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Abstract. These notes are the result of my study of class field theory in a

reading project under the supervision of Mark Kisin. This project was sup-

ported by summer 2019 HCRP (Harvard College Research Program) funding.
In these notes, I’ve done my best to get directly to the point of being able

to prove the main results of local and global class field theory, without the

involvement of too much abstract machinery like the cohomology of the ideles.
To do this, most of the exposition follows the second part of Lang’s classic text

on algebraic number theory. I’ve also included a section on the basic methods

of explicit class field theory, in the case of local fields (Lubin–Tate theory) and
imaginary quadratic number fields (complex multiplication).
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1. HCRP Final Report

1.1. Research goals, accomplishments, and challenges. The main goal of this
project was to learn the statements and proofs of local and global class field theory.
The approach I followed was close to the historical one, which follows a global-to-
local strategy. For most of the core material on this topic, I followed the canonical
book by Lang [9], as recommended by Professor Kisin. One way to motivate the
statements is as follows: to generalize Dirichlet’s theorem on primes in arithmetic
progressions to the primes in generalized ideal classes, we define the Hecke L-
functions analogously to the Dirichlet L-functions, except with respect to characters
of the generalized ideal class group I(m)/Pm, generalizing the usual group (Z/mZ)×.
From the finiteness of I(m)/Pm, one can show that L(s, χ) converges slightly to the
left of s = 1 when χ is nontrivial. The only remaining step is then to show that
L(1, χ) 6= 0. This can be done directly, but the important question is whether it
can be done using a formula analogous to the one for Dirichlet L-functions, namely∏
χ L(s, χ) = ζQ(ζm)(s) up to some entire factors. To do this, one can show the

existence of an abelian extension K/k whose Galois group is isomorphic to I(m)/Pm

via the Artin map, thereby proving a natural correspondence between Hecke and
Artin L-functions in the abelian case. The relevant theorem of class field theory is
the existence theorem, which is best stated in terms of the topological group of
idèles Jk.

Theorem 1.1. Let k be a number field and H an arbitrary open subgroup of Jk/k
×.

Then there exists an abelian extension K/k such that the Artin map Jk/k
× →

Gal(K/k) has kernel H.

Going the other way, it is useful to know that Artin L-functions converge on
a right half-plane past 1 (to do this it suffices to show that the abelian Artin L-
functions are all Hecke L-functions for some modulus). One reason it is useful is that
in the abelian case, it can be used to prove the Chebotarev density theorem,
a further generalization of Dirichlet’s theorem on primes in arithmetic progression
which has the following consequence:

Theorem 1.2. Every abelian extension of k is uniquely determined by the set of
primes of k which split completely in the extension.

The desired fact that every abelian Artin L-function is equal to a Hecke L-
function can be proved using the global reciprocity law of class field theory:

Theorem 1.3. Let K/k be an abelian extension. Then for any admissible modulus
m for K/k, the Artin map induces an isomorphism I(m)/PmN(m)→ Gal(K/k).

Though the motivation for these statements may be seen to be about the relation-
ship between two different types of L-functions each with desirable properties (the
Hecke L-functions having good convergence properties and the Artin L-functions
having a good relationship with a certain Dedekind ζ function), the actual state-
ments of Theorems 1.3 and 1.1 immediately lead to another story, namely the class
field correspondence:

Theorem 1.4. The abelian extensions of k are in bijection with the open subgroups
of Jk/k

× via the map K 7→ N(Jk/k
×).
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Theorems 1.2 and 1.4 follow the theme that the abelian extensions are deter-
mined by information given by the kernel of their respective Artin map. The-
orem 1.4 is particularly interesting because it gives a description of the abelian
extensions of k in terms of the arithmetic of k itself, stated in terms of the topology
of the idèle class group.

There’s another important theme in the main statements of class field theory,
namely that of local-global compatibility. From the idèlic Artin map Jk → Gal(K/k)
we can extract the local Artin maps k×v → Gal(K/k) via the embeddings k×v → Jk,
and prove the image of the local Artin map is the decomposition group of v, which
is to be expected since it is naturally identified with Gal(Kw/kv). So we get local
Artin reciprocity:

Theorem 1.5. The local Artin map induces an isomorphism k×v /N(K×)→ Gal(Kw/kv).

The local statement is enormously helpful in finishing off the proof of the global
existence theorem. It also leads to a whole part of the theory which relates the
kernel of the Artin map to the ramification behavior of primes.

Gaining a thorough understanding of how to prove these statements took up the
first half of the summer. Even from this global-first approach where the cohomo-
logical tools are pretty light, I picked up a number of tools in the process:

• General constructions of L-functions for number fields
• Adeles and Idèles, and the basic theory of topological groups
• Group cohomology
• Kummer theory

The second half of the summer, I learned about questions for which the surround-
ing theory is somewhat more modern. Neither local nor global class field theory
can be very explicit in general (at the ramified primes the local reciprocity map is
difficult to define explicitly. In the global theory, the existence theorem is noncon-
structive). But in some special cases, the abelian extensions K/k can be described
explicitly. For abelian extensions of local fields, the answer is given by Lubin-Tate
theory, which for a local field k decomposes kab into the compositum of the maxi-
mal unramified abelian extension kur and a totally ramified extension kπ which is
constructed (based on a choice of uniformizer π) by adjoining the torsion points of
a Lubin-Tate formal group law on the maximal ideal of the separable closure of k.
The group law may be defined in terms of power series in two variables, specifically
so that adjoining the torsion points means adjoining roots of Eisenstein polynomials
(thus creating the totally ramified extension kπ). This can be motivated by looking
at the special case of totally ramified extensions of Qp. I learned about this topic
from a book chapter of Serre [1, Ch. VI].

In the global case, the only known explicit generalization of Kronecker–Weber
is in the imaginary quadratic case k = Q(

√
−d). The idea is to consider all the

elliptic curves E whose endomorphism ring has extra endomorphisms coming from
multiplying the corresponding lattice Λ ⊂ C by elements of Ok (such elliptic curves
are said to have complex multiplication by Ok). The main result relating to explicit
class field theory is that the maximal unramified abelian extension of k is explicitly
equal to k(j(E)), and that in most cases, every finite abelian extension of k is
contained in an extension of the form k(j(E), xi) where the xi are coordinates of
torsion points of E. This was the most challenging topic for me this summer,
because of its reliance on technical results from the theory of elliptic curves. I used
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three sources for complex multiplication and elliptic curves: Silverman’s books
[13, 14] and Serre’s other chapter [1, Ch. XIII].

1.2. Personal implications. Thanks to the HCRP funding, this summer was a
great time of mathematical development for me. It allowed me to crystallize my
understanding of the core concepts of algebraic number theory, and to gain technical
competence with concepts which were new to me: not only the statements of class
field theory, but also universally important tools, including the more general types
of zeta functions and L-functions, Kummer theory, group cohomology, topological
group theory, infinite Galois theory, and elliptic curves. The difficulty of my foray
into elliptic curves also forced me to realize the importance that algebraic geometry
will have in my future studies of number theory, and how crucial mastering as much
of the subject as I can will be in the next two years. As a result, I have started a
thorough reading of Vakil’s introductory text [16].

1.3. Implications for my senior thesis. Though I don’t have any fully fleshed-
out ideas for my senior thesis topic, this project was influential for my thesis in that
it allowed me to gain the technical competence to tackle more advanced projects
in number theory. It also influenced me strongly in the direction of doing a senior
thesis in the general area of number theory. Within that, there are a lot of places
my study of algebraic number theory can lead, especially once I learn algebraic
geometry properly. One very interesting topic which I have only seen glimpses
of (from the theory of the j-invariant and separately from concrete applications
like sums of 4 squares) is the theory of modular forms, which play an important
role in the conjectural generalization of class field theory given by the Langlands
correspondence. I might also be interested in topics in arithmetic geometry like
étale cohomology (and its application to the Weil conjectures). Of course, this is
strongly conditional on my knowledge of algebraic expanding substantially over the
next year.

1.4. Interaction with my faculty sponsor. Professor Kisin and I met in person
twice over the summer. The first time was after I read most of the class field
theory content of Lang’s book (by then we were already in communication over
email about all the questions I had about the material). The main questions I
had at this meeting were about how class field theory can be done explicitly. As
a result, Professor Kisin recommended I read chapters by Serre in the classical
book of Cassels and Fröhlich, the first on local class field theory and the second
on complex multiplication. The exposition in both of these chapters is written at
a higher level than in Lang’s book, and it took some time for me to understand
even the one on local class field theory. For complex multiplication, it was hard
for me to get started due to my relative unfamiliarity with the theory of elliptic
curves. At our second in-person meeting, Professor Kisin stressed the usefulness of
the abstractions of algebraic geometry in dealing with objects like elliptic curves in
a more canonical way. He recommended a book of Katz–Mazur [7] and an article
of Deligne–Rapaport [4]. Both of these are somewhat beyond the reach of my
technical understanding of algebraic geometry, but motivated my current project
of reading Vakil’s classic text on algebraic geometry. In the end, it was from the
more concrete books of Silverman that I was able to understand the details of the
theory of complex multiplication.
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1.5. Use of funds. The HCRP award was used to support my living expenses
(room and board) for the summer of 2019. Other than books, there were no ex-
penses directly related to the project.
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2. Introduction



8 KENZ KALLAL

3. L-functions

3.1. Hecke L-functions and generalized ideal class groups. Recall from the
basics of analytic number theory (see for example [5, dirichlet.pdf]) the con-
struction of the Dirichlet L-function, first on the right half-plane <(s) > 1 via the
absolutely convergent series

L(s, χ) =
∑
n≥1

χ(n)n−s

where χ is a Dirichlet character mod m. In particular, χ is a complex character
of the finite abelian group (Z/mZ)× which lifts to a function N → C× by taking
χ to be zero on all n ∈ N not coprime to m. These L-functions are useful for
estimating the asymptotic growth of the prime-counting function π(x; a mod m)1

(see for example [5, pnt q.pdf]), because of the fact from the representation theory
of finite abelian groups that for (a,m) = 1,

π(x; a mod m) =
∑
χ

χ(a)
1

ϕ(m)

∑
b∈(Z/mZ)×

χ(b)π(x; b mod m),

and the estimate2

logL(s, χ) =
∑
p

χ(p)p−s +Os0(1)

for 1 < s ≤ s0. By observing (e.g. by the method of partial summation) that the
L-series for nontrivial characters converge uniformly for <(s) > 0 and showing3

that L(1, χ) 6= 0, one can conclude at least the original statement of Dirichlet’s
theorem on primes in arithmetic progressions4:

Theorem 3.1. Let m ∈ N and a be an integer such that (a,m) = 1. Then the set
of primes congruent to a mod m have Dirichlet density 1/ϕ(m) in the set of all
primes. As a consequence, there are infinitely many such primes.

As usual in algebraic number theory, the question becomes how to generalize
questions about congruence classes of primes to arbitrary number fields. Let K be
a number field. The usual way of doing this is to order the ideals of OK according to
their norm. Then one can use the Dedekind zeta function, defined by the absolutely
convergent Euler product

ζK(s) =
∏

06=p⊆OK

1

1− (Np)−s
=

∑
06=I⊆OK

(NI)−s

1The prime-counting function π(x; a mod m) is just the number of primes ≤ x congruent to a

mod m.
2This uses the Taylor expansion for log(1 + x) and the absolutely-convergent Euler product

L(s, χ) =
∏
p

1
1−χ(p)p−s . Note that this involves a choice of branch for the complex logarithm

when χ is not real.
3The fact that L(1, χ) 6= 0 is usually considered the main nontrivial step in the proof of Dirichlet’s
theorem. One way to do it is to observe that up to some entire factors,

∏
χ L(s, χ) = ζQ(ζm)(s)

4Adapting the proof of the prime number theorem (see [5, pnt.pdf]) to the machinery of L-

functions of Dirichlet characters instead of the ζ-function can also yield the same statement for
natural density, with error bounds depending on the strength of a zero-free region for an analytic
continuation of L(s, χ) as an entire function.
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for <(s) > 1, where the product is over all nonzero prime ideals, and the sum is
over all nonzero ideals. One can continue ζK to a meromorphic function5 with only
simple poles at s = 0, 1. Armed with the appropriate analytic object, Landau [8]
showed the generalization of the prime number theorem to the number of prime
ideals of norm at most x via the usual contour integrals involving ζ ′K/ζK and the
Perron integral formula. Given the success of adapting the prime number theorem,
how might Dirichlet’s theorem on primes in arithmetic progressions be generalized
to the prime ideals of OK? Let m be a nonzero ideal in OK . Analogously to
considering the primes coprime to a fixed modulus m ∈ Z, we consider the prime
ideals in the group I(m) of fractional ideals coprime to m. For any nonzero prime
p ⊆ OK , let m(p) denote the multiplicity of p in the factorization of m. At the
very least, we should mod out by the subgroup of principal fractional ideals (α) of
OK such that vp(α − 1) ≥ m(p) for all nonzero primes p. In effect, we quotient
by open subgroups (necessarily open neighborhoods of 1) with respect to each
nonarchimedean valuation. For the archimedean valuations, C× has no nontrivial
open subgroups, and R× has only the subgroup of positive real numbers. This has
finite index in R×, so we might as well also require that the group of principal ideals
(α) we quotient by has v(α) > 0 for some predetermined set of real valuations v.
This discussion is summarized in the following definitions:

Definition 3.2. A modulus m of k is a finite formal product of nonarchimedean
and real valuations of k. In particular,

m =
∏
v∈Mk

vm(v)

where all but finitely many of the m(v)’s are zero and m(v) ≥ 0 for all v. At all real
places v|m, we might as well require m(v) = 1. Equivalently6, we can separate the
nonarchimedean from the real places and define a modulus to be a nonzero integral
ideal m0, together with a collection of real places m∞.

Let m = m0m∞ be a modulus of k.

Definition 3.3. I(m) denotes the (abelian) group of fractional ideals of Ok coprime
to m0.

Definition 3.4. Pm denotes the subgroup of I(m) consisting of all principal frac-
tional ideals (α) such that vp(α − 1) ≥ m(vp) for all p|m0, and v(α) > 0 for all
v|m∞.

Definition 3.5. Define the generalized ideal class group to be I(m)/Pm. This is
also sometimes called the ray class group of m.

5This is done by proving a functional equation analogous to the one for the Riemann zeta function.
Hecke did it directly using the higher-dimensional Poisson summation formula. Later, Tate used

Poisson summation on the ring of adeles to achieve the same result. For both of these proofs
see [9, Ch. XIII, XIV]. The order and residue of the pole at s = 1 comes down to estimating

the number of elements of OK of norm at most x. It turns out (see [11, Ch. VII, §5]) that the

residue is equal to
2r1 (2π)r2hKRK

|µK |
√
|dK |

where r1, 2r2 are number of real and complex embeddings,

respectively, hK is the class number, RK is the regulator, µK is the group of roots of unity in K,

and dK is the absolute discriminant of K.
6The equivalence is due to the unique decomposition of nonzero (integral) ideals of OK into
nonzero primes.
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Example 3.6. The option to require that the ideals in Pm are generated by ele-
ments which are positive with respect to some valuations is concretely useful. Recall
that the original motivation was to generalize the group of residues (Z/mZ)× to
the ideals coprime to m. To achieve this as a special case of the generalized ideal
class group, we must include the real valuation of Q in the modulus m. In par-
ticular, let k = Q, m be a positive integer, and m be the modulus whose finite
part is mZ and whose infinite part is the single real valuation v∞ : Q→ R. Then
I(m)/Pm

∼= (Z/mZ)× via the following isomorphism: each element a ∈ I(m) can
be written uniquely7 in the form (a/b), where a/b > 0 and is in reduced form, while
a, b are both coprime to m. Send (a/b) to the residue (a mod m)(b mod m)−1.
The kernel of this homomorphism is the set of ideals (a/b) such that a ∼= b mod m
and a/b > 0. This is precisely Pm, so this map induces the desired isomorphism
of abelian groups. Note that if we did not require v∞|m, the resulting generalized
ideal class group would have index 2 in (Z/mZ)×.

Example 3.7. The generalized ideal class group deserves its name: If we set m = 1,
then I(m) is the group of fractional ideals of Ok, and Pm is the group of principal
ideals. In particular, in this special case the generalized ideal class group coincides
with the class group Ik/Pk.

The attempt to generalize Dirichlet’s theorem on arithmetic progressions can be
easily stated:

Question 3.8. Are there infinitely many nonzero primes p ⊆ Ok in each residue
class in I(m)/Pm? Do the primes in each class all have the same Dirichlet density?

Like the ideal class group, we will show that the generalized ideal class group
is finite (in fact we will use the finiteness of the class group along the way). Once
we know I(m)/Pm is finite, we can leverage the representation theory of finite
abelian groups in the same way as in the proof of Dirichlet’s theorem on primes in
arithmetic progression. This will establish the connection between the L-functions
coming from characters of I(m)/Pm and the nonzero prime ideals in I(m) with
particular residues. Now that we have the desired group of ideal classes, we can
define the appropriate characters and L-functions.

Definition 3.9. A Hecke character modulo m is a complex character of the abelian
group I(m)/Pm.

Definition 3.10. Let χ : I(m)/Pm → C× be a Hecke character. The corresponding
L-function is defined on the half-plane <(s) > 1 by

L(s, χ) =
∑
I⊆Ok

(I,m)

χ(I)(NI)−s =
∏
p6|m

1

1− χ(p)(Np)−s
,

where the sum is over all nonzero (integral) ideals of OK coprime to m.

To build a theory analagous to that of the Dirichlet L-function, two ingredients
are still missing:

• The finiteness of the generalized ideal class group
• For nontrivial χ, the convergence of L(s, χ) on a right half-plane containing

1, and the nonvanishing of L(1, χ).

7The uniqueness follows from the fact that Z× = {±1}.
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The first ingredient comes down to a simple dévissage argument.

Theorem 3.11. Let m be a modulus of k. Then I(m)/Pm is finite. In particular,
it has

hm :=
hk2s(m∞)

[O×K : (O×K)m]

∏
p|m0

(Np− 1)(Np)m(p)−1

elements, where hk is the class number of k, s(m∞) is the number of real places
included in m, and (O×K)m is the group of units α ∈ O×K such that vp(α−1) > m(p)
for all nonarchimedean vp|m and v(α) > 0 for all real v|m∞.

Proof. Let a ∈ Ik, and via the Chinese remainder theorem choose an α ∈ Ok such
that pm(p)|α for all p|m. Then in Ik/Pk, each element [a] has a representative in
I(m) given by α−1a. In particular, the homomorphism I(m) → Ik/Pk induced by
the natural inclusion I(m)→ Ik is surjective. So we have an isomorphism of finite
abelian groups

I(m)/(I(m) ∩ Pk) ∼= Ik/Pk.

We are interested in I(m)/Pm, and we have only concluded that a quotient of this
is finite. Now the relevant inclusion of groups is

Pm ⊆ I(m) ∩ Pk.

This time, we have the homomorphism k× ∩ I(m) → (Pk ∩ I(m))/Pm given by
α 7→ [(α)]. It is surjective by definition of Pk, and its kernel is O×k km, where km
denotes the subgroup of k× consisting of all α such that vp(α − 1) > m(p) for all
p|m0 and v(α) > 0 for all v|m∞. So we have another isomorphism, this time

(k× ∩ I(m))/(O×k km) ∼= (Pk ∩ I(m))/Pm.

So in fact it suffices to show that (k× ∩ I(m))/(O×k km) is finite. Stronger than this,
it’s clear from the definitions that actually (k× ∩ I(m))/(km) is already finite. This
is because of the homomorphism

(k× ∩ I(m))→
∏
p|m0

(Ok,p/pm(p)Ok,p)× ×
∏
v|m∞

R×/R×≥0

defined by taking α (whose valuation at all p|m0 is necessarily zero) to its residue
class in each term of the product. In particular, Ok,p is a DVR, so the residue mod

pm(p)Ok,p of any α is invertible if and only if α has zero p-adic valuation. For the
real places we let the v-coordinate of the image of α be the residue of v(α).

This homomorphism is surjective by the weak approximation theorem8, and its
kernel is visibly km. So in fact there is an isomorphism

(k× ∩ I(m))/(km) ∼=
∏
p|m0

(Ok,p/pm(p)Ok,p)× ×
∏
v|m∞

R×/R×≥0.

8There are only finitely many finite places corresponding to p1, . . . , pN , and archimedean places
v1, . . . , vM dividing m. For any choice of αi ∈ O×k,p for all 1 ≤ i ≤ N and βi ∈ R× for all

1 ≤ i ≤ M , weak approximation guarantees the existence of an x ∈ k× such that x ≡ αi

mod p
m(pi)
i Ok,pi and x − βi has small enough absolute value so that vi(x) has the same sign as

vi(βi). Since the units in Ok,pi/p
m(pi)
i Ok,pi are the same as the residues of the elements of O×k,pi ,

it follows that x is the desired preimage. We also know that x ∈ I(m) since its p-adic valuation is
zero for all p|m.
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The right hand side is finite. Each archimedean local factor clearly has size 2
(there are 2 equivalence classes depending on the sign of the representative). The
nonarchimedean factor corresponding to p|m0 has size9

2s(m∞)
∏
p|m

(Np− 1)(Np)m(p)−1.

It follows immediately that (k× ∩ I(m))/(O×k km) is finite, and its size is

|(k× ∩ I(m))/km|
|O×k /(km ∩ O

×
k )|

=
2s(m∞)

∏
p|m(Np− 1)(Np)m(p)−1

[O×k : (O×k )m]
.

Finally, the index [O×k : (O×k )m] is clearly finite: (O×k )m is the intersection of

finitely many subgroups of O×k , namely the subgroups 1 + pm(p)O×k for the p|m0

and the subgroups consisting of units of positive absolute value with respect to the
real v|m∞. It suffices to show10 that each of these subgroups has finite index in
O×k . This is easily seen for the archimedean places, since such an absolute value

induces a group homomorphism O×k → R×/R≥0 ∼= Z/2Z whose kernel is exactly

the subgroup of elements α ∈ O×k such that v(α) > 0. For the nonarchimedean
valuations vp, just recall that

O×k /(1 + pm(p)Ok) ∼= Ôk,p
×
/(1 + pm(p)Ôk,p),

but Ôk,p
×

is compact, while 1 + pm(p)Ôk,p is open, so the index is finite. Putting
it all together, we have computed the size of the generalized ideal class group

|I(m)/Pm| =
|I(m)/(I(m) ∩ Pk)|
|(I(m) ∩ Pk)/Pm|

=
hk

|(I(m) ∩ Pk)/Pm|

=
hk

|k× ∩ I(m)/(O×k km)|

=
hk2s(m∞)

∏
p|m(Np− 1)(Np)m(p)−1

[O×k : (O×k )m]
,

as claimed. �

3.2. Chebotarev’s density theorem and the global reciprocity law. It re-
mains to show that L(1, χ) 6= 0 for characters χ of I(m)/Pm. In the case of (Z/mZ),
the canonical way of doing this involves finding an Euler product expansion for∏
χ L(s, χ) valid on the usual right half-plane <(s) > 1 which agrees up to some en-

tire factor which doesn’t vanish at 1 with the Euler product for ζQ(ζm)(s). Though
they both satisfy functional equations and can be extended meromorphically to the
whole complex plane, it suffices only to do this slightly to the left of 1. Once this

9Recall (the fact we’ve used already) that O×k,p/(1 + pm(p)Ok,p) ∼= (Ok,p/pm(p)Ok,p)×, and

(1 + pnOk,p)/((1 + pn+1Ok,p) ∼= Ok,p/pOk,p. As a result, |(Ok,p/pm(p)Ok,p)×| = |O×k,p/(1 +

pm(p)Ok,p)| = |O×k,p/(1 + pOk,p)| · |Ok,p/pOk,p|m(p)−1 = |(Ok,p/pOk,p× | · |Ok,p/pOk,p|m(p)−1 =

(Np− 1)(Np)m(p)−1.
10This is a basic fact from group theory: If H1, H2 are subgroups of G, then the cosets of H1∩H2

are of the form g(H1 ∩H2) = gH1 ∩ gH2 for g ∈ G. In particular, they are determined by a coset

of H1 and a coset of H2, so in fact [G : H1 ∩H2] ≤ [G : H1][G : H2] <∞.
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is done, analytic continuation tells us that none of the L(s, χ) can have a zero at
s = 1 because this would delete the simple pole of ζQ(ζm). To generalize this, we
must find an extension K/k such that

∏
χ L(s, χ) agrees with ζK(s) up to some

entire factors not vanishing at 1. In dealing with this issue, we will see that all the
fundamental issues of global class field theory will crop up.

In the special case of k = Q and I(m)/Pm = (Z/mZ)×, the field extension K/Q
was Galois with Galois group (Z/mZ)×. In fact, the isomorphism

(Z/mZ)× → Gal(Q(ζm)/Q)

is given by the Artin map p 7→
[
Q(ζm)/Q

(p)

]
.

In particular, the bijectivity of the Artin map means that the characters of
(Z/mZ)× are the same as the characters of Gal(Q(ζm)/Q). Thus, in this case we
can redefine the Dirichlet L-functions to correspond instead to a character of the
Galois group of this particular extension. In particular, they are all of the form

L(s, χ) =
∏
p 6|m

1

1− χ
([

Q(ζm)/Q
(p)

])
(Np)−s

for characters χ of Gal(Q(ζm)/Q), which is where the connection between L-
functions corresponding to characters of the generalized ideal class group (Z/mZ)×

and the zeta-function of the specific field Q(ζm)/Q comes from (we will prove this
connection in generality). For Galois groups which are not necessarily abelian, the
Artin map no longer necessarily gives a homomorphism from an ideal group to
the Galois group, but we can still define L-series given an arbitrary representation
of the Galois group (the natural generalization of the 1-dimensional characters of
abelian groups), using the fact that the Artin map still yields a conjugacy class of
the Galois group. This leads to the definition of Artin’s L-functions:

Definition 3.12. Let K/k be a finite Galois extension of number fields, and let ρ :
Gal(K/k) → GL(V ) be a finite-dimensional complex representation of Gal(K/k).
Then the Artin L-series corresponding to ρ is, up to finitely many local factors
corresponding to the ramified primes,

LArtin
K/k (s, ρ) =

∏
p6|dk

1

det
(

idV − (Np)−sρ
([

K/k
p

])) ,
well-defined due to the conjugacy-invariance of the characteristic polynomial.

In the case where K/k is abelian, the Artin L-function of an irreducible rep-
resentation of Gal(K/k) has a product expansion

∏
p

1

1−(Np)−sχ([
K/k
p ])

where χ is

a (1-dimensional) character of Gal(K/k). Presumably after collecting more nu-
merical data, Artin conjectured that the equivalence between Dirichlet L-functions
corresponding to characters of the ray class group mod mv∞ and Artin L-functions
corresponding to irreducible representations of Gal(Q(ζm)/Q) extends in general
via a natural isomorphism of groups (in fact the class field theory isomorphism was
known by his time, but only non-canonically; his conjecture amounted to using the
Artin map as this natural isomorphism).

Conjecture 3.13. Let K/k be an abelian extension, and ρ a one-dimensional
complex representation of Gal(K/k). Then there exists a modulus m of k and a
character χ : I(m)/Pm → C× such that L(s, χ) = LArtin

K/k (s, ρ).
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This is clearly logically equivalent to the technical questions which are answered
by the main theorems of global class field theory:

Question 3.14. Given an abelian extension K/k, does there exist a modulus m
of k divisible by only primes that ramify in K such that Pm is contained in the
kernel of the Artin map I(m) → Gal(K/k) and this map is surjective, so that the
Artin map induces an isomorphism between Gal(K/k) and a quotient of the ray
class group mod m? Is there a description in terms of the extension K/k of what
to quotient by?

It’s natural, too, to formulate the converse:

Question 3.15. Given a modulus m of a number field k, does there exist a finite
abelian extension K/k such that all the primes of k ramifying in K divide m, and
the Artin map I(m)→ Gal(K/k) is surjective with kernel containing Pm? This will
yield an isomorphism between Gal(K/k) and a quotient of the ray class group mod
m. Is it possible to achieve an abelian extension K/k inducing such an isomorphism
between Gal(K/k) and any arbitrary quotient of the ray class group mod m?

Remark 3.16. Lang [9, page number] explains why we should expect these questions
to be nontrivial: the Artin map is defined locally at each prime, but the definition
of Pm is a global one that has to do with arbitrary elements of k×.

It will turn out that there are remarkably simple answers to both questions,
which are known today as the main results of class field theory. It comes down to
a key technical condition on the modulus:

Definition 3.17. A modulus m of k is admissible with respect to an abelian ex-
tension K/k if

NK̂P/kp
(K̂×P) ⊆ 1 + pm(p)Ôk,p

for all P|p and p|m. Of course, this is true for all P|p if and only if it is true for a
single one.

The most important result is a full answer to Question 3.14, known as Artin’s
reciprocity law.

Theorem 3.18. Let K/k be an abelian extension, and m any modulus for k ad-
missible with respect to K/k. Let N(m) denote the subgroup of I(m) given by the
relative norms of all the nonzero ideals I ⊆ OK not containing any prime fac-
tors P dividing any p|m. Then m is divisible by all the primes ramifying in K,
and the Artin map I(m)→ Gal(K/k) is surjective and reduces to an isomorphism
I(m)/PmN(m)→ Gal(K/k).

The answer in Theorem 3.18 leads to another important question, which we will
answer later.

Question 3.19. By Theorem 3.18, the smallest (with respect to divisibility) ad-
missible modulus of k is divisible by all the ramified primes. It will turn out that it
is only divisible by ramified primes. What is its relationship with the discriminant
dK?

It turns out that Question 3.15 also has a full answer (in fact in much more
generality) provided by class field theory, known as the existence theorem. It is
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relatively easy to state with the language we have so far, but because of the incon-
venient nature of the generalized ideal class groups (mostly having to do with the
fact that a modulus which is admissible for one extension may not be admissible for
another), we’ll postpone the discussion of this until the language of idèles has been
developed. We will see with very little effort after these technical results have been
proved that there is a correspondence holds between the arithmetic of the field k
and the set of abelian extensions K/k. This is called the class field correspondence,
and we have already caught a glimpse of it (the abelian extensions K/k are in cor-
respondence with the subgroups of the generalized ideal class groups for admissible
moduli given by the kernel of the Artin map I(m) → Gal(K/k)). It is clumsy to
state in terms of ideals again because of the need for the choice of an admissible
modulus which is not consistent across extensions, so we postpone giving a precise
statement until the idèles have been introduced.

Finally, we turn to Question 3.8, which was the original goal of this section.
The important result on this question, which is indeed considered the most impor-
tant generalization of Dirichlet’s theorem on primes in arithmetic progression, is as
follows:

Theorem 3.20 (Chebotarev density theorem). Let K/k be a finite abelian exten-
sion. Then for each σ ∈ Gal(K/k), the set of nonzero primes p of k such that[
K/k
p

]
= σ has density 1/[K : k] in the set of nonzero primes of k.

Remark 3.21. In fact, despite the failure of any obvious generalization of Artin’s
reciprocity law in the nonabelian case, Chebotarev’s density theorem actually easily
extends from the abelian case to the general case of Galois extensions: if K/k is
an arbitrary Galois extension, then the Artin map sends a nonzero prime of k to a
certain conjugacy class of Gal(K/k). For any conjugacy class C ⊆ Gal(K/k), the
set of primes mapping to C has density |C|/[K : k] in the primes of k.

Proof of Theorem 3.20. When Chebotarev first proved his density theorem, the
full strength of Artin reciprocity was not available to him. Instead, he had to use
the cyclotomic case of the reciprocity law and build up the general case using a
complicated “field crossing argument” (see my math 229x final project or [6, Ch.
6] for a complete description of this method of proof). In fact, it was by adapting
the tools in Chebotarev’s proof that Artin was able to prove his reciprocity law and
thus Conjecture 3.13. In this proof, we will just show why it is a consequence of the
full statements of class field theory, acknowledging that it doesn’t need to depend
on them.

By Artin reciprocity, there exists a modulus m for k divisible by all primes
ramifying in K such that the Artin map I(m) → Gal(K/k) is surjective and its
kernel contains Pm. In particular, every character χ of Gal(K/k) induces a character

χ ◦
[
K/k
·

]
of the finite11 abelian group I(m)/Pm. For any unramified prime p of k,

we may compute the local factor∏
χ∈ ̂Gal(K/k)

1

1− χ
([

K/k
p

])
(Np)−s

11This finiteness will be important later in the proof, when we use the Artin L-functions for K/k
as Hecke L-functions for a certain modulus.
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of
∏
χ L(s, χ ◦ [K/k· ]) =

∏
χ L

Artin
K/k (s, χ). In particular, we have12

∏
χ∈ ̂Gal(K/k)

1

1− χ
([

K/k
p

])
(Np)−s

=

(
1

1− (Np)−fs

)[K:k]/f(P|p)

=
∏
P|p

1

1− (NP)−s
,

since there are exactly [K : k]/f(P|p) primes lying over p. Multiplying all these
local factors together, we obtain the identity

∏
χ∈ ̂Gal(K/k)

L(s, χ)
∏

p|dK/k

∏
P|p

1

1− (NP)−s
= ζK/k(s)

for all s in the right half-plane <(s) > 1. By analytic continuation, the same is true

of the meromorphic functions on both sides of the equation. Since L(s, χ ◦
[
K/k
·

]
)

is the L-function associated with a Hecke character,13, it converges on the right
half-plane <(s) > 1 − 1/[k/Q] when χ is nontrivial, and otherwise has a simple
pole at s = 1. Since ζK/k has a simple pole in the same place, it follows that

L(1, χ ◦
[
K/k
·

]
) 6= 0. The conclusion follows easily from this and the representation

theory of the finite abelian group Gal(K/k). Fix a σ ∈ Gal(K/k) and let π(x;σ)
be the number of primes of k of norm at most x whose corresponding Frobenius is

12The first step comes from a simple manipulation in the representation theory of finite groups.

The Frobenius element
[
K/k
p

]
has order fp = f(P|p) = |DP| in Gal(K/k) for any P|p, since p is

unramified. As a result, χ
([

K/k
p

])
is an f -th root of unity for all χ ∈ ̂Gal(K/k). There is one

character of 〈
[
K/k
p

]
〉 for each choice of f -th root of unity to send the generator to. Every such

character extends to a character of Gal(K/k) in exactly [K : k]/f ways, so the complex numbers

χ
([

K/k
p

])
run over the f -th roots of unity, each with multiplicity [K : k]/f .

As a result,
∏
χ(1−χ

([
K/k
p

])
X) has exactly the f -th roots of unity as its roots, each root having

multiplicity [K : k]/f . From this we obtain the polynomial identity
∏
χ(1 − χ

([
K/k
p

])
X) =

(1 −Xf )[K:k]/f , and the identity we use in the first step is obtained by substituting (Np)−s for
X.
13This is where the finiteness of I(m)/Pm is used. Without the finiteness, it’s impossible to extend
the L-function to the left of s = 1.
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equal to σ. Using the standard summation by parts technique,∑
[K/k

p ]=σ

1

(Np)s
=

∫ ∞
1

1

ys
d (π(y;σ))

= −s
∫ ∞
1

π(y;σ)y−s
dy

y

= −s
∫ ∞
1

 ∑
χ∈ ̂Gal(K/k)

〈χ, π(y; ·)〉χ(σ)

 y−s
dy

y

= −s
∫ ∞
1

 ∑
χ∈ ̂Gal(K/k)

1

[K : k]

∑
τ∈Gal(K/k)

χ(τ)π(y; τ)χ(σ)

 y−s
dy

y

=
1

[K : k]

∑
χ∈ ̂Gal(K/k)

χ(σ) · (−s)
∫ ∞
1

∑
τ∈Gal(K/k)

χ(τ)π(y; τ)y−s
dy

y

=
1

[K : k]

∑
χ∈ ̂Gal(K/k)

χ(σ)
∑

p6|dK/k

χ
([

K/k
p

])
(Np)s

.

Taking logs of product expansions, we can reformulate this in terms of our L-
functions as ∑

[K/k
p ]=σ

1

(Np)s
=

1

[K : k]

∑
χ∈ ̂Gal(K/k)

χ(σ) logL(s, χ) +O(1).

We’ve shown that L(s, χ) converges to some finite nonzero value as s → 1+ when
χ is a nontrivial character. So we can absorb the contributions of all the nontrivial
characters into the error term, ultimately getting∑

[K/k
p ]=σ

1

(Np)s
=

1

[K : k]
logL(s, 1) +O(1).

But by the Euler product expansion, logL(s, 1) is a bounded additive factor away
from log ζk(s) as s→ 1+. This shows that indeed the Dirichlet density of the primes
with Frobenius element equal to any fixed σ is 1/[K : k]. �

Remark 3.22. Though the Chebotarev density theorem is not a direct answer to
Question 3.8, it is most of the way there. The remaining ingredient is the existence
theorem of class field theory, the answer to Question 3.15. A special case of the
existence theorem says that there exists an abelian extension K/k such that the
Artin map induces an isomorphism I(m)/Pm → Gal(K/k). In that case, the Cheb-
otarev density theorem reduces to the desired statement that there are infinitely
many prime ideals in each generalized ideal class.

Remark 3.23. The key ingredient in the proof of Theorem 3.20 was the fact that the
Artin L-functions for the abelian extensions coincide with Hecke L-functions for a
specific modulus. This is important because the finiteness of the generalized ideal
class group implies that these L-functions actually converge on a right half-plane
left of s = 1. The Artin L-functions (once the ramified local factors have been
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added in) actually do satisfy a functional equation, but it is unknown whether they
always extend to a meromorphic function on the whole complex plane (this is known
as Artin’s conjecture). The convergence of Hecke L-functions (along with Artin
reciprocity) settles this in the case of Artin L-functions of abelian extensions. This
was the only reason we needed to pass through the machinery of Hecke L-functions
and use Artin reciprocity to deduce Chebotarev’s density theorem. Indeed, the
Artin L-functions on their own already satisfy the general product formula

ζK(s) =
∏
ρ

L(s, ρ)deg ρ

where the product is over all irreducible representations of Gal(K/k).

Chebotarev’s density theorem has a number of interesting consequences. First of
all, if we had proved it in the historical manner without assuming Artin reciprocity,
it’s a trivial consequence of the theorem that the Artin map is surjective. It also
contributes to the overall picture of class field theory in the following way: the class
field correspondence says that an abelian extension is uniquely determined by the
kernel of its Artin map. The Chebotarev density theorem implies that an abelian
extension is also uniquely determined by the primes in the kernel of its Artin map.

Theorem 3.24. Let k be a number field and K1,K2 abelian extensions of k. Let
Spl(Ki/k) denote the set of primes of k which split completely in Ki. Then the
following are equivalent:

• K1 = K2.
• Spl(K1/k) and Spl(K2/k) differ by a set of Dirichlet density zero in the

primes.

Proof. By the properties of the Artin symbol, a prime p splits completely in K1K2

if and only if it splits completely in K1 and in K2. So,

Spl(K1K2/k) = Spl(K1/k) ∩ Spl(K2/k).

If the two sets on the right hand side differ by a set of Dirichlet density zero, then
each of their Dirichlet densities must be the same, and this density is the same as
the density of their intersection. By the Chebotarev density theorem, this means
that

[K1 : k] = [K2 : k] = [K1K2 : k].

It follows that K1 = K2, as desired. �

Remark 3.25. Because of the generality in which Chebotarev’s density theorem
holds, the statement of Theorem 6.3 is actually true for arbitrary Galois extensions.
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4. The Idèles

4.1. Definitions. Let k be a number field. The group of idèles of k is a locally
compact topological group which is meant to contain all the information about
the completions of k and the open neighborhoods of 1 in those completions. It is
defined as a restricted product (rather than a direct product) in order to ensure it
is locally compact. Restricted products of topological groups are defined as follows:

Definition 4.1. Let I be an index set, and {Gv}v∈I be a collection of locally
compact topological groups. Suppose that for all but finitely many v ∈ I, Hv ⊆ Gv
is a compact open subgroup. Then the restricted product of the Gv’s with respect
to the Hv’s is the set of all elements (αv)v∈I ∈

∏
v∈I Gv such that αv ∈ Hv for all

but finitely many v. For any finite subset S of I containing at least all the v ∈ I
such that Hv is not defined, the restricted product contains∏

v∈I\S

Hv ×
∏
v∈S

Av

where the Av’s are arbitrary open subsets of Gv. We define the topology on the
restricted direct product to have these sets as a basis of open sets.

Remark 4.2. The restricted product topology is defined the way it is in order to
force it be locally compact, despite sitting inside the direct product of infinitely
many locally compact groups. In particular, the Hv’s are compact, and the Av’s
are locally compact (but there are finitely many). So the open sets in the topology
are all locally compact14. The opens Av are included in order to cover the entire
space (else we would have to consider just the product of the Hv’s which wouldn’t
be as useful).

One can check that the restricted product topology defines a Hausdorff topolog-
ical group structure on the idèles.

Let k be a number field. For each place v of k, we have a locally-compact
completion kv, its locally compact multiplicative group k×v , and the compact open

unit group Ô×k,v.

Definition 4.3. The group of idèles of k, which we will denote by Jk, is the

restricted topological product of the k×v with respect to the Ô×k,v, which is defined
for all but the archimedean places.

Jk comes with a map of sets k× → Jk given by α 7→ (α)v, which is well-defined
because any α ∈ k× has zero p-adic valuation for all but finitely many p. The image
of k× in Jk is known as the group of principal idèles. Analogously to the ideal class
group of k, we may mod out Jk by the principal idèles to get

Definition 4.4. The idèle class group of k is Ck := Jk/k
×.

The idèle class group inherits its own topological group structure as a quotient
of the idèles. It will turn out that Ck will coincide with certain generalized ideal

14The product of arbitrarily many compact sets Hv is compact by Tychonoff’s theorem. Then
taking the product with finitely many locally compact sets Av keeps it locally compact: if X,Y
are locally compact then we can take the sets U × V as a basis for the topology of X × Y , and

use the local compactness to observe that U × V = U × V is compact, from which we conclude
the local compactness of X × Y . Note that the product of infinitely many locally compact spaces
is not necessarily locally compact.
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class groups (see the next section), and since it doesn’t depend on any choice of
modulus it will be somewhat more convenient to use in class field theory.

Before discussing the norms on the idèles, it will be instructive to consider the
simpler case of a single completion at a time.

If K/k is a finite extension of number fields, for every v ∈ Mk there may be
several w ∈ MK lying over v. However, if K/k is Galois, recall (e.g. from [11, Ch.
II, §9]) that Gal(K/k) acts transitively on the valuations w|v, where the action is
defined by σ(w) = w ◦ σ−1 (the inverse inserted to make it a valid group action).
For any two w,w′|v, this means there is some τ ∈ Gal(K/k) such that w′ = w ◦ τ
and thus Dw = τDw′τ

−1. It follows15 that NK̂w/k̂v
(K̂×w ) does not depend on the

choice of w|v. So we may consider for each v ∈ Mk the subgroup of k̂×v consisting
of the local norms from any of the completions lying over it.

Definition 4.5. Let v ∈ Mk. The group of local norms in k̂×v is the group

NK̂w/k̂v
(K̂×w ). By the discussion above we can use any w|v to obtain it.

Remark 4.6. This norm subgroup will be important for the purposes of local class
field theory. We will show using Galois cohomology that N(K×w ) is of finite index
in k×v when K/k is abelian. In fact, local class field theory will show that even if
K/k is an arbitrary Galois extension, N(K×w ) will always coincide with the norm
subgroup of the maximal abelian subextension of Kw/kv. So at least in the abelian
case, the finiteness of the “norm index” [k×v : N(K×w )] does not require class field
theory. However, the specifics of what this index is one of the important technical
issues in the proofs of class field theory, and a key step in the proof of the local
reciprocity law.

Lemma 4.7. Suppose that [k×v : N(K×w )] < ∞. Then actually N(K×w ) is open in

k×v . Also, N(Ô×K,w) is open in Ô×k,v.

Proof. The second fact will be the important one in the proof. The norm is con-

tinuous with respect to w and v, so N(Ô×K,w), the image of a compact set under
a continuous map, is compact in the metric space kv. So in particular it must be
closed. We have an inclusion of groups

Ô×k,v/(N(K×w ) ∩ Ô×k,v) ⊆ K
×
v /N(k×w ),

and thus an inequality of norm indices

[Ô×K,w : N(Ô×K,w)] ≤ [k×v : N(K×w )] <∞.

So N(Ô×K,w) is a finite-index closed subgroup of Ô×K,w. Its complement is therefore
a finite union of closed subgroups, and is thus closed, which implies the desired
openness of the norm subgroup. Already this openness implies thatN(K×w ) contains
an open neighborhood of 1 ∈ k×v , and hence the whole subgroup is open, as desired.

�

Remark 4.8. The lemma above assumes the finiteness of an index which comes
from harder machinery like cohomology or class field theory. In fact, it’s possible

15The elements of Gal(K̂w/k̂v) are just extended by continuity from the elements of Dw. The

norm of an element α of K ⊆ K̂w down to k̂v is
∏
σ∈Dw

σ(α) =
∏
σ∈Dw′

τστ−1(α) =

τNK̂w′/k̂v
(τ−1α) = NK̂w′/k̂v

(τ−1α). Applying this equality to the Cauchy sequences defining

the elements of the upstairs completions gives the equality of norm subgroups.
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to conclude the openness of the norm subgroup directly: since it’s a subgroup,
it suffices to show that it contains an open neighborhood of 1. To get this open

set, it will suffice to consider only the norms of elements already in k̂×v . The
archimedean case is easy (in the only nontrivial case, we see that the positive reals

are open in R×). So assume that v is p-adic. The norm map restricts on k̂×v to
the [kw : kv]-power map. The p-adic logarithm gives an isomorphism (of additive
and multiplicative topological groups) between a small neighborhood of 0 and a
small neighborhood of 1. So it suffices to show that the multiplication by [kw : kv]
map on a small open ball around 0 in kv hits every point in a (possibly smaller)
open ball around 0. But this is evident, as x/[kw : kv] will be in the range of
the log isomorphism for sufficiently small x ∈ kv (it might need to be smaller to
accommodate any nontrivial p-adic valuation of [kw : kv]).

The analysis of the norm subgroup in the local case leads up to the same analysis
in the case of the idèles. We can extend the notion of the norm K× → k× to the
idèles JK → Jk, and examine the norm subgroup in Jk. Once we have shown the
connection between the idèle class group and the generalized ideal class group, the
norm subgroups of Jk will be one of the important ingredients in global class field
theory.

The Galois group Gal(K/k) acts on JK by permuting transitively the com-

pletions K̂w lying over the k̂v (each automorphism τ induces an isomorphism
Kw → Kσw = Kw◦σ−1). Specifically, if (αv)v is an idèle of K, then its image

under the action of σ has σ(αv) ∈ K̂σv for its σv-component.
So we should define the norm as follows:

Definition 4.9. Let K/k be a Galois extension of number fields, and α = (αv)v ∈
JK . Then the norm of α is NK/k(α) :=

∏
σ∈Gal(K/k) σ(α).

Under this definition, NK/k(α) is defined as an element of JK , but for any
v ∈ Mk we expect the w-components of NK/k(α) for w|v to be related to each
other. In particular, the decomposition groups Dw for w|v are all conjugate to each

other and have the same size, namely |Dw| = [K̂w : k̂v] = e(w|v)f(w|v). For all
w,w′|v, by the orbit-stabilizer theorem, there are therefore exactly |Dw| elements
of Gal(K/k) sending w′ to w. We can write down exactly what these are in terms
of the decomposition group and a single automorphism sending w′ to w, to observe
that the w-component of NK/k(α) has a contribution from each valuation w′|v such
that w′ = τw lying over v equal to∏
σ∈Gal(K/k)
σw′=w

σ(αw′) =
∏
σ∈Dw

στ(αw′) =
∏

σ∈Dw′

τσ(αw′) = τNK̂w/k̂v
(αw′) = NK̂w′/k̂v

(αw′).

It follows that the w-components of NK/k(α) coincide for all w|v and are equal to∏
w|v

NK̂w/k̂v
(αw).

So in fact the idèle norm is naturally a homomorphism of groups JK → Jk just
by keeping only one of the w|v-components for each v, equivalently defined in the
following way:

Definition 4.10. The norm down to Jk of an idèle α = (αv)v ∈ JK is the element
of Jk whose v-component is

∏
w|v NK̂w/k̂v

(αw).
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Definition 4.9 will be useful because it defines the norm directly in terms of
the action of Gal(K/k) on JK . This will be useful especially in the use of Galois
cohomology to study the norm subgroup of JK in Jk. But oftentimes Definition 4.10
is slightly more convenient since it doesn’t require keeping track of the switching
between different valuations extending v.

The norm is in fact a continuous homomorphism of topological groups. The
extra fact that it is continuous is not very hard: we need to check that every
element of the basis of open sets of Jk has open preimage under NK/k : JK → Jk.
Because of the way the basis of open sets is defined, and the fact that the norm

of a unit is always a unit, it suffices to show that open subsets of k̂v have open

preimages under the map
∏
w|v K̂w → k̂v given by (αw)w 7→

∏
w|v NK̂w/k̂v

(αw).

This is clear because this is a pointwise product of the maps that take the norm
of one coordinate. Pointwise products of continuous maps of topological groups
are continuous, and the norms are each continuous in the coordinate they act on
(and thus on the whole product if they leave the other coordinates alone). The
norm subgroup N(JK) ⊆ Jk will be of great importance to class field theory (in
idèlic language, the class field correspondence says that the abelian extensions of k
correspond exactly with the open subgroups of Jk/k

× via the norm map).
We can also check using [11, Ch. II, (8.4)] that the notation NK/k means the

same thing for elements of JK and for K×, in that for α ∈ K× the idèle norm
coincides with the field norm.

As expected, we have a result on the norm subgroup of Jk.

Lemma 4.11. N(JK) is open in Jk.

Proof. The norm of JK is just the union of the norms of the open sets

JK,S =
∏

w∈MK\S

Ô×K,w ×
∏
w∈S

Kw

over all finite subsets S ⊂ Mk containing the archimedean places. We can also
choose S so that for any v ∈Mk, it either contains all w|v or none of them16. Now
we specifically make use of Definition 4.10. As a result of that definition and the
fact that the norm subgroup (for either the local field or the units of its valuation
ring) doesn’t depend on the choice of w|v,

N(JK,S) =
∏
v

N(Ô×K,w)×
∏
v

N(Kw),

where the first product is over all but finitely many v and the second product is over
the remaining ones. To conclude that N(JK,S) is open, as a result of Lemma 4.7,

we just need to show that N(Ô×K,w) = Ô×k,v for all but finitely many v. In fact, this
is true whenever v is unramified in K, which we will show via group cohomology.
This is also an easy consequence of Hensel’s lemma (see [9, hensel]). �

A key fact in the class field correspondence will be that in fact all the open
subgroups of Jk/k

× are obtained by taking norms from the idèles of some finite
abelian extension K/k. It is part of the main goal of class field theory to show that
the quotient group is in fact isomorphic to Gal(K/k). In this section, we’ll be able
to see that any open subgroup of Ck has finite index. Unlike in the case of the
adeles, it isn’t true that Ck is compact.

16this choice is convenient but obviously not necessary
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Lemma 4.12. The idèle class group of k is not compact.

Proof. Recall the product formula for normalized valuations, which says that for
any α ∈ k×, ∏

v∈Mk

|α|v = 1.

In general, we may define the absolute value homomorphism (I use this name to
distinguish it from the norm JK → Jk) | · | : Jk → R×≥0 given by

|(αv)v| =
∏
v∈Mk

|αv|v.

This is well-defined because |αv|v = 1 for cofinitely many valuations v by definition
of Jk. The product formula shows that the absolute value homomorphism is trivial
on k× ⊂ Jk, so it projects to a homomorphism Ck → R×≥0. First, | · | is obviously

surjective (fix all coordinates but one corresponding to an archimedean valuation).
It is also continuous as a map of topological groups, even as defined on the idèles.
The trick is the same as the one for checking that the pointwise product of finitely
many continuous maps is continuous. It suffices to check that it is continuous

on each open subset Jk,S =
∏
v∈Mk\S Ô

×
k,v ×

∏
v∈S k

×
v for finite sets S of places

including all the archimedean ones. But | · | restricts on Jk,S to a finite product of
absolute values with respect to the v ∈ S. Moreover, | · |v : k×v → R×≥0 is always

continuous17 so | · | : Jk,S → R×≥0 can be written as the composition

Jk,S → (R×>0)|S| → R×>0,

where the first map is into each coordinate via | · |v and the second map is just
multiplying all the coordinates together. Both are continuous (the first is a fact
about continuous maps and direct products, the second is the definition of a topo-
logical group). Since the Jk,S are an open cover for Jk and continuity is a local
property, we have concluded that | · | : Jk → R×>0 is continuous. But the continuous

image of a compact space is compact, which R×>0 is not. So Jk and even Ck is not
compact. �

That being said, it turns out that the possibility of all values of R×≥0 is the only

obstruction to Jk/k
× being compact.

Proposition 4.13. Let C0
k be the set of idèle classes of absolute value zero, i.e.

C0
k = ker | · |. Then C0

k is compact, and there is an isomorphism of topological
groups Ck ∼= R×>0 × C0

k .

Proof. The main point of this fact is its reliance on the geometry of numbers (in
fact it is easy to deduce the unit theorem from the statement; we will do this in
the next subsection). Fix a positive real number λ and idèle class [a] ∈ Ck with
|a| = λ. The goal is to find a representative a of [a] such that each coordinate
of a has absolute value in some compact set depending only on λ. To do this we
must multiply a by a suitable element αa ∈ k× (which is allowed to depend on a).
It suffices to ensure that |αaa|v is bounded above and below over all v ∈ Mk and

17The continuity is a general fact about metric spaces. By the triangle inequality, |x − y|v <
ε =⇒ ||x|v − |y|v | ≤ |x− y|v < ε.
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a ∈ Jk of norm λ. Isolating αa, to get a lower bound |αaa|v ≥ 1 for example, we
need to choose αa ∈ k× such that

|α−1a |v ≤ |av|v.

for all v18 The condition at the nonarchimedean places vp means that we restrict

α−1a to be in the fractional ideal Ia =
∏

p p
vp(avp ). At the archimedean places,

the requirement is that under the embedding k → Rr1 × Cr2 coming from the
archimedean places, α−1a is inside a box of volume∏

v∈S∞

|av|v =

∏
v∈Mk

|av|v∏
p |avp |vp

=
λ∏

p(Np)−vp(avp )
= λ

covol(Ia)

covol(Ok)

where covol(Λ) denotes the covolume of a lattice Λ embedded in Rr1 × Cr2 . By
Minkowski’s theorem, for sufficiently large λ (where how large depends only on k
and not on a, since the factor of covol(Ia) coincides with the one in the numerator
of the volume bound in the theorem), we know there exists a nonzero α ∈ k× such
that |α−1|v ≤ |av|v for all v ∈Mk. In other words, if λ is selected sufficiently large,
then any a ∈ Jk of absolute value λ has some αa ∈ k× such that

|αaa|v ≥ 1

for all v ∈ Mk. Actually, this inequality is already enough to force the absolute
values of αaa to all be bounded above by λ, since

∏
v |αaa|v = λ. So we have

concluded that if λ is chosen sufficiently large, every [a] ∈ Ck of absolute value λ
has a representative b ∈ Jk for which 1 ≤ |bv|v ≤ λ for each v ∈ Mk. Recall that
the nonarchimedean absolute values are normalized in such a way that the smallest
possible value of | · |p greater than 1 is Np. But there are only finitely many primes
p with norm less than λ (every such p must be a divisor of λ ·Ok), which means that
there is a finite set S ⊆ Mk which only depends on k for which our representative
b is guaranteed to satisfy |bv|v = 1 for all v ∈ Mk \ S.19 In particular every idèle
class of norm λ has a representative in the compact set

X =
∏
v∈S
{x ∈ kv : 1 ≤ |x|v ≤ λ} ×

∏
v∈Mk\S

Ô)k, v× ⊆ Jk.

The fact that every idèle class of absolute value λ has a representative in X means
that for the subset Aλ ⊆ Jk consisting of all idèles of absolute value λ, the projection
A → Jk/k

× = Ck has image equal to the image of X. Since X is compact, and
the projection is continuous (Ck is given the quotient topology), we know that the
image of X is compact. That image contains all the idèle classes of absolute value
λ, the set of which is closed (it is the preimage of the closed set {λ} under the
continuous absolute value map). So the set of idèle classes of absolute value λ is
indeed compact.

But we cannot just set λ = 1, since our argument works only for sufficiently large
λ, depending on k. This is fine, since there is a topological isomorphism between
the set of idèle classes of absolute value λ and C0

k given by multiplying by some

fixed choice of idèle aλ of absolute value λ. It’s clearly invertible (with inverse a−1λ ),

18The subscripts might be confusing here. The subscript a on α emphasizes that α depends on

the idèle a. The subscript v on a refers to the v-coordinate of a.
19A priori we always had such a set S by virtue of b being an idèle, but it wasn’t clear that it

can’t grow without bound depending on the value of a and the choice of α.
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and for that reason bicontinuous. So the compactness we proved readily implies
the compactness of C0

k . �

Corollary 4.14. Every open subgroup of Ck has finite index.

Proof. From what we’ve shown, each element of Ck is determined by its absolute
value and an element of C0

k . So we have an isomorphism of topological groups

C0
k ×R×>0

∼= Ck

which may explicitly be given by

(a, λ) 7→ a · [bλ],

where bλ is a choice of idèle of absolute value λ which varies continuously with
λ. For instance, k has at least one infinite place v∞, so we can set bλ to have
v∞-coordinate equal to λ and all the other coordinates equal to 1 (λ 7→ bλ is
clearly continuous). Then (a, λ) 7→ a · [bλ] is clearly a continuous homomorphism
of topological groups. It has an inverse given by

[a] 7→ (a · b−1|a| , b|a|)

which is continuous by the same type of reasoning with topological groups and the
fact that a 7→ |a| is continuous. Armed with the isomorphism C0

k ×R×>0
∼= Ck, we

can see that every open subgroup G of Ck is a union of sets of the form U × V
where U and V are open subgroups of C0

k and R×>0, respectively. But the only open

subgroup of R×>0 is itself, and C0
k is compact so U has finite index in it. It follows

that the index of G in Ck is the same as the index of U in C0
k and is in particular

finite, as desired. �

With this chain of results about the idèle class group, we’ve caught a glimpse
of what class field theory will later tell us remarkably specific information about.
The open subgroups all have finite index because by the existence theorem, they
are the norm subgroups of finite abelian extensions K/k, whose norm subgroup has
quotient Ck/N(CK) ∼= Gal(K/k) which is finite.

4.2. Idèle classes and generalized ideal classes. The construction of the idèles
of k gives them a natural relationship with the fractional ideals of k. In particular,
by unique factorization a fractional ideal can be described by a choice of integer
valuations at finitely many primes. So we have a well-defined group homomorphism

ψ : Jk → Ik

given by

(av)v 7→
∏
p

pvp(av).

Note that ψ doesn’t depend at all on the archimedean places. It is clearly surjective
by definition of Jk, and its kernel is just the set of elements with arbitrary valuations
at the archimedean places and zero valuation everywhere else, i.e. the open set

kerψ = Jk,S∞ :=
∏

v∈Mk\S∞

Ô×k,v ×
∏
v∈S∞

k×v .

So ψ induces an isomorphism of abelian groups

Lemma 4.15. Jk/Jk,S∞
∼= Ik.
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We will play the game of successively restricting and/or quotienting to see what
isomorphisms we can induce between further quotients of (subgroups) of Jk/Jk,S∞
and ideal groups, eventually arriving at the desired connection between Ck and
I(m)/Pm for admissible moduli m of k.

Lemma 4.16. Jk/k
×Jk,S∞

∼= Ik/Pk.

Proof. We already know the map ψ : Jk → Ik is surjective. It suffices to compute
ψ−1(Pk). We claim that it is equal to k×Jk,S∞ . The inclusion k×Jk,S∞ ⊆ ψ−1(Pk)
is clear (by definition of the p-adic valuations, any α ∈ k× maps under ψ to αOk ∈
Pk; as we saw before, Jk,S∞ maps to the trivial principal ideal 1 ·Ok). On the other
hand, let a ∈ ψ−1(Pk). Then ψ(a) = (α) for some α ∈ k×, and thus ψ(α−1a) = 1.
It follows that α−1a ∈ kerψ = Jk,S∞ , and thus a ∈ k×Jk,S∞ , proving the remaining
inclusion. �

Lemma 4.17. For all sufficiently large finite set S ⊆Mk containing S∞ (with the
size of S depending on k), we have k×Jk,S = Jk.

Proof. If S contains S∞, we know Jk,S ⊇ Jk,S∞ and thus Jk/k
×Jk,S can be iden-

tified with a quotient of the finite group Ik/Pk. We just need to make sure that
for any such S, if k×Jk,S 6= Jk, then by augmenting S to some larger finite set
S′ ⊃ S, we can always get k×Jk,S′ to strictly contain k×Jk,S . It’s a typical theme
that actually thinking about the groups k×Jk,S is too difficult. Instead, just think
about Jk,S′ large enough that k× doesn’t matter.

Suppose there is an idèle a ∈ Jk which is not in k×Jk,S . Then by enlarging
S to include all places where a is not a unit in the valuation ring, we guarantee
that Jk,S′ ) k×Jk,S and thus k×Jk,S′ ) k×Jk,S . Inductively augmenting S and
using the finiteness of Ik/Pk tells us that eventually Jk/k

×Jk,S is trivial and thus
Jk = k×Jk,S for large enough finite S. �

This lemma is a useful consequence which will come up later, but for now we
return to the generalized ideal class group. We just achieved the ideal class group
Ik/Pk as a group of idèle classes. The goal of the next part of this section will be
to achieve I(m)/Pm and its quotient I(m)/PmN(m) as quotients of Ck. This will
allow us to translate between the ideal-theoretic and idèlic statements of class field
theory.

The most obvious first step (one we will need to modify slightly to get things to
work) would be to consider the surjective map Jk(m) → I(m) induced from ψ by
restriction, where Jk(m) is defined by

Definition 4.18. Let Jk(m) denote the subset of idèles a ∈ Jk such that v(av) = 0
whenever v|m0.

All the isomorphisms we find are only algebraic and not topological, since the
generalized ideal class group comes with no natural topology.

Lemma 4.19. ψ induces an isomorphism Jk(m)/Jk,S∞
∼= I(m)

Proof. By Lemma 4.15, the kernel of the surjective map ψ : Jk(m) → I(m) is
Jk(m) ∩ JS∞ . But JS∞ ⊆ Jk(m) by definition, so the kernel is still just JS∞ . �

Lemma 4.20. ψ induces an isomorphism Jk(m)/kmJk,S∞
∼= I(m)/Pm.
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Proof. It suffices to show that ψ−1(Pm) = kmJk,S∞ . The inclusion kmJk,S∞ ⊆
ψ−1(Pm) is obvious. On the other hand, suppose a ∈ Jk(m) such that ψ(a) ∈ Pm.
Then ψ(a) = (α) for some α ∈ km, so ψ(α−1a) = 1, which means α−1a ∈ kerψ =
Jk,S∞ and thus a ∈ kmJk,S∞ as desired. �

To establish I(m)/Pm as a quotient of Jk/k
×, the only thing we can do is consider

the map Jk(m)→ Jk/k
× induced by the inclusion Jk(m)→ Jk.

Lemma 4.21. Jk(m)/k(m) ∼= Jk/k
×.

Proof. It suffices to prove that the induced map ι̃ : Jk(m) → Jk/k
× is surjective

(the kernel of the map is clearly k× ∩ Jk(m) = k(m)). Let a ∈ Jk. By the weak
approximation theorem, there exists α ∈ k× such that∣∣∣∣α− 1

av

∣∣∣∣
v

<
1

|av|v
for all v|m0. Then |αav−1|v < 1 for all such v, from which it follows that αav ∈ Ô×k,v
for all v|m0, i.e. αav ∈ Jk(m). This means [a] = [αav] is in the preimage of ι̃, as
desired. �

The problem now is that there is no obvious way to write I(m)/Pm
∼= Jk(m)/kmJk,S∞

as a quotient of Jk/k
× ∼= Jk(m)/k(m). The trick is to consider Jm instead of J(m).

Definition 4.22. Let Jm be the set of idèles a of k such that av is in the open
set specified by m for all v|m. Specifically, vp(1 − avp) > m(p) for all p|m0 and
v(av) > 0 for all v|m∞.

Lemma 4.23. The inclusion Jm → Jk induces an isomorphism Jm/km → Jk/k
×.

Proof. The proof is essentially the same as that of Lemma 4.21. Since k×∩Jm = km
by definition, it suffices to show the inclusion Jm → Jk induces a surjective map
Jm → Jk/k

×. Let a ∈ Jk, and by weak approximation choose α ∈ k× such that

vp

(
α− 1

avp

)
> m(p)− vp(avp).

for all p|m0 and ∣∣∣∣α− 1

av

∣∣∣∣
v

<
1

|av|v
for all v|m∞. The condition at the archimedean places implies that

vp(αavp − 1) > m(p),

and the condition at the infinite places implies that |αav|v > 0 at all v|m∞. This
means every element of Jk/k

× has a representative in Jm, as desired. �

We also get an analogue to Lemma 4.20. We use the following shorthand:

Definition 4.24. Let Wm be the open subset of Jm given by

Wm =
∏
p|m0

(1 + pm(p)Ôk,v)×
∏
v|m∞

R×>0 ×
∏
v 6÷m

Ô×k,v.

Lemma 4.25. ψ : Jk → Ik induces an isomorphism Jm/Wm
∼= I(m).

Proof. We obviously have ψ(Jm) = I(m). On the other hand, the kernel of the
restriction of ψ to Jm is Jk,S∞ ∩ Jm, which is Wm by definition. �
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Lemma 4.26. ψ : Jk → Ik induces an isomorphism Jm/kmWm
∼= I(m)/Pm.

Proof. It suffices to show that ψ−1(Pm) = kmWm. The inclusion ψ−1(Pm) ⊇ kmWm

is clear from the definitions. On the other hand, let a ∈ Jm such that ψ(a) = (α)
where α ∈ km. The ψ(α−1a) = 1 which means that α−1a ∈ ker(ψ|Jm) = Wm by
the previous lemma. �

Now our situation is much better. We have I(m)/Pm
∼= Jm/kmWm, and Jm/km ∼=

Jk/k
×, so since the second isomorphism is induced by the natural inclusion we have

the desired result:

Lemma 4.27. Jk/k
×Wm

∼= Jm/kmWm
∼= I(m)/Pm.

Proof. The isomorphism Jm/kmWm → I(m)/Pm has already been described. Be-
cause of how the isomorphism Jm/km → Jk/k

× is defined, subgroup Wm ⊆ Jm/km
corresponds under this isomorphism to the subgroup Wm ⊆ J/k×. So when we mod
out by this subgroup we get the desired isomorphism Jm/kmWm → Jk/k

×Wm. In-
deed, if ι is the inclusion Jm → Jk, then ι−1(k×Wm) = k×Wm ∩ Jm = kmWm is
clear. �

Remark 4.28. The isomorphism Jk/k
×Wm

∼= I(m)/Pm offers a new proof of the
finiteness of I(m)/Pm in light of Corollary 4.14.

Remark 4.29. Getting from an element of Jk/k
×Wm to an element of I(m)/Pm

uses the approximation theorem to first pull back to Jm/kmWm. So the ideal class
corresponding to an idèle class without the knowledge of a representative in Jm is
not convenient to describe.

Remark 4.30. Lemma 4.27 gives an expression for I(m)/Pm as a quotient of Ck by
an open subgroup. As a result, the idèlic statement of the existence theorem proves
the existence of a class field corresponding to the ray class group modulo m.

To use the idèles to do class field theory, recall from Theorem 3.18 that we’ll need
to write I(m)/PmN(m) as a quotient of Ck as well. We’ve done this for I(m)/Pm

already, so it suffices to see what N(m) corresponds to under the isomorphism of
Lemma 4.27. The key idea is that if α ∈ K×w for w|v, then

w(Nα) = [K : k]w(α) =
[K : k]

e
= f(w|v),

so the norm of an idèle corresponds to the norm of the corresponding ideal. First,
we go from I(m)/Pm to Jm/kmWm.

Lemma 4.31. Let K/k be a Galois extension of k. Then I(m)/PmN(m) ∼= Jm/kmWmNK/kJK(1,m)
where JK(1,m) is the subgroup of idèles of K consisting of elements whose v-
coordinates are all 1 at v|m.

Proof. The point of the notation JK(1,m) is just that the values at v|m should all
be trivial since the norms on the ideal side of things are only for ideals coprime to
m. It suffices to show that

ψ−1(PmN(m)) = kmWmNK/kJK(1,m).

The inclusion of the right hand side into the left we have already shown for km
and Wm. It’s also obvious for NK/kJK(1,m), since the v-coordinate of any a ∈
NK/kJK(1,m) has v(av) = 0 whenever v|m and f(w|v) divides v(av) for all v. It suf-

fices now to prove the other inclusion. Let a ∈ Jm such that ψ(a) = (α)
∏

p6÷m0
pf(P|p)np ,
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where α ∈ km and the np are arbitrary integers all but finitely many of which are
zero (all norms of fractional ideals of K prime to m are of this form by definition
of the ideal norm). Then

ψ(α−1a) =
∏

p6÷m0

pf(P|p)np .

For each prime p not dividing m and exactly one P|p, define the idèle A ∈ JK(1,m)
to have vP-coordinate equal to an arbitrary element of KP with P-adic valuation
equal to np. At all the other P|p and in fact all other absolute values, take A to
have coordinate 1. Then NK/kA has v-coordinate 1 except for when v = vp for
some p not dividing m. In that case, the p-adic valuation of the vp-coordinate is
f(P|p)np. In particular,

ψ(NK/kA) =
∏

p6÷m0

pf(P|p)np = ψ(α−1a),

which means NK/kA and a differ by an element of kerψ = Wm. As a result,
a ∈ kmWmNK/kJK(1,m) as desired. �

Checking what this corresponds to in Jk/k
× ends up not being very complicated

so long as m is admissible. Recall the definition:

Definition 4.32. m is admissible with respect to K/k if Wm ⊆ NK/kJK .

Lemma 4.33. If m is admissible for K/k, then

Jk/k
×NK/kJK ∼= Jm/kmWmNK/kJK(1,m) ∼= I(m)/Pm.

Proof. It suffices to show that k×NK/kJK ∩ Jm = kmWmNK/kJK(1,m). From
the fact that Wm is admissible, the inclusion of the right hand side into the left
hand is obvious. For the other, we use the fact from the previous lemma that
kmWmNK/kJK(1,m) = ψ−1(PmN(m)). So it suffices to show that

ψ(k×NK/kJK ∩ Jm) ⊆ PmN(m).

Let αNK/ka ∈ k×NK/kJK . By the approximation theorem, choose β ∈ K× so
that β is very close to aw for each w|v with v|m. In particular, recall that for each
v ∈Mk the map

∏
w|vK

×
w → k×v given by taking products of norms is continuous.

So by taking β sufficiently close to aw for each w|v, we can guarantee that |NK/kβ−
NK/ka|v < min

(
Np−m(p)

|α|v , |NK/ka|v
)

when v|m0, and |NK/kβ−NK/ka|v < |NK/ka|v
when v|m∞.

Then for each p-adic v|m0, we have |αNK/kβ − αNK/ka|v < Np−m(p), i.e.

(4.34) vp(αNK/kβ − αNK/ka) > m(p).

Similarly, for v|m0 our construction of β guarantees that

(4.35) |αNK/kβ − αNK/ka|v < |αNK/ka|v.
It follows from (4.34), (4.35) and the fact that αNK/ka ∈ Jm that αNK/kβ ∈ km.
It also follows (this time from |NK/kβ − NK/ka|p < |NK/ka|p) that vp(NK/kβ) =

vp(NK/kavp) for all p|m0, so that (NK/kβ
−1)ψ(NK/ka) = ψ(NK/kβ

−1a) ∈ N(m).
As a result,

ψ(αNK/ka) = ψ(αNK/kβ)ψ(NK/kβ
−1a) ∈ PmN(m)

as desired. �
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Remark 4.36. As usual, our isomorphism between the relevant group I(m)/PmN(m)
from class field theory and the quotient Jk/k

×NK/kJK depends on the approxima-
tion theorem to get from an idèle class to an ideal class. So when an idèle class is
not already represented by an element of Jm, it isn’t immediately evident what the
corresponding ideal class is.

Remark 4.37. Lemma 4.33 is particularly convenient because it allows one to state
the results of class field theory without the use of a specific modulus of K. It is
valid as long as m is admissible, but in fact this condition is true for many values of
m. We will show in the next section using group cohomology that if v is unramified

in K, then Ô×k,v = NK/kÔ×k,w. So in fact m is admissible if and only if the ramified

places v ∈ Mk have the property that 1 + pm(p)Ôk,v ⊆ NKw/kvÔ
×
K,w when v is

p-adic and R×>0 ⊆ NKw/kvK
×
w when v is archimedean. Recall from Lemma 4.7

and the remarks following it that NKw/kvK
×
w is an open subset of k×v containing

1. So each of these norm subgroups contain an open ball around 1. For each
ramified prime p|dK/k, this means there is a minimal nonnegative integer m0(p)
[for all we know at the moment it could still be zero and in fact all the units are

still local norms] such that 1+pm(p)Ôk,v ⊆ NKw/kvÔ
×
K,w. In the archimedean case,

if v ramifies then the norms are just the norms from C× to R×, in other words
the positive real numbers. As a result, we have a minimal modulus of k which is
admissible for K/k. It is clear that the moduli of k which are admissible for K/k
are precisely those which are divisible by the minimal one. So our isomorphism
I(m)/PmN(m) ∼= Jk/k

×NK/kJK actually holds for a wide class of moduli m of k.
The important part is that each abelian extension K/k has a well-defined Artin
reciprocity isomorphism from a group of idèle classes, due to the existence of an
admissible modulus (by Lemma 4.7). So, proving the reciprocity isomorphism for
any admissible modulus is all we will actually want to do.

4.3. More applications.

Lemma 4.38. k× is discrete (and therefore closed) in Jk.

Proof. Since k× ⊂ Jk is itself a subgroup, it suffices to show that 1 is isolated in
Jk as an element of k×. Taking advantage of the ability to make arbitrarily small
open sets at finitely many valuations, we claim that no element of k× other than 1
can be found in the open set

U =
∏
v∈S∞

B1(1)×
∏

v∈Mk\S∞

Ô×k,v,

where S∞ denotes the set of infinite places of k. Recall the product formula for
normalized valuations: if | · |v is the normalized absolute value corresponding to the
place v, and α ∈ k×, then

∏
v |α|v = 1. If α 6= 1, then α− 1 ∈ k×, so∏

v

|α− 1|v = 1.

This means it is impossible for α to be in U , since that would require |α−1|v < 1 at

all archimedean v, and |α− 1|v ≤ 1 at all nonarchimedean v, since α, 1 ∈ Ôk,v. �

I don’t think I actually need this lemma. Maybe later I’ll add a short note on how
to prove the general version of the unit theorem on S-units using the compactness
theorem we proved above, as well as the finiteness of the class group.
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5. Group Cohomology

Let K/k be a Galois extension of number fields and let w|v be places of them.
Then Gal(K/k) In the previous sections, we saw three quotient groups which we
saw were all related to each other. We also claimed they were crucial to the main
statements of class field theory. They were as follows:

• k×v /NKw/kv (K×w )

• Ô×k,v/NKw/kvÔ
×
K,w

• Ck/NK/kCK .

It is therefore useful to consider the general case of an abelian group A (in our case
some object coming from K) along with a group G with an action G → Aut(A)
(in our case G = Gal(K/k)). We are interested in the quotient of AG, the set of
elements of A fixed by G, by the subgroup of it given by the elements of the form∑
σ∈G σ(a) for a ∈ A. We switch to additive notation for the group A even though

in practice for class field theory it will always be multiplicative.

5.1. Generalities on group cohomology and Tate cohomology. 20 Let G be
a finite group.

Definition 5.1. A G-module (M,ρ) is an abelian group M together with a group
homomorphism ρ : G → End(M). As usual we suppress ρ and use g ·m or gm to
denote the action of g ∈ G on an m ∈M instead of ρ(g)m.

We now describe the construction of a chain complex based on G and M . For
each n ≥ 0, let Bn be the free Z[G]-module on Gn (N.B. the Z[G]-modules are the
same as G-modules). In particular, Bn is the set of formal Z[G]-linear combinations∑

(g1,...,gn)∈Gn

a(g1,...,gn)e(g1,...,gn)

where the eg are the basis elements and the ag are elements of Z[G]. We define
maps dn : Bn → Bn−1 on the basis elements by

dn(e(g1,...,gn)) = g1e(g2,...,gn)+(−1)ne(g1,...,gn−1)+

n−1∑
i=1

(−1)ie(g1,...,gi−1,gigi+1,gi+2,...,gn).

One can easily check that dn ◦ dn+1 = 0 for all n ≥ 0. In fact, it is true (but
harder to show) that the sequence · · · → B2 → B1 → B0 → Z → 0 is exact
(the map B0 = Z[G] → Z is just defined by taking the sum of the coefficients).
So taking homology or cohomology now would be useless (it also wouldn’t involve
M at all). Instead, we apply the contravariant functor HomZ[G](–,M) to get the
induced cochain complex

0→ HomZ[G](B0,M)
∂1

→ HomZ[G](B1,M)
∂2

→ · · · .

The fact that this is a valid cochain complex follows directly from the functoriality
of HomZ[G](–,M). Now we can take cohomology:

Definition 5.2. Let i ≥ 0. The i-th cohomology group is

Hi(G,M) := ker(∂i+1)/im(∂i).

20later I should reframe this in terms of projective resolutions and derived functors
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The only groups we will actually have a need for are H0 and H1 (though we’ll
have to make a modification to the definition to make it work out).

Remark 5.3. It will be more convenient to view Bn as the set of functions from Gn

to M (the coefficients of an element of the free Z[G]-module on Gn just tell you
where to send the elements of Gn).

Example 5.4. Let M be a G-module. Then B0 = Z[G], B1 is the free Z[G]-module
on G, and d1 : B1 → B0 is given by

eg 7→ g − 1.

So the induced map ∂1 : Hom(B0,M) → Hom(B1,M) is given by f 7→ f ◦ d1. Of
course, a homomorphism from Z[G] to M is determined by where it sends 1, so
Hom(B0,M) ∼= M . Then ∂1 takes the element of Hom(B0,M) defined by g 7→ g ·m
to the element of Hom(B1,M) defined on the basis elements by

eg 7→ f(g − 1) = gm−m.
The map eg 7→ gm −m ∈ Hom(B1,M) is identically zero if and only gm = m for
all g ∈ G. So the zeroth cohomology group is simply

H0(G,M) = ker ∂1 = {m ∈M |gm = m for all m ∈M} =: MG.

Example 5.5. The other cohomology group which will be important for us is H1.
From the previous example, the image of ∂1 is the set of all elements of Hom(B1,M)
given by eg 7→ gm−m for some m ∈M . Now d2 : B2 → B1 is given by

eg1,g2 7→ g1eg2 + eg1 − eg1g2 .
So ∂2 : Hom(B1,M)→ Hom(B2,M), given by f 7→ f ◦ d2, has kernel equal to the
set of elements h ∈ Hom(B1,M) such that h ◦ d1 is identically zero on B2. This
function acts on the basis elements by

e(g1,g2) 7→ h(g1eg2 + eg1 − eg1g2).

So h ∈ ker ∂2 if and only if h(g1eg2 +eg1−eg1g2) =, i.e. if h(eg1g2) = g1h(eg2)+h(g1).
So according to the previous remark, H1(G,M) = (ker ∂2)/(im∂1) can be viewed
as the G-module of “crossed homomorphisms”, namely the functions h : G → M
with the property that h(g1g2) = g1h(g2) +h(g1), modded out by those of the form
h(g) = gm−m.

Now we examine the functoriality of the Hi. First of all, taking the cochain
complex 0→ Hom(B0,M)→ Hom(B1,M)→ · · · is functorial in M . In particular,
let M1,M2 be G-modules with a homomorphism f : M1 → M2. Then we have
a map of chain complexes given by taking Hom(Bi,M1) → Hom(Bi,M2) in the
way described by the vertical maps in Figure 1. It’s clear from the description of

0 Hom(B0,M1) Hom(B1,M1) · · ·

0 Hom(B0,M2) Hom(B1,M2) · · ·

h7→h◦d0

h7→f◦h h7→f◦h

h7→h◦d0

Figure 1.

the maps that the induced map is a bona fide map of chain complex (the diagram
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clearly commutes), and that taking the cochain complex is a covariant functor from
the category of G-modules to the category of cochain complexes of G-modules. It
remains to show that the induced maps Hom(Bi,M1)→ Hom(Bi,M2) induce maps
of cohomology groups. Once this is shown, the functoriality is obvious because of
how the maps are defined on the cohomology classes (in particular we just need to
show the induced maps are well-defined). This follows easily from the commuta-
tivity of the diagram in Figure 1. If h ∈ ker(∂i : Hom(Bi,M1)→ Hom(Bi+1,M1)),
then h ◦ di : Hom(Bi+1,M1) is identically zero. The vertical map of cochain com-
plexes takes h to f ◦ h ∈ Hom(Bi,M2). The coboundary map on the bottom
part of the diagram, namely ∂i : Hom(Bi,M2) → Hom(Bi+1,M2), takes this to
f ◦ h ◦ di = f ◦ (h ◦ di), which is identically zero in Hom(Bi+1,M2) because h ◦ di
is identically zero in Hom(Bi+1,M1). So this map of cochain complexes actually
sends ker ∂i upstairs to ker ∂i downstairs. Finally, if h ∈ im(∂i : Hom(Bi,M1) →
Hom(Bi+1,M1)), then we have h = h′ ◦ di for some h′ ∈ Hom(Bi,M1). And the
image of h under the vertical map Hom(Bi+1,M1) → Hom(Bi+1,M2) is therefore
f ◦h = f ◦(h′ ◦di) = (f ◦h′)◦di which is in the image of the downstairs coboundary
map ∂i : Hom(Bi,M2)→ Hom(Bi+1,M2). So we have shown that the induced map
of cochain complexes restricts to a map

ker(∂i+1 : Hom(Bi+1,M1)→ Hom(Bi+2,M1))→ ker(∂i+1 : Hom(Bi+1,M2)→ Hom(Bi+2,M2))

and to a map

im(∂i : Hom(Bi,M1)→ Hom(Bi+1,M1))→ im(∂i : Hom(Bi,M2)→ Hom(Bi+1,M2)),

hence (functorially) inducing the desired map Hi(M1) → Hi(M2). What we have
just verified is actually just the easy part of the snake lemma. Let 0 → M1 →
M2 → M3 → 0 be a short exact sequence of G-modules. Then for each i ≥ 0 we
get an induced sequence

0→ Hom(Bi,M1)→ Hom(Bi,M2)→ Hom(Bi,M3)→ 0.

Since Bi is free, the usual flatness arguments apply (or one can just check di-
rectly by pulling things back at the basis elements) to show that this sequence is
also exact. Of course, there are also the coboundary maps for each Mi, namely
∂ij : Hom(Bi,Mj) → Hom(Bi+1,Mj). Expanding and rotating the diagram in
Figure 1 gives a commutative diagram with exact rows and columns, shown in
Figure 2. The easy part of the snake lemma gives us the maps between cokernels
and between kernels. Notice that since im(∂ij) ⊆ ker(∂i+1

j ), we get an induced

map ∂i+1
j : coker(∂ij) → ker(∂i+2

j ). Its kernel is just the set of projections of

elements of Hom(Bi+1,M1) in the kernel of ∂i+1
j . In other words, its kernel is

ker(∂i+1
j )/im(∂ij) = Hi(G,Mj). Similarly, the cokernel is ker(∂i+2

j )/im(∂i+1
j ) =

Hi+1(G,Mj). So we have another diagram, the one shown in Figure 3. The def-
initions of the horizontal maps as restrictions or quotients of those in Figure 2
means that the diagram in Figure 3 commutes. So we can apply the snake lemma
to recover the same natural maps Hi(G,M1) → Hi(G,M2) → Hi(G,M3) we con-
structed by hand earlier. More importantly, the nontrivial part of the snake lemma
(applied for each i) gives a long exact sequence

0→ H0(G,M1)→ H0(G,M2)→ H0(G,M3)→ H1(G,M1)→ H1(G,M2)→ H1(G,M3)→ H2(G,M1)→ · · · .
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0 0 0

0 ker(∂i1) ker(∂i2) ker(∂i3)

0 Hom(Bi,M1) Hom(Bi,M2) Hom(Bi,M3) 0

0 Hom(Bi+1,M1) Hom(Bi+1,M2) Hom(Bi+1,M3) 0

coker(∂i1) coker(∂i2) coker(∂i3) 0

0 0 0

∂i
1 ∂i

2 ∂i
3

Figure 2.

0 0 0

Hi(G,M1) Hi(G,M2) Hi(G,M3)

coker(∂i1) coker(∂i2) coker(∂i3) 0

0 ker(∂i+2
1 ) ker(∂i+2

2 ) ker(∂i+2
3 )

Hi+1(G,M1) Hi+1(G,M2) Hi+2(G,M3)

0 0 0

∂i+1
1 ∂i+1

2 ∂i+1
3

Figure 3.

This long exact sequence will figure into our analysis of the Herbrand quotient, but
only once we develop a slightly different cohomology theory, namely Tate cohomol-
ogy. We do this now.

Recall that we had H0(G,M) = MG, namely the set of elements of M fixed
by G. For the purposes of computing norm indices, we really are interested in
something more like MG/TrGM , where TrGm :=

∑
g∈G gm for any m ∈M .21

Definition 5.6. The Tate cohomology groups of (G,M) are defined by Ĥ0(G,M) :=

MG/TrGM , and Ĥi(G,M) := Hi(G,M) for all i ≥ 1.

21I should add material on homology and the full definition of Tate cohomology and homology.
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It’s fairly straightforward to get a long exact sequence for Tate cohomology, since
it only depends on adapting the proof for the part of the sequence near H0.

Theorem 5.7. Let 0 → M1 → M2 → M3 → 0 be a short exact sequence of
G-modules. This induces a long exact sequence of Tate cohomology groups

Ĥ0(G,M1)→ Ĥ0(G,M2)→ Ĥ0(G,M3)→ Ĥ1(G,M1)→ · · ·
Proof. Because the Tate cohomology groups coincide with the usual cohomology
groups for i ≥ 1, we can define the part of the long exact sequence starting at
Ĥ1(G,M1) in the same way. Recall that H0(G,M) = MG. First, we explicitly
write down the maps in the part of the usual long exact sequence given by

MG
1 →MG

2 →MG
3 → H1(G,M1).

Recall that the mapMG
j →MG

j+1 is induced by restriction from the map Hom(B0,Mj)→
Hom(B0,Mj+1) induced by the map ϕ : Mj → Mj+1 we started out with. In par-
ticular, it is defined by taking the homomorphism g 7→ gm to the homomorphism
ϕ ◦ (g 7→ gm) = g 7→ gϕ(m). Via the isomorphism Hom(B0,Mj) ∼= Mj , this means
the maps MG

j →MG
j+1 are just defined by m 7→ ϕ(m).

Let m ∈ TrGMj , so that m =
∑
g∈G gm

′ for some m′ ∈ Mj . Then ϕ(m) =∑
g∈G gϕ(m′), which means ϕ(TrGMj) ⊆ TrGMj+1. In particular, we have induced

maps

MG
1 /TrGM1

α̃→MG
2 /TrGM2

β̃→MG
3 /TrGM3.

Now we need to check that this is exact at MG
2 /TrGM2. The fact that imα̃ ⊆ ker β̃

is clear from the exactness of MG
1 →MG

2 →MG
3 . On the other hand, let m2 ∈MG

2

such that β̃([m2]) = 0. Then

β(m2) =
∑
g∈G

gm3

for some m3 ∈M3. By the exactness of the original sequence, there exists m′2 ∈M2

such that β(m′2) = m3. Taking traces, we have

β

∑
g∈G

gm′2

 = β(m2) = TrGm3.

So
∑
g∈G gm

′
2 and m2 differ by an element of kerβ = imα, namely α(m1). Both∑

g∈G gm
′
2 andm2 are invariant under the action ofG, so α(m1) is as well. It follows

that m1 − gm1 ∈ kerα for all g ∈ G. But α is injective, so actually m1 ∈ MG
1 .

This proves that [m1] ∈MG
1 /TrGM1, and thus α̃([m1]) = [m2], proving the second

desired inclusion.
It remains to define the map MG

3 /TrGM3 → H1(G,M1), and show exactness at
MG

3 /TrGM3 and H1(G,M1). Consider the exact sequence of cohomology groups

MG
2

β→MG
3

γ→→ H1(G,M1).

Consider an arbitrary element
∑
g∈G gm3 ∈ TrGM3 for m3 ∈ M3. If we show

it is always in ker γ, then we can construct the desired map. This is equivalent
to showing it is in imβ. By the exactness of the original sequence, there is some
m2 ∈M2 such that β(m2) = m3. Then β(TrGm2) = TrGm3. Since TrGm2 ∈MG

2 ,
this means TrGM3 ⊆ ker γ, and we have an induced map

γ̃ : MG
3 /TrGM3 → H1(G,M1).
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The rest of the exactness is easy since we didn’t mod the H1’s out by anything.
For any [m2] ∈MG

2 /TrGM2, we have

γ̃(β̃([m2])) = γ(β(m2)) = 0.

And if [m3] ∈ ker γ̃, then actually γ(m3) = 0 so m3 ∈ im(β) and thus [m3] ∈ imβ̃.
This proves exactness at MG

3 /TrGM3. For the exact same reason, our sequence

MG
1 /TrGM1

α̃→MG
2 /TrGM2

β̃→MG
3 /TrGM3

γ̃→ H1(G,M1)→ H1(G,M2)→ · · ·

is exact at H1(G,M1) as well. The rest of the exactness is induced by the exactness
of the long exact sequence for cohomology. �

5.2. Cyclic groups and the Herbrand quotient. For an arbitrary group G,
only H0 and Ĥ0 have any clear arithmetic meaning. But when G is cyclic of
finite order, Tate cohomology becomes much nicer. For example, recall that for an
arbitrary finite group G and G-module M , we have Ĥ0(G,M) = MG/TrGM , but
H1 only has a description in terms of “crossed homomorphisms.” In the cyclic case
it’s easy to write down H1 explicitly.

Example 5.8. Let G = 〈σ〉 be a finite cyclic group. If f : G → M is a crossed
homomorphism, then it must satisfy

f(σn) = σn−1f(σ) + f(σn−1).

By induction, it follows that for all n ≥ 1,

f(σn) = (1 + · · ·+ σn−1)f(σ).

So f is determined by where it sends σ. Moreover, we have

f(σ) = f(σ|G|+1) = (1 + · · ·+ σ|G|)f(σ),

so f must also satisfy f(σ) ∈ ker TrG =: MTrG . Finally, for any m ∈MTrG , we can
define the map f : G→M defined by f(σn) = (1 + · · ·+ σn−1)m for 1 ≤ n ≤ |G|.
Then since TrGm = 0, it’s actually true that f(σn) = (1 + · · · + σn−1)m for all
n ≥ 1. So for any positive integers x, y we have

f(σxσy) = (1 + · · ·+ σx+y−1)f(σ) = σxf(σy) + f(σx),

making f a crossed homomorphism. This means that the group of crossed homo-
morphisms is isomorphic to MTrG . The principal crossed homomorphisms g 7→
gm−m correspond under this isomorphism to the elements of the form (σ − 1)m
for m ∈ M , since an element m of MTrG corresponds to a principal crossed homo-
morphism if and only if f(σ) = σn − n for some n ∈ M , which is equivalent to
m ∈ (σ − 1)M . We therefore have a natural identification

H1(G,M) ∼= MTrG/((1− σ)M).

It turns out that (whenG is finite and cyclic) the Tate cohomology groups contain
no information other than H1 and H0. In particular, the long exact sequence of
Tate cohomology groups loops back around after H1.

Theorem 5.9. Let G be a finite cyclic group. Then for any integer n ≥ 0, we have
Ĥ2n(G,M) ∼= Ĥ0(G,M), and Ĥ2n+1(G,M) ∼= Ĥ1(G,M).
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Proof. The key fact is the one from homological algebra which says that we can
use any free resolution of Z to compute Hn.22. In particular, consider the sequence

· · · TrG→ Z[G]
σ−1→ Z[G]

TrG→ Z[G]
σ−1→ Z[G]→ Z→ 0,

where σ is a fixed generator for G and the map Z[G] → Z is just by adding the
coordinates. We need to check that ker(σ − 1) = imTrG, ker TrG = im(σ − 1), and
ker(f : Z[G]→ Z) = im(σ−1). The last fact is easy, since if σ = id then σg−g = 0,
and otherwise f(σg − g) = 0; the other inclusion is because if

∑
anσ

n ∈ Z[G]
has

∑
an = 0, then

∑
anσ

n = (σ − 1)x is equivalent to specifying the differences
between consecutive bn’s for which x =

∑
bnσ

n. The inclusions imTrG ⊆ ker(σ−1)
and im(σ − 1) ⊆ ker(TrG) are both obvious, since if x ∈ Z[G], then

(σ − 1)TrGx = TrGx− TrGx = 0

and

TrG(σx− x) = TrGx− TrG = 0.

The remaining two are also not so hard to do the restrictiveness of G being finite and
cyclic. If x ∈ ker(σ−1), then this forces an equality between each of the consecutive
coefficients of x, i.e. x is of the form

∑
aσn. In other words, x = TrG(a). This

proves ker(σ − 1) ⊆ im(TrG). Finally, one of our previous arguments shows that
ker(TrG) ⊆ im(σ−1), as having trivial trace means you can be equal to σx−x just
by specifying that the difference between consecutive coordinates of x differ by the
prescribed coordinate of the given element of ker(TrG).

Now that we know this is a bona fide free resolution, we can use it to compute
cohomology groups. Taking homs, we get the cochain complex

0→ Hom(Z[G],M)→ Hom(Z[G],M)→ · · ·

where the maps alternate between h 7→ h ◦ (σ − 1) and h 7→ h ◦TrG. As predicted,
we get H0(G,M) = ker(h 7→ h ◦ (σ − 1)). Recall that Hom(Z[G],M) is identified
with M because of how an element f ∈ Hom(Z[G],M) is determined by f(1). So
as a subset of M , we can verify that as before23

H0(G,M) = {m ∈M : (στ)m = τm for all τ ∈ G} = MG.

We can also see that

ker(∂2) = {m ∈M :
∑

σnτm = 0 for all τ ∈ G} = MTrG ,

and

im(∂1) = {σm−m : m ∈M} = (σ − 1)M.

By the periodicity of the definitions of the maps, we get the part of the statement
of the theorem which says that the odd cohomology groups are all isomorphic. In
particular, they are all

H2n+1(G,M) ∼= MTrG/((σ − 1)M).

For the even ones, we see that

ker(∂3) = MG

22I should add an appendix including all the homological algebra we need
23Though we don’t have to, since this is guaranteed to agree with the old definition of group
cohomology.
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since ∂3 = ∂1. For ∂2, note that ∂2(m) takes 1 to (TrG1)m = TrGm, so

im(∂2) = TrGM.

It follows that
H2n(G,M) ∼= MG/TrGM

for all n ≥ 1, as desired. In particular,

Ĥ2n(G,M) ∼= MG/TrGM

for all n ≥ 0. �

So the only two nonisomorphic Tate cohomology groups are Ĥ0(G,M) and

Ĥ1(G,M). Though both of these are often difficult to compute, there’s another
quantity which tends to be simpler:

Definition 5.10. Let M be a G-module. The corresponding Herbrand quotient is

Q(G,M) := |Ĥ0(G,M)|/|Ĥ1(G,M)|.

Example 5.11. Let M = Z with the trivial action of the finite cyclic group G.
Then MG = M and TrG is multiplication by |G|. So Ĥ0(G,Z) = Z/|G|Z and

Ĥ1(G,Z) = 0, which means Q(G,Z) = |G|.

Note that the isomorphisms between cohomology groups given by Theorem 5.9
have the property that (for example) the induced map Ĥ2(G,M1)→ Ĥ2(G,M2) for

f : M1 →M2 corresponds under the isomorphisms to the induced map Ĥ0(G,M1)→
Ĥ0(G,M2). This is due to the formal definition of Ĥ0 and the definitions of the
induced maps. As a result, if 0→M1 →M2 →M3 → 0 is a short exact sequence of
G-modules, the long exact sequence for Tate cohomology (see Theorem 5.7) loops
around to the “exact hexagon”24, as shown in Figure 4. The Herbrand quotient is

Ĥ0(G,M1) Ĥ0(G,M2) Ĥ0(G,M3)

Ĥ1(G,M3) Ĥ1(G,M2) Ĥ1(G,M1)

Figure 4.

easier to deal with than even the sizes of the individual cohomology groups because
of the following fact, which Lang refers to as the Q-machine.

Corollary 5.12. Let 0 → M1 → M2 → M3 → 0 be a short exact sequence of
G-modules. Then

Q(G,M3)Q(G,M1) = Q(G,M2)

as long as any two of the three quotients are defined.

Proof. We use the exactness of the exact hexagon. If two of the quotients are
defined, then each possibly infinite group is stuck between two finite groups in an
exact sequence and is therefore finite. So we may assume all the cohomology groups
are finite.

24I don’t draw it as a hexagon because it doesn’t make sense to do that. The important thing is
that it has 2 sides, coming from the two periods of the long exact sequence, not 6.
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For all i ∈ Z/6Z, let ki denote the size of the kernel of the i-th map in the

hexagon (order them clockwise starting at Ĥ0(G,M1) → Ĥ0(G,M2) when i = 0),
and let mi denote the size of the image. The exactness of the hexagon means that
ki = mi−1 for all i. As a result,

k0m0

k3m3

k2m2

k5m5
=
k1m1

k4m4
,

which yields the desired

|Ĥ0(G,M1)|
|Ĥ1(G,M1)|

|Ĥ0(G,M3)|
|Ĥ1(G,M3)|

=
|Ĥ0(G,M2)|
|Ĥ1(G,M2)|

by the first isomorphism theorem. �

Lemma 5.13. If M is finite, then Q(G,M) = 1.

Proof. Consider the map of abelian groups f : M → (1 − σ)M given by m 7→
(1 − σ)m. Note that an element of M is fixed by G if and only if it is fixed by
σ, i.e. if it is in the kernel of f . So f is surjective with kernel MG, and we have
[M : MG] = |(1− σ)M |. Similarly, [M : MTrG ] = |TrGM |. Then the fact that

|M | = [M : MG][MG : TrGM ]|TrGM | = [M : MTrG ][MTrG : (1− σ)M ]|(1− σ)M |

implies that [MG : TrGM ] = [MTrG : (1− σ)M ] as desired. �

This is all the general machinery we will need to deal with norm subgroups of
cyclic extensions of local and global fields. For the idèles, recall that the Galois
action on JK permutes the local factors corresponding to w|v transitively. So if
we restrict to the valuations lying over a single v ∈ Mk, we are in the following
situation:

Definition 5.14. AG-moduleM , along with a choice of decomposition into abelian
groups M =

∏n
i=1Mi, is semilocal if G permutes the factors Mi transitively.

Definition 5.15. If
∏n
i=1Mi is a semilocal G-module, then for each i ≤ n we have

a decomposition group Di defined to be the subgroup of G consisting of all elements
taking Mi to Mi. Note that Mi is a Di-module.

In the remainder of this section, we will show that the Tate cohomology groups
(and thus the Herbrand quotient) can be computed for (G,M) or for any (Di,Mi)
without changing the answer.

Lemma 5.16. Let M =
∏n
i=1Mi be a semilocal G-module. Then Ĥ0(G,M) ∼=

Ĥ0(Di,Mi).

Proof. Let g ∈ G be such that g(Mi) = Mj . Such an element of G is guaranteed to
exist since M is semilocal. Then if g′ ∈ G such that g′(Mi) = Mj , we must actually
have g−1 ◦ g′(Mi) = Mi, so g−1g′ ∈ Di. In particular, every element of G taking
Mi to Mj is of the form g ◦ σ where g is the fixed element of G from before and σ
is some element of Di. This is just the decomposition of G into left cosets of Di.
The coset gDi, where g(Mi) = Mj , is equal to the set of elements of G sending Mi

to Mj .
Fix 1 ≤ i ≤ n. Let m =

∑n
j=1mj ∈ MG. The fact that m is fixed by all of

G means that if gj(Mi) = Mj , every element of gjDi must take mi 7→ mj . So
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mj = gj(σmi) for all σ ∈ Di. The action of gj is an automorphism of M , so this

means mi ∈MDi
i . Conversely, an element of the form

n∑
j=1

gjmi

where mi ∈ Mi and gj(Mi) = Mj is clearly fixed by G, since the cosets of Di

are permuted by multiplying by an element of G. This means MG is exactly the
set of such elements

∑n
j=1 gjmi. The important thing is that such an element

is uniquely determined by the choice of mi ∈ MDi
i , so at least the projection

gives an isomorphism MG ∼= MDi
i . Finally, let mi ∈ Mi and consider its trace

m′i =
∑
σ∈Di

σmi ∈MDi
i . This pulls back uniquely under π to the element

n∑
j=1

gj(m
′
i) =

n∑
j=1

gj
∑
σ∈Di

σmi =

n∑
j=1

∑
σ∈Di

gjσmi = TrG(mi).

So every element of TrDi
Mi is the Mi-coordinate of an element of TrGM . Similarly,

if m =
∑n
j=1mj ∈M , its trace is

∑n
j=1

∑n
k=1

∑
σ∈Dj

gkσmj where gk is chosen so

that gk(Mj) = Mk. The Mi-coordinate of that trace is

n∑
j=1

∑
σ∈Dj

giσmj =

n∑
j=1

∑
σ∈Di

gig
−1
i σgimj =

n∑
j=1

∑
σ∈Di

σgimj = TrDi

n∑
j=1

gimj ∈ TrDi
Mi.

So the isomorphism π : MG → MDi
i restricts to a bijection TrGM → TrDiMi and

thus an isomorphism Ĥ0(G,M) ∼= Ĥ0(Di,Mi). �

Lemma 5.17. 25 Let M =
∏n
i=1Mi be a semilocal G-module. Then Ĥ1(G,M) ∼=

Ĥ1(Di,Mi).

Proof. For each 1 ≤ j ≤ n, choose gi,j ∈ G such that gi,j(Mi) = Mj . Set gj,k :=

gi,kg
−1
i,j for each 1 ≤ j, k ≤ n so that gj,kgi,j = gi,k. Consider an arbitrary element

m =
∑n
j=1mj ∈ M . Then we can write mj = gi,j(m

(j)
i ) where m

(j)
i ∈ Mi.

25in fact this lemma, like the previous one, is true even if G is not cyclic. Then you need to write
H1 as a quotient by IGM instead of (1− σ)M as in this special case. The proof is then identical.
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Therefore,

TrGm =
∑
g∈G

n∑
j=1

ggi,j(m
(j)
i )

=

n∑
j=1

∑
σ∈Dj

n∑
k=1

gj,kσgi,j(m
(j)
i )

=

n∑
j=1

∑
σ∈Di

n∑
k=1

gj,kgi,jσg
−1
i,j gi,j(m

(j)
i )

=

n∑
j=1

n∑
k=1

gj,kgi,jTrDi(m
(j)
i )

=

n∑
k=1

gi,kTrDi

 n∑
j=1

m
(j)
i

 .

So we have decomposed TrGm into its Mk-components, and TrGm = 0 if and only if

TrDi

(∑n
j=1m

(j)
i

)
= 0. This means we have a well-defined26 group homomorphism

ϕ : MTrG → (Mi)TrDi
given by m 7→

∑n
j=1m

(j)
i . The map ϕ is clearly surjective

(mi ∈ (Mi)TrDi
has preimage mi for example). Let τ be a generator for G and τi

a generator for Di. If τ(Mj) = Mτ (j), for each j there is a unique στ(j) ∈ Di such
that

τgi,j = gi,τ(j)στ(j).

Then

(1− τ)m =

n∑
j=1

gi,jm
(j)
i −

n∑
j=1

τgi,jm
(j)
i

=

n∑
j=1

gi,jm
(j)
i −

n∑
j=1

gi,τ(j)στ(j)m
(j)
i

=

n∑
j=1

gi,jm
(j)
i −

n∑
j=1

gi,jσjm
(σ−1j)
i

=

n∑
j=1

gi,j(m
(j)
i − σjm

(σ−1j)
i ).

Therefore,

ϕ((1− τ)m) =

n∑
j=1

m
(j)
i − σjm

(σ−1j)
i ∈ (1− τi)Mi

since each summand is in the subgroup (1−τi)Mi. As a result ϕ induces a surjective
map ϕ̃ : MTrG/((1−τ)M)→ (Mi)TrDi

/((1−τi)Mi). It remains to show injectivity.

26Well-defined up to a choice of gi,j ’s.
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Suppose that [m] =
[∑n

j=1 gi,jm
(j)
i

]
∈ ker ϕ̃. Then

n∑
j=1

m
(j)
i ∈ (1− τi)Mi ⊆ (1− τ)M,

which means

[m] =

m− n∑
j=1

m
(j)
i

 =

 n∑
j=1

gi,jm
(j)
i −m

(j)
i

 = 0,

as desired. �

5.3. Some norm indices. Let K/k be a Galois extension and w|v a choice of
nonarchimedean valuations. In the previous sections we used two facts about norm
indices:

• [k×v : NKw/Kv
K×w ], [Ô×k,v : NKw/kvÔ

×
K,w] <∞.27

• If v is unramified, then Ô×k,v = NKw/kvÔ
×
K,w.

We will prove both of these by explicitly computing the indices in the cyclic case,
using the tools of group cohomology from the previous section. To apply that
theory, notice that the action of Gal(Kw/kv) on Kw makes K×w a Gal(Kw/kv)-

module restricting to the Gal(Kw/kv)-module Ô×K,w. Translating between additive

and multiplicative notation, TrGal(Kw/kv) stands forNKw/kv . SinceKw/kv is Galois,

we have (K×w )Gal(Kw/kv) = k×v , and (Ô×K,w)Gal(Kw/kv) = Ô×k,v. Suppose Gal(Kw/kv)
is cyclic with generator τ . From the previous section, we have

Ĥ0(Gal(Kw/kv),K
×
w ) = k×v /NKw/kvK

×
w

Ĥ0(Gal(Kw/kv), Ô×K,w) = Ô×k,v/NKw/kvÔ
×
K,w

Ĥ1(Gal(Kw/kv),K
×
w ) = {x ∈ K×w : NKw/kvx = 1}/{x/τx : x ∈ K×w }

Ĥ1(Gal(Kw/kv), Ô×K,w) = {x ∈ Ô×K,w : NKw/kvx = 1}/{x/τx : x ∈ Ô×K,w}
Hilbert’s theorem 90 (just the classical version for cyclic Galois groups) says that

Ĥ1(Gal(Kw/kv),K
×
w ) = 1. This means that we may compute the desired norm

index for k×v by computing the Herbrand quotient Q(Gal(Kw/kv),K
×
w ). To do

that it will be useful to know the Herbrand quotient for the units:

Lemma 5.18. If Kw/kv is cyclic, then Q(Gal(Kw/kv), Ô×K,w) = 1.

Proof. Let B be an open Gal(Kw/kv)-submodule of Ô×K,w. By the compactness of

this unit group, we know |Ô×K,w/B| <∞. Using Corollary 5.12,

Q(Gal(Kw/kv), B)Q(Gal(Kw/kv), Ô×K,w/B) = Q(Gal(Kw/kv), Ô×K,w)

so by Lemma 5.13 we have

Q(Gal(Kw/kv), B) = Q(Gal(Kw/kv), Ô×K,w).

In particular it suffices to compute the Herbrand quotient of any open Gal(Kw/Kv)-

submodule of Q(Gal(Kw/kv), Ô×K,w). To do this, we suppose v = vp and use the
p-adic logarithm along with the cohomology theory of semilocal G-modules. By the

27We used this to show that norm subgroups are open. But we also noted that this can be shown
using the p-adic logarithm. Hensel’s lemma also works.
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normal basis theorem, Kw has a kv-basis {ωσ}σ∈Gal(Kw/kv) such that τ(ωσ) = ωτσ
for all σ, τ ∈ Gal(Kw/kv). We can also multiply the ωsigma’s by a nonzero elements
of kv of large valuation to ensure that ωσ is in the domain of the isomorphism given
by the p-adic exponential. Let

A =
∑

σ∈Gal(Kw/kv)

Ôk,vωσ.

A is a G-submodule of Kw (N.B. this abelian group is the additive one). Since the
ωσ’s are a normal basis, A is semilocal. The decomposition group Dσ is just the
set of τ ∈ Gal(Kw/kv) such that τσ = σ, i.e. Dσ = 1. So by Lemma 5.16 and
Lemma 5.17,

Q(Gal(Kw/kv), A) = Q(1, Ôk,vωσ) = 1

since trivial groups have trivial cohomology. Moreover, A is clearly open in Kw,
since it is an open box under the sup norm given by the basis {ωσ}σ. It was
constructed to lie inside an open ball around 0 small enough for the p-adic ex-
ponential to be a topological isomorphism between it and an open set around
1. Since the action of Gal(Kw/kv) is continuous, it respects power series, which
means the logarithm and exponential in fact produce a topological isomorphism of
Gal(Kw/kv)-modules. In particular, since A is an open Gal(Kw/kv)-submodule of
Kw with trivial cohomology with respect to Gal(Kw/kv), we know that exp(A) is
an open Gal(Kw/kv)-submodule of K×w also with trivial cohomology. Since it is in
a small open ball around 1, we have produced the desired subgroup B = exp(A) ⊆
Ô×K,w. �

Lemma 5.19. If Kw/kv is cyclic, then [k×v : NKw/kvK
×
w ] = [Kw : kv].

Proof. Since Ĥ1(Gal(Kw/kv),K
×
w ) = 1 by Hilbert’s theorem 90, the desired norm

index is

[k×v : NKw/kvK
×
w ] = Q(Gal(Kw/kv),K

×
w ).

The Gal(Kw/kv)-submodule Ô×K,w ⊆ K×w has the property that K×w /Ô×K,w ∼= Z as

Gal(Kw/kv)-modules, where the action on Z is trivial. The isomorphism is given
by x 7→ v(x). So by Corollary 5.12,

Q(Gal(Kw/kv),Z)Q(Gal(Kw, kv), Ô×K,w) = Q(Gal(Kw, kv),K
×
w )

as long as any two of the quotients are finite. Since the action on Z is triv-
ial, we know Q(Gal(Kw/kv),Z) = |Gal(Kw/kv)| = [Kw : kv]. By Lemma 5.18,

Q(Gal(Kw, kv), Ô×K,w) = 1, so the third quotient is finite and equal to [Kw : kv], as
desired. �

We can also compute the norm index of the units, which we already know is
finite and bounded by [Kw : kv] by the previous lemma.

Lemma 5.20. If Kw/kv is cyclic, then [Ô×k,v : NKw/kvÔ
×
K,w] = e(w|v).

Proof. Recall from Lemma 5.18 that Q(Gal(Kw/kv), Ô×K,w) = 1, which means it

suffices to compute |Ĥ1(Gal(Kw/kv), Ô×K,w)|. By Hilbert’s theorem 90,

(Ô×K,w)NKw/kv
= {x/τ(x) : x ∈ K×w },
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which means (where 1 − τ is written in additive notation to make the meaning
clearer; in this case it is the map x 7→ x/τ(x))

|Ĥ1(Gal(Kw/kv), Ô×K,w)| = [(Ô×K,w)NKw/kv
: (1− τ)Ô×K,w]

= [(1− τ)K×w : (1− τ)Ô×K,w]

= [(1− τ)K×w : (1− τ)k×v Ô×K,w]

=
[K×w : k×v Ô×K,w]

[(K×w )1−τ : (k×v Ô×K,w)1−τ ]

where the third equality is because every element of k×v is fixed by τ , so (1 −
τ)k×v = {1}, and the second equality is due to the first and third isomorphism
theorems. Of course, (K×w )1−τ = k×v since the extension is Galois and cyclic (x =
τ(x) means x is fixed by the whole Galois group means x ∈ kv). For the same reason,

(k×v Ô×K,w)1−τ = k×v as well, since k×v is fixed by τ and k×v Ô×K,w ⊆ K×w . So the

denominator is [k×v : k×v ] = 1. For the numerator, Let π be a uniformizer for Kv, so

that u0π
e(w|v) is a uniformizer for kv for the appropriate choice of u0 ∈ Ô×K,w. Then

K×w = {uπn : u ∈ Ô×K,w, n ∈ Z} and k×v Ô×K,w = {uπe(w|v)n : u ∈ Ô×K,w, n ∈ Z}, so

[K×w : k×v Ô×K,w] = e(w|v). It follows that |Ĥ1(Gal(Kw/kv), Ô×K,w)| = e(w|v) and

thus [Ô×k,v : NKw/kvÔ
×
K,w] = e(w|v) as desired. �

Even though we have only proved these equalities for cyclic extensions, it will
turn out as a result of local Artin reciprocity that they are true for arbitrary abelian
extensions of local fields (the statements for archimedean local fields are obvious
using the definition f = 1 and e = 2 if v becomes complex in K). The only specific
result we used is that in the abelian case, if w|v is unramified, then every unit in
kv is a norm from Kw. We’ll be able to prove this and its converse in the abelian
case, which will take up the remainder of this section.

Lemma 5.21. Suppose Kw/kv is abelian. Then [Ôk,v : NKw/kvOK,w] ≤ e(w|v).

Proof. We will show a divisibility instead the inequality. Since Kw/kv is abelian,
we can inductively choose cyclic subgroups of its Galois group then pass to the
quotient to get a chain of fields

kv ⊂ E1 ⊂ · · ·En ⊂ Kw

such that each Ei/Ei−1 is cyclic, and so are Kw/En and E1/kv. For convenience
we write v = v0, kv = E0, w = vn+1, and Kw = En+1. Since Ei/kv are finite,
they are all complete with respect to the unique valuation extended from v (which
must be compatible with restriction from w and each other). So we really have
a tower of cyclic extensions of local fields Ei with valuations vi with compatible
restrictions. Everything we have done in this section is valid abstractly for exten-
sions of nonarchimedean fields, so there is no need to show that Ei is a completion
of an intermediate field. However, even this is clearly true, as K ∩ Ei is dense in
Ei with respect to w, which restricts to vi on Ei. Moreover, E′i := K ∩ Ei ⊆ Ei
has completion with respect to vi which is contained in Ei since Ei is complete.
In fact, the completion is equal to Ei because E′i is dense in Ei (so its completion
cannot be dense and properly contained in Ei, e.g. using the equivalence of norms
on finite-dimensional vector spaces over a complex field and the sup norm on Ei
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over the completion of E′i). So in fact we can match our situation exactly with the
one we’ve dealt with so far, namely a tower of extensions

E′0 = k ⊂ E′1 ⊂ E′2 ⊂ · · · ⊂ E′n ⊂ K = E′n+1

defined as described, with valuations v = v0|v1| · · · |vn|vn+1 = w so that after
completing with respect to these valuations we have a (Galois) tower of local fields

E0 = kv ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Kw = En+1

with the property that Ei/Ei+1 is cyclic. Taking norms down to kv, we have

NEn+1/E0
O×En+1

⊂ NEn/E0
O×En

⊂ · · · ⊂ NE1/E0
O×E1

⊂ O×E0
.

So the desired norm index is

[Ô×k,v : NKw/kvÔ
×
K,w] = [O×E0

: NEn+1/E0
OEn+1

]

= [O×E0
: NE1/E0

O×E1
][NE1/E0

O×E1
: NEn+1/E0

O×En+1
]

= e(v1|v0)[NE1/E0
O×E1

: NE1/E0
NEn+1/E1

O×En+1
].

By the first and third isomorphism theorems, [NE1/E0
O×E1

: NE1/E0
NEn+1/E1

O×En+1
]

divides [O×E1
: NEn+1/E1

O×En+1
], which divides e(vn+1|v1) by induction. So the norm

index we want divides e(v1|v0)e(vn+1|v1) = e(vn+1|v0) = e(w|v), as desired. �

Corollary 5.22. If Kw/kv is abelian, and w|v unramified, then every element of

Ô×k,v is a norm from O×K,w.

Lemma 5.23. If w|v is ramified and Kw/kv abelian, then [Ô×k,v : NKw/kvÔ
×
K,w] >

1.

Proof. Last time, the proof relied on decomposing an abelian extension into a tower
of cyclic extensions, only using the fact that an subextension of an abelian extension
is abelian (and in particular Galois) over the bottom field and under the top field.
This time, we decompose the abelian extension as a compositum of cyclic exten-
sions. Since Gal(Kw/kv) is a finite abelian group, it is a product of cyclic groups

H1 × · · · × Hn. Then each fixed field K
∏

j 6=iHi

w is a Galois cyclic extension of kv,

and by the Galois correspondence the composite K
∏

j 6=1Hj

w · · ·K
∏

j 6=nHj

w has Galois
group ∩ni=1

∏
j 6=iHj = {1} over kv. So Kw is a composite of cyclic subextensions.

If v ramifies in Kw, then it ramifies in one of these cyclic extensions, which means
that for some i,

N
K

∏
j 6=i Hj

w /kv
O×
K

∏
j 6=i Hj

w

( Ôk,v

(because the index is equal to e(K
∏

j 6=iHj

w /kv) > 1). Since

NKw/kvÔ
×
K,w ⊆ NK

∏
j 6=i Hj

w /kv
O×
K

∏
j 6=i Hj

w

,

it follows that [Ô×k,v : NKw/kvÔ
×
K,w] > 1 as desired. �

5.4. Other applications. Kummer theory. General statement of Hilbert 90. Us-
ing the long exact sequence to prove Hasse’s local-global principal for norms in
cyclic extensions. Application to quadratic forms.
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6. Global Class Field Theory

Recall the original goal of class field theory, namely that if K/k is an abelian
extension of number fields, then for some modulus m, the Artin map I(m) →
Gal(K/k) induces an isomorphism I(m)/PmN(m) → Gal(K/k). The N(m) in the
denominator is at least a minimum requirement, as it is clearly in the kernel of the
Artin map (the elements of the norm group are products of f(P|p)-th powers of

primes p 6 |m0, and the Artin symbol
[
K/k
p

]
has order f(P|p)). Showing that Pm is in

the kernel is the most nontrivial part of global class field theory, but it is motivated
by the desire to relate Hecke L-functions to Artin L-functions via the Artin map,
as well as the fact (historically proven by Takagi [15] in the 1910s before the Artin
reciprocity law was known) that I(m)/PmN(m) and Gal(K/k) are noncanonically
isomorphic for the correct choice of m. Once we have shown that the kernel contains
PmN(m), it will still be useful to know at least the equality of sizes of these two finite
group. To do that, we will use the first and second fundamental inequalities.
Both were historically proven analytically. We will follow [9], proving the first one
analytically, and the second one using the cohomology of the S-units and idèles.
Note that we establish the first inequality in more generality than the second one.

6.1. The first fundamental inequality. In this section, we will use the Hecke
L-functions for characters on on I(m)/Pm to derive the following inequality:

Proposition 6.1. Let K/k be a Galois extension of number fields, and m a modulus
for k divisible by all the primes ramifying in K.28 Then we have

[I(m) : PmN(m)] ≤ [K : k].

Proof. We will use the usual trick of multiplying L(s, χ) together over all χ, first
taking logs to simplify things. Let χ be a character of G := I(m)/PmN(m), or
simply a Hecke character mod m vanishing on N(m). We have not yet shown that
L(1, χ) 6= 0, but we know that L(s, χ) extends past 1 when χ is nontrivial, and that
L(s, 1) differs from ζk by a finite number of entire factors which are nonzero at 1.
We don’t yet have access to Artin L-functions from Hecke L-functions (since we
haven’t proven Artin reciprocity yet), so we can’t prove any relationship between∏
χ L(s, χ) and any zeta function. Instead, we directly analyze the definition of the

log of this product.
Since L(s, χ) is not identically zero, by the identity theorem if it has a zero at

s = 0 it is of finite order. So for χ 6= 1 we may write

L(s, χ) = (s− 1)m(χ)f(s, χ)

for some integerm(χ), where f is holomorphic on the domain of definition of L(s, χ),
plus s = 1, and nonzero at s = 1. Let s → 1+. Adding up the logs of the L(s, χ),
we have (using the Euler products as usual)∑

χ∈Ĝ

logL(s, χ) = log ζk(s)−
∑

16=χ∈Ĝ

m(χ) log
1

s− 1
.

28These hypotheses are general enough for everything we will do. In particular, the modulus must
be divisible by all the ramified primes in order for the Artin map to be well-defined anyway.
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Recall that ζk has a simple pole at s = 1. Its residue does not matter since we are
taking logs. As a result, we have

∑
χ∈Ĝ

logL(s, χ) =

1−
∑

1 6=χ∈Ĝ

m(χ)

 log
1

s− 1
+O(1)

as s→ 1+. On the other hand, we can directly look at the Euler products and get
rid of converging parts to get in the usual way29∑

χ∈Ĝ

logL(s, χ) =
∑
χ∈Ĝ

∑
p6|m

χ(p)

Nps
+O(1).

Splitting the sum over the ideal classes (allowed by absolute convergence for <(s) >
1) and combining the previous two equations, we get1−

∑
16=χ∈Ĝ

m(χ)

 log
1

s− 1
=
∑
χ∈Ĝ

∑
K∈G

∑
p∈K

χ(K)

Nps
+O(1)

=
∑
K∈G

∑
p∈K

Np−s

∑
χ∈Ĝ

χ(p)

+O(1).

The second term in the summand vanishes whenever K is nontrivial and is |Ĝ| = |G|
otherwise. So the right hand side is equal to

|G|
∑

p∈PmN(m)

Np−s +O(1).

If p splits completely in K, then p = NP for any P|p, so p ∈ N(m). We can also
add back in the primes dividing m, absorbing the extra cost into the error term, so
that 1−

∑
16=χ∈Ĝ

m(χ)

 log
1

s− 1
≥ |G|

∑
p∈Spl(K/k)

Np−s +O(1).

There are exactly [K : k] primes P of K lying over each p ∈ Spl(K/k), each of
which having the same norm as p. Thus, the right hand side is equal to

|G|
[K : k]

∑
P

f(P|p)=1

NP−s +O(1),

where we have added the ramified primes back into the sum at a constant cost (as
there are finitely many). What we are left with is within O(1) from ζK(s), since
the primes of higher inertial degree contribute at most [K : k] terms each, of the
form Np−fs for f > 1. These sum to something bounded f > 1, and there are at
most [k : Q] of these primes lying over a given one in Q. As a result,1−

∑
16=χ∈Ĝ

m(χ)

 log
1

s− 1
≥ |G|

[K : k]
log

1

s− 1
+O(1)

29Using the power series for log(1− x) and showing all the terms except those of degree 1 sum to
something O(1)
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because of the simple pole of ζK at s = 1. Since |G|/[K : k] > 0, this immediately
implies that m(χ) = 0 for all χ (otherwise the LHS would always be negative or
zero as s 7→ 1+). This in turn implies that |G| ≤ [K : k], as desired. �

Remark 6.2. We have also just shown that L(1, χ) 6= 0, which yields a direct proof
of the fact that there are infinitely many primes in each class of I(m)/PmN(m) as
long as we can construct an extension K/k which only ramifies at primes dividing m.
This is easy: just consider k(ζm) where m is divisible by the same rational primes as
m. In general this group is smaller than the generalized ideal class group I(m)/Pm,
so the problem of whether there are infinitely many primes in each generalized ideal
class has still not been addressed. To do that, we would need to find an extension
K/k with the additional property that N(m) ⊆ Pm.

Remark 6.3. The fact that L(1, χ) 6= 0 and therefore the infinitude of primes in
each class of I(m)/PmN(m) is still useful. It shows that if this group is nontrivial,
then there are infinitely many primes not in N(m), and therefore infinitely many
primes which do not split completely. In particular, the density of the set of such
primes is at least (|G| − 1)/|G|.

If we take m to be an admissible cycle, Proposition 6.1 tells us via the isomor-
phism of Lemma 4.33 that

|Jk/k×NK/kJK | ≤ [K : k].

6.2. The second fundamental inequality. The second fundamental inequality
proves that the first is an equality (as would be implied by the full statements of
class field theory), but only in the case that K/k is cyclic. We will use cohomology
to prove it. From now on, K/k is a cyclic Galois extension of number fields (whereas
in the previous section it was an arbitrary Galois extension of number fields). The

index [Jk : k×NK/kJK ] is just |Ĥ0(Gal(K/k), JK)|. Recall from Lemma 4.17 that
for all sufficiently large finite S ⊆ MK containing all the archimedean absolute
values, we have JK = K×JK,S . In order to allow Gal(K/k) to act on JK,S , we
need S to be closed under the action of Gal(K/k). So we enlarge S to include
all w|v for each v ∈ Mk for which it already includes at least one w|v. In order
to further simplify things, we also enlarge S to contain all the w such that w|v is
ramified.

Then we have an isomorphism of Gal(K/k)-modules JK,S/KS → K×JK,S/K
× =

CK induced by the inclusion of Gal(K/k)-modules JK,S → K×JK,S . So by Lemma 5.12,
the relevant Herbrand quotient is

Q(Gal(K/k), CK) = Q(Gal(K/k),K×JK,S/K
×)

= Q(Gal(K/k), JK,S/KS)

= Q(Gal(K/k), JK,S)/Q(Gal(K/k),KS).

The first thing we need to do is therefore to compute the Herbrand quotients for
JK,S and KS .

Proposition 6.4. With S ⊆MK as above, Q(Gal(K/k), JK,S) =
∏
v∈Sk

[Kw : kv],
where Sk is the set of all absolute values of k lying below elements of S.
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Proof. We reduced the computation from JK to JK,S because it can be written in
a straightforward way as the product

JK,S =

∏
v∈Sk

∏
w|v

K×w

×
 ∏
v∈Mk\Sk

∏
w|v

Ô×K,w

 .

Since Gal(K/k) permutes the w|v, it acts separately on each component of the
product. Therefore, Lemma 5.12 tells us that30

Q(Gal(K/k), JK,S) =
∏
v∈Sk

Q

Gal(K/k),
∏
w|v

K×w

Q

Gal(K/k),
∏

v∈Mk\Sk

∏
w|v

Ô×K,w

 .

Since Gal(K/k) permutes the w|v transitively, the results of Lemma 5.16 and
Lemma 5.17 apply, so

Q

Gal(K/k),
∏
w|v

K×w

 = Q(Gal(Kw/kv),K
×
w ) = [Kw : kv]

where the second equality is by Lemma 5.19. It remains to compute the Herbrand
quotient for the product at the places not in Sk. Recall from our description in
section 4 of the norm coming from the action of Gal(K/k) on JK that if (αw)w ∈∏
v∈Mk\Sk

∏
w|v Ô

×
K,w, then

NK/kα =

∏
w|v

NKw/kvαw


v∈Mk\Sk

.

Since v is unramified for all v ∈ Mk \ Sk, every element of Ô×k,v is a norm from

Ô×K,w (see Lemma 5.20). This implies (after using it on all the coordinates) that

Ĥ0(Gal(K/k),
∏
v∈Mk\Sk

∏
w|v Ô

×
K,w) = 1. ForH1, the fact that Ĥ1(Gal(K/k), Ô×K,w) =

1 implies that the same is true for
∏
w|v Ô

×
K,w by Lemma 5.17. By our description

of the norm, any element of
∏
v∈Mk\Sk

∏
w|v Ô

×
K,w of norm 1 has components in∏

w|v Ô
×
K,w all of norm 1, which are therefore in (1 − σ)

∏
w|v Ô

×
K,w where σ is a

generator for Gal(K/k) since Ĥ1(Gal(K/k),
∏
w|v Ô

×
K,w) = 1. Since Gal(K/k) acts

componentwise, this implies that Ĥ1(Gal(K/k),
∏
v∈Mk\Sk

∏
w|v Ô

×
K,w) = 1, and

thus

Q

Gal(K/k),
∏

v∈Mk\Sk

∏
w|v

Ô×K,w

 = 1

which implies the desired result. �

To compute Q(Gal(K/k),KS), we’ll use the usual theory of the log mapping of
KS into a lattice on the trace-zero hyperplane in R|S|. Let Gal(K/k) act on R|S| by
permuting the coordinates in the same way that Gal(K/k) permutes the absolute
values in S (this works because we chose S large enough to be closed under this
action). To be able to use this to compute the appropriate Herbrand quotient, we

30N.B. There’s no way to use Lemma 5.12 to take infinite direct products out of Herbrand quo-
tients.
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need log(KS) to be closed under the action of G. This is obviously true by the
definition of log(KS) and the fact that S is closed under the action of Gal(K/k).
Moreover, log is compatible with the action of Gal(K/k). In particular, for α ∈ KS

we have

log(gα) = (log |gα|w)w∈S = (log |α|g−1w)w∈S = g(log |α|w)w∈S .

But still, log(KS) has no obvious structure that makes it easy to compute its
Herbrand quotient. Luckily, we have the following technical lemma, from [9, Ch.
IX, §4, Theorem 1]:

Lemma 6.5. Let L be a lattice in R|S| which is also a Gal(K/k)-submodule. Then
L has a Gal(K/k)-submodule L′ of finite index with a Z-basis {Xw}w∈S with the
property that gXw = Xgw for all g ∈ Gal(K/k).

Proof. Let {ew} be the standard basis for R|S|. For one w0|v for each v ∈ Sk, we
can let Zw0

∈ L be the closest element of L to t ·ew0
for a large enough positive real

number t. Since L has full rank, there is a constant b such that |Zw0 − tew0 | < b31

for all such w0. This makes it an exercise in linear algebra to show that the Zw0

(and the lattice we will define in terms of them) are linearly independent if t is
sufficiently large.

To get the desired Gal(K/k)-submodule, for each w|v let

Xw =
∑

σ∈Dw0

gw0,wσZw0

where gw0,w is a fixed element of Gal(K/k) such that gw0,ww0 = w. This con-
struction guarantees that Xw has the desired action of Gal(K/k). Choosing t large
enough makes the Xw linearly independent elements of L, thus generating a sub-
lattice of finite index. �

So in fact by Lemma 5.12 and Lemma 5.13, all lattices in R|S| which are
Gal(K/k)-submodules have the same Herbrand quotient, and this Herbrand quo-
tient is equal to

Q

Gal(K/k),
∏
v∈Sk

∏
w|v

Z ·Xw

 =
∏
v∈Sk

Q

Gal(K/k),
∏
w|v

Z ·Xw


=
∏
v∈Sk

Q(Gal(Kw/kv),Z ·Xw)

=
∏
v∈Sk

[Kw : kv]

by Lemma 5.12, Lemma 5.16, Lemma 5.17, and the fact that Gal(Kw/kv) has trivial
action on Z ·Xw. Thus we have done essentially all the hard work in the proof of
the following

Lemma 6.6. If Gal(K/k) is cyclic, then Q(Gal(K/k),KS) =
∏

v∈Sk
[Kw:kv ]

[K:k] .

Proof. Since log : KS → R|S| has finite kernel and respects the action of Gal(K/k),
it follows from Lemma 5.12 and Lemma 5.13 that

Q(Gal(K/k),KS) = Q(Gal(K/k), log(KS)).

31| · | denotes the sup norm on R|S|
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We can’t directly apply Lemma 6.5, since log(KS) does not have full rank in
R|S|. By the generalized unit theorem for S-units, it does have full rank in the
trace-zero hyperplane. So if we let X ∈ R|S| have coordinates all equal to 1,
we know log(KS) + Z · X is a lattice (of full rank) in R|S|. It is also clearly a
Gal(K/k)-submodule, since Gal(K/k) acts trivially on the extra component. So by
Lemma 5.12 and the discussion following Lemma 6.5,

Q(Gal(K/k),KS) = Q(Gal(K/k), log(KS))

=
Q(Gal(K/k), log(KS) + Z ·X)

Q(Gal(K/k),Z ·X)

=

∏
v∈Sk

[Kw : kv]

[K : k]
,

as desired. �

We may finally put these together to obtain the second fundamental inequality.

Proposition 6.7. If K/k is cyclic, then [Jk : k×NK/kJK ] ≥ [K : k].

Proof. Recall from the beginning of this section that

Q(Gal(K/k), CK) =
Q(Gal(K/k), JK,S)

Q(Gal(K/k),KS)
.

By Lemma 6.6 and Prop 6.4, it follows that

Q(Gal(K/k), CK) = [K : k].

Therefore, [K : k]||Ĥ0(Gal(K/k), CK)| = [Ck : NK/kCK ] = [Jk : k×NK/kJK ]
which implies the desired result. �

Remark 6.8. Recall from Remark 6.3 that our proof that L(1, χ) 6= 0 for nontrivial
Heck characters χ implies that infinitely many primes in k do not split completely
in K, so long as I(m)/PmN(m) is not trivial. Notice that the second fundamental
inequality proves that this is the case as long as K/k is cyclic and nontrivial (set
m to any admissible cycle for K/k).

6.3. Global Artin reciprocity. The historical strategy for the proof of the reci-
procity law follows these steps, many of which rely on the two fundamental inequal-
ities:

(1) The Artin map is surjective
(2) If K ⊂ k(ζ) for some root of unity ζ, then there exists a modulus m for k

such that

ker

([
K/k

·

]
: I(m)→ Gal(K/k)

)
= PmN(m).

(3) Extend (2) to the case where K/k is cyclic.
(4) Show that (3) implies the full result in the case where m is any admissible

cycle for any abelian extension K/k.

Steps (1), (2), and (4) are relatively simple exercises dealing with the formal prop-
erties of the Artin map. Step (3) was the main historical difficulty of the proof,
and was only accomplished by Artin after Chebotarev proved his density theorem
using a similar “field crossing” argument. The key insight is the construction of an
auxiliary cyclotomic extension satisfying certain properties. We present the steps
in order, relegating the construction of the auxiliary extension to an appendix.



52 KENZ KALLAL

Proposition 6.9 (Step 1). Let K/k be an arbitrary abelian extension, and m
any modulus of k divisible by the ramified primes so that the Artin map I(m) →
Gal(K/k) is well-defined. Then the Artin map is surjective.

Proof 1. Recall that the Chebotarev density theorem (see Theorem 1.2) can be
proved independently of the main theorems of class field theory32. So the Artin
map is surjective (in particular the preimage of any element of Gal(K/k) contains
infinitely many primes). �

Proof 2. In the interest of keeping these notes self-contained, we present another
proof which uses the second fundamental inequality (Proposition 6.7). Let H ⊂
G(K/k) be the image of the Artin map, and suppose it is not equal to Gal(K/k).
Then we can take its fixed field KH = F/k. Since H 6= Gal(K/k), we know
[F : k] > 1. And since Gal(K/k) is abelian, F/k is abelian as well (it is Galois
since H is normal in Gal(K/k) and abelian as a result of its Galois group being a
quotient of an abelian Galois group). Inductively choosing elements of Gal(F/k)
and taking the fixed field of the cyclic subgroup they generate, we eventually get a
tower k = E0 ⊆ E1 ⊆ E2 ⊆ · · ·En ⊆ En+1 = F such that Ei/Ei−1 is cyclic (c.f. the
proof of Lemma 5.21) and nontrivial. In particular, we have a cyclic extension E1/k
contained in F . Since F is the fixed field of H, the Artin symbol (with respect to
K/k) of any prime in k not dividing m acts trivially on F and therefore on E1. By
the functoriality of the Artin symbol33, this implies that all but finitely many primes
of k split completely in E0. But E0/k is cyclic and nontrivial, so Remark 6.8 shows
that the opposite is true: infinitely many primes of k must not split completely.
This shows that in fact F = k and thus H = Gal(K/k), as desired. �

Now it remains to determine the kernel of the Artin map. In each step (2)-(4),
the goal is to show the kernel is PmN(m).

Remark 6.10. N(m) ⊆ ker
[
K/k
·

]
is already true by the basic properties of the

Artin map (for example because
[
K/k
p

]
has order f(P|p)). If we can show that

Pm ⊆ ker
[
K/k
·

]
, then it follows that PmN(m) ⊆ ker

[
K/k
·

]
and thus by Proposi-

tion 6.9 there is a surjective induced map I(m)/PmN(m) → Gal(K/k), which is
an isomorphism by Proposition 6.1 (the first fundamental inequality). So to prove
Artin’s reciprocity law for a modulus m it suffices to show that Pm is in the kernel
of the Artin map.

Remark 6.11. When K/k is cyclic and m is admissible for K/k, the second fun-

damental inequality also shows that it suffices to show that ker
[
K/k
·

]
⊆ PmN(m).

This is because the second inequality (Proposition 6.7, combined with Proposi-
tion 6.1 and Lemma 4.33) shows via the surjectivity of the Artin map (Proposi-
tion 6.9)

[I(m)/PmN(m)] = [Jk : k×NK/kJK ] = [K : k] = [I(m) : ker

[
K/k

·

]
],

32See [6, Ch. 6] or my math 229x final project. Note that the full strength of the theorem implies
that even if K/k is not abelian, every conjugacy class in Gal(K/k) is hit by the Artin map.
33Alternatively, the general fact that splitting completely means you also split completely in any
intermediate extension, via the multiplicativity in towers of the ramification index and inertial
degree.
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so the inclusion ker
[
K/k
·

]
⊆ PmN(m) is enough to do step (3).

Proposition 6.12 (Step 2). Suppose that K is a cyclotomic extension of k, that
is K ⊆ k(ζm) for some primitive m-th root of unity ζ. Then there is a modulus m
of k whose finite part is divisible only by primes lying over m such that the kernel
of the corresponding Artin map is equal to PmN(m).

Proof. If p ramifies in K, then it ramifies in k(ζm), which means that it contains
the relative discriminant dk(ζm)/k. This discriminant is by definition generated by
the discriminants of all the k-bases of k(ζm) contained in Ok(ζm), so it contains

disck(ζm)/k(1, . . . , ζ
[k(ζm):k]−1
m ) which must divide a power of m because ζm satisfies

Xm−1 = 0 (the reasoning is the same as in the discussion after [10, Ch. 2, Theorem
8]). This shows that as long as m is chosen to be divisible by all the primes of k
containing m, the Artin map I(m)→ Gal(K/k) is well-defined. By Remark 6.10, it
suffices to show that we can choose m so that Pm is in the kernel of the Artin map.
The key (as usual with cyclotomic fields) is to exploit the fact that the elements of
Gal(k(ζm)/k) are determined by where they send ζm. Since Gal(k(ζm)/k) might
not be all of (Z/mZ)×, we should reduce to the case of Q(ζm)/Q first. In particular,
if p is a prime of k, then [

k(ζm)/k

p

]
=

[
Q(ζm)/Q

Np

]
when restricted to Q(ζm)34. This is because35 the left hand side satisfies

[
k(ζm)/k

p

]
x ≡

xNp mod P for x ∈ k(ζm) and therefore for x ∈ Q(ζm),
[
k(ζm)/k

p

]
x ≡ xNp mod p

which is exactly the condition that uniquely determines
[
Q(ζm)/Q

Np

]
. Now we can

directly use the description of the Artin map for a cyclotomic field to see that if
a ∈ Ik is divisible only by primes unramified in k(ζm), then (by the discussion on
generalized ideal classes from Example 3.6)

Na ∈ Pmv∞ =⇒
[

Q(ζm)/Q

Na

]
= id =⇒

[
k(ζm)/k

a

]
= id =⇒

[
K/k

a

]
= id

so we just need to find a modulus m of k such that (α) ∈ Pm =⇒ Nk/Q(α) ∈ Pmv∞
for α ∈ k× (then we can just enlarge m to be divisible by all the ramified primes if
needed). The continuous local norms on each coordinate induce a continuous map∏

w∈Mk

w|m

k×w →
∏

v∈MQ

v|m

Q×v .

whose v-coordinate is given by
∏
w|v NKw/Qv

. If α ∈ k× is positive with respect

to all w|v∞, then Nk/Qα =
∏
w|v∞ Nkw/Qv

α is positive with respect to v∞. The

continuity of the map above implies (by the same product formula) the existence
of a modulus m0 of k containing only places lying over m such that α ∈ Pm0

=⇒

34The Frobenius is uniquely determined on k(ζm) because of this, since it is trivial on k
35This argument is not specific to cyclotomic fields. It’s a special case of the general (almost

tautological) fact that if K/k is Galois and E/k is an arbitrary finite extension, then
[
KE/E

p

]
restricts on K to

[
K/k

NE/kp

]
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Nk/Qα ∈ Pm. Taking intersections, the modulus m = m0

∏
w|v∞ w has the desired

property, so we are done. �

To deduce the cyclic case (step 3) from step 2, we need the following lemma,
originally due to Artin and quoted directly from [9, §X.2]. This establishes the
existence of the desired auxiliary cyclotomic extensions.

Lemma 6.13. Let K/k be a finite cyclic extension of number fields, and S a finite
set of rational primes. Let p be a prime in k unramified in K. Then there exists
a positive integer m not divisible by any element of S and a finite extension E/k
such that

(1) K ∩ E = k, so Gal(KE/E) ∼= Gal(K/k).
(2) K(ζm) = E(ζm) so that KE/E is a cyclotomic extension of E.
(3) K ∩ k(ζm) = k36

(4) p splits completely in E.

Proof. See appendix. �

Suppose K/k is cyclic. By Remark 6.11, in order to show the reciprocity law for
an admissible modulus f of k, it suffices to show that the kernel of the Artin map
for I(f) is contained in PfN(f). It’s clear that any prime in the kernel of the Artin
map must be in N(f) since it splits completely and it therefore equal to the norm of
any prime lying over it. In the general case, if a is an arbitrary fractional ideal in
the kernel, its prime factors are not guaranteed to be in the kernel. This is where
the auxiliary extension from Lemma 6.13 comes into play.

Proposition 6.14 (Step 3). Let K/k be a cyclic extension of number fields, and
f(K/k) be an admissible cycle for K/k. Then the Artin map induces an isomor-
phism I(f)/PfN(f)→ Gal(K/k).

Proof. By Remark 6.11 it suffices to show that ker
[
K/k
·

]
⊆ PfN(f). So let

a =
∏
p

pvp(a) ∈ ker

[
K/k

·

]
.

Since Gal(K/k) is cyclic, we can write[
K/k

p

]
= τnp

for each p, where τ is a generator for Gal(K/k). As a result,

1 =

[
K/k

a

]
= τ

∑
p npvp(a)

which means that

[K : k]|
∑
p

npvp(a).

In order to write things as norms, we need p to split completely somewhere. So we
use Lemma 6.13 to get the extensions Ep/k where p splits completely and satisfying
the conditions (1)-(4), where mp can be chosen (by a suitable choice of S) to be

36I don’t think this one is necessary. It is already implied by taking m coprime to dK (see the
proof of Step 3), and this must be done anyway in order to get the full product decomposition.
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coprime to f, p, the other mp’s, and the absolute discriminant of K. We can also
take Ea to be the compositum of all the Ep’s for p|a. Then

K ∩Q({ζmp
}p|a) = k ∩Q({ζmp

}p|a) = Q

since the left hand side is an unramified extension of Q (in particular any ramified
prime must ramify in Q({ζmp

}p|a) and therefore divides one of the mp, which is
impossible since such a prime couldn’t ramify in K because the mp are coprime to
dK). This in turn means we have a diagram of field extensions, in which the fields
horizontally across from each other are linearly disjoint37. As a result, the injective

K({ζmp
}p|a)

k({ζmp
}p|a) K

Q({ζmp
}p|a) k

Q

Figure 5.

restriction homomorphism

Gal(K({ζmp
}p|a)/k)→ Gal(K/k)×Gal(k({ζmp

}p|a)/k) ∼= Gal(K/k)×Gal(K({ζmp
}p|a)/K)

is an isomorphism. Since the mp are pairwise coprime, the fields Q(ζmp
) are pair-

wise linearly disjoint38, and for the same reason Q(ζmp
) is linearly disjoint from

the compositum of any subset of the others. It follows that

Gal(K({ζmp
}p|a)/K) ∼= Gal(Q({ζmp

}p|a)/Q) ∼=
∏
p

Gal(Q(ζmp
)/Q).

Since the diagram in Figure 5 works just as well with only one root of unity at a
time, we have Gal(Q(ζmp

)/Q) ∼= Gal(K(ζmp
)/K). Therefore, the restriction map

Gal(K({ζmp
}p|a)/K)→

∏
p

Gal(K(ζmp
)/K)

is an isomorphism, so in fact restriction gives an isomorphism

Gal(K({ζmp
}p|a)/k) ∼= Gal(K/k)×

∏
p

Gal(K(ζmp
)/K).

Note that Gal(K({ζmp
}p|a)/Ep) embeds into this product. Since Ep ⊆ K(ζmp

), we
see that fixing Ep is independent of how an automorphism restricts to any of the
other intermediate cyclotomic extensions, so we have (by restriction)

Gal(K({ζmp
}p|a)/Ep) ∼= G×

∏
q 6=p

Gal(K(ζmp
)/K)

37This is because of the isomorphism Gal(K({ζmp}p|a)/K) ∼= Gal(Q({ζmp}p|a)/(K ∩
Q({ζmp}p|a))), which implies (after repeating for k) [K({ζmp}p|a) : K] = [k({ζmp}p|a) :

k][Q({ζmp}p|a) : Q].
38For example by the irreducibility of the cyclotomic polynomials over Q
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where G = Gal(K(ζp)/Ep) ⊆ Gal(K/k) × Gal(K(ζp)/K) ∼= Gal(K(ζp)/k). Since
K ∩ Ep = k, we see that G fixing an element of K means that element must be in
k. In other words, G contains an element of the form (τ, τp) where τ is a generator
for Gal(K/k). This way, we see that

Gal(K({ζmp
}p|a)/Ea) =

⋂
p|a

Gal(K({ζmp
}p|a)/Ep)

contains an element with Gal(K/k)-coordinate τ . In particular, this Galois group
restricts to K by fixing only k, which means K∩Ea = k39 and thus Gal(KEa/Ea) ∼=
Gal(K/k) by restriction. So by the surjectivity of the Artin map, there exists a
fractional ideal b of Ea such that

τ =

[
KEa/Ea

b

]
=

[
K/k

NEa/kb

]
and b, like p, is coprime to f and all the mp (the first condition is there so that it has
this in common with p; the secon is there so that its prime factors are unramified
in KEa ⊆ K({ζmp

}p)). By the transitivity of norms, NEa/kb = NEp/kNEa/Ep
b, so

this fractional ideal is a norm from Ep. Since p splits completely in Ep, it is also
such a norm. It follows that

c := pvp(a)NEp/kNEa/Ep
b−npvp(a)

is a norm from Ep as well. Since p and b are, we know that c is coprime to f and all
the mp, and thus c = NEp/kc

′, where c′ is coprime to those as well. By definition

of all this notation (dating back from the beginning of the proof), we know40[
KEp/Ep

c′

]
=

[
K/k

c

]
=

[
K/k

p

]vp(a) [ K/k

NEa/kb

]−npvp(a)

= id.

In particular, c′ is in the kernel of the Artin map from I(f
∏

pmp). But KEp ⊆
Ep(ζmp

), so this extension is cyclotomic. By Step 2 (Proposition 6.12)41, that kernel
is contained in PmN(m) [with respect to the extension KEp/Ep] as long as m is
divisible by f

∏
mp. So we can write

c′ = (γ)NKEp/Ep
C

where C is coprime to f and the mp’s, and γ is (arbitrarily) close to 1 with respect
to the absolute values dividing f and the mp’s. By continuity of the local norms
and the multiplicativity of the norm in towers, this means

c = NEp/kc
′ = (NEp/kγ)NKEp/kC

is in PfN(f) [with respect to Ep/k]. But NKEp/kC = NK/kNKEp/KC, so we actually
have c ∈ PfN(f) with respect to K/k. Doing this for each p|a and expanding the

39Note that the only thing about the Ep’s that we used to conclude this was condition (1), which

says the same thing for Ep, and the fact that the mp’s are coprime to the right primes in order
to make things linearly disjoint.
40The leftmost expression is well-defined because c′ is coprime to mp so its prime factors are
unramified in Ep(ζmp ).
41In that result, we can choose the modulus m to be anything as long as it is sufficiently divisible
by the primes lying over mp; here we are somewhat more relaxed by setting m = f

∏
mp so we

only know the kernel is contained in this group
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definition of c, we get42∏
p

pvp(a)NEa/kb
−

∑
p npvp(a) ∈ PfN(m).

Of course,
∏

p p
vp(a) = a and

∑
p npvp is divisible by [K : k], and therefore by

f(P|p) for all primes p of k. This shows NEa/kb
−

∑
p npvp is a norm from K, and

thus a ∈ PfN(f) as desired. �

The full statement of the global reciprocity law follows directly from the cyclic
case.

Theorem 6.15 (Step 4; Artin’s global reciprocity law). Let K/k be an abelian
extension, and m an admissible cycle for K/k. Then the kernel of the Artin map
I(m)→ Gal(K/k) is equal to PmN(m).

Proof. By Remark 6.10, it suffices to show that PmN(m) is contained in the kernel of
the Artin map I(m)→ Gal(K/k). Let f be the smallest admissible cycle for K/k. If
we can show that PfN(f) is in the kernel, then so is PmN(m) since PmN(m) ⊆ PfN(f)
as f|m. As usual, write K as the compositum of cyclic extensions Ki/k. We can
take the minimal admissible modulus fi for Ki/k, which we know by the usual norm
index computations is divisible only by valuations that ramify in Ki, and thus only
by v|f. In fact, the definition of admissible tells us that fi|f, since taking norms
(from completions) reverses inclusions. By Proposition 6.14, every fractional ideal
of k coprime to f, which is therefore coprime to each fi, is in the kernel of the Artin
map for Ki/k if it is in PfiN(fi). If a fractional ideal a is in PfN(f), then it is in
PfiN(fi) (as fi|f), and therefore in the kernel of the Artin map for all Ki/k. By
the functoriality of the Artin symbol, and the fact that an automorphism of K/k
is determined by its action on all the Ki’s, it follows that PfN(f) is in the kernel of
the Artin map for K/k, which completes the proof. �

Remark 6.16. The fact that m is admissible, over the course of all four steps, is
only used in two ways. The first is the more trivial one, which is just the fact
that the admissible moduli are divisible by all the ramified primes (so the Artin
map is well-defined). The second one is that the admissibility of m allows for the
isomorphism between I(m)/PmN(m) and Jk/k

×NK/kJK , and thus the application
of the second fundamental inequality to the idealic situation.

The reciprocity isomorphism has a clear interpretation as a “reciprocity law” in
a sense analogous to (and far more general than) the law of quadratic reciprocity.
In particular, it says that the splitting type of a prime in an abelian extension is
determined (up to finitely many exceptions) by a congruence condition. As a result
can obtain the classical reciprocity laws by specializing to fields of low degree.
In fact, Artin conjectured the isomorphism in order to establish the equivalence
between Hecke and Artin L-functions in the abelian case, and did not prove it until
several years after he showed that it implied the classical reciprocity laws.

42This is where we use the fact that b is the same ideal, in Ea, for each p, rather than an ideal in
Ep that depends on p
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6.4. The class field correspondence. Let K/k be an abelian extension of num-
ber fields as usual. By Lemma 4.33, the global reciprocity law establishes, via the
isomorphism43

Gal(K/k) ∼= I(m)/PmN(m) ∼= Jk/k
×NK/kJK .

Definition 6.17. The idèlic Artin map forK/k is the map44 θK/k : Jk → Gal(K/k)

defined by lifting the isomorphism Jk/k
×NK/kJK → Gal(K/k). It does not depend

on the choice of admissible modulus m.

Of course, it doesn’t really matter that the idèlic Artin map does not depend on
m. We could choose a specific m (for example the smallest admissible modulus), and
we would still know that the idèlic Artin map has kernel k×NK/kJK . Of course,
we require in any event the global reciprocity law for ideals in order to make the
idèlic statement well-defined. The idèlic Artin map is useful because it expresses
the subgroup k×NK/kJK as the kernel of a map whose properties we are much
more familiar with.

It also clearly satisfies the properties we expect of the “Artin map.”

Lemma 6.18. Let k ⊆ K ⊆ K ′ be a tower of extensions of number fields such that
K/k and K ′/k are abelian. Then for any a ∈ Jk, θK′/k(a) restricts on K to θK/k.

Proof. Let a ∈ Jk, and take m to be a modulus for k which is admissible for K/k
and therefore for K ′/k. Then we can select (via weak approximation) α ∈ k×

such that αa ∈ Jm, and we know (via the description of the isomorphism from
Lemma 4.33) that

θK/k(a) =

[
K/k

ψ(αa)

]
, θK′/k(a) =

[
K ′/k

ψ(αa)

]
since m is admissible for both extensions. So it’s clear from the corresponding
property of the idealic Artin map that these restrict to the same automorphism of
K/k. �

Remark 6.19. Notice that if av = 1 at all valuations v which ramify in K, then
there is no need to multiply by an element of k× to get an element of Jm, since the
minimal admissible cycle is only divisible by ramified places. As a result, the local
Artin map is very easy to define directly for unramified extensions.

Lemma 6.20. Let K/k be an abelian extension, E/k an arbitrary finite extension,
and a ∈ JE. Then θKE/E(a) ∈ Gal(KE/E) restricts on K to θK/k(NE/ka).

Proof. Let f be the minimal admissible cycle for K/k, and let m be an admissible
modulus for KE/E with the additional property that NE/k(JE,m) ⊆ Jk,f (the idèle

norm is continuous). We can select α ∈ E× such that αa ∈ JE,m. Then

(NE/kα)(NE/ka) ∈ Jk,f

43All of these isomorphisms factor through the map induced by the inclusion I(m)→ I(f(K/k)),

so they yield the same definition of the idèlic Artin map.
44We will denote it by θK/k specifically to distinguish it from the idealic Artin map.
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so

θKE/E(a) =

[
KE/E

ψ(αa)

]
=

[
K/k

NE/kψ(αa)

]
=

[
K/k

ψ((NE/kα)(NE/ka))

]
= θK/k(NE/ka)

when restricted to K, as desired. �

The fact that the idèlic Artin map has kernel k×NK/kJK immediately implies
the following correspondence:

Theorem 6.21. Let K,K ′ be finite abelian extensions of a number field k. Then
K ⊆ K ′ if and only if k×NK/kJK ⊇ k×NK′/kJK′ .

Proof. If K ⊆ K ′, then NK′/kJK′ ⊆ NK/kJK by the transitivity of the norm. So it

suffices to prove the converse. Suppose that k×NK′/kJK′ ⊆ k×NK/kJK . In other
words,

ker θK′/k ⊆ ker θK/k

which implies by Lemma 6.18 and the fact that an element of Gal(KK ′/k) is
determined by its restrictions to K and K ′ that

ker θKK′/k = ker θK′/k ∩ ker θK/k = ker θK′/k.

It suffices to show that KK ′ = K ′, i.e. [KK ′ : k] = [K ′ : k]. By the global
reciprocity law, we know [KK ′ : k] = [Jk : ker θKK′/k] which is equal to [Jk :
ker θK′/k] = [K ′ : k] so we are done. �

Remark 6.22. Compare Theorem 6.21 and its proof to the consequence of the Cheb-
otarev density theorem which says that an abelian extension is uniquely determined
by the primes in the kernel of the Artin map (see Theorem 6.3).

As a result of Theorem 6.21, we have an inclusion-reversing correspondence be-
tween the abelian extensions K/k and the subgroups of Jk of the form k×NK/kJK .
It immediately implies an abelian extension K/k is uniquely determined by the
subgroup k×NK/kJK ⊆ Jk. In this correspondence, the field K is called the class

field for the class group k×NK/kJK ⊆ Jk. It turns out that any open subgroup of
Jk (which we saw is always of finite index) is actually the class group for an abelian
extension of k. This is called the existence theorem. In the general case, the
explicit construction of class fields is still an open problem. We will explain how
it is done in the local setting (Lubin-Tate theory), and in the global setting over
Q (Kronecker–Weber) and imaginary quadratic fields (elliptic curves with complex
multiplication). The general global existence theorem is therefore nonconstructive.
The strategy is to show that every open subgroup of Jk contains a subgroup that
has a class field (so this subgroup can be chosen to have a very convenient form).
This is valid due to the following lemma:

Lemma 6.23. Let H1 ⊆ H2 be subgroups of Jk and suppose that H1 has a class
field K1/k. Then H2 has a class field K2 ⊆ K1, and it is equal to the fixed field of
θK1/k(H2).
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Proof. Let K2 = K
θK1/k(H2)

1 ⊆ K1 as suggested by the statement. Recall that
θK2/k is just the restriction of θK1/k to K2 by Lemma 6.18. So

ker θK2/k = {a ∈ Jk : θK1/k(a)|K2
= id}

= {a ∈ Jk : θK1/k(a) ∈ θK1/k(H2)}
= H2

since any element of this set differs from an element of H2 by an element of
ker θK1/k = H1 ⊆ H2, so in fact it must be in H2. This means K2 is the de-
sired class field for H2. �

One application of this lemma is that it suffices to prove the existence theorem
for some (conveniently chosen) abelian extension F/k. In particular, if Jk/H has
exponent n, if H has class field K/k then we expect Gal(K/k) ∼= Jk/H to also
have exponent n. This is only useful (via Kummer theory) if k contains a primitive
n-th root of unity, so we want a proof of the existence theorem for F = k(ζn) to
imply it for k. Since any abelian extension can be decomposed into a tower of cyclic
extensions, it suffices to prove the reduction for cyclic steps. It takes the following
form:

Lemma 6.24. Let H be an open subgroup of Jk containing k×, and F/k a cyclic
extension. By the continuity of the idèle norm, N−1F/k(H) ⊆ JF is an open subgroup,

and it clearly contains k×. If the existence theorem holds for F , this means that
N−1F/k(H) has a class field over F . The statement of the lemma is that this implies

that H has a class field over k.

Proof. Let K be the class field over F for N−1F/k(H). It is an abelian extension of

F . We will show that in fact K is also a class field over k for a subgroup of H (this
suffices by Lemma 6.23). There are three things we need:

• K/k is Galois.45

• Gal(K/k) is abelian.46

• k×NK/kJK ⊆ H.

The third point is actually obvious, because F×NK/FJK = N−1F/k(H), so

NF/kF
×NK/kJK ⊆ H.

This means that NK/kJK ⊆ H. The same is true of k×, so indeed k×NK/kJK ⊆ H.
So it remains to verify that K/k is Galois with abelian Galois group. To show it
is Galois, we let K ′ be the Galois closure of K/k and show that every element of
Gal(K ′/k) restricts to an automorphism of K. Let σ ∈ Gal(K ′/k). Since F is
Galois over k, we know that σ restricts to an automorphism of F . Since norms
from F to k are invariant under applying an automorphism of F/k, we know that
σN−1F/k(H) = N−1F/k(H). Moreover, the fact that K is a class field for N−1F/k(H)

means that

F×NK/FJK = N−1F/k(H)

45N.B. It isn’t generally true that if L/K is Galois and K/k is Galois, then L/k is Galois. For

example consider Q ⊆ Q(
√

2) ⊆ Q(21/4). This proof needs to use the fact that K is the class

field for something.
46This is the part where F/k being cyclic helps.
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and thus after applying σ,

(σF )×σNK/FJK = N−1F/k(H).

Since F/k is Galois, σF = F . And

σNK/FJK = σ

 ∏
τ∈Gal(K/F )

τa : a ∈ JK


=

 ∏
τ∈Gal(K/F )

στa : a ∈ JK


=

 ∏
τ∈Gal(σK/F )

σσ−1τσa : a ∈ JK


= NσK/FJσK .

It follows that K and σK are both class fields over F for N−1F/k(H), and thus they

are equal by the uniqueness of class fields (a consequence of Theorem 6.21). this
proves that K/k is Galois. We know K/F is abelian and F/k is cyclic. From
the isomorphism Gal(F/k) ∼= Gal(K/k)/Gal(K/F ), every element of Gal(K/k) is
equal to τ ◦ σnF where σF is an element of Gal(K/k) restricting to a generator of
Gal(F/k) and τ ∈ Gal(K/F ). To show Gal(K/k) is abelian, it suffices to show that
every τ ∈ Gal(K/F ) commutes with σF ∈ Gal(K/k) restricting to a generator of
Gal(F/k). As usual we take advantage of the Artin symbol and reciprocity law to
prove this. In particular, τ = θK/F (a) for some a ∈ JF , so

σF ◦ τ ◦ σ−1F = θK/F (σFa).

Furthermore, the fact that NF/k(σFa) = NF/k(a) means that (σfa)/a ∈ N−1F/k(H)

and since K is the class field for that group, we know that in fact

σF ◦ τ ◦ σ−1F = θK/F (σFa) = θK/F (a) = τ,

so these two automorphisms commute as desired. �

Now let k be a number field and H an open subgroup of Jk containing k×.
Then H is of finite index in Jk since Jk/H ∼= Ck/π(H) and any open subgroup
of Ck has finite index. So Jk/H has some finite exponent n. By Lemma 6.24, it
suffices to prove that N−1F/k(H) has a class field over F for some cyclic extension

F/k. Let a ∈ JF . We know that NF/ka
n = (NF/ka)n ∈ H, so an ∈ N−1F/kH.

It follows that JF /N
−1
F/kH has exponent n47. By going up cyclic extensions, this

means (by Lemma 6.24) we can reduce the case of Jk/H having exponent n to the
case where JF /H has exponent n and F is an arbitrary finite abelian extension of
k. In particular, we can let F = k(ζn), so that by using Lemma 6.24 inductively on
a tower of cyclic extensions from k to F , it suffices (by the previous discussion) to
show that if F contains ζn, then every open subgroup H of JF containing F× with
the property that JF /H has exponent n has a class field over F . We expect to be
able to use Kummer theory to construct the desired class field, since F contains ζn

47N.B. here by a group G with exponent n we just mean that gn = 1 for all g ∈ G. We do not
mean the smallest such n.
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and if K/F is that class field, we know that Gal(K/F ) ∼= JF /H will have exponent
n. We can also assume n > 2, since if n is an exponent for Jk/H then so is 3n.

Theorem 6.25 (Existence theorem, idèlic version). Suppose F is a number field
containing ζn, and H ⊆ JF such that JF /H has exponent n. Then H has a class
field.

Proof. Since JF /H has exponent n, we know that for any finite set S ⊆ MF

containing all the archimedean places and all v such that 1× · · · × Ô×F,v × · · · 6⊆ H
(only finitely many v have this property because of the definition of the open sets
of JF ),

B :=
∏
v∈S

(F×v )n ×
∏

v∈MF \S

Ô×F,v ⊆ H.

So by Lemma 6.23, it suffices to show that k×B has a class field over F . This class
field needs to have exponent n, so (if it exists) it will be a Kummer extension of F .
Such an extension is obtains by adjoining n-th roots of elements of F . In fact, we
will do it by adjoining the n-th roots of every element of FS (which makes sense
given the definition of B), taking

K = F (F
1/n
S ).

It’s easier if K/F is unramified at all v outside of S, so that all the Ô×F,v are all in
the norm group. To do this, we recall that p ramifies in K if and only if it ramifies
in at least one of the extensions F (α1/n). The relative discriminant of F (α1/n)/F
divides the discriminant of the power basis generated by α1/n, which is

NF (α1/n)/F (nα(n−1)n).

Since α ∈ FS , this norm has trivial valuation at every valuation outside of S except
those dividing n. But we might as well enlarge S to include all p|n, so that this
norm has trivial valuation outside S and therefore K/F is unramified outside S by
the properties of the relative discriminant. It follows that for all v ∈MF \ S, each

element of Ô×F,v (embedded in JF by 1’s at all the other places) is a norm from JK .

To show that B ⊆ k×NK/FJK , it remains to show that (F×v )n ⊆ F×NK/FJK when
embedded in the same way. Of course, the right hand side is just the kernel of the
Artin map for K/F , whose Galois group has exponent n (by Kummer theory), so
this is clearly true. It remains to show the opposite inclusion, which we will do by
showing that

[JF : F×B] = [JF : k×NK/FJK ].

We might as well compute them directly. The right hand side is [K : F ] by global
class field theory. SinceK was defined as a Kummer extension, we know by Kummer
theory that

[K : F ] = [(F×)nFS : (F×)n].

By one of the “isomorphism theorems”,

(F×)nFS
(F×)n

∼= FS/((F
×)n ∩ FS) = FS/F

n
S ,

but by the unit theorem for the S-units,

FS ∼= Z|S|−1 × µF .
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As a result,

FS/F
n
S
∼=

Z|S|−1 × µF
(nZ)|S|−1 × µnF

.

The fact that F contains ζn means that the surjective n-th power map µF → µnF
has kernel equal to 〈ζn〉 (this uses the fact that ζn ∈ F ) and thus |µF | = n|µnF |,
which means

[K : F ] = n|S|.

It remains to check that this agrees with [JF : F×B]. Since JF is too hard to deal
with, we further enlarge S so that JF = F×JF,S (see Lemma 4.17). So we may
rewrite

[JF : F×B] = [F×JF,S : F×B].

There is also an isomorphism

F×JF,S/F
×B ∼= JF,S/(F

×B ∩ JF,S).

The right hand side has size

[JF,S : B]

[F×B ∩ JF,S : B]
=

[JF,S : B]

[F× ∩ JF,S : F× ∩B]

which comes from the isomorphism48 (F× ∩ JF,S)/(F× ∩ B) → (F×B ∩ JF,S)/B.
So in the end we have

[JF : F×B] =
[JF,S : B]

[FS : F× ∩B]
.

We compute the denominator first. We claim that F× ∩B = FnS so that from our

previous computation the denominator is equal to n|S|. The inclusion FnS ⊆ F×∩B
is obvious from the definition of B. So it suffices to show that F× ∩ B ⊆ FnS . Let
α ∈ F× ∩B. Then α is a local n-th power for each v ∈ S, which means that

α1/n ∈ F×v
and thus F (α1/n)w = Fv, which means that [F (α1/n)w : Fv] = 1 and so v splits com-
pletely in F (α1/n). We also know (from the fact that S contains all the archimedean
valuations and the p|n) that F (α1/n)/F is unramified outside of S. Thus,

JF,S ⊆ NF (α1/n)/FJF (α1/n)

because our analysis of the splitting of the v ∈MF in F (α1/n) means that Ô×F,v =

NF (α1/n)/F Ô×F (α1/n),v
for v outside of S and F×v = NF (α1/n)/FF (α1/n)×w for v in S.

Since JF = F×JF,S , this implies that

JF ⊆ F×NF (α1/n)/FJF (α1/n)

so in fact

JF = F×NF (α1/n)/FJF (α1/n).

Since F (α1/n) is an abelian extension of F , this means it is the class field for all of
JF , so it must coincide with F . Therefore, α is an n-th power in F . Since α ∈ B

48It is an isomorphism because the natural map F× ∩ JF,S → (F×B ∩ JF,S)/B has kernel

B ∩ F× ∩ JF,S = B ∩ F× since B ⊆ JF,S
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in fact it must be an n-th power in FS . So we have proven the opposite inclusion
F× ∩B ⊆ FnS , which means

[FS : F× ∩B] = [FS : FnS ] = n|S|

by our previous computation. Finally, we show that [JF,S : B] = n2|S|, which will

prove that [JF : F×B] = n|S| = [K : F ] = [JF : F×NK/FJK ] and thus that K is
the desired class field. By definition of B,

[JF,S : B] =
∏
v∈S

[F×v : (F×v )n].

So we need to show that [F×v : (F×v )n] = n2. From the fact that F×v
∼= Ô×F,v × Z,

we know that if v is nonarchimedean, then

[F×v : (F×v )n] = n[Ô×F,v : (Ô×F,v)
n].

Since F contains ζn and n > 2, F has no real archimedean places. Since every
element of C× is an n-th power, this means the only contribution is in fact from
the nonarchimedean elements of S. Moreover, if v = vp, then

[Ô×F,v : (Ô×F,v)
n] =

1

|n|p
n

(this is easy to deduce using the same p-adic logarithm trick from Lemma 4.7 and
the fact that F contains ζn). So

[[JF,S : B] =
∏
v∈S

[F×v : (F×v )n]

=
∏

v∈S\S∞

n[Ô×F,v : (Ô×F,v)
n]

= n2|S|−2|S∞|
∏

p∈S\S∞

1

|n|p

= n2|S|−2|S∞|
∏
v∈S∞

|m|v

= n2|S|,

where the second-to-last inequality follows from the product formula because the
nonarchimedean primes outside of S all do not divide n, and the last equality is
because all of these v are complex and m ∈ Z. so the normalized valuation is
|m|v = m2. This proves the desired result by the previous discussion. �

For the purposes of studying primes in generalized ideal classes, it might be in-
structive to look at what the class fields correspond to in the setting of ideal classes.
Let m be a modulus of K. Recall from section 4 that we have an isomorphism

JK/K
×Wm

∼= I(m)/Pm,

which is induced by the map Jm → I(m) taking (ap)p 7→
∏

pvp(ap). Under this
map, the open subgroups of JK containing K×Wm correspond49 to the subgroups

49Indeed, K×Wm is an open (and therefore closed) subgroup of finite index, and JK is Hausdorff,
so JK/K

×Wm is a finite group with the discrete topology. Hence all the subgroups of I(m)/Pm

are images of an open subgroup under the isomorphism.
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of I(m) containing Pm. So we might as well state the existence theorem in the
setting of ideals:

Theorem 6.26 (Existence theorem for ideals). Let m be a modulus for K. Then
for every intermediate subgroup Pm ⊆ H ⊆ I(m), there is an abelian extension L/K
such that H = PmN(m) and m is admissible for L/K.

Proof. This is basically a direct corollary of the idèlic statement of the existence the-
orem and local class field theory. Let H be a subgroup between Pm and I(m). Then
through the (topological) isomorphism JK/K

×Wm
∼= I(m)/Pm, H corresponds to

an open subgroup B of JK containing K×Wm. The idèlic existence theorem tells
us that there is a finite abelian extension L/K such that

K×NL/K(JL) = B ⊇ K×Wm.

In particular, K×NL/K(JL) ⊇Wm, which actually implies m is admissible50 �

7. Local Class Field Theory

7.1. The local Artin map.

7.2. Local-global compatibility.

7.3. Conductors and the Artin character.

7.4. The local cyclic norm index inequality.

8. Consequences

8.1. Computation of Ray Class fields. LetK be a number field. SinceK×NL/K(JL)
is open in JK , any abelian extension L/K has the property that

K×NL/K(JL) ⊇ K×Wm

for some modulus m of K (in fact we saw from local class field theory that this
is true if and only if m is admissible for L/K). Then the inclusion-reversing class
field correspondence (which we proved in Theorems 6.21 and 6.25) says that L is
contained in the class field of m. So if we can compute the ray class field for an
arbitrary modulus (or any set of moduli with the property that every modulus
divides one of them), then we can prove a theorem analogous to Kronecker–Weber
along the lines of “every abelian extension of K is contained in an extension of the
form [...]”, where in this case [...] is the class field corresponding to K×Wm. Such
a class field is called a ray class field because of the isomorphism JK/K

×Wm
∼=

I(m)/Pm which means that in terms of ideals it is the class field corresponding to
Pm ⊆ I(m), with Galois group equal to the ray class group I(m)/Pm.

Theorem 8.1 (Global Kronecker–Weber). Let L be an abelian extension of Q.
Then L ⊆ Q(ζf ) for some positive integer f .

50This is where the use of local class field theory comes in. In particular, from the corollary
to Theorem 3 of Chapter XI of Lang, taking intersections with K×v , for all v ∈ MK we get

NLw/Lv
L×w = K×NL/KJL ∩K×v ⊇Wm(v) which is the definition of m being admissible.
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Proof. By the previous remarks, it suffices to compute the ray class field corre-
sponding to nv∞ for any positive integer n. Here we are assuming that the class
group for L contains K×Wnv∞ and therefore that nv∞ is admissible for L/Q. By
the uniqueness of class fields (a consequence of the inclusion-reversing part of the
correspondence), it suffices to show that Q×Wnv∞ is the kernel H of the Artin map
JQ → Gal(Q(ζn)/Q). First of all, we know that

JQ/Q
×Wnv∞

∼= IQ(nv∞)/Pnv∞
∼= (Z/nZ)×

(this was one of the two examples of ray class groups I actually know how to
compute). On the other hand, by the surjectivity of the Artin map

JQ/H ∼= Gal(Q(ζn)/Q) ∼= (Z/nZ)×

as well, so we only need to prove one inclusion, say

K×Wnv∞ ⊆ H.

In fact in the definition of the idèlic Artin map we knowK× maps to id ∈ Gal(L/K),
we just need to show that Wnv∞ ⊆ H. The problem is that we don’t know that
nv∞ is admissible for Q(ζn)/Q yet, so we need to choose some n|m such that mv∞
is admissible for Q(ζn)/Q. Now let α ∈ Wnv∞ . To take the corresponding ideal,
we need to multiply by an element of K× to put α in Wmv∞ . By the Chinese
remainder theorem, there is a positive integer a such that a ≡ α−1p mod pvp(m), so
that aα ∈Wmv∞ . Since n|m, outside of mv∞, aα has valuation v(a), which means
the corresponding ideal in Q is (a), and thus the Artin symbol is a ∈ (Z/nZ) =
Gal(Q(ζn)/Q). This only depends on the residue class of a mod n, and since
α ∈Wnv∞ , the definition of a means a ≡ 1 mod pvp(n) for all p|n, and so we have
proved α has trivial Artin symbol in Gal(Q(ζn)/Q as desired. �

In general, the ray class groups are more complicated and there are few other
cases where the ray class fields have such a simple form (though in practice algo-
rithms like those in [2, Ch. 4–5] can be used to compute the ray class field for
a given modulus using the same Kummer theory procedure as in the proof of the
existence theorem).

8.2. The Hilbert class field. Let K be a number field. From local class field
theory and the fact that the class field correspondence is inclusion-reversing, the
class field corresponding to

K×JS∞

is the maximal unramified abelian extension of K (if L′/K is an abelian extension
of K with class group H ′ ⊆ JK , then H ′ ∩ O×K,v = NL′w/Kv

O×L′,v, so L′/K is

unramified if and only if H ′ contains O×K,v for all nonarchimedean v and it contains

K×v for all v ∈ S∞, i.e. if and only if H ′ contains K×JS∞ , i.e. if and only if L′ ⊆ L).
In general local class field theory lets you read off the ramification phenomena of
a class field L/K from the corresponding class group in JK , and you can define
things like the “narrow class field” which is the same thing except it doesn’t need
to be unramified at the infinite places.

In any event, the global reciprocity law says that if L is the Hilbert class field
for K, then

JK/K
×JS∞

∼= Gal(L/K).
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But the left hand side is isomorphic to the ideal class group of K (I proved this
somewhere in here). In fact, the image of a fractional ideal of K under the reci-
procity map is just its ideal class in Cl(K). So a prime in K splits completely in
the Hilbert class field if and only if it is principal in K. By taking the Hilbert class
field of the Hilbert class field, it’s possible to get another interesting property:

Theorem 8.2 (Principal ideal theorem). Let p be a prime in K, and let L be the
Hilbert class field of K. Then pOL is principal.

Beginning of the proof. The full proof requires some group-theoretic input which I
don’t know how to do. I will explain the general idea of what needs to be done
before that.

Let K ′ be the Hilbert class field of K, and K ′′ the Hilbert class field of K ′.
Whether p becomes principal in K ′ is the same thing as whether it splits completely
in K ′′. We know that K ′′/K is unramified (ramification is multiplicative in towers),
but to apply the theory of the Artin symbol we need it to be Galois (it definitely
won’t be abelian because K ′ is the maximal abelian subextension of K ′′). This
is actually true in general: let σ ∈ Gal(K/K). Since K ′/K is Galois, we know
σK ′ = K ′. Therefore, since K ′′/K ′ is unramified and abelian, so is σK ′′/K ′, but
since K ′′/K ′ is the maximal abelian unramified extension of K ′, this implies

σK ′′ ⊂ K ′′,
and therefore σK ′′ = K ′′ and K ′′/K is Galois.

Since K ′ is the maximal abelian subextension of K ′′/K, we have

Gal(K ′/K) = Gal(K ′′/K)ab

and

Gal(K ′′/K ′) = [Gal(K ′′/K),Gal(K ′′/K)].

Since K ′/K is unramified, pOL factors as a product of single powers of primes

pOL =
∏
i

qi

so that actually the element of Gal(K ′′/K) we need to show is trivial is[
K ′′/K

p

]
=
∏
i

[
K ′′/K ′

qi

]
=
∏
i

σi

[
K ′′/K ′

q

]
σ−1i

where q is a fixed prime in K ′ lying over p and the σi’s are elements of Gal(K ′′/K)
taking q to qi. So the principal ideal theorem amounts to showing that this product
is trivial. �

Independently of the principal ideal theorem, if one can actually compute the
Hilbert class field (which can be done by ad-hoc methods in small cases or by
the theory of complex multiplication for imaginary quadratic fields), then just the
simpler fact that splitting completely in the Hilbert class field is the same thing
as being principal is very useful for proving more concrete facts, most notably
regarding the primes of the form x2 + ny2 for x, y ∈ Z (though in general this
definitely works for primes represented by arbitrary binary quadratic forms):

Lemma 8.3. Let n ∈ N be squarefree and not 3 mod 4, K = Q(
√
−n), and L the

Hilbert class field of K. A positive rational prime p not dividing 2n is of the form
x2 + ny2 if and only if p splits completely in L.
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Proof. p is of the form x2 + ny2 if and only if p splits in OK = Z[
√
−n] into two

distinct principal primes51. This is equivalent to these two primes (or equivalently
just one of them since they are conjugate) splitting completely in L, and therefore
to p splitting completely in L. �

As a result, even if we can’t compute the Hilbert class field of Q(
√
−n), this gives

an interesting density statement: p is of the form x2 + ny2 if and only if p splits in
this field L, which has degree |Cl(Q(

√
−n))| over Q(

√
(
√
−n)), and therefore degree

2|Cl(Q(
√
−n))| over Q, which means that the set of primes of the form x2 + ny2

(still under the hypothesis52 that n 6≡ 3 mod 4) has density 1/(2|Cl(Q(
√
−n))|) in

the positive rational primes.
When the class group is small it’s sometimes easy to tell what the Hilbert class

field is.

Example 8.4. If Q(
√
−n) has trivial class group, then it is equal to its own Hilbert

class field, so p coprime to 2n is of the form x2 + ny2 if and only if
(
−n
p

)
= 1.

Example 8.5. Let n = 5. Then (from the Minkowski bound) one can see that
|Cl(Q(

√
−5))| = 2 and therefore the Hilbert class field of Q(

√
−5) is equal to

any unramified quadratic extension we can find. I claim that this extension is
Q(
√
−5,
√
−1). That is because Q(

√
−5,
√
−1) = Q(

√
5,
√
−1) so 2 and 5, which

both ramify in Q(
√
−5), both have ramification index 2 in Q(

√
5,
√
−1), so Q(

√
−5,
√
−1)/Q(

√
−5)

is unramified as desired. This shows that a positive rational prime p not equal to

2 or 5 is of the form x2 + 5y2 if and only if
(
−5
p

)
=
(
−1
p

)
= 1, which is equivalent

to p ≡ 1, 9 mod 20.

8.3. Classical reciprocity laws. Artin originally conjectured his reciprocity law
as a correspondence between abelain Artin L-functions and Hecke L-functions (see
section 3). Before he proved it, Artin also noticed that the classical reciprocity laws
of Gauss, etc. could be derived from the reciprocity law. Recall the “standard”
proof of quadratic reciprocity e.g. from the later chapters of Samuel [12], which
uses the a priori knowledge that Q(

√
±p) ⊆ Q(ζp), and therefore the Artin sym-

bol of q with respect to Q(
√
±p)/Q only depends on q mod p. Even though the

characterization of the unique quadratic subfield of a cyclotomic extension of Q is
elementary and can be done using Gauss sums or by looking at discriminants, it
is easy to suspect that there should be a proof involving class field theory as well
(since the computation of class fields over Q is really what lets you put the qua-
dratic extension inside a cyclotomic one in the first place). In fact, independently
of this metamathematical reason, the actual statement of the global reciprocity
isomorphism

I(f)/Pf → Gal(L/K)

tells you that the splitting type of a prime of K in L (as determined by its Artin
symbol) depends only on a congruence condition modulo the conductor f(L/K).

51If p = x2+ny2 then clearly p splits as the product of primes (x−y
√
−n)(x+y

√
−n). Conversely,

if pZ[
√
−n] factors as a product of distinct principal primes, which must be conjugates of each

other, which just translates as pZ[
√
−n] = (x − y

√
−n)(x + y

√
−n), and thus p = a(x2 + ny2)

for some unit a in Z[
√
−n]. But a ∈ Q, so actually a = ±1 and if we assume p > 0 we get

p = x2 + ny2.
52To deal with the case where OK 6= Z[

√
−n], we need to consider a certain order in the ring of

integers. This is probably done somewhere in [3]
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Taking K = Q and L = Q(
√
p), this basically (up to checking that this still works

when p ≡ 1 mod 4, which we had as an exercise in Math 123) says that whether
p is a perfect square mod q (i.e. the splitting type of X2 − p mod q) depends only
on a congruence condition on q mod f(Q(

√
p)/Q), which depends only on q. So

one way to prove quadratic reciprocity would be to actually compute the conductor
f(Q(
√
p)/Q). Suppose for simplicity that p is odd. The discriminant of this exten-

sion is 4p if p ≡ 1 mod 4 and p otherwise. Since we have the best understanding
of what the ray class groups of Q look like at moduli divisible by the infinite prime,
we assume that p < 0, so that v∞ is ramified in Q(

√
p) and v∞|f(Q(

√
p)/Q). For

the finite places, the only ramified ones are p and possibly 2 if p ≡ 3 mod 4. In
the case p ≡ 1 mod 4, we could just use the conductor-discriminant formula to
show that the conductor divides the discriminant and is therefore equal to p (since
it must be divisible by the ramified primes). Alternatively, we know Qp(

√
p)/Qp is

quadratic (for example because p is ramified with index 2 in Q(
√
p) so after taking

completions the degree is still at least 2) and totally ramified of ramification index
2. Therefore it is tamely ramified (as p 6= 2), so its first ramification group is trivial.
It follows that f(Q(

√
p)/Q) is divisible by p exactly once (this works just as well

when p ≡ 1 mod 4). At the prime 2, when p ≡ 3 mod 4 so that 2 is ramified at
all, we see that the quadratic extension

Q2(
√
p)/Q2

is not tamely ramified (2 divides the degree), so it has lower ramification groups
G−1 = G0 = G1 = Z/2Z. So the valuation of the different is

vq|2(D(Q2(
√
p)/Q2)) =

∑
i≥0

(|Gi| − 1) ≥ 2.

Since the norm of the different equals the absolute discriminant which we know
is 4p, and there is no inertia at 2, actually equality must hold, and the higher
ramification groups are all trivial after G1. As a result (after converting to the
upper numbering which actually does nothing in this case), we have computed for
odd primes p,

f(Q(
√
p)/Q) =

{
4pv∞, if p ≡ 3 mod 4

pv∞, if p ≡ 1 mod 4

which is just the discriminant plus the infinite prime. Remember that we assumed
that p < 0 to force the infinite prime to show up. Now we can prove quadratic
reciprocity just by looking at the two cases for p mod 4. If q is an odd rational
prime, then the Legendre symbol (

p

q

)
is the same as the image of q under the reciprocity map IQ → Z/2Z = Gal(Q(

√
p)/Q)

(the Artin symbol is trivial if and only if q splits completely, which is equivalent to
X2 − p having a root mod q). Moreover, the reciprocity map at least restricts and
descends to a surjective map

IQ(f(Q(
√
p)Q))/PQ,f(Q(

√
p)Q) → {±1}

whose kernel has index 2. If p ≡ 1 mod 4, then the left hand side is just

IQ(pv∞)/PQ,pv∞
∼= (Z/pZ)×
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which has a unique subgroup of index 2, namely the squares (this is because it is

cyclic), so a rational prime q coprime to p has
(
p
q

)
= 1 ⇐⇒

(
q
p

)
= 1. On the

other hand, when p ≡ 1 mod 4, Artin reciprocity tells us that the reciprocity maps
factors through Pf(Q(

√
p)/Q) to get a well-defined map

(Z/4Z)× × (Z/pZ)× → {±1}

defined by

[q] 7→
(
p

q

)
with kernel of index 2. Since q · Z = (−q) · Z and this Legendre symbol is just the
Artin symbol of the ideal q ·Z, we can always multiply q by (−1)(q−1)/2 to force it

to be 1 mod 4. Let q∗ = (−1)
q−1
2 q. We know the map above is the same as the

map

(Z/pZ)× → {±1}
given by

q 7→ q∗ 7→
(
p

q∗

)
the kernel of which is just the squares in (Z/pZ)×, which proves that(

p

q

)
=

(
q∗

p

)
when p ≡ 3 mod 4, as desired.

In general, the situation we exploited here was that Q(
√
p)/Q happens to be

Galois, so the Legendre symbol could be directly studied using the Artin symbol.
For the higher classical reciprocity laws, it’s harder to do this because an extension
like Q(p1/m)/Q won’t be Galois. So the standard thing to do is to pass to the
obvious Kummer extension Q(p1/m)/Q(ζm). Taking m = 3 and directly computing
the conductor of this extension as we did in the quadratic case, it’s possible to prove
cubic reciprocity. Even if we were to do it this way, we would need to first establish
a connection between the Artin symbol of Q(p1/m)/Q(ζm) and whether primes are
m-th powers mod other primes (when m = 2 this is easy because we know the ring
of integers of Q(

√
p) is monogenic and have a reasonable expression for its defining

polynomial). To do this, we need to develop some small part of the theory of the
power residue residue symbol, so I’ll just follow that to its logical conclusion. What
follows essentially consists of solutions to the first two sets of exercises in [1].

Let K be a number field containing ζm.

Definition 8.6. Let a ∈ K and b a fractional ideal of K coprime to m and a.
Then the primes dividing b are unramified in the Kummer extension K(a1/m)/K,

so the Artin symbol
[
K(a1/m)/K

b

]
is well-defined. It is determined by its action on

a1/m, so we define the power residue symbol(a
b

)
m
∈ µm

to be the unique root of unity ζim such that[
K(a1/m)/K

b

]
(a1/m) = ζima

1/m.
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Lemma 8.7. The power residue symbol is independent of the choice of m-th root
of a.

Proof. Choose two distinct m-th roots of a, a1/m and ζjma
1/m. The lemma is proved

just by noticing that if [
K(a1/m)/K

b

]
(a1/m) = ζia1/m,

then [
K(a1/m)/K

b

]
(ζjma

1/m) = ζj+im a1/m = ζim(ζjma
1/m)

(where the second line is because the Galois group acts trivially on the roots of
unity, for example because they are in K). �

Lemma 8.8. If b is coprime to a and a′ and m, then(
aa′

b

)
m

=
(a
b

)
m

(
a′

b

)
m

.

Proof. Consider the extension L = K(a1/m, (a′)1/m). The usual restriction prop-
erty of the Artin symbol says that[
K(a1/m, (a′)1/m)/K

b

]
((aa′)1/m) =

([
K((aa′)1/m)/K

b

]
(a1/m)

)([
K((aa′)1/m)/K

b

]
((a′)1/m)

)
=

([
K(a1/m)/K

b

]
(a1/m)

)([
K(a1/m)/K

b

]
((a′)1/m)

)
=
(a
b

)
m

(
a′

b

)
m

as desired. �

Lemma 8.9. If a fractional ideal b of K is coprime to a and a′ ∈ K, then( a

bb′

)
m

=
(a
b

)
m

( a
b′

)
m
.

Proof. This follows from the definition of the Artin symbol (it is defined to be
multiplicative in the ideal downstairs). �

Lemma 8.10. Let p be a prime in K coprime to a ∈ K and m. Then m|(Np− 1)
and (

a

p

)
≡ a

Np−1
m mod p.

Proof. Since ζm ∈ K and p is coprime to m, actually κp = OK/p must contain a
primitive m-th root of unity, since the polynomial Xm−1 remains separable53 over
κ(p). So µm ⊆ κ(p)× is a multiplicative subgroup, so by Lagrange’s theorem we
have the desired

m||κ(p)×| = Np− 1.

53Let f(X) = Xm − 1 ∈ K[X]. By Hensel’s lemma, any root of f in κ(p) can be lifted to a root

of f in Kp, which must actually be a power of ζm ∈ K since there are already m of them, so all

the roots are of the form ζim mod p. But (using the fact that m and p are coprime for the second
time) vp(f ′(ζm)) = 0 so f remains separable in κ(p)[X], and hence κ(p) contains m distinct m-th

roots of unity.
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The definition of the Artin symbol also mandates that(
a

p

)
a1/m ≡ (a1/m)Np mod P,

for some P|p, so after rearranging we see that(
a

p

)
≡ a

Np−1
m mod P.

Since both sides are actually in K, this congruence is true mod p as well, which is
the desired statement. �

Lemma 8.11. For p in K coprime to a and m, the following are equivalent:

(i)
(
a
p

)
= 1.

(ii) There exists an x ∈ OK such that xm ≡ a mod p.
(iii) There exists an x ∈ Kp such that xm = a.

Proof. Assume (ii). Then we know from the previous lemma that(
a

p

)
≡ xNp−1 mod p.

Since Np− 1 = |κ(p)×|, this is 1 mod p. Since the norm residue symbol is an m-th
root of unity, which we saw earlier remain distinct mod p, this proves (i).

Conversely, assume (i). Using the previous lemma, (i) implies that

a
Np−1

m ≡ 1 mod p.

The reduction of a mod p is therefore an m-th power, since this shows it has order
dividing m and κ(p) is cyclic. It remains to show that (i) and (ii) are equivalent to
(iii).

The fact that (iii) implies (ii) is obvious just by taking projecting onto the residue
field.

The fact that (ii) implies (iii) is a consequence of the trivial case of Hensel’s
lemma: If f(X) = Xm − a has a root x in κ(p), then this root is not zero mod p
(since a 6≡ 0), so f ′(x) = mxm−1 6≡ 0 mod p and so x lifts to a root in Kp. �

Lemma 8.12. If p is an integral ideal coprime to m, then (N.B. ζm is coprime to
p since it is a unit) (

ζm
p

)
m

= ζ
Np−1

m
m .

Proof. If b is prime, this is obvious because then(
ζm
b

)
m

≡ ζ
Nb−1

m
m mod p

and the m-th roots of unity are all distinct mod p, so this must be an equality in
K. Now suppose b =

∏
p p

np . We know that Np ≡ 1 mod m, so we can write

Np = 1 +mrp

for some choice of integers rp ∈ N, and thus

Nb =
∏
p

(1 +mrp)np ≡ 1 +m
∑
p

nprp mod m2,
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which means (
ζm
b

)
=
∏
p

(
ζm
p

)np

=
∏
p

(
ζ

Np−1
m

m

)np

= ζ
∑

p rpnp

m

= ζ
Nb−1

m
m

as desired. �

Lemma 8.13. If a, a′ ∈ K are nonzero, and b is an integral ideal of K coprime to
a, a′ and m such that a ≡ a′ mod b, then(a

b

)
m

=

(
a′

b

)
m

.

Proof. The condition a ≡ a′ mod b means that

a− a′ ∈ b ⊆ p

for all p|b (this is where we use the fact that b is integral). The point is that this
implies a ≡ a′ mod p for all p|b, and thus(

a

p

)
=

(
a′

p

)
since by a previous lemma

(
a
p

)
depends only on a mod p. Multiplying this over

all the powers of primes dividing b, we recover the desired equality. �

Rephrased in the language of the power residue symbol, a crude estimation of the
conductor of this Kummer extension also results in quadratic reciprocity without
needing to justify the exact value of the conductor.

Proposition 8.14. Let a ∈ K×, and b and b′ be fractional ideals of K coprime to
a. If b(b′)−1 is principally generated by c ∈ K× which is an m-th power in K×p for
all p dividing m or a, then (a

b

)
m

=
( a
b′

)
m
.

Proof. By one of the previous lemmas,(a
b

)
m

( a
b′

)−1
m

=

(
a

c · OK

)
m

.

We know that [Kp(a1/m) : Kp]|m, so

NKp(a1/m)/Kp
(Kp(a1/m)×) ⊇ (K×p )[Kp(a

1/m):Kp] ⊇ (K×p )m

which means c is a local norm at all p which ramify in K(a1/m). Local class field
theory implies that the local Artin symbol of c is trivial at all these ramified primes.
On the other hand, c is not divisible by the ramified primes because of how it was
defined, so its local Artin symbol at those primes is also trivial. As a result, the
global Artin symbol is trivial, as desired. �

This turns out to be good enough to deduce quadratic reciprocity.
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Lemma 8.15. Let a ∈ N, and let a0 be an (odd) integer such that a = 2v2(a)a0.
Also let P be a positive odd integer coprime to a. Then(

a

(P )

)
2

=

(
a

(Q)

)
2

if P ≡ Q mod 8a0.

Proof. Most of this is just specializing the previous lemma. If P ≡ Q mod 8a0,
then since P and Q are odd and coprime to a, we actually know

(P )(Q)−1 ≡ 1 mod 8a0.

Since the squares in Q×2 contain the elements congruent to 1 mod 8, and the squares

in Q×p when p is odd contain U
(1)
p (both of these are easy consequences of Hensel’s

lemma), the hypotheses of the previous lemma show the conclusion of this one. �

Theorem 8.16 (Quadratic Reciprocity). If P and Q are odd distinct rational
primes, then(
−1

(P )

)
2

= (−1)
P−1

2 ,

(
2

(P )

)
2

= (−1)
P2−1

8 ,

(
Q

(P )

)
2

(
P

(Q)

)
2

= (−1)
P−1

2
Q−1

2

Proof. The first part is a direct consequence of Euler’s criterion (lemma 8.12), since
ζ2 = −1. For the second one, just use the previous lemma with a = 2. This implies

that
(

2
(P )

)
depends only on P mod 8. So we can just check one odd rational prime

in each odd congruence class mod 8: 2 is a perfect square mod 17 since 62 ≡ 2
mod 17, and 2 is a perfect square mod 7, but not mod 3 or mod 5.

The last one requires more work before it can be reduced to a finite computation,
but luckily I am armed with the hint in Cassels–Frohlich. Let

〈P,Q〉 =

(
P

(Q)

)
2

(
Q

(P )

)
2

,

which we know only depends on P mod 8Q and Q mod 8P .
Suppose P ≡ Q mod 8, so that Q ≡ 8a mod (P ) and 8a ≡ −P mod (Q) for

some integer a, and therefore by three previous lemmas and the fact that P ≡ Q
mod 8 and P ≡ Q mod a,(

Q

(P )

)
2

=

(
8a

(P )

)
2

=

(
8a

(Q)

)
2

=

(
−P
(Q)

)
2

= (−1)
Q−1

2

(
P

(Q)

)
2

as desired. One convenient way to rephrase this is that

〈P,Q〉 =

(
−1

(Q)

)
2

.

For arbitrary P,Q, take R ≡ 1 mod Q to be an odd integer such that

RP ≡ Q mod 8,

which implies

〈P,Q〉〈R,Q〉 = 〈PR,Q〉 =

(
−1

(Q)

)
2

.

This means that if you fix R and Q and vary P while keeping (P,Q) = 1 and
RP ≡ Q mod 8, it follows that 〈R,Q〉 never changes, and neither does the right
hand side, so 〈P,Q〉 never changes. But doing this is the same thing as changing
P to anything congruent to it mod 8 and coprime to Q, so this shows that 〈P,Q〉
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depends only on P mod 8. By symmetry this also only depends on Q mod 8, so
after checking a finite number of cases we can verify the last part of the reciprocity
law. �

8.4. Local-global principles. For now I’ll just write about a local-global principle
for norms in cyclic extensions. Maybe later I’ll add in Grunwald-Wang or something
about the Brauer–Manin obstruction. Actually this has been made trivial by the
theory we already developed for the purposes of doing global class field theory. If
L/K is a finite cyclic extension of number fields, then the short exact sequence of
multiplicative Gal(L/K)-modules

1→ L× → JL → CL → 1

induces a long exact sequence on cohomology, a part of which is

H1(Gal(L/K), CL)→ H2(Gal(L/K), L×)→ H2(Gal(L/K), JL).

Since Gal(L/K) is cyclic, the long exact sequence on Tate cohomology is periodic,
and we know that this is the same as the exact sequence

H1(Gal(L/K), CL)→ Ĥ0(Gal(L/K), L×)→ Ĥ0(Gal(L/K), JL).

We proved earlier in the course of proving one of the fundamental inequalities that

Q(Gal(L/K), CL) = [L : K],

but also |Ĥ0(Gal(L/K), CL)| = [CK : NL/KCL] = [L : K] (by the class field theory

isomorphism), so actually H1(Gal(L/K), CL) is trivial, and we are left with an
injective group homomorphism

K×/NL/KL
× → JK/NL/KJL

which we know is really induced by the inclusion of K× → JK . The local-global
principle for norms follows:

Theorem 8.17. Let L/K be a cyclic extension of number fields. An element
α ∈ K× is a norm from L×w in K×v for all v ∈MK if and only if α is a norm from
L×.

Specializing to the case where L is a quadratic extension, we can recover the
Hasse–Minkowski theorem in the special case of binary quadratic forms.

9. Explicit Class Field Theory

9.1. Lubin-Tate Theory.

9.2. Complex Multiplication.
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