original goal of class field theory, namely that if K/k is an abelian
extension of number fields, then for some modulus m, the Artin map I(m) —
Gal(K/k) induces an isomorphism I(m)/PyN(m) — Gal(K/k). The N(m) in the
denominator is at least a minimum requirement, as it is clearly in the kernel of the
Artin map (the elements of the norm group are products of f(P|p)-th powers of
primes p fmg, and the Artin symbol [KT/]C} has order f(P|p)). Showing that Py, isin
the kernel is the most nontrivial part of global class field theory, but it is motivated
by the desire to relate Hecke L-functions to Artin L-functions via the Artin map,
as well as the fact (historically proven by Takagi [15] in the 1910s before the Artin
reciprocity law was known) that I(m)/Py, N (m) and Gal(K/k) are noncanonically
isomorphic for the correct choice of m. Once we have shown that the kernel contains
PuMN(m), it will still be useful to know at least the equality of sizes of these two finite
group. To do that, we will use the first and second fundamental inequalities.
Both were historically proven analytically. We will follow [9], proving the first one
analytically, and the second one using the cohomology of the S-units and idéles.
Note that we establish the first inequality in more generality than the second one.

6.1. The first fundamental inequality. In this section, we will use the Hecke
L-functions for characters on on I(m)/Py, to derive the following inequality:

Proposition 6.1. Let K/k be a Galois extension of number fields, and m a modulus
for k divisible by all the primes ramifying in K@ Then we have

[I(m) : Pudt(m)] < [K : k).

Proof. We will use the usual trick of multiplying L(s, x) together over all x, first
taking logs to simplify things. Let x be a character of G := I(m)/P,N(m), or
simply a Hecke character mod m vanishing on N(m). We have not yet shown that
L(1,x) # 0, but we know that L(s, x) extends past 1 when x is nontrivial, and that
L(s,1) differs from ¢; by a finite number of entire factors which are nonzero at 1.
We don’t yet have access to Artin L-functions from Hecke L-functions (since we
haven’t proven Artin reciprocity yet), so we can’t prove any relationship between
Hx L(s, x) and any zeta function. Instead, we directly analyze the definition of the
log of this product.

Since L(s, x) is not identically zero, by the identity theorem if it has a zero at
s = 0 it is of finite order. So for y # 1 we may write

L(s,x) = (s = )™ f(s,x)

for some integer m(x), where f is holomorphic on the domain of definition of L(s, x),
plus s = 1, and nonzero at s = 1. Let s — 17. Adding up the logs of the L(s, ),
we have (using the Euler products as usual)

S log L(s, ) = logGy(s) = 3 mi(x) log ——

< N s—1
x€G 1#x€G

28These hypotheses are general enough for everything we will do. In particular, the modulus must
be divisible by all the ramified primes in order for the Artin map to be well-defined anyway.
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Recall that (i has a simple pole at s = 1. Its residue does not matter since we are
taking logs. As a result, we have

D logL(s,x)= 1= Y mlx) | log

xe@ 175)(6@

871—1—0(1)

as s — 17. On the other hand, we can directly look at the Euler products and get
rid of converging parts to get in the usual Way@

S logLis, ) = 33 ﬁ(ﬁ) +o(1).

x€G x€eG pln

Splitting the sum over the ideal classes (allowed by absolute convergence for f(s) >
1) and combining the previous two equations, we get

1-— Z m(x) logsil—zzz>§ﬁ)+0(l)

175)(66 Xeé ReG peRr
=2 (2N [ Do x| o).
ReG \peR ve@
The second term in the summand vanishes whenever K is nontrivial and is |CA¥ | = |G|

otherwise. So the right hand side is equal to
Gl Y. Npt40(1).
PEPnMN(m)

If p splits completely in K, then p = N for any Blp, so p € N(m). We can also
add back in the primes dividing m, absorbing the extra cost into the error term, so
that

1= Ym0 Jlg 216 Y N o).
1#£xe@ pESPL(K/k)
There are exactly [K : k] primes P of K lying over each p € Spl(K/k), each of
which having the same norm as p. Thus, the right hand side is equal to

g X NE o),
' B

f(Blp)=1

where we have added the ramified primes back into the sum at a constant cost (as
there are finitely many). What we are left with is within O(1) from (x(s), since
the primes of higher inertial degree contribute at most [K : k] terms each, of the
form Np~=/* for f > 1. These sum to something bounded f > 1, and there are at
most [k : Q] of these primes lying over a given one in Q. As a result,

1 |G] 1
1-— Z m(x) logs—lz[K:k]10g8—1+O(l)

17&X€é

29Using the power series for log(1 — z) and showing all the terms except those of degree 1 sum to
something O(1)
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because of the simple pole of (x at s = 1. Since |G|/[K : k] > 0, this immediately
implies that m(x) = 0 for all x (otherwise the LHS would always be negative or
zero as s — 17). This in turn implies that |G| < [K : k], as desired. O

Remark 6.2. We have also just shown that L(1,x) # 0, which yields a direct proof
of the fact that there are infinitely many primes in each class of I(m)/P,91(m) as
long as we can construct an extension K /k which only ramifies at primes dividing m.
This is easy: just consider k((,,) where m is divisible by the same rational primes as
m. In general this group is smaller than the generalized ideal class group I(m)/Py,,
so the problem of whether there are infinitely many primes in each generalized ideal
class has still not been addressed. To do that, we would need to find an extension
K/k with the additional property that M(m) C P,.

Remark 6.3. The fact that L(1,x) # 0 and therefore the infinitude of primes in
each class of I(m)/Py9%(m) is still useful. It shows that if this group is nontrivial,
then there are infinitely many primes not in 91(m), and therefore infinitely many
primes which do not split completely. In particular, the density of the set of such
primes is at least (|G| —1)/|G].

If we take m to be an admissible cycle, Proposition tells us via the isomor-
phism of Lemma that

6.2. The second fundamental inequality. The second fundamental inequality
proves that the first is an equality (as would be implied by the full statements of
class field theory), but only in the case that K/k is cyclic. We will use cohomology
to prove it. From now on, K/k is a cyclic Galois extension of number fields (whereas
in the previous section it was an arbitrary Galois extension of number fields). The
index [Jy : kX Ng i JK] is just |HO(Gal(K/k), Jk)|. Recall from Lemmathat
for all sufficiently large finite S C M containing all the archimedean absolute
values, we have Jx = K*Jk g. In order to allow Gal(K/k) to act on Jk g, we
need S to be closed under the action of Gal(K/k). So we enlarge S to include
all w|v for each v € M), for which it already includes at least one wlv. In order
to further simplify things, we also enlarge S to contain all the w such that wlv is
ramified.

Then we have an isomorphism of Gal(K/k)-modules Jg s/Kg — K*Jg s/ K> =
Ck induced by the inclusion of Gal(K/k)-modules Jx s — K*Jg s. So by Lemma
the relevant Herbrand quotient is

Q(Gal(K/k), Cx) = Q(Gal(K/k), K™ Jk s /K™)

Q(Gal(K/k), Ji,5/Ks)
= Q(Gal(K/k), Jk,5)/Q(Gal(K/k), Ks).

The first thing we need to do is therefore to compute the Herbrand quotients for
J[gs and Ks.

Proposition 6.4. With S C Mk as above, Q(Gal(K/k), Jk,s) = [[,es,
where Sy, is the set of all absolute values of k lying below elements of S.

[Kw : kv]:
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Proof. We reduced the computation from Jx to Jg s because it can be written in
a straightforward way as the product

Jr,.s = HHKg x H H@IX(w

vESE wlv vEME\S) w|v

Since Gal(K/k) permutes the w|v, it acts separately on each component of the
product. Therefore, Lemma tells us thaﬂ

Q(Cal(K/k), Jrs) = [ @ | Caltss/m). T | @ | Galtis/h), T TI0%.

vESk wlv vEM\ Sk wlv
Since Gal(K/k) permutes the w|v transitively, the results of Lemma and
Lemma [5.17] apply, so

Q Gal(K/k),HKi = Q(Gal(Ky /ky), K) = [Ky : ky]
wlv
where the second equality is by Lemma It remains to compute the Herbrand
quotient for the product at the places not in Si. Recall from our description in
section ] of the norm coming from the action of Gal(K/k) on Jx that if (). €

Hi)EMk\Sk Hw|v OI><(,w’ then

Nisrer = | [ Ncosi, 0
wlv vE M\ Sk
Since v is unramified for all v € My \ S, every element of @,fv is a norm from
@Ix(w (see Lemma . This implies (after using it on all the coordinates) that
H(Gal(K/k), [Tye o5, o Q) = L. For HY, the fact that H'(Gal(K/k), O} ) =
1 implies that the same is true for lev (/Q\Ix(w by Lemma By our description

of the norm, any element of [],cpss, [1 @Ix(w of norm 1 has components in

wlv
[T.jo Ok, 2all of norm 1, which are therefore in (1 —0)][,,, Of,, where o is a
generator for Gal(K /k) since H'(Gal(K/k), [T Ok.) = 1. Since Gal(K/k) acts

componentwise, this implies that ﬁl(Gal(K/k),HveMk\Sk [T 61X<w) = 1, and
thus

Q| Gax/k), [T [[0k.|=1
vEMp\S) wlv
which implies the desired result. (I

To compute Q(Gal(K/k), Kg), we'll use the usual theory of the log mapping of
K into a lattice on the trace-zero hyperplane in RISI. Let Gal(K/k) act on R!S| by
permuting the coordinates in the same way that Gal(K/k) permutes the absolute
values in S (this works because we chose S large enough to be closed under this
action). To be able to use this to compute the appropriate Herbrand quotient, we

30N.B. There’s no way to use Lemma to take infinite direct products out of Herbrand quo-
tients.
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need log(Kg) to be closed under the action of G. This is obviously true by the
definition of log(Kg) and the fact that S is closed under the action of Gal(K/k).
Moreover, log is compatible with the action of Gal(K/k). In particular, for o € Kg
we have

log(ga) = (log |galw)wes = (loglalg-1uw)wes = g(log|alw)wes-
But still, log(Kg) has no obvious structure that makes it easy to compute its

Herbrand quotient. Luckily, we have the following technical lemma, from [9, Ch.
IX, §4, Theorem 1]:

Lemma 6.5. Let L be a lattice in RIS which is also a Gal(K/k)-submodule. Then
L has a Gal(K/k)-submodule L' of finite index with a Z-basis { Xy }wes with the
property that gX,, = Xg. for all g € Gal(K/k).

Proof. Let {e,} be the standard basis for RI®I. For one wy|v for each v € Sy, we
can let Z,,, € L be the closest element of L to t-e,, for a large enough positive real
number ¢. Since L has full rank, there is a constant b such that |Z,,, — tey,| < @
for all such wg. This makes it an exercise in linear algebra to show that the Z,,,
(and the lattice we will define in terms of them) are linearly independent if ¢ is
sufficiently large.

To get the desired Gal(K/k)-submodule, for each w|v let

Xy = § gwo,wUZwo
0E Dy,

where gy, 15 a fixed element of Gal(K/k) such that gy, wwo = w. This con-
struction guarantees that X,, has the desired action of Gal(K/k). Choosing t large
enough makes the X, linearly independent elements of L, thus generating a sub-
lattice of finite index. d

So in fact by Lemma and Lemma [5.13] all lattices in RI!®l which are
Gal(K/k)-submodules have the same Herbrand quotient, and this Herbrand quo-
tient is equal to

Q | Galk/k), [T [[2- Xw

I1 @ | Gax/k), ][ Z - Xu

vESk w|v vES w|v
=[] @(Gal(K./k,),Z- X.,)
VES
= H [Kuw : k)
VESE

by Lemma Lemmal5.16] Lemma and the fact that Gal(K,,/k,) has trivial
action on Z - X,,. Thus we have done essentially all the hard work in the proof of
the following

[,es, (Kool

Lemma 6.6. If Gal(K/k) is cyclic, then Q(Gal(K/k), Kg) = o

Proof. Since log : Kg — RIS! has finite kernel and respects the action of Gal(K/k),
it follows from Lemma [5.12] and Lemma [5.13] that

Q(Gal(K/k), Ks) = Q(Gal(K/k),log(Ks)).

31| .| denotes the sup norm on R/S!
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We can’t directly apply Lemma since log(Kg) does not have full rank in
RIS!. By the generalized unit theorem for S-units, it does have full rank in the
trace-zero hyperplane. So if we let X € RIS! have coordinates all equal to 1,
we know log(Ks) + Z - X is a lattice (of full rank) in RIS, Tt is also clearly a
Gal(K/k)-submodule, since Gal(K/k) acts trivially on the extra component. So by
Lemma [5.12] and the discussion following Lemma [6.5)

Q(Gal(K/k), Ks) = Q(Gal(K/k),log(Ks))
Q(Gal(K/k),log(Ks) + Z - X)
Q(Gal(K/k),Z - X)
_ H’UGSk [Kw : k“]
B [K : k] ’
as desired. [l

We may finally put these together to obtain the second fundamental inequality.
Proposition 6.7. If K/k is cyclic, then [Jy : k* Ng/Jx| > [K : K.
Proof. Recall from the beginning of this section that
Q(Gal(K/k), Jk.s)
Q(Gal(K/k), Ks)
By Lemma and Prop [6.4], it follows that

Q(Gal(K/k),Ck) = [K : K].

Therefore, [K : k]||H(Gal(K/k),Ck)| = [Ck : NgmCk] = [Jx + K* Nk JKk]
which implies the desired result. O
Remark 6.8. Recall from Remark that our proof that L(1,x) # 0 for nontrivial
Heck characters x implies that infinitely many primes in & do not split completely
in K, so long as I(m)/Py,9(m) is not trivial. Notice that the second fundamental

inequality proves that this is the case as long as K/k is cyclic and nontrivial (set
m to any admissible cycle for K/k).

Q(Gal(K/k),Ck) =

6.3. Global Artin reciprocity. The historical strategy for the proof of the reci-
procity law follows these steps, many of which rely on the two fundamental inequal-
ities:
(1) The Artin map is surjective
(2) If K C k(¢) for some root of unity ¢, then there exists a modulus m for k
such that

ker qK/k] S I(m) — Gal(K/k)) = Pu(m).

(3) Extend (2) to the case where K /k is cyclic.
(4) Show that (3) implies the full result in the case where m is any admissible
cycle for any abelian extension K/k.

Steps (1), (2), and (4) are relatively simple exercises dealing with the formal prop-
erties of the Artin map. Step (3) was the main historical difficulty of the proof,
and was only accomplished by Artin after Chebotarev proved his density theorem
using a similar “field crossing” argument. The key insight is the construction of an
auxiliary cyclotomic extension satisfying certain properties. We present the steps
in order, relegating the construction of the auxiliary extension to an appendix.
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Proposition 6.9 (Step 1). Let K/k be an arbitrary abelian extension, and m
any modulus of k divisible by the ramified primes so that the Artin map I(m) —
Gal(K/k) is well-defined. Then the Artin map is surjective.

Proof 1. Recall that the Chebotarev density theorem (see Theorem can be
proved independently of the main theorems of class field theoryiﬂ So the Artin
map is surjective (in particular the preimage of any element of Gal(K/k) contains
infinitely many primes). a

Proof 2. In the interest of keeping these notes self-contained, we present another
proof which uses the second fundamental inequality (Proposition . Let H C
G(K/k) be the image of the Artin map, and suppose it is not equal to Gal(K/k).
Then we can take its fixed field K¥ = F/k. Since H # Gal(K/k), we know
[F : k] > 1. And since Gal(K/k) is abelian, F/k is abelian as well (it is Galois
since H is normal in Gal(K/k) and abelian as a result of its Galois group being a
quotient of an abelian Galois group). Inductively choosing elements of Gal(F/k)
and taking the fixed field of the cyclic subgroup they generate, we eventually get a
tower k= FEy C Ey CFEy C -+ E, C E,11 = Fsuchthat E;/E;_; is cyclic (c.f. the
proof of Lemma and nontrivial. In particular, we have a cyclic extension E;/k
contained in F. Since F is the fixed field of H, the Artin symbol (with respect to
K /k) of any prime in k not dividing m acts trivially on F' and therefore on F;. By
the functoriality of the Artin symboﬂ this implies that all but finitely many primes
of k split completely in Ey. But Ey/k is cyclic and nontrivial, so Remark shows
that the opposite is true: infinitely many primes of k& must not split completely.
This shows that in fact F' = k and thus H = Gal(K/k), as desired. O

Now it remains to determine the kernel of the Artin map. In each step (2)-(4),
the goal is to show the kernel is Py D(m).

Remark 6.10. M(m) C ker [K—/k} is already true by the basic properties of the

Artin map (for example because [K—/k] has order f(P|p)). If we can show that

p
Py C ker [K—/k}, then it follows that Py9%(m) C ker [K—/k] and thus by Proposi-

tion there is a surjective induced map I(m)/Py"(m) — Gal(K/k), which is
an isomorphism by Proposition (the first fundamental inequality). So to prove
Artin’s reciprocity law for a modulus m it suffices to show that P, is in the kernel
of the Artin map.

Remark 6.11. When K/k is cyclic and m is admissible for K/k, the second fun-

damental inequality also shows that it suffices to show that ker [K—/k} C PpN(m).

This is because the second inequality (Proposition combined with Proposi-
tionand Lemma [4.33) shows via the surjectivity of the Artin map (Proposi-
tion |6.9))

[I(m)/Padt(m)] = [J : kXNK/kJK] =[K : k] =[I(m) : ker [K/k]],

32See [6l Ch. 6] or my math 229x final project. Note that the full strength of the theorem implies
that even if K/k is not abelian, every conjugacy class in Gal(K/k) is hit by the Artin map.
33Alternatively, the general fact that splitting completely means you also split completely in any
intermediate extension, via the multiplicativity in towers of the ramification index and inertial
degree.
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so the inclusion ker [K—/k} C PyMY(m) is enough to do step (3).

Proposition 6.12 (Step 2). Suppose that K is a cyclotomic extension of k, that
is K C k() for some primitive m-th root of unity (. Then there is a modulus m
of k whose finite part is divisible only by primes lying over m such that the kernel
of the corresponding Artin map is equal to Py (m).

Proof. If p ramifies in K, then it ramifies in k({,,), which means that it contains
the relative discriminant dy,,)/x- This discriminant is by definition generated by
the discriminants of all the k-bases of k((,) contained in Oy,.), so it contains

discyc,)/m(1, 00y T[Zf(c’"):k]*l) which must divide a power of m because (,, satisfies

X™—1 = 0 (the reasoning is the same as in the discussion after [I0, Ch. 2, Theorem
8]). This shows that as long as m is chosen to be divisible by all the primes of k
containing m, the Artin map I(m) — Gal(K/k) is well-defined. By Remark [6.10], it
suffices to show that we can choose m so that Py, is in the kernel of the Artin map.
The key (as usual with cyclotomic fields) is to exploit the fact that the elements of
Gal(k(¢m)/k) are determined by where they send (,,. Since Gal(k((,,)/k) might
not be all of (Z/mZ)*, we should reduce to the case of Q((,,)/Q first. In particular,
if p is a prime of k, then

[m;)/k} _ {Q(Cﬁ)/Q]

when restricted to Q(Cm This is becaus the left hand side satisfies [W} x =

2N mod P for = € k((,,) and therefore for x € Q((,n), [W} r =2 mod p

Qlm)/Q
Np

which is exactly the condition that uniquely determines [ } Now we can

directly use the description of the Artin map for a cyclotomic field to see that if
a € I is divisible only by primes unramified in k((,,), then (by the discussion on
generalized ideal classes from Example

Na € Py, = {Q(Cm)/Q} =id = [k(cm)/k] =id = [K/k} =id
Na a a
so we just need to find a modulus m of & such that (o) € Pn = Ny q(@) € P,
for o € k* (then we can just enlarge m to be divisible by all the ramified primes if

needed). The continuous local norms on each coordinate induce a continuous map

II % - 11 @
we My, vEMq
w|m vlm
whose v-coordinate is given by Hw‘v Nk, /q,- If a € k* is positive with respect
to all w|vso, then Ny/qa = [, Nk, Q. is positive with respect to voo. The
continuity of the map above implies (by the same product formula) the existence
of a modulus my of k£ containing only places lying over m such that a € Py, =

34The Frobenius is uniquely determined on k((m) because of this, since it is trivial on k
35This argument is not specific to cyclotomic fields. It’s a special case of the general (almost

tautological) fact that if K/k is Galois and E/k is an arbitrary finite extension, then [%/E]

restricts on K to [NK/k ]
E/KP
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Ny € Pp,. Taking intersections, the modulus m = mg levx w has the desired
property, so we are done. ([

To deduce the cyclic case (step 3) from step 2, we need the following lemma,
originally due to Artin and quoted directly from [9, §X.2]. This establishes the
existence of the desired auxiliary cyclotomic extensions.

Lemma 6.13. Let K/k be a finite cyclic extension of number fields, and S a finite
set of rational primes. Let p be a prime in k unramified in K. Then there exists
a positive integer m not divisible by any element of S and a finite extension E/k
such that

(1) KNE =k, so Gal(KE/FE) = Gal(K/k).

(2) K((m) = E(Cm) so that KE/E is a cyclotomic extension of E.

(3) K O k(Gn) = 4%

(4) p splits completely in E.

Proof. See appendix. O

Suppose K/k is cyclic. By Remark in order to show the reciprocity law for
an admissible modulus f of k, it suffices to show that the kernel of the Artin map
for I(f) is contained in Py(f). It’s clear that any prime in the kernel of the Artin
map must be in 9(f) since it splits completely and it therefore equal to the norm of
any prime lying over it. In the general case, if a is an arbitrary fractional ideal in
the kernel, its prime factors are not guaranteed to be in the kernel. This is where
the auxiliary extension from Lemma [6.13] comes into play.

Proposition 6.14 (Step 3). Let K/k be a cyclic extension of number fields, and
f(K/k) be an admissible cycle for K/k. Then the Artin map induces an isomor-
phism I()/PyN(f) — Gal(K/k).

a= Hp”“(“) € ker {K/k} .

p

Proof. By Remark [6.11|it suffices to show that ker [K—/k] C PM(f). So let

Since Gal(K/k) is cyclic, we can write

{K/k] _
p
for each p, where 7 is a generator for Gal(K/k). As a result,
L= [K/’f] X, ()
a

which means that

(K K[> npvg(a).
p

In order to write things as norms, we need p to split completely somewhere. So we
use Lemma, to get the extensions E,/k where p splits completely and satisfying
the conditions (1)-(4), where m, can be chosen (by a suitable choice of S) to be

361 don’t think this one is necessary. It is already implied by taking m coprime to di (see the
proof of Step 3), and this must be done anyway in order to get the full product decomposition.
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coprime to f, p, the other m,’s, and the absolute discriminant of K. We can also
take E, to be the compositum of all the E,’s for pla. Then

K0 Q({Gmy tpia) =N Q(H¢m, bpia) = Q

since the left hand side is an unramified extension of Q (in particular any ramified
prime must ramify in Q({(m, }pja) and therefore divides one of the my,, which is
impossible since such a prime couldn’t ramify in K because the m, are coprime to
dr). This in turn means we have a diagram of field extensions, in which the fields
horizontally across from each other are linearly disjoinﬁ As a result, the injective

K({Cmp }pla)
/ \
({gmp}p\a) / K

FIGURE 5.

/

Q({Cmp}pla)

restriction homomorphism

Gal(K({Cm, }pja)/F) = Gal(K/k)x Gal(k({Cm, Ypja)/k) = Gal(K/k) x Gal(K ({Gn, }pja) / K)

is an isomorphism. Since the m,, are pairwise coprime, the fields Q((y, ) are pair-
wise linearly disjoinﬂ and for the same reason Q((y,,) is linearly disjoint from
the compositum of any subset of the others. It follows that

Gal(K({Cmp }p\a)/K) = Gal(Q({Cmp }p\a)/Q H Gal Cmp /Q)

Since the diagram in Figure [5| works just as well with only one root of unity at a
time, we have Gal(Q((m, )/Q) = Gal(K (¢, )/K). Therefore, the restriction map

Gal(K ({Gm, }ola)/K) %HGa1 (G, )/ )

is an isomorphism, so in fact restriction gives an isomorphism

Gal(K ({Gmy bpja) /) = Gal(K/k) x [] Gal(K (G, )/ K-
p
Note that Gal(K ({¢m,, }pja)/Ep) embeds into this product. Since Ep C K ((m, ), we
see that fixing E), is independent of how an automorphism restricts to any of the
other intermediate cyclotomic extensions, so we have (by restriction)

Gal(K ({¢my }pla)/Bp) = G x [ Gal(K (¢m, )/ K)
a#p

37This is because of the isomorphism Gal(K({Cmy }pja)/K) = Gal(Q({Cmy, Fpja)/ (K N
Q({Cmp }p‘a))), which implies (after repeating for k) [K({{mp }p|u) : K| = [k({gmp }p|u) :
K[Q({Cmy tpja) : Q-

For example by the irreducibility of the cyclotomic polynomials over Q
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where G = Gal(K((y)/Ey) C Gal(K/k) x Gal(K(¢(y)/K) = Gal(K(¢p)/k). Since
KNE, =k, we see that G fixing an element of K means that element must be in
k. In other words, G contains an element of the form (7, 7,) where 7 is a generator
for Gal(K/k). This way, we see that

G31<K({<mp }pla)/Eu) = ﬂ Gal(K({Cmp }p\a)/Ep)
pla
contains an element with Gal(K/k)-coordinate 7. In particular, this Galois group
restricts to K by fixing only &, which means KNE,; = @and thus Gal(KE,/E,) =
Gal(K/k) by restriction. So by the surjectivity of the Artin map, there exists a
fractional ideal b of F, such that

-5

and b, like p, is coprime to f and all the m,, (the first condition is there so that it has
this in common with p; the secon is there so that its prime factors are unramified
in KBy € K({Gn, }p)). By the transitivity of norms, Ng_ /xb = Ng, 1N, /g, b, so
this fractional ideal is a norm from F,. Since p splits completely in E, it is also
such a norm. It follows that

b~ e Vp (a)

c:=p (a)NEp/kNEu/Ep

is a norm from E, as well. Since p and b are, we know that ¢ is coprime to § and all
the my, and thus ¢ = NEp/kc’, where ¢’ is coprime to those as well. By definition
of all this notation (dating back from the beginning of the proof), we know@

KEy/By| _[K/k] _ [K/k]™W [ K/k 170 a
¢ ¢ p NEu/kb '
In particular, ¢’ is in the kernel of the Artin map from I(f Hp my). But KE, C

Ey(Cm, ), s0 this extension is cyclotomic. By Step 2 (Proposition 6.12)" | that kernel
is contained in P,9%(m) [with respect to the extension KE,/FE,] as long as m is

divisible by f[[m;,. So we can write

¢ = (v)Nkg,/5,€

where € is coprime to § and the m,’s, and v is (arbitrarily) close to 1 with respect
to the absolute values dividing § and the my’s. By continuity of the local norms
and the multiplicativity of the norm in towers, this means

¢ = Ng, /1 = (Ng, k7)) Nk, /1€

is in PyN(f) [with respect to Ey/k]. But Ngp, k€ = Nk Nk g, )k €, so we actually
have ¢ € P(f) with respect to K/k. Doing this for each p|a and expanding the

39Note that the only thing about the E}’s that we used to conclude this was condition (1), which
says the same thing for F}, and the fact that the my’s are coprime to the right primes in order
to make things linearly disjoint.

40The leftmost expression is well-defined because ¢’ is coprime to my so its prime factors are
unramified in Ey((m,, )-

411 that result, we can choose the modulus m to be anything as long as it is sufficiently divisible
by the primes lying over my; here we are somewhat more relaxed by setting m = f[]my so we
only know the kernel is contained in this group
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definition of ¢, we geff™]

Hpvp(a)NEu/kb*Zp npvp(a) o P (m).
P

Of course, [], pUr () = a and >_p Mpvy is divisible by [K : k], and therefore by

f(B|p) for all primes p of k. This shows NEﬂ/kb_Zv ¥ is a norm from K, and
thus a € P(f) as desired. O

The full statement of the global reciprocity law follows directly from the cyclic
case.

Theorem 6.15 (Step 4; Artin’s global reciprocity law). Let K/k be an abelian
extension, and m an admissible cycle for K/k. Then the kernel of the Artin map
I(m) — Gal(K/k) is equal to PuM(m).

Proof. By Remark[6.10] it suffices to show that P, 91(m) is contained in the kernel of
the Artin map I(m) — Gal(K/k). Let f be the smallest admissible cycle for K /k. If
we can show that Pi1(f) is in the kernel, then so is Py 91(m) since P, D(m) C PyN(f)
as flm. As usual, write K as the compositum of cyclic extensions K;/k. We can
take the minimal admissible modulus f; for K;/k, which we know by the usual norm
index computations is divisible only by valuations that ramify in K, and thus only
by v|f. In fact, the definition of admissible tells us that f;|f, since taking norms
(from completions) reverses inclusions. By Proposition every fractional ideal
of k coprime to f, which is therefore coprime to each f;, is in the kernel of the Artin
map for K;/k if it is in P;,N(f;). If a fractional ideal a is in Py0(f), then it is in
P;N(f;) (as §i]f), and therefore in the kernel of the Artin map for all K;/k. By
the functoriality of the Artin symbol, and the fact that an automorphism of K/k
is determined by its action on all the K;’s, it follows that P1(f) is in the kernel of
the Artin map for K/k, which completes the proof. O

Remark 6.16. The fact that m is admissible, over the course of all four steps, is
only used in two ways. The first is the more trivial one, which is just the fact
that the admissible moduli are divisible by all the ramified primes (so the Artin
map is well-defined). The second one is that the admissibility of m allows for the
isomorphism between I(m)/Py9(m) and Ji/k* Nk /i Ji, and thus the application
of the second fundamental inequality to the idealic situation.

The reciprocity isomorphism has a clear interpretation as a “reciprocity law” in
a sense analogous to (and far more general than) the law of quadratic reciprocity.
In particular, it says that the splitting type of a prime in an abelian extension is
determined (up to finitely many exceptions) by a congruence condition. As a result
can obtain the classical reciprocity laws by specializing to fields of low degree.
In fact, Artin conjectured the isomorphism in order to establish the equivalence
between Hecke and Artin L-functions in the abelian case, and did not prove it until
several years after he showed that it implied the classical reciprocity laws.

42This is where we use the fact that b is the same ideal, in Ejq, for each p, rather than an ideal in
Ey that depends on p
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6.4. The class field correspondence. Let K/k be an abelian extension of num-
ber fields as usual. By Lemma the global reciprocity law establishes, via the
isomorphis

Gal(K/k) 2 I(m)/ Py0(m) 2 Ji/k* N/

Definition 6.17. The idélic Artin map for K/k is the maﬁ@K/k : J = Gal(K/k)
defined by lifting the isomorphism Ji /k* N/ Jx — Gal(K/k). It does not depend
on the choice of admissible modulus m.

Of course, it doesn’t really matter that the idelic Artin map does not depend on
m. We could choose a specific m (for example the smallest admissible modulus), and
we would still know that the idelic Artin map has kernel £* N /1, Ji. Of course,
we require in any event the global reciprocity law for ideals in order to make the
idelic statement well-defined. The idelic Artin map is useful because it expresses
the subgroup k* N/, Jx as the kernel of a map whose properties we are much
more familiar with.

It also clearly satisfies the properties we expect of the “Artin map.”

Lemma 6.18. Let k C K C K’ be a tower of extensions of number fields such that
K/k and K'/k are abelian. Then for any a € Jy, Ok /i (a) restricts on K to O .

Proof. Let a € Ji, and take m to be a modulus for k which is admissible for K/k
and therefore for K’'/k. Then we can select (via weak approximation) a € k*
such that aa € Jy, and we know (via the description of the isomorphism from

Lemma [4.33]) that

o) = |l ] - ot = |5

since m is admissible for both extensions. So it’s clear from the corresponding
property of the idealic Artin map that these restrict to the same automorphism of
K/k. O

Remark 6.19. Notice that if a, = 1 at all valuations v which ramify in K, then
there is no need to multiply by an element of k* to get an element of Jy,, since the
minimal admissible cycle is only divisible by ramified places. As a result, the local
Artin map is very easy to define directly for unramified extensions.

Lemma 6.20. Let K/k be an abelian extension, E/k an arbitrary finite extension,
and a € Jg. Then Ok p/p(a) € Gal(KE/E) restricts on K to 0 ,(Ng/pa).

Proof. Let f be the minimal admissible cycle for K/k, and let m be an admissible
modulus for KE/E with the additional property that Ng /i (Je,m) C Jij (the idele
norm is continuous). We can select & € E* such that aa € Jg . Then

(Ng/ka)(Ng/ra) € Ji g

43 A1l of these isomorphisms factor through the map induced by the inclusion I(m) — I(F(K/k)),
so they yield the same definition of the idelic Artin map.
44We will denote it by 0, specifically to distinguish it from the idealic Artin map.
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SO )

QKE/E(Q) = ii{f]
 K/k }
| Ne/kt(aa)
T KK }
~ [Y((Ngra)(Ngyra))
=0k /k(Ng/ra)

when restricted to K, as desired. ([

The fact that the idelic Artin map has kernel k* Nk, Jx immediately implies
the following correspondence:

Theorem 6.21. Let K, K’ be finite abelian extensions of a number field k. Then
K C K" if and only if k* Nk, Jx 2 k* Ngr e

Proof. If K C K', then N/, Jk € Ng/pJi by the transitivity of the norm. So it
suffices to prove the converse. Suppose that k* N /pJrr € k™ Ng i Ji. In other
words,

kerHK//k - ker 0K/k
which implies by Lemma and the fact that an element of Gal(KK'/k) is
determined by its restrictions to K and K’ that

ker QKK//k = ker@K//k N ker HK/k = ker HK//k

It suffices to show that KK’ = K', ie. [KK' : k| = [K' : k]. By the global
reciprocity law, we know [KK' : k] = [Ji : ker g /;] which is equal to [Jy :
ker 0 /1] = [K' : k] so we are done. O

Remark 6.22. Compare Theorem and its proof to the consequence of the Cheb-
otarev density theorem which says that an abelian extension is uniquely determined
by the primes in the kernel of the Artin map (see Theorem .

As a result of Theorem [6.21] we have an inclusion-reversing correspondence be-
tween the abelian extensions K/k and the subgroups of Jy, of the form k* N/, Jk .
It immediately implies an abelian extension K/k is uniquely determined by the
subgroup k* Nk Jx € Ji. In this correspondence, the field K is called the class
field for the class group k* Nk, Jx € Ji. It turns out that any open subgroup of
Jr, (which we saw is always of finite index) is actually the class group for an abelian
extension of k. This is called the existence theorem. In the general case, the
explicit construction of class fields is still an open problem. We will explain how
it is done in the local setting (Lubin-Tate theory), and in the global setting over
Q (Kronecker—Weber) and imaginary quadratic fields (elliptic curves with complex
multiplication). The general global existence theorem is therefore nonconstructive.
The strategy is to show that every open subgroup of J; contains a subgroup that
has a class field (so this subgroup can be chosen to have a very convenient form).
This is valid due to the following lemma:

Lemma 6.23. Let Hi C Hs be subgroups of Ji and suppose that Hy has a class
field Ky /k. Then Hy has a class field Ko C Ky, and it is equal to the fized field of

HKl/k(HQ)'
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Proof. Let Ko = KleKl/k(Hz) C K; as suggested by the statement. Recall that
0K,k is just the restriction of O /i to K2 by Lemma So

kerHKz/k = {CL € Ji: 9K1/k(a)\K2 = ld}
= {a IS 9K1/k(a) € GKl/k(HQ)}
= H,

since any element of this set differs from an element of Hs by an element of
ker 0, ;. = H1 C Ha, so in fact it must be in Hs. This means K3 is the de-
sired class field for Hs. O

One application of this lemma is that it suffices to prove the existence theorem
for some (conveniently chosen) abelian extension F/k. In particular, if Ji/H has
exponent n, if H has class field K/k then we expect Gal(K/k) = J,/H to also
have exponent n. This is only useful (via Kummer theory) if k& contains a primitive
n-th root of unity, so we want a proof of the existence theorem for F' = k((,) to
imply it for k. Since any abelian extension can be decomposed into a tower of cyclic
extensions, it suffices to prove the reduction for cyclic steps. It takes the following
form:

Lemma 6.24. Let H be an open subgroup of Jy, containing k>, and F/k a cyclic
extension. By the continuity of the idéle norm, N;/lk (H) C Jp is an open subgroup,
and it clearly contains k™. If the existence theorem holds for F, this means that
N;/lk (H) has a class field over F. The statement of the lemma is that this implies
that H has a class field over k.

Proof. Let K be the class field over F' for N E/lk (H). It is an abelian extension of
F. We will show that in fact K is also a class field over k for a subgroup of H (this
suffices by Lemma . There are three things we need:

o K/kis Galois

o Gal(K/k) is abelian@

The third point is actually obvious, because F'* Ny /pJx = N;/lk (H), so
Np/F* NgjpJx C H.

This means that Nk, Jx € H. The same is true of £, so indeed k* Ny, Jx C H.
So it remains to verify that K/k is Galois with abelian Galois group. To show it
is Galois, we let K’ be the Galois closure of K/k and show that every element of
Gal(K'/k) restricts to an automorphism of K. Let o € Gal(K'/k). Since F is
Galois over k, we know that o restricts to an automorphism of F. Since norms
from F to k are invariant under applying an automorphism of F'/k, we know that
JN;/lk(H) = Ng/lk(H). Moreover, the fact that K is a class field for N;/lk(H)
means that

F*Ng/pJx = Ng,(H)

45N.B. It isn’t generally true that if L/K is Galois and K/k is Galois, then L/k is Galois. For
example consider Q C Q(v/2) C Q(2'/4). This proof needs to use the fact that K is the class
field for something.

46This is the part where F'/k being cyclic helps.
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and thus after applying o,
(0F)*oNg/plkx = N;/lk,(H).
Since F/k is Galois, oF = F. And

O'NK/FJK:O' H Ta:a € Ji
Te€Gal(K/F)

H ora:a € Jg
Te€Gal(K/F)

H oo Yroa:ae Jx

T€Gal(cK/F)
= Nor/rdok.
It follows that K and oK are both class fields over F' for N, }k(H ), and thus they

are equal by the uniqueness of class fields (a consequence of Theorem . this
proves that K/k is Galois. We know K/F is abelian and F/k is cyclic. From
the isomorphism Gal(F/k) = Gal(K/k)/Gal(K/F), every element of Gal(K/k) is
equal to 7 o o where o is an element of Gal(K/k) restricting to a generator of
Gal(F/k) and 7 € Gal(K/F). To show Gal(K/k) is abelian, it suffices to show that
every 7 € Gal(K/F) commutes with o € Gal(K/k) restricting to a generator of
Gal(F/k). As usual we take advantage of the Artin symbol and reciprocity law to
prove this. In particular, 7 = 0/ r(a) for some a € Jr, so

ocpoToop =0k/r(ora).

Furthermore, the fact that Np/(0ra) = Np/i(a) means that (ora)/a € N;/lk(H)

and since K is the class field for that group, we know that in fact
OFOTO 051 =0k r(ora) =0k/p(a) =,

so these two automorphisms commute as desired. ([

Now let k£ be a number field and H an open subgroup of Ji containing k*.
Then H is of finite index in Jj, since Ji/H = Cy/w(H) and any open subgroup
of C has finite index. So Ji/H has some finite exponent n. By Lemma m it

suffices to prove that N E/lk (H) has a class field over F for some cyclic extension

F/k. Let a € Jp. We know that Ng/a” = (Np/a)® € H, so a™ € N;/lkH.
It follows that Jp/Np lkH has exponent nm By going up cyclic extensions, this
means (by Lemma we can reduce the case of J/H having exponent n to the
case where Jr/H has exponent n and F is an arbitrary finite abelian extension of
k. In particular, we can let F' = k((,), so that by using Lemma inductively on
a tower of cyclic extensions from k to F', it suffices (by the previous discussion) to
show that if F' contains (,, then every open subgroup H of Jr containing F'* with
the property that Jr/H has exponent n has a class field over F. We expect to be
able to use Kummer theory to construct the desired class field, since F' contains (,

47N B. here by a group G with exponent n we just mean that ¢ = 1 for all g € G. We do not
mean the smallest such n.
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and if K/F is that class field, we know that Gal(K/F) = Jr/H will have exponent
n. We can also assume n > 2, since if n is an exponent for Ji/H then so is 3n.

Theorem 6.25 (Existence theorem, idelic version). Suppose F is a number field
containing C,, and H C Jp such that Jgp/H has exponent n. Then H has a class
field.

Proof. Since Jp/H has exponent n, we know that for any finite set S C Mp
containing all the archimedean places and all v such that 1 x ---x Of, x--- € H

(only finitely many v have this property because of the definition of the open sets
of JF),

B:=1[F"x ] Op.cH
veS vEMPp\S
So by Lemma it suffices to show that k* B has a class field over F'. This class
field needs to have exponent n, so (if it exists) it will be a Kummer extension of F.
Such an extension is obtains by adjoining n-th roots of elements of F. In fact, we
will do it by adjoining the n-th roots of every element of Fg (which makes sense
given the definition of B), taking

K = F(FY™).

It’s easier if K/F is unramified at all v outside of S, so that all the @;U are all in
the norm group. To do this, we recall that p ramifies in K if and only if it ramifies
in at least one of the extensions F(a!/™). The relative discriminant of F(a!/")/F
divides the discriminant of the power basis generated by a!/™, which is

Np(ar/nyyp(na™=Hm).

Since a € Fg, this norm has trivial valuation at every valuation outside of S except
those dividing n. But we might as well enlarge S to include all p|n, so that this
norm has trivial valuation outside S and therefore K/F is unramified outside S by
the properties of the relative discriminant. It follows that for all v € Mg \ S, each
element of O , (embedded in Jp by 1’s at all the other places) is a norm from Jg.
To show that B C k* Nk, pJk, it remains to show that (F))" C F'* Nk, pJx when
embedded in the same way. Of course, the right hand side is just the kernel of the
Artin map for K/F, whose Galois group has exponent n (by Kummer theory), so
this is clearly true. It remains to show the opposite inclusion, which we will do by
showing that
[JF : FXB] = [JF : kXNK/FJK}.
We might as well compute them directly. The right hand side is [K : F] by global
class field theory. Since K was defined as a Kummer extension, we know by Kummer
theory that
(K F] = [(F¥)" Fs : (F*)"],

By one of the “isomorphism theorems”,

(F*)"Fy

(F)"
but by the unit theorem for the S-units,
Fg = Z!151-1 « HUE.

= Fs/((F7)" NFs) = Fs/Fg,
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As a result,
ZISI_l X /’LF
Fg/Fl 2 ———————.
SIFS = st g
The fact that F' contains (,, means that the surjective n-th power map pr — pp

has kernel equal to ((,) (this uses the fact that ¢, € F) and thus |up| = n|u}|,
which means

[K: F|= nlsl.
It remains to check that this agrees with [Jp : F* B]. Since Jp is too hard to deal

with, we further enlarge S so that Jp = F*Jpg (see Lemma [4.17). So we may
rewrite

[Jp:F*B]|=[F*Jps: F*B].
There is also an isomorphism
F*Jps/F*B=Jpg/(F*BNJgg).
The right hand side has size
Urs:Bl [Jr,s : B

[F*BNJps:B] [FXNJps: FXNB

which comes from the isomorphism{™| (F* N Jps)/(F* N B) — (F*BN Jps)/B.
So in the end we have

[JF,S : B]
[Fs: F*NB]
We compute the denominator first. We claim that F'* N B = F{ so that from our
previous computation the denominator is equal to n!S!. The inclusion F ¢ CF*NB
is obvious from the definition of B. So it suffices to show that F’* N B C Fg. Let
a € F* N B. Then « is a local n-th power for each v € S, which means that

a'/" e F)

[Jp:F*B] =

and thus F(a'/"),, = F,, which means that [F(a!/™),, : F,,] = 1 and so v splits com-
pletely in F'(a!/™). We also know (from the fact that S contains all the archimedean
valuations and the p|n) that F(a!/™)/F is unramified outside of S. Thus,

JF,S g NF(al/")/FJF(al/")
because our analysis of the splitting of the v € Mp in F(a'/™) means that (5;3” =
NF(al/n)/F@;,(al/n))v for v outside of S and F = NF(aun)/FF(ozl/”)fu for vin S.
Since Jp = F*Jp g, this implies that
JF g FXNF(al/n)/FJF(al/n)
so in fact
JF - FXNF(al/n)/FJF(al/n).

Since F(a'/™) is an abelian extension of F, this means it is the class field for all of
Jr, so it must coincide with F. Therefore, o is an n-th power in F. Since o € B

4814 is an isomorphism because the natural map F* N Jps — (F*B N Jpg)/B has kernel
BN FX ﬂJF“s = BN FX since B C JF,S
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in fact it must be an n-th power in Fs. So we have proven the opposite inclusion
F*NB C Fg, which means
[Fs: F* N B] = [Fs : F2] = nl!

by our previous computation. Finally, we show that [Jp g : B] = n2lS! which will
prove that [Jp : F¥XB] = nlSl = [K : F] = [Jp : F*Ng/pJk] and thus that K is
the desired class field. By definition of B,

[Urs: Bl = [TIFS - (F)"):
veS

So we need to show that [F* : (F))"] = n?. From the fact that F¢ = @;v x Z,
we know that if v is nonarchimedean, then

[F: (F1)"] =n[OF, : (OF,)"].
Since F contains (, and n > 2, F has no real archimedean places. Since every

element of C* is an n-th power, this means the only contribution is in fact from
the nonarchimedean elements of S. Moreover, if v = vy, then

0% (O )" =—n
[ F.v ( F,'u)] |n‘p

(this is easy to deduce using the same p-adic logarithm trick from Lemma and
the fact that F' contains (,). So

[ps : B) = [[1F: ()"
veS

[ nloF,: (©OF,)"
vES\ S

_ 1
— 2181-2|5x] H

pES\San Wp

VESs

— 2SI,

where the second-to-last inequality follows from the product formula because the
nonarchimedean primes outside of S all do not divide n, and the last equality is
because all of these v are complex and m € Z. so the normalized valuation is
|m|, = m?. This proves the desired result by the previous discussion. (]

For the purposes of studying primes in generalized ideal classes, it might be in-
structive to look at what the class fields correspond to in the setting of ideal classes.
Let m be a modulus of K. Recall from section [4] that we have an isomorphism

Jr /K> Wy & I(m)/ Py,

which is induced by the map Jn — I(m) taking (ap), — [[p”*(%). Under this
map, the open subgroups of Jx containing K> Wy, correspond@ to the subgroups

491ndeed, K> Wy, is an open (and therefore closed) subgroup of finite index, and Jg is Hausdorff,
so Jx /KXWy is a finite group with the discrete topology. Hence all the subgroups of I(m)/Pn
are images of an open subgroup under the isomorphism.
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of I(m) containing Py,. So we might as well state the existence theorem in the
setting of ideals:

Theorem 6.26 (Existence theorem for ideals). Let m be a modulus for K. Then

for every intermediate subgroup Py C H C I(m), there is an abelian extension L/ K
such that H = Py N(m) and m is admissible for L/ K.

Proof. This is basically a direct corollary of the idelic statement of the existence the-
orem and local class field theory. Let H be a subgroup between Py, and I(m). Then
through the (topological) isomorphism Jg/K*Wy = I(m)/Py, H corresponds to
an open subgroup B of Ji containing K*Wy,. The idelic existence theorem tells
us that there is a finite abelian extension L/K such that

K*Npk(Jp) = B2 KXWy,

In particular, K* N,/ x(Jr) 2 Wi, which actually implies m is admissiblﬂ |

7. LocaL CrLASs FIELD THEORY

7.1. The local Artin map.
7.2. Local-global compatibility.
7.3. Conductors and the Artin character.

7.4. The local cyclic norm index inequality.

8. CONSEQUENCES

8.1. Computation of Ray Class fields. Let K be a number field. Since K* Ny x (Jr)
is open in Jk, any abelian extension L/K has the property that

K*Np/i(Jp) 2 K* Wi

for some modulus m of K (in fact we saw from local class field theory that this
is true if and only if m is admissible for L/K). Then the inclusion-reversing class
field correspondence (which we proved in Theorems and says that L is
contained in the class field of m. So if we can compute the ray class field for an
arbitrary modulus (or any set of moduli with the property that every modulus
divides one of them), then we can prove a theorem analogous to Kronecker—Weber
along the lines of “every abelian extension of K is contained in an extension of the
form [...]”, where in this case [...] is the class field corresponding to K*W,,. Such
a class field is called a ray class field because of the isomorphism Jy /K> Wy, =
I(m)/P,, which means that in terms of ideals it is the class field corresponding to
Py C I(m), with Galois group equal to the ray class group I(m)/Py,.

Theorem 8.1 (Global Kronecker-Weber). Let L be an abelian extension of Q.
Then L C Q((y) for some positive integer f.

50This is where the use of local class field theory comes in. In particular, from the corollary
to Theorem 3 of Chapter XI of Lang, taking intersections with K, for all v € My we get
Nr, /L, Ly = KXNp,gJL N K} D Wn(v) which is the definition of m being admissible.
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Proof. By the previous remarks, it suffices to compute the ray class field corre-
sponding to nv,, for any positive integer n. Here we are assuming that the class
group for L contains K *W,,,o and therefore that nve, is admissible for L/Q. By
the uniqueness of class fields (a consequence of the inclusion-reversing part of the
correspondence), it suffices to show that Q*W,,,__ is the kernel H of the Artin map
Jq — Gal(Q(¢,)/Q). First of all, we know that

JQ/(QXI/VTWOo = IQ(’IM}OO)/PM,OO = (Z/TLZ)><

(this was one of the two examples of ray class groups I actually know how to
compute). On the other hand, by the surjectivity of the Artin map

Jqo/H = Gal(Q(¢)/Q) = (Z/nZ)*

as well, so we only need to prove one inclusion, say
KX WTL'UOO g H

In fact in the definition of the idelic Artin map we know K * maps to id € Gal(L/K),
we just need to show that W,,  C H. The problem is that we don’t know that
NVeo is admissible for Q(¢,)/Q yet, so we need to choose some n|m such that muv
is admissible for Q((,)/Q. Now let o € W,,,__. To take the corresponding ideal,
we need to multiply by an element of K* to put o in W,,, . By the Chinese
remainder theorem, there is a positive integer a such that a = «; 1 mod p¥»(™) so
that aa € Wiy, . Since n|m, outside of mve, ac has valuation v(a), which means
the corresponding ideal in Q is (@), and thus the Artin symbol is a € (Z/nZ) =
Gal(Q(¢,)/Q). This only depends on the residue class of ¢ mod n, and since
« € Wy, the definition of @ means a =1 mod p”»(™ for all p|n, and so we have
proved «a has trivial Artin symbol in Gal(Q((,)/Q as desired. O

In general, the ray class groups are more complicated and there are few other
cases where the ray class fields have such a simple form (though in practice algo-
rithms like those in [2 Ch. 4-5] can be used to compute the ray class field for
a given modulus using the same Kummer theory procedure as in the proof of the
existence theorem).

8.2. The Hilbert class field. Let K be a number field. From local class field
theory and the fact that the class field correspondence is inclusion-reversing, the
class field corresponding to
K*Js_,

is the maximal unramified abelian extension of K (if L’ /K is an abelian extension
of K with class group H' C Jg, then H' N O, = N /k, 0, ,, so L' /K is
unramified if and only if H' contains lecv for all nonarchimedean v and it contains
K} forallv € Sy, i.e. if and only if H' contains K*Jg__, i.e. if and only if L' C L).
In general local class field theory lets you read off the ramification phenomena of
a class field L/K from the corresponding class group in Jg, and you can define
things like the “narrow class field” which is the same thing except it doesn’t need
to be unramified at the infinite places.

In any event, the global reciprocity law says that if L is the Hilbert class field
for K, then

7'07

JK/KXJSOO ~ Gal(L/K).
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But the left hand side is isomorphic to the ideal class group of K (I proved this
somewhere in here). In fact, the image of a fractional ideal of K under the reci-
procity map is just its ideal class in CI(K). So a prime in K splits completely in
the Hilbert class field if and only if it is principal in K. By taking the Hilbert class
field of the Hilbert class field, it’s possible to get another interesting property:

Theorem 8.2 (Principal ideal theorem). Let p be a prime in K, and let L be the
Hilbert class field of K. Then pOy, is principal.

Beginning of the proof. The full proof requires some group-theoretic input which I
don’t know how to do. I will explain the general idea of what needs to be done
before that.

Let K’ be the Hilbert class field of K, and K" the Hilbert class field of K’.
Whether p becomes principal in K’ is the same thing as whether it splits completely
in K”. We know that K" /K is unramified (ramification is multiplicative in towers),
but to apply the theory of the Artin symbol we need it to be Galois (it definitely
won’t be abelian because K’ is the maximal abelian subextension of K'). This
is actually true in general: let 0 € Gal(K/K). Since K'/K is Galois, we know
oK' = K'. Therefore, since K” /K’ is unramified and abelian, so is ¢ K" /K’, but
since K"/K' is the maximal abelian unramified extension of K’, this implies

ocK" c K",

and therefore K" = K" and K" /K is Galois.
Since K’ is the maximal abelian subextension of K" /K, we have

Gal(K'/K) = Gal(K" /K)*®

and
Gal(K"/K") = [Gal(K" /K), Gal(K" /] K)].

Since K'/K is unramified, pQy, factors as a product of single powers of primes
pOL =[] a
i

so that actually the element of Gal(K”/K) we need to show is trivial is

(] [

i i i

where q is a fixed prime in K’ lying over p and the ;s are elements of Gal(K" /K)
taking q to q;. So the principal ideal theorem amounts to showing that this product
is trivial. (]

Independently of the principal ideal theorem, if one can actually compute the
Hilbert class field (which can be done by ad-hoc methods in small cases or by
the theory of complex multiplication for imaginary quadratic fields), then just the
simpler fact that splitting completely in the Hilbert class field is the same thing
as being principal is very useful for proving more concrete facts, most notably
regarding the primes of the form x? + ny? for x,y € Z (though in general this
definitely works for primes represented by arbitrary binary quadratic forms):

Lemma 8.3. Let n € N be squarefree and not 3 mod 4, K = Q(+/—n), and L the
Hilbert class field of K. A positive rational prime p not dividing 2n is of the form
22 4+ ny? if and only if p splits completely in L.
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Proof. p is of the form 22 + ny? if and only if p splits in O = Z[\/—n] into two
distinct principal primeﬂ This is equivalent to these two primes (or equivalently
just one of them since they are conjugate) splitting completely in L, and therefore
to p splitting completely in L. [

As a result, even if we can’t compute the Hilbert class field of Q(1/—n), this gives
an interesting density statement: p is of the form 22 + ny? if and only if p splits in
this field L, which has degree |C1(Q(v/—n))| over Q(+1/(v/—n)), and therefore degree
2|C1(Q(y/—n))| over Q, which means that the set of primes of the form 2 + ny?
(still under the hypothesiﬂ that n # 3 mod 4) has density 1/(2|C1(Q(y/—n))|) in
the positive rational primes.

When the class group is small it’s sometimes easy to tell what the Hilbert class
field is.

Example 8.4. If Q(y/—n) has trivial class group, then it is equal to its own Hilbert
class field, so p coprime to 2n is of the form z? + ny? if and only if (%) =1.

Example 8.5. Let n = 5. Then (from the Minkowski bound) one can see that

|C1(Q(+v/=5))| = 2 and therefore the Hilbert class field of Q(v/=5) is equal to

any unramified quadratic extension we can find. I claim that this extension is
Q(v/=5,v/—1). That is because Q(v/—5,v/—1) = Q(v/5,v/—1) so 2 and 5, which

both ramify in Q(y/=5), both have ramification index 2 in Q(v/5, v/—1), so Q(v/—5,v—1)/Q(v/=5)
is unramified as desired. This shows that a positive rational prime p not equal to

2 or 5 is of the form 2 + 532 if and only if (775) = (%) = 1, which is equivalent

top=1,9 mod 20.

8.3. Classical reciprocity laws. Artin originally conjectured his reciprocity law
as a correspondence between abelain Artin L-functions and Hecke L-functions (see
section. Before he proved it, Artin also noticed that the classical reciprocity laws
of Gauss, etc. could be derived from the reciprocity law. Recall the “standard”
proof of quadratic reciprocity e.g. from the later chapters of Samuel [12], which
uses the a priori knowledge that Q(v/£p) C Q((p), and therefore the Artin sym-
bol of ¢ with respect to Q(1/£p)/Q only depends on ¢ mod p. Even though the
characterization of the unique quadratic subfield of a cyclotomic extension of Q is
elementary and can be done using Gauss sums or by looking at discriminants, it
is easy to suspect that there should be a proof involving class field theory as well
(since the computation of class fields over Q is really what lets you put the qua-
dratic extension inside a cyclotomic one in the first place). In fact, independently
of this metamathematical reason, the actual statement of the global reciprocity
isomorphism
1)/ P; - Gal(L/K)

tells you that the splitting type of a prime of K in L (as determined by its Artin
symbol) depends only on a congruence condition modulo the conductor f(L/K).

511f p = 22 +ny? then clearly p splits as the product of primes (z—yv/—n)(z+yv/—n). Conversely,
if pZ[\/—n] factors as a product of distinct principal primes, which must be conjugates of each
other, which just translates as pZ[v/—n] = (z — yv/—n)(z + yv/—n), and thus p = a(2? + ny?)
for some unit a in Z[v/—n]. But a € Q, so actually a = 41 and if we assume p > 0 we get
p= z? + ny2.

5270 deal with the case where Ok # Z[v/—n], we need to consider a certain order in the ring of
integers. This is probably done somewhere in [3]
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Taking K = Q and L = Q(/p), this basically (up to checking that this still works
when p =1 mod 4, which we had as an exercise in Math 123) says that whether
p is a perfect square mod ¢ (i.e. the splitting type of X2 — p mod ¢) depends only
on a congruence condition on ¢ mod f(Q(,/p)/Q), which depends only on ¢. So
one way to prove quadratic reciprocity would be to actually compute the conductor
f(Q(y/P)/Q). Suppose for simplicity that p is odd. The discriminant of this exten-
sion is 4p if p =1 mod 4 and p otherwise. Since we have the best understanding
of what the ray class groups of Q look like at moduli divisible by the infinite prime,
we assume that p < 0, so that v, is ramified in Q(,/p) and vo|f(Q(\/P)/Q). For
the finite places, the only ramified ones are p and possibly 2 if p = 3 mod 4. In
the case p = 1 mod 4, we could just use the conductor-discriminant formula to
show that the conductor divides the discriminant and is therefore equal to p (since
it must be divisible by the ramified primes). Alternatively, we know Q,(/p)/Qy is
quadratic (for example because p is ramified with index 2 in Q(,/p) so after taking
completions the degree is still at least 2) and totally ramified of ramification index
2. Therefore it is tamely ramified (as p # 2), so its first ramification group is trivial.
It follows that §(Q(y/p)/Q) is divisible by p exactly once (this works just as well
when p =1 mod 4). At the prime 2, when p = 3 mod 4 so that 2 is ramified at
all, we see that the quadratic extension

Q2(vp)/ Q2

is not tamely ramified (2 divides the degree), so it has lower ramification groups
G_1 =Gy =Gy =17Z/2Z. So the valuation of the different is

vg2(P(Q2(v/p)/Q2)) = Z(\Gz\ -1) =2
i>0

Since the norm of the different equals the absolute discriminant which we know
is 4p, and there is no inertia at 2, actually equality must hold, and the higher
ramification groups are all trivial after G;. As a result (after converting to the
upper numbering which actually does nothing in this case), we have computed for
odd primes p,
dpvse, ifp=3 mod 4

f(Qvp)/Q) = {

which is just the discriminant plus the infinite prime. Remember that we assumed
that p < 0 to force the infinite prime to show up. Now we can prove quadratic
reciprocity just by looking at the two cases for p mod 4. If ¢ is an odd rational
prime, then the Legendre symbol
(3)
q

is the same as the image of ¢ under the reciprocity map Iq — Z/2Z = Gal(Q(,/p)/Q)
(the Artin symbol is trivial if and only if ¢ splits completely, which is equivalent to
X? — p having a root mod ¢). Moreover, the reciprocity map at least restricts and
descends to a surjective map

1o(f(Q(VP)Q))/ Pajaiyma) — {£1}
whose kernel has index 2. If p =1 mod 4, then the left hand side is just

Iq(pvec)/ Pqpo. = (Z/PZ)"

Ploos if p=1 mod4
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which has a unique subgroup of index 2, namely the squares (this is because it is
cyclic), so a rational prime g coprime to p has (%) =1 < (%) = 1. On the
other hand, when p =1 mod 4, Artin reciprocity tells us that the reciprocity maps
factors through Pjq(,/5)/q) to get a well-defined map

(Z/AZ)" x (Z/pZ)" — {1}

- (2)

with kernel of index 2. Since ¢ -Z = (—q) - Z and this Legendre symbol is just the
Artin symbol of the ideal ¢ - Z, we can always multiply ¢ by (—1)(=1/2 to force it

defined by

to be 1 mod 4. Let ¢* = (71)%1@ We know the map above is the same as the
map
(2/pZ)" — {1}

e (2)
q

the kernel of which is just the squares in (Z/pZ)*, which proves that

q p
When p = 3 mOd 4, as deSiI‘ed.

In general, the situation we exploited here was that Q(,/p)/Q happens to be
Galois, so the Legendre symbol could be directly studied using the Artin symbol.
For the higher classical reciprocity laws, it’s harder to do this because an extension
like Q(p'/™)/Q won’t be Galois. So the standard thing to do is to pass to the
obvious Kummer extension Q(p*/™)/Q(¢,). Taking m = 3 and directly computing
the conductor of this extension as we did in the quadratic case, it’s possible to prove
cubic reciprocity. Even if we were to do it this way, we would need to first establish
a connection between the Artin symbol of Q(p'/™)/Q((,) and whether primes are
m-th powers mod other primes (when m = 2 this is easy because we know the ring
of integers of Q(,/p) is monogenic and have a reasonable expression for its defining
polynomial). To do this, we need to develop some small part of the theory of the
power residue residue symbol, so I'll just follow that to its logical conclusion. What
follows essentially consists of solutions to the first two sets of exercises in [I].

Let K be a number field containing (p,.

given by

Definition 8.6. Let a € K and b a fractional ideal of K coprime to m and a.

Then the primes dividing b are unramified in the Kummer extension K (a'/™)/K,

[K(al/ﬂl)/K:|
b

so the Artin symbol is well-defined. It is determined by its action on

a/™ so we define the power residue symbol

(5),, €

to be the unique root of unity ¢!, such that

[K(al/m) /K

m

: ] (al/m) _ i al/m_
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Lemma 8.7. The power residue symbol is independent of the choice of m-th root
of a.
Proof. Choose two distinct m-th roots of a, a'/™ and Cfnal/m. The lemma is proved
just by noticing that if
l:K(al/m)/K:| (al/m) — Cial/m
b )

then y
K(a'/™)/K . L o
[( U/h%wwzwwm:%mﬁw
(where the second line is because the Galois group acts trivially on the roots of
unity, for example because they are in K). (I

Lemma 8.8. If b is coprime to a and a’ and m, then

() =) (%)

Proof. Consider the extension L = K(a'/™, (a’)'/™). The usual restriction prop-
erty of the Artin symbol says that

IWWWfTWWKh( iy ([Ele ”mﬂﬂuym><ﬁﬂwfmﬂKh@ymO

{
= ([ ) ([ )
-(9), (;>

as desired. 0

Lemma 8.9. If a fractional ideal b of K is coprime to a and o’ € K, then

(). = (5).. (&)

b0’/ \b/m \b'

Proof. This follows from the definition of the Artin symbol (it is defined to be
multiplicative in the ideal downstairs). O

Lemma 8.10. Let p be a prime in K coprime to a € K and m. Then m|(Np — 1)

and
a Np—1
— | =a ™ mod p.
%) :

Proof. Since (,, € K and p is coprime to m, actually kp = Ok /p must contain a
primitive m-th root of unity, since the polynomial X" — 1 remains separablﬂ over
k(p). So pm C k(p)* is a multiplicative subgroup, so by Lagrange’s theorem we
have the desired

mllr(p)*| = Np - 1.

53Let f(X) = X™ — 1 € K[X]. By Hensel’s lemma, any root of f in x(p) can be lifted to a root
of f in Ky, which must actually be a power of {;» € K since there are already m of them, so all
the roots are of the form ¢, mod p. But (using the fact that m and p are coprime for the second
time) vy (f'(¢m)) = 0 so f remains separable in «(p)[X], and hence x(p) contains m distinct m-th
roots of unity.
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The definition of the Artin symbol also mandates that
(;‘) a'/™ = (@' mod 3,
for some P|p, so after rearranging we see that
<g> =a" % mod .

Since both sides are actually in K, this congruence is true mod p as well, which is
the desired statement. (]

Lemma 8.11. For p in K coprime to a and m, the following are equivalent:

(i) (g) ~1.
(i1) There exists an © € Ok such that ™ = a mod p.
(1ii) There exists an x € K, such that 2 = a.

Proof. Assume (ii). Then we know from the previous lemma that

a\ _  Np-1
— ==z mod p.
) p

Since Np — 1 = |k(p)*|, this is 1 mod p. Since the norm residue symbol is an m-th
root of unity, which we saw earlier remain distinct mod p, this proves (i).
Conversely, assume (i). Using the previous lemma, (i) implies that

Np—1
a ™ =1 modp.

The reduction of @ mod p is therefore an m-th power, since this shows it has order
dividing m and s(p) is cyclic. It remains to show that (i) and (ii) are equivalent to
(i)

The fact that (iii) implies (ii) is obvious just by taking projecting onto the residue
field.

The fact that (ii) implies (iii) is a consequence of the trivial case of Hensel’s
lemma: If f(X) = X™ — a has a root x in k(p), then this root is not zero mod p
(since a £ 0), so f'(z) =maz™ ' £ 0 mod p and so z lifts to a root in K. O

Lemma 8.12. Ifp is an integral ideal coprime to m, then (N.B. (,, is coprime to
p since it is a unit)
Np—1
€)=
P/

Proof. If b is prime, this is obvious because then

and the m-th roots of unity are all distinct mod p, so this must be an equality in
K. Now suppose b = Hp p”r. We know that Np =1 mod m, so we can write

Np =1+ mry
for some choice of integers r, € N, and thus

Nb = H(l +mrp)" =1+ manrp mod m?,
p p
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C”L gﬂ’l '
(%)-10(5)
SIC

TpNyp

which means

frnd Cm p
Nb—1
— Cmm*

as desired. 0

Lemma 8.13. Ifa,a’ € K are nonzero, and b is an integral ideal of K coprime to
a,a’ and m such that a = a’ mod b, then

.- (%)

Proof. The condition ¢ = a’ mod b means that
a—a €bCyp

for all p|b (this is where we use the fact that b is integral). The point is that this
implies a = o’ mod p for all p|b, and thus

5)-)
p p
since by a previous lemma (%) depends only on a mod p. Multiplying this over

all the powers of primes dividing b, we recover the desired equality. ([l

Rephrased in the language of the power residue symbol, a crude estimation of the
conductor of this Kummer extension also results in quadratic reciprocity without
needing to justify the exact value of the conductor.

Proposition 8.14. Let a € K*, and b and b’ be fractional ideals of K coprime to
a. If b(b')~! is principally generated by ¢ € K* which is an m-th power in K, for
all p dividing m or a, then
a a
( b ) m ( b’ ) m

Proof. By one of the previous lemmas,

a a\ 1 a
(b)m(b/)m N <COK)m
We know that [K,(a'/™) : K,]|m, so
m al/™)y; m
N, (arrmy e, (Kp(a/™)) 2 (K@) 5 (K x)

which means c is a local norm at all p which ramify in K (a'/™). Local class field
theory implies that the local Artin symbol of ¢ is trivial at all these ramified primes.
On the other hand, ¢ is not divisible by the ramified primes because of how it was
defined, so its local Artin symbol at those primes is also trivial. As a result, the
global Artin symbol is trivial, as desired. O

This turns out to be good enough to deduce quadratic reciprocity.
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Lemma 8.15. Let a € N, and let ag be an (odd) integer such that a = 2°>(¥ay.
Also let P be a positive odd integer coprime to a. Then

().~ (@),

Proof. Most of this is just specializing the previous lemma. If P = @ mod 8ay,
then since P and @ are odd and coprime to a, we actually know

(P)(Q)™' =1 mod 8am.

Since the squares in Q5 contain the elements congruent to 1 mod 8, and the squares

if P=@Q mod 8ayg.

in Q, when p is odd contain UISI) (both of these are easy consequences of Hensel’s
lemma), the hypotheses of the previous lemma show the conclusion of this one. O

Theorem 8.16 (Quadratic Reciprocity). If P and Q are odd distinct rational
primes, then

(@)= (@)~ (@)l@), -

Proof. The first part is a direct consequence of Euler’s criterion (lemmal8.12)), since
(2 = —1. For the second one, just use the previous lemma with a = 2. This implies

that (%) depends only on P mod 8. So we can just check one odd rational prime
in each odd congruence class mod 8: 2 is a perfect square mod 17 since 62 = 2
mod 17, and 2 is a perfect square mod 7, but not mod 3 or mod 5.

The last one requires more work before it can be reduced to a finite computation,
but luckily T am armed with the hint in Cassels—Frohlich. Let

ro=(g),(w),

which we know only depends on P mod 8@ and @) mod 8P.

Suppose P = @ mod 8, so that @ = 8a mod (P) and 8a = —P mod (Q) for
some integer a, and therefore by three previous lemmas and the fact that P = Q
mod 8 and P =@ mod a,

(@), (@), (@), (@),~* (@),

as desired. One convenient way to rephrase this is that

-1
@)/
For arbitrary P, @, take R =1 mod @ to be an odd integer such that
RP =@ mod 8,

which implies

P.QrQ) = Pr.a) = (5 ) -

@)/,
This means that if you fix R and @ and vary P while keeping (P,Q) = 1 and
RP = Q mod 8, it follows that (R, Q) never changes, and neither does the right
hand side, so (P, @) never changes. But doing this is the same thing as changing
P to anything congruent to it mod 8 and coprime to @, so this shows that (P, Q)
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depends only on P mod 8. By symmetry this also only depends on ) mod 8, so
after checking a finite number of cases we can verify the last part of the reciprocity
law. (]

8.4. Local-global principles. For now I’ll just write about a local-global principle
for norms in cyclic extensions. Maybe later I’ll add in Grunwald-Wang or something
about the Brauer—Manin obstruction. Actually this has been made trivial by the
theory we already developed for the purposes of doing global class field theory. If
L/K is a finite cyclic extension of number fields, then the short exact sequence of
multiplicative Gal(L/K)-modules

1-L*—=J,=-C,—>1
induces a long exact sequence on cohomology, a part of which is
HY(Gal(L/K),Cr) — H*(Gal(L/K),L*) — H*(Gal(L/K), Jr).
Since Gal(L/K) is cyclic, the long exact sequence on Tate cohomology is periodic,
and we know that this is the same as the exact sequence
HY(Gal(L/K),C1) — H(Gal(L/K), L*) — H°(Gal(L/K), J1).
We proved earlier in the course of proving one of the fundamental inequalities that
Q(Gal(L/K),Cp) = [L : K],

but also |H(Gal(L/K),CL)| = [Ck Np,kCr] = [L : K] (by the class field theory
isomorphism), so actually H'(Gal(L/K),Cy) is trivial, and we are left with an
injective group homomorphism

KX/NL/KLX — JK/NL/KJL

which we know is really induced by the inclusion of K* — Jg. The local-global
principle for norms follows:

Theorem 8.17. Let L/K be a cyclic extension of number fields. An element
a € K* is a norm from L in K* for allv € My if and only if a is a norm from
L*.

Specializing to the case where L is a quadratic extension, we can recover the
Hasse-Minkowski theorem in the special case of binary quadratic forms.

9. ExpLiciT CLASS FIELD THEORY
9.1. Lubin-Tate Theory.

9.2. Complex Multiplication.
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