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Let K be a number field, and K its algebraic closure.

1 Galois representations with complex coefficients have finite im-
age

Lemma 1.1 (No small subgroups property). For all Lie groups G, there exists an open neighborhood U ⊂ G
of 1 ∈ G such that U contains no nontrivial subgroups of G.

Proof. The point is to use the exponential map to deduce this fact from the special case of G = (Rn,+). Let
g be the Lie algebra of G, and let 1 ∈ U ′ ⊂ G be an open neighborhood of the identity small enough that
the exponential map exp : g → G restricts to a diffeomorphism Ω

∼→ V , where Ω is an open neighborhood of
0 in g and V is an open neighborhood of 1 in G. The manifold structure on g here is the standard one on
RdimG ∼= g, and can therefore be given by any of the various equivalent norms; choose one of those norms
and call it | · | : g → R. Since Ω is an open neighborhood of 0, it contains an open ball around 0 of radius
r > 0. Let

Ω′ := B|·|

(
0,
r

2

)
⊂ Ω

be the open ball around 0 of radius r/2. It has the property that 2 · Ω′ ⊂ Ω as well.
Since exp |Ω is a diffeomorphism onto its image, which is the open neighborhood 1 ∈ U ′ ⊂ G, we know

that U := exp(Ω′) is an open neighborhood of 1 in G. We claim that U satisfies the property claimed in the
statement of the lemma. Indeed, let H ⊂ U be a subgroup of G, suppose for the sake of contradiction that
there exists a nontrivial h ∈ H, and (as made possible by exp−1(h) ̸= 0 since h ̸= 1) let n ≥ 1 be such that

r

2n+1
≤ | exp−1(h)| < r

2n
.

Since H ⊂ U is a subgroup of G, we have
h2

n

∈ H ⊂ U.

Moreover, 2n · exp−1(h) ∈ g has the property that

|2n · exp−1(h)| = 2n| exp−1(h)| ∈
[r
2
, r
)
,

i.e.,
2n · exp−1(h) ∈ Ω \ Ω′.

But exp(2n · exp−1(h)) = h2
n

by the general properties of the exponential map for Lie groups, and since
exp |Ω : Ω → U ′ is a bijection, this means 2n · exp−1(h) is the unique preimage in Ω of h2

n

under exp. On
the other hand, h2

n ∈ U = exp(Ω′), so this preimage must be in Ω′ ⊂ Ω, which contradicts the fact that
2n · exp−1(h) ∈ Ω \ Ω′. Therefore, the original assumption that H contained a nontrivial element was false,
and U has the desired property.

The reason for proving Lemma 1.1 is to apply it to the Lie group G = GLn(C) in order to show the
following fact about finite-dimensional complex Galois representations.

Proposition 1.2. Let ρ : Gal(K/K) → GLn(C) be a continuous representation. Then ρ has finite image
[and hence factors through Gal(K/K) → Gal(M/K) for some finite Galois extension M/K contained inside
K].
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Proof. Since GLn(C) is a Lie group, by Lemma 1.1, there is an open neighborhood U ⊂ GLn(C) of 1 ∈
GLn(C) such that U contains no nontrivial subgroup of GLn(C).

Since ρ is continuous, ρ−1(U) ⊂ Gal(K/K) is an open neighborhood of 1 ∈ Gal(K/K). Since the
topology of Gal(K/K) is generated by the system of open subgroups given by Gal(K/M) where M ranges
over the finite Galois extensions of K contained in K, the fact that ρ−1(U) is an open neighborhood of 1
means that

Gal(K/M) ⊂ ρ−1(U)

for some finite Galois extensionM/K contained inK. In other words, ρ(Gal(K/M)) ⊂ U . Since ρ(Gal(K/M))
is a subgroup of GLn(C), this implies it is the trivial subgroup by definition of U . Therefore, ρ factors through
the finite quotient Gal(M/K), and has finite image, as desired.

Thanks to Proposition 1.2, instead of discussing complex continuous representations of the infinite group
Gal(K/K), it will suffice to consider complex representations of groups of the form Gal(M/K), where M is
a finite Galois extension of K.

2 Abelian Artin L-functions, class field theory, and the Cebotarev
density theorem

In this section, we consider the case where n = 1. In this case, we are looking at characters Gal(M/K) →
GL1(C) = C×. In fact, we can assume that M/K is abelian, since all such characters factor through the
abelianization (as C× is abelian).

For any finite prime P ofM lying over the prime p of K, the decomposition group D(P|p) and its normal
subgroup the inertia group I(P|p) are useful invariants that tell us about the splitting behavior at P of p
in M . Indeed, recall that |I(P|p)| = e(P|p), and |D(P|p)| = e(P|p)f(P|p). Since Gal(M/K) transitively
permutes the primes lying over p, the ramification and inertial degrees e(P|p) and f(P|p) do not depend on
the choice of P lying over p. Moreover, since we can assume that Gal(M/K) is abelian, we have

D(σP|p) = σD(P|p)σ−1 = D(P|p),

and similarly for inertia groups, which implies that in this situation the groups D(P|p) and I(P|p) depend
only on p and not on the choice of P lying over p.

When p is unramified in M (true for all but finitely many primes p of K), we have I(P|p) = 1 for all
P|p, and therefore we have an isomorphism

D(P|p) ∼= Gal(κ(P)/κ(p)) = ⟨Frob⟩.

Pulling back Frob = [x 7→ x|κ(p)|] via this isomorphism defines the Frobenius element Frobp, which generates
the cyclic group D(P|p) and doesn’t depend on the choice of P since M/K is abelian. The element Frobp,
which in this case (M/K abelian and p unramified) is a well-defined generator of the cyclic group D(P|p) ⊂
Gal(M/K) that depends only on p. This single element of Gal(M/K) therefore tells us the full detail of how
an unramified prime p splits in M , and is very important to understanding the arithmetic of the extension
M/K. For example, if K = Q andM = Q(

√
d), d a squarefree integer, then (say, when p ̸= 2, d to guarantee

it is not ramified in M) Frobp ∈ Z/2Z ∼= Gal(M/K) is the Legendre symbol of d mod p. As such, it is
interesting to ask about the statistics of the element Frobp ∈ Gal(M/K) as p varies over the primes of K
unramified in M . If we order the p by their norm, for a fixed g ∈ Gal(M/K), what is the probability that
Frobp = g ?

By copying the proof of Dirichlet’s theorem on primes in arithmetic progression, one might expect to
answer this question by studying the following L-function.

Definition 2.1. Let χ : Gal(M/K) → C× be a character. The associated Artin L-function is defined to be

L(s, χ) :=
∏
p

χ(I(P|p))=1

(
1

1− χ(Frobp)Np−s

)
,
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for all s ∈ C such that this converges.

Example 1. Let M/K = Q(
√
−1)/Q, and χ : Gal(M/K) = ⟨σ⟩ → C× the unique nontrivial character,

which is given by χ(σ) = −1. Since an odd rational prime p is split in Q(
√
−1) if and only if −1 is a

quadratic residue modulo p, and 2 is the only ramified prime, we have

L(s, χ) =
∏
p ̸=2

1

1−
(

−1
p

)
p−s

.

Since (
−1

p

)
= (−1)

p−1
2

by quadratic reciprocity / Euler’s criterion, this is exactly the same as the Dirichlet L-function(
1

1 + 3−s

)(
1

1− 5−s

)(
1

1 + 7−s

)(
1

1 + 11−s

)
· · · = 1− 1

3s
+

1

5s
− 1

7s
+

1

9s
− 1

11s
+

1

13s
+ · · ·

= LHecke(s, χ̃),

where χ̃ : (Z/4Z)× → C× is the unique nontrivial Dirichlet character, that is, the one that takes (−1 mod 4)
to −1.

Example 2. More generally, letM/K = Q(
√
d)/Q, where d ∈ Z is squarefree, and again let χ : Gal(M/K) =

⟨σ⟩ → C× be the unique nontrivial character, namely the one sending σ 7→ −1. Let ∆d be the discriminant
of M/K. It is d when d ≡ 1 (mod 4) and 4d when d ≡ 2, 3 (mod 4). Then we have

L(s, χ). =
∏
p∤∆d

1

1−
(
d
p

)
p−s

=
∑

(n,∆d)=1

(
d

n

)
n−s =

∞∑
n=1

(
∆d

n

)
n−s = LDirichlet(s, χ̃),

where
( ·
n

)
denotes the Kronecker symbol and χ̃ is just another name for the Dirichlet character that is

n 7→
(
∆d

n

)
(the fact that it is a Dirichlet character, and of conductor |∆d|, is a consequence of quadratic

reciprocity).

Example 3. Via class field theory (i.e. Kronecker–Weber) for Q or Gauss sums, the previous two examples
are in turn consequences of the example M/K = Q(ζN )/Q, where N ≥ 1. In this situation, we have

Gal(M/K)
φ∼= (Z/NZ)×, and we can consider an arbitrary primitive1 character χ̃ : (Z/NZ)×, setting χ :

Gal(M/K) → C× to be
χ := χ̃ ◦ φ.

Then by the usual fact that φ(Frobp) = (p mod N), we have

L(s, χ) =
∏
p∤N

1

1− χ̃(p mod N)p−s
= LDirichlet(s, χ̃).

As usual, we can at least verify that this product converges absolutely and uniformly to a holomorphic
function on horizontal half-planes to the right of Re(s) = 1:

Lemma 2.2. The Artin L-series L(s, χ) converges to a holomorphic function on all horizontal half-planes
of the form

Re(s) ≥ 1 + ε,

for ε > 0.
1Just so we don’t need to do the completely doable exercise of figuring out inertia groups in cyclotomic extensions of Q. In

general the two L-functions will differ by some Euler factors at the primes dividing N , as governed by what the inertia groups
are. This inertia group calculation is done explicitly in my notes [Gun2019, example 3.23].
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Proof. It suffices to to prove the statement for the product∏
p∤∆M/K

(
1− χ(Frobp)Np−s

)
.

Letting cp = |Np−s|, which is a positive number with the property that

cp = Np−ℜ(s) ≤ Np−(1+ε),

and using the fact that there are at most [K : Q] distinct primes p of K lying over a given rational prime p,
we have ∑

p

cp ≤ [K : Q]
∑
p

p−(1+ε),

where the second sum is over all rational primes p under a prime involved in the first sum. This sum converges
when ε > 0 (it is bounded above by ζQ(1+ε) for example), so since |χ(Frobp)| = 1 for all p unramified inM ,
we conclude the desired uniform convergence to a holomorphic function by [SS2003, Proposition 5.3.2].

For Hecke L-functions, we automatically get convergence in a region containing 1 (I think this will
have been talked about in the talk of Fernando Trejos Suarez and I know it from [Lan1994, Ch. VIII])
and meromorphic continuation holomorphic everywhere except possibly 1 and functional equation. For our
Artin L-functions, this will not be obvious unless we connect them to Hecke L-functions. Indeed, one proof
that Hecke L-series for finite-order Hecke characters of K converge to a holomorphic function on the region
Re(s) > 1 − 1/[K : Q], in a direct generalization of the same proof for Dirichlet L-functions, uses the fact
that ∑

c

∑
a∈c

Na≤n

χ(a) = O(n1−1/[K:Q]),

where c runs over the appropriate (ray) classes of ideals in K. The point is to get the savings 1/[K : Q] by
grouping together one ideal in each class, and proving through independent means (in this case by Davenport-
type results on lattice points in expanding domains2) that the number of integral ideals a ∈ c with Na ≤ n
doesn’t depend on c up to an O(n1−1/[K:Q]) error. In the case of Galois groups, there is a priori no general
way to do the counting of integral ideals of bounded norm whose Frobenius (extended linearly to all ideals
supported away from the discriminant) equals a fixed element of Gal(M/K), which is why Lemma 2.2 is as
far as we will go without relating our Artin L-functions to Hecke L-functions, by hook or by crook.

We really want to do be able to extend/have convergence at least a little bit to the left of 1, since
(again by analogy to the proof of Dirichlet’s theorem) the proof of Cebotarev’s density theorem will require
understanding the Artin L-functions near s = 1. In this section, where M/K is abelian, the point will be to
do this by relating to Hecke L-functions via technique of class field theory.

Definition 2.3. We keep the following notation for the basic objects on Hecke side of class field theory.

• A modulus of K is a Z≥0-linear combination of (possibly infinite) primes of K.

• For a modulus m of K, define IK(m) to be the group of fractional ideals of K supported away from
the finite part of m.

• For a modulus m =
∏
v|∞ vav

∏
p<∞ pap , define the subgroup Pm ⊂ IK(m) to be the set of principal

fractional ideals (α) such that α ∈ K× has the property that for all real v|∞ with av ≥ 1,

v(α) > 0

and that for all finite p with ap ≥ 1,
vp(1− α) ≥ ap.

2This geometry of numbers argument also gives you the exact residue of the pole at s = 1 when it exists, i.e. the analytic
class number formula.
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• The group IK(m)/Pm is called the ray class group of K modulo m, and it is a finite abelian group
(follows from finiteness of the class group and some dévissage).

• The subgroup N(m) ⊂ IK(m) is the one consisting of all norms of elements of IK(m).

Theorem 2.4 (Class field theory). Let M/K be a finite abelian extension. There is a modulus f = f(M/K)
divisible exactly by all the primes (finite and infinite) of K that are ramified in M such that the map
p 7→ Frobp (extended linearly to IK(f)) defines an isomorphism

Art : IK(f)/PfN(f)
∼→ Gal(M/K).

Corollary 2.5. Let M/K be a finite abelian extension, and χ : Gal(M/K) → C× a character. Then on the
region Re(s) > 1, we have

LArtin(s, χ) = LHecke(s, χ ◦Art)

up to a finite number of Euler factors, which is an exact equality in the case that χ is injective.

Proof. By Lemma 2.2, and its analog for the Hecke L-functions (also follows from the Euler product for
those), it suffices to prove that the Euler factors at each p coincide. Both the Hecke and Artin L-functions
here have trivial Euler factors at the finite primes dividing f (since those primes are exactly those that ramify
in M). For a prime p not dividing f, the Euler factor at p of LHecke(s, χ◦Art) is (according to the definition)

1

1− χ(Art([p]))Np−s
.

But the definition of the Artin reciprocity map was that it took classes of primes to Frobenii, so this is just

1

1− χ(Frobp)Np−s
,

which is exactly the Euler factor at p of LArtin(s, χ).
When χ is injective, the primes p of K such that χ(I(P|p)) ̸= 1 are exactly the primes which are ramified

in L, i.e., those dividing f(L/K), so the Euler factors at primes dividing f for both the Dirichlet and Artin
L-functions here are all trivial.

Corollary 2.6. LetM/K be a finite abelian extension and χ : Gal(M/K) → C× be a character. Then the L-
series LArtin(s, χ) converges (except where it has poles) to a meromorphic function on Re(s) > 1−1/[K : Q].
Furthermore, it admits a meromorphic continuation to the entire complex plane. If χ = 1, then the only
pole of LArtin(s, χ) is a simple pole at s = 1. If χ ̸= 1, then it is holomorphic.

Proof. Follows from the same properties of Hecke L-functions (hopefully proved in Fernando’s talk). In
particular, χ ◦ Art can be viewed as a character of IK(f)/Pf that happens to also vanish on N(f), so the
L-functions and the theory of [Lan1994, Ch. VIII] can be used to prove the claim about convergence and
about the possible pole at s = 1. For the same reason, Tate’s thesis [Tat1967] or Hecke’s work (hopefully
also done in Fernando’s talk) also applies, and shows the meromorphic continuation to all of C as well as
the claimed information about the poles. It also gives us a functional equation for LArtin(s, χ), which will
depend on the ε and γ -factors for the Hecke character χ ◦ Art. Note that we can assume in this whole
argument that χ is injective and therefore not worry about the possible extra Euler factors in Corollary 2.6
by replacing χ with the character Gal(M ′/K) → C× it factors through (where Gal(M/M ′) is the kernel
of χ); this makes no difference to LArtin(s, χ), as is easy to check (we will check it in greater generality in
Lemma 3.4 anyway).

To prove the Cebotarev density theorem, now that we have extended LArtin(s, χ) slightly to the left of
s = 1 (though of course we really have it to the entire complex plane except possible a pole at s = 1 by the
general meromorphic continuation for Hecke L-functions, though this will not be necess), we will need the
nonvanishing of LArtin(1, χ) for nontrivial Galois characters χ. This is a consequence of the following
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Proposition 2.7. Let M/K be a finite abelian extension. Then

ζM (s) =
∏

χ∈ ̂Gal(M/K)

LArtin(s, χ)

as meromorphic functions on C up to a finite product of holomorphic functions not vanishing at s = 1.

Proof. By Corollary 2.6, it suffices to verify an equality of Euler factors, where for ζM (s) they are grouped
by the prime of K that they lie over. In other words, we need to prove that for all finite primes p of K,∏

P|p

1

1−NP−s =
∏

χ∈ ̂Gal(M/K)

1

1− χ(Frobp)Np−s
.

What is sufficient (by plugging in X = Np−s), we will prove that∏
P|p

(1−Xf(P|p)) =
∏

χ∈ ̂Gal(M/K)

(1− χ(Frobp)X).

Since M/K is Galois, the quantities f(P|p) do not depend on P, so call this common value fp and let rp be
the number of P|p, so that the left hand side becomes

(1−Xfp)rp =

fp−1∏
i=0

(1− ζifp)
rp .

This means that we just need to show that the values χ(Frobp), as χ runs over ̂Gal(M/K), run over all the
fp-th roots of unity, repeating each possibility exactly rp times. Since ⟨Frobp⟩ = D(P|p), which has order
fp, the value of χ(Frobp) is always an fp-th root of unity. Moreover, [Gal(M/K) : D(P|p)] = rp, so the
characters χ : Gal(M/K) → C× can be all be written in the form χiψj , where the χi are arbitrary extensions
to Gal(M/K) of the fp characters of the cyclic group D(P|p) ⊂ Gal(M/K), and the ψj are the rp characters
of Gal(M/K) that vanish on D(P|p). The characters χi are determined by which fp-th root of unity ζifp
they send Frobp to, and by definition multiplying by ψj does not affect the value at Frobp ∈ D(P|p), so this
is exactly what we get.

Corollary 2.8. Let M/K be a finite abelian extension. For any nontrivial χ : Gal(M/K) → C×,

LArtin(1, χ) ̸= 0

(we already know it is a well-defined complex number by Corollary 2.6)

Proof. We use Proposition 2.7: for s near 1, we have

ζM (s) = ζK(s)

∏
χ ̸=1

LArtin(s, χ)

φ(s)

where φ(s) is a meromorphic function holomorphic and nonzero at s = 1. The left hand side has a simple
pole at s = 1, so the same must be true of the right hand side. The φ(s)-term contributes no zeros or poles.
The ζK(s)-term contributes a simple pole. Therefore,

ords=1

∏
χ̸=1

LArtin(s, χ)

 = 0.

But by Corollary 2.6, none of the terms in this product can have a pole at s = 1, so (since a sum of
nonnegative integers being zero means all the integers were zero to begin with) none of those terms can have
a zero at s = 1.
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As promised, Corollary 2.8 and Corollary 2.6 directly imply the Dirichlet density version of the Cebotarev
density theorem:

Theorem 2.9 (Cebotarev density theorem). Let M/K be a finite abelian extension. Then for any σ ∈
Gal(M/K), the set

Pσ := {primes p ∤ ∆M/K such that Frobp = σ}
has the property that

lim
s→1+

∑
p∈Pσ

1
Nps∑

p∤∆K/M

1
Nps

=
1

[M : K]
.

Proof. The point is to copy the proof of Dirichlet’s theorem on primes in arithmetic progressions. For
σ ∈ Gal(M/K), and x > 0, let π(x;σ) be the number of primes p ∈ Pσ there are such that Np ≤ x. The
key idea is to consider π(x;−) as a function on the finite abelian group Gal(M/K), and use the fact from
Fourier analysis on finite abelian groups to decompose it as a linear combination of characters of Gal(M/K).
In particular, for all σ ∈ Gal(M/K) and y > 0, we have

π(y;σ) =
∑

χ∈ ̂Gal(M/K)

⟨χ, π(y;−)⟩χ(σ),

where

⟨χ, π(y;−)⟩ := 1

[M : K]

∑
τ∈Gal(M/K)

χ(τ)π(y; τ).

We apply summation by parts and apply this Fourier decomposition of π(y;−) once the π(y; τ) is inside the
integral: for real s > 1,∑

p∈Pσ

1

Nps
=

∫ ∞

1

1

ys
d(π(y;σ))

= −s
∫ ∞

1

π(y;σ)y−s
dy

y

= −s
∫ ∞

1

 ∑
χ∈ ̂Gal(M/K)

⟨χ, π(y;−)⟩χ(σ)

 y−s
dy

y

= − s

[M : K]

∫ ∞

1

 ∑
χ∈ ̂Gal(M/K)

∑
τ∈Gal(M/K)

χ(τ)π(y; τ)χ(σ)

 y−s
dy

y

=
1

[M : K]

∑
χ∈ ̂Gal(M/K)

χ(σ) ·

−s
∫ ∞

1

∑
τ∈Gal(M/K)

χ(τ)π(y; τ)y−s
dy

y


=

1

[M : K]

∑
χ∈ ̂Gal(M/K)

χ(σ) ·
∑

p∤∆M/K

χ(Frobp)

Np−s

=
1

[M : K]

∑
χ∈ ̂Gal(M/K)

χ(σ) ·
∑

p∤∆M/K

χ(Frobp)

Np−s

Choose a branch of the complex logarithm near 1. The sum on the inside is very similar to logLArtin(s, χ),
which is

log
∏

p∤∆M/K

1

1− χ(Frobp)Np−s
=

∑
p∤∆M/K

− log(1− χ(Frobp)Np
−s)
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=
∑

p∤∆M/K

∑
m≥1

χ(Frobp)
m

mNpms

=
∑

p∤∆M/K

χ(Frobp)

Nps
+
∑
m≥2

∑
p∤∆M/K

χ(Frobp)
m

mNpms
.

And the m ≥ 2 term is actually O(1) for s→ 1+, because in absolute value it is at most

∑
p∤∆M/K

∑
m≥2

Np−ms =
∑

p∤∆M/K

Np−2

1−Np−s
≤ 2ζK(2) <∞.

Continuing our calculation, we conclude that∑
p∈Pσ

1

Nps
=

1

[M : K]

∑
χ∈ ̂Gal(M/K)

χ(σ) ·
(
logLArtin(s, χ) +Os→1+(1)

)
=

1

[M : K]

∑
χ∈ ̂Gal(M/K)

χ(σ) logLArtin(s, χ) +Os→1+(1).

By Corollary 2.8, the quantities logLArtin(s, χ) are bounded as s→ 1+, so the only term that isn’t absorbed
into the Os→1+(1) error is the χ = 1 term. That term is

logLArtin(s, 1) =
∑

p∤∆M/K

1

Nps
+Os→1+(1),

so we deduce after substituting all of this in that∑
p∈Pσ

1

Nps
=

1

[M : K]

∑
p∤∆M/K

1

Nps
+Os→1+(1),

and hence that

lim
s→1+

∑
p∈Pσ

1
Nps∑

p∤∆M/K

1
Nps

=
1

[M : K]
,

as desired.

Remark Cebotarev actually proved the non-abelian generalization of Theorem 2.9, where Frobp is con-
sidered as a conjugacy class. That generalization says that the Dirichlet density of the set of unramified p
with Frobp equal to a given conjugacy class C ⊂ Gal(M/K) is equal to |C|/[M : K]

Remark By class field theory, Theorem 2.9 also implies the generalization of Dirichlet’s theorem on primes
in arithmetic progression for primes in ray classes.

Remark Although we only stated and proved Theorem 2.9 for Dirichlet density, one can run the usual
machine with zero-free regions and logarithmic derivatives to prove the natural density version of it. This
was done by Serre–Odlyzko [Ser1981].

Skinner–Venkatesh learning seminar-8



3 Non-abelian Artin L-functions, Brauer’s theorem, and mero-
morphic continuation

Now let M/K be a finite (possibly non-abelian) Galois extension. For an arbitrary representation ρ :
Gal(M/K) → GL(V ) where V is an n-dimensional C-vector space, we can define an Artin L-function for ρ
analogously to Definition 2.1 as follows.

Definition 3.1. The Artin L-series attached to ρ is

LArtin(s, ρ) :=
∏
p

1

det((1−Np−sρ(FrobP))|V I(P|p))
.

Note that since Gal(M/K) is not necessarily abelian, making this definition required a choice of P|p, but
that it does not depend on this choice because I(P|p) is normal in D(P|p). When p is ramified in M , the
Euler factor at p is well-defined (it doesn’t depend on the choice of FrobP, which is only well-defined up to
I(P|p)) because the operator involved in the denominator is acting only on the fixed points of inertia.

Remark In Artin’s original paper [Art1924], he defined the L-functions to have trivial L-factors at the
ramified primes. In a later paper [Art1931], he changed the definition and verified that it still satisfied the
properties we will prove here (in particular independence on induction of characters), since those factors had
to appear in the functional equation that we will prove in this section.

Example 4. Consider the polynomial f(X) = X5 −X − 1 ∈ Z[X]. This polynomial is irreducible, as it is
an Artin–Schreier polynomial modulo 5. Let us first recall the proof that f is irreducible modulo 5, following
the general proof for Artin–Schreier polynomials. f mod 5 is separable over F5, since its derivative is the
nonzero constant −1 and therefore shares no roots with f in F5. The Frobenius x 7→ x5 sends a root x ∈ F5

of f to x+1 (by definition of f), so the roots of f are x, x+1, x+2, x+3, x+4, which are all distinct, and
we see that Gal(F5/F5) acts transitively on the roots of f , i.e. that f is irreducible over F5.

Let K = Q[X]/(X5 −X − 1) = Q(α), where WLOG α = α5 is a choice of roots α1, . . . , α5 of f in F 5 .
By PARI/GP computation, the prime factorization of the discriminant of X5 −X − 1 is

disc(X5 −X − 1) = 19 · 151.

In particular, this is squarefree, which implies that

OK = Z[α].

Therefore, by the Dedekind–Kummer theorem, for every rational prime p, the splitting type of p in K can
be read off of the splitting type of f modulo p: the irreducible factors of f mod p are in bijection with
the primes of K lying over p, and this bijection takes degrees of irreducible factors to inertial degrees and
multiplicities to ramification indices. As a reminder of how this works, e.g. from my notes [Kis2019, Lemma
11.3]: if f := f mod p has prime factorization

f =

r∏
i=1

f
ei
i ∈ Fp[X],

then the ideal pi := (p, fi(α)) ⊂ OK is prime (its quotient is Fp[X]/(fi)), and I =
∏r
i=1 p

ei
i ⊂ (p), since

modulo p all the generators of pi are zero because they have a factor of p in their definition, except maybe
the last one

∏r
i=1 fi(α)

ei , which is still zero mod p because f(α) = 0 coincides with this product modulo p.

For the opposite inclusion, write (p) =
∏
i p
e′i
i , where e

′
i ≤ ei by what we just proved. Taking this modulo

(p), we must get zero, but the ideal on the right hand side is generated modulo p by

r∏
i=1

f
e′i
i (α) ∈ OK/(p),
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which we conclude is zero as well, since OK/(p) = Fp[X]/(f(X)) where X corresponds to α.
It is a very interesting question to try and understand the splitting type of X5 − X − 1 modulo p as

p varies. This is the question that is answered for polynomials with abelian Galois group by class field
theory (for example in the abelian examples of the previous section we did it for quadratic polynomials and
cyclotomic polynomials, which happened in our analysis of how the Artin L-functions we were looking at
in that case were actually Hecke L-functions). So it makes sense to build an L-function that encodes the
splitting information of rational primes in K. On the other hand, Artin L-functions take in the Frobenii of
the primes as input, which are a priori defined to be in some Galois group. K/Q is NOT Galois, so we will
need to do the exercise of figuring out splitting types of rational primes p in K based on their Frobenii and
other Galois decomposition data in the Galois closure M of K/Q. We assemble the answer to this exercise
from [Woo2011], [Gun2019, §4], [Neu1999, §II.9]. Let

G = Gal(M/Q) = Gal(Q(α1, . . . , α5)/Q).

It is a subgroup of S5 according to how it permutes these five roots considered in the order that we chose.
Let p be a rational prime, q|p a prime of K, and P|p a prime of M . Then there is a bijection

D(P|p)\Gal(M/Q)/H ∼= {primes of K lying over p}

where H = Gal(M/K), given by
σ 7→ σp.

Indeed, this map is well-defined because H fixes K and by definition of decomposition groups, and proving
it is a bijection amounts to the fact that D(P|p)\Gal(M/Q) is in bijection with the set of primes of M
lying over p (because of transitivity of the Galois action on those primes), and that the Gal(M/K)-orbits of
primes of M lying over p are in bijection with the primes of K lying over p. Moreover,

e(σp|p)[κ(σp) : κ(p)] = e(σP|p)[κ(σP) : κ(p)]

e(σP|σp)[κ(σP) : κ(σp)]
=

|D(P|p)|
|D(σP|σp)|

=
|D(P|p)|

|D(σP|p) ∩H|
=

|D(P|p)|
|σD(P|p)σ−1 ∩H|

,

which is just the size of σ considered as an orbit of D(P|p) acting on Gal(M/Q)/H. Similarly,

e(σp|p) = e(σP|p)
e(σP|σp)

=
|I(P|p)|

|I(σP|σp)|
=

|I(P|p)|
|I(σP|p) ∩H|

=
|I(P|p)|

|σI(P|p)σ−1 ∩H|
,

which is the size of the I(P|p)-orbit of σ considered as an element of Gal(M/Q)/H.
Having assembled the double coset machinery of splitting of primes in non-Galois extension contained in

Galois extension, we can now analyze further the relationship between splitting of rational primes in K and
the Galois group of M/Q.

Since Gal(M/Q) is a transitive subgroup of S5, and H is the subgroup of Gal(M/Q) that fixes α = α5,
the set Gal(M/Q)/H is identified with the set {α1, . . . , α5} via the map taking σ to σα. Therefore, if p is
unramified in M , the set

D(P|p)\Gal(M/Q)/H = ⟨FrobP⟩ \{α1, . . . , α5}

has size equal to the number of cycles in the cycle decomposition of FrobP. The size of the orbit of a
particular element of {α1, . . . , α5} is just the size of the corresponding cycle. Put again: for a prime p that
is unramified in M , if p splits into r primes p1, . . . , pr in K with inertia degrees f1, . . . , fr, then r is the
number of cycles in FrobP, and the fi’s are the lengths of those cycles. For example, let p = 2. In F2[X],
we have a factorization into irreducibles

f(X) = X5 −X − 1 = (X2 +X + 1)(X3 +X2 + 1)

which implies that 2 is unramified in K (and therefore in M for example by the identity involving inertia
above) and that FrobP ∈ Gal(M/Q) has cycle decomposition (··)(···) where P is any prime ofM lying over 2.
In particular, Gal(M/Q) contains a 2-cycle (a third power of any such Frobenius). It also contains a 5-cycle,
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since it is a transitive subgroup of S5 (this implies Gal(M/Q) contains a 5-cycle by Cauchy’s theorem), so
we conclude that Gal(M/Q) = S5 via the permutation action on {α1, . . . , αn}. This is convenient because it
means conjugacy classes in Gal(M/Q) are quite big, so for the purposes of writing down Artin L-functions
we only care about the cycle type decompositions of the Frobenii rather than anything more specific.

By factoring the polynomial X5 −X − 1 modulo p for unramified primes p (that is, p ̸= 19, 151), we can
compute these cycle types (as proved above). For example:

p = 2 =⇒ Frobp = (··)(· · ·)
p = 3 =⇒ Frobp = (· · · · ·)
p = 5 =⇒ Frobp = (· · · · ·)
p = 7 =⇒ Frobp = (··)(· · ·)
p = 11 =⇒ Frobp = (· · · · ·)
p = 13 =⇒ Frobp = (· · · · ·)
p = 17 =⇒ Frobp = (· · ·)(·)(·).

(I did this by factoring X5 −X − 1 modulo p for each of these p using PARI/GP). It isn’t surprising that
we didn’t find some cycle types here: for example the conjugacy class {1} will only occur for 1/|S5| < 1%
of primes and the conjugacy class (··) occurs for only 10/|S5| < 10% of primes. Let us also consider the
ramified prime 19, just for fun. The prime factorization of f(X) in F19[X] is

(X + 6)2(X3 + 14X2 + 12X + 6),

so 19 decomposes inK as p21p2 where f(p1|19) = 1 and f(p2|19) = 3. Let Pi be a prime ofM lying over pi. In
particular, there are two orbits of D(P1|19) ⊂ Gal(M/Q) ∼= S5 acting on 1 ∈ Gal(M/Q)/H ∼= {α1, . . . , α5},
one of size 2 and one of size 3. By enumerating all the subgroups of S5, we can check that there are only
three conjugacy classes of subgroups with this property:

⟨(123), (12), (45)⟩, ⟨(123), (12)(45)⟩, ⟨(123), (45)⟩.

Since p is tamely ramified in K, it is tamely ramified in the Galois closure M (see for example [Con2004]),
which implies I(P1|19) is cyclic. The orbits of I(P1|19) inside the orbit {1, 2, 3} of D(P1|19) are all of size
1, and there is just one orbit of I(P1|19) inside the orbit {4, 5} of D(P1|19). Therefore, I(P1|19) = ⟨(45)⟩,
which rules out D(P1|19) = ⟨(123), (12)(45)⟩. The quotient of D(P1|19) by I(P1|19) must be cyclic, which
rules out D(P1|19) = ⟨(123), (12), (45)⟩ and leaves only the possibility (up to conjugacy)

D(P1|19) = ⟨(123), (45)⟩ ⊃ ⟨(45)⟩ = I(P1|19),

so we can choose for instance FrobP1
= (123) for the purposes of computation of Euler factors.

Let ρ : Gal(M/Q) → GL4(C) = GL(V ) be the stadard representation of S5. Either by the explicit
definition of the standard representation ρ or by ad hoc determination of eigenvalues, we have the following
chart of values relevant to writing down the Euler factors:

σ ψstd(σ) charpoly(ρ(σ)) Euler factor of L(s, ρ) at unramified p when Frobp = σ
1 4 (X − 1)4 (1− p−s)4

(··) 2 (X − 1)3(X + 1) (1− p−s)3(1 + p−s)
(··)(··) 0 (X − 1)2(X + 1)2 (1− p−s)2(1 + p−s)2

(· · ·) 1 (X − 1)2(X2 +X + 1) (1− p−s)2(1 + p−s + p−2s)
(··)(· · ·) -1 (X − 1)(X + 1)(X2 +X + 1) (1− p−s)(1 + p−s)(1 + p−s + p−2s)

(· · ··) 0 (X − 1)(X + 1)(X2 + 1) (1− p−s)(1 + p−s)(1 + p−2s)
(· · · · ·) -1 X4 +X3 +X2 +X + 1 1 + p−s + p−2s + p−3s + p−4s
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(here we have used that the denominator of the Euler factor at p is p−4scharpoly(ρ(Frobp))(p
s)). Combining

with our previous calculation of Frobenii for p < 19, we see that the first few unramified Euler factors are

1

(1− 2−s)(1 + 2−s)(1 + 2−s + 2−2s)
· 1

1 + 3−s + 3−2s + 3−3s + 3−4s
· 1

1 + 5−s + 5−2s + 5−3s + 5−4s

· 1

(1− 7−s)(1 + 7−s)(1 + 7−s + 7−2s)
· 11

1 + 11−s + 11−2s + 11−3s + 11−4s
· 1

1 + 13−s + 13−2s + 13−3s + 13−4s

· 1

(1− 17−s)2(1 + 17−s + 17−2s)
.

To compute the ramified Euler factor at p = 19, we need to write down the action of Frob19 = (123) on the
(45)-fixed points of ρst. The definition of ρ as being inside the permutation representation is

V =

{
(x1, . . . , x5) ∈ C5 :

5∑
i=1

xi = 0

}

and thus

V I(P1|19) = V (45) =

{
(x1, . . . , x5) : x4 = x5,

5∑
i=1

xi = 0

}
.

is 3-dimensional. This has a nice basis (1, 0, 0,−1/2,−1/2), (0, 1, 0,−1/2,−1/2), (0, 0, 1,−1/2,−1/2)
The Frobenius we chose was (123), which has matrix

M :=

 1
1

1


in this basis. There are 3 eigenvalues which must be 3rd roots of unity and add up to zero. The only choice
is for them to be 1, ζ3, ζ

2
3 , and hence the Euler factor at 19 is

1

(1− 19−s)(1 + 19−s + 19−2s)
.

Note that the fact that the ramification gets rid of one dimension corresponds to the fact that the total
degree in p−s downstairs is 3 instead of 4 like all the other Euler factors we did so far.

As in Lemma 2.2 in the abelian case, convergence to a holomorphic function on the region Re(s) > 1,
and not much else, comes for free from looking at the Euler product:

Lemma 3.2. LetM/K be a finite Galois extension, and let ρ be a finite-dimensional complex representation
of Gal(M/K). The Artin L-series LArtin(s, ρ) converges to a holomorphic function on the region Re(s) > 1.

Proof. Let χ = Trρ be the character of ρ. We can safely ignore the finitely many Euler factors for the p with
I(P|p) ̸= 1. As in the proof of Lemma 2.2 (where the taking of logarithms is hidden by citing [SS2003]), we
take the logarithm, finding that the log of the Euler factor at p is

− log det(1−Np−sρ(FrobP)) =

dim ρ∑
i=1

− log
(
1−Np−sa

(i)
p,ρ

)

=

dim ρ∑
i=1

∞∑
m=1

1

m
Np−ms(a

(i)
p,ρ)

m

=

∞∑
m=1

1

m
Np−ms

dim ρ∑
i=1

(a
(i)
p,ρ)

m
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=

∞∑
m≥1

χ(FrobmP)

mNpms
,

where the a
(i)
p,ρ, 1 ≤ i ≤ dim ρ, denote the eigenvalues3 of ρ(FrobP) (the choice of P doesn’t matter since

conjugating a matrix doesn’t affect its eigenvalues).
All that remains to do is to prove the absolute convergence of the sum∑

p∤∆M/K

∞∑
m=1

χ(FrobmP)

mNpms
.

The quantities χ(FrobmP), being the sum of dim ρ roots of unity (the eigenvalues a
(i)
p,ρ are roots of unity

because Gal(M/K) is finite), are of absolute value at most dim ρ, so the result follows from the convergence
of

∞∑
m=1

∑
p

1

Npms
.

when Re(s) > 1. This convergence is for example a consequence of the fact (from the proof of Theorem 2.9)
that the m ≥ 2 terms converge and that the m = 1 term is clearly bounded in absolute value by ζK(Re(s)).

This still leaves open the question of whether LArtin(s, ρ) can be extended meromorphically to the left
of ℜ(s) = 1 with functional equation and expected poles (this is called Artin’s conjecture). In the previous
section we used the fact that ρ was 1-dimensional in order to apply class field theory and connect the Artin
L-function to a Hecke L-function, which itself has these desirable properties.

The strategy for the rest of this section will be to try and attack Artin’s conjecture by thinking about all
the different ways that we can build higher-dimensional representations from lower-dimensional representa-
tions, showing that this process is compatible in some way with taking Artin L-functions, and then deducing
some information about meromorphic continuation from the 1-dimensional case.

For example, for the process of taking direct sums of representations, we have

Proposition 3.3. Given two finite-dimensional complex representations ρi : Gal(M/K) → GL(Vi), i = 1, 2,
we have

LArtin(s, ρ1 ⊕ ρ2) = LArtin(s, ρ1)L
Artin(s, ρ2).

Proof. This can be read off of the Euler products for both sides, since (by definition of the direct sum)(
1−Np−s(ρ1 ⊕ ρ2)(FrobP)

)
|(V1⊕V2)I(P|p) =

(
(1−Np−sρ1(FrobP))⊕ (1−Np−sρ1(FrobP))

)
|
V

I(P|p)
1 ⊕V I(P|p)

2

= (1−Np−sρ1(FrobP))|
V

I(P|p)
1

⊕ (1−Np−sρ1(FrobP))|
V

I(P|p)
2

and determinants turn direct sums of operators into products.

We also remark that technically we have not given the full detail of why we have taken care of the
1-dimensional case. A priori, there might be a difference between the Artin L-function of a character of
an abelian group (which is what we used class field theory to prove Artin’s conjecture for in the previous
section) and the Artin L-function of a (1-dimensional) character of a non-abelian group (which only factors
through an abelian quotient). In fact, there is no difference between these two L-functions, as shown by the
following lemma in the special case where ρ is 1-dimensional and Gal(M ′/K) is abelian.

Lemma 3.4. Let K ⊂M ′ ⊂M be finite extensions with the property thatM ′/K andM/K are Galois. Let
π : Gal(M/K) → Gal(M ′/K) be the natural projection, and let ρ : Gal(M ′/K) → GLd(C) be a complex
representation of Gal(M ′/K). Then we have an equality of L-functions for Gal(M ′/K) and Gal(M/K)

LArtin(s, ρ) = LArtin(s, ρ ◦ π)
3Take Jordan normal form.
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Proof. It suffices to prove equality of Euler factors at each p. For each p, choose a prime P′ of M ′ lying over
p, and a prime P of M lying over P′. The Euler factor at p of the right hand side is

1

det((1−Np−sρ(FrobP|Gal(M ′/K)))|V I(P|p)

=
1

det((1−Np−sρ(FrobP′))|V I(P′|p)

,

since FrobP|Gal(M ′/K) = FrobP′ (general fact about Frobenii) and I(P|p) surjects onto I(P′|p) via π (general
fact from algebraic number theory, see e.g. [Gun2019]). This is exactly the Euler factor at p of the left hand
side.

Finally, we prove the same property is true for induction of characters. This proof is taken straight from
[Lan1994, XII, §3].

Proposition 3.5. Let K ⊂ M ′ ⊂ M be finite extensions with the property that M/K is Galois. Let
ρ : Gal(M/M ′) → GL(V ) be a finite-dimensional complex representation of Gal(M/M ′). Then there is an
equality of L-functions for Gal(M/M ′) and Gal(M/K)

LArtin(s, ρ) = LArtin(s, Ind
Gal(M/K)
Gal(M/M ′)ρ).

Proof. Let χ be the character of ρ, and Indχ := TrInd
Gal(M/K)
Gal(M/M ′)ρ the character of the induction of ρ.

Recall that (e.g. as a consequence of Frobenius reciprocity), if {c} is any system of representatives for
Gal(M/M ′)\Gal(M/K), then for all g ∈ Gal(M/K),

(Indχ)(g) =
∑
c

χ(cgc−1),

where χ(cgc−1) is understood to be zero when cgc−1 is not in Gal(M/M ′).
We first construct a convenient choice of {c}. Fix a prime p of K, let P′

1, . . . ,P
′
rp be the primes of

M ′ lying over p, and for each i = 1, . . . , rp, let Pi be an arbitrary choice of prime of M lying over P′
i.

Choose elements σ1, . . . , σrp ∈ Gal(M/K) such that σiP1 = Pi, and hence D(Pi|p) = σiD(Pi|p)σ−1
i ,

I(Pi|p) = σiI(Pi|p)σ−1
i , and σiFrobP1

σ−1
i = FrobPi

. For each i = 1, . . . , rp, we have

[D(Pi|p) : D(Pi|P′
i)] = e(P′

i|p)f(P′
i|p),

so we can choose representatives {γi,j}1≤j≤e(P′
i|p)f(P′

i|p) for D(Pi|P′
i)\D(Pi|p). We claim that the elements

{γi,jσi}1≤i≤rp,1≤j≤e(P′
i|p)f(P′

i|p)

are a system of representatives for Gal(M/M ′)\Gal(M/K). Indeed, there are rpe(P
′
i|p)f(P′

i|p) = [M ′ : K]
of them, so it suffices to show that the cosets Gal(M/M ′)γi,jσi are different for different pairs (i, j). If there
were pairs (i1, j1) and (i2, j2) such that

Gal(M/M ′)γi1,j1σi1 = Gal(M/M ′)γi2,j2σi2 ,

then we would have
γi1,j1σi1σ

−1
i1
γ−1
i2,j2

∈ Gal(M/M ′).

Since γi,j is always in D(Pi|p), we have γi,jPi = Pi, and we have σ−1
i Pi = P1, so

γi1,j1σi1σ
−1
i1
γ−1
i2,j2

Pi2 = Pi1 .

But Pi1 and Pi2 live over different primes ofM ′, which Gal(M/M ′) acts trivially on, so we already have i1 =
i2 =: i. Thus σi1 = σi2 , and we are left with γi,j1γ

−1
i,j2

∈ Gal(M/M ′). But the {γi,j}1≤j≤e(P′
i|p)f(P′

i|p) were
chosen to be a system of representatives forD(Pi|P′

i)\D(Pi|p), andD(Pi|P′
i) = D(Pi|p)∩Gal(M/M ′), so we

conclude that j1 = j2, finally proving that the γi,jσi are a full system of representatives for Gal(M/M ′)\Gal(M/K).
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We remark, too, that for a prime Pi|p, determinant of the operator(
1−Np−s(Indρ)(FrobPi

)
)
|(IndV )I(Pi|p)

is the same as the determinant of the operator on IndV given by(
1−Np−s(Indρ)(FrobPi)

)
◦ πI(Pi|p),

where πI(Pi|p) is the natural projection V → V I(Pi|p) given by

v 7→ 1

e(Pi|p)
∑

g∈I(Pi|p)

Ind(ρ)(g)v.

Therefore, the log of the Euler factor at p of Artin L-function for Indρ is

log
1

det (1−Np−s(Indρ)(FrobP1)) ◦ πI(P1|p)
=

∞∑
m=1

Tr((Indρ)(FrobmP1
) ◦ πI(P1|p))

mNpms

=

∞∑
m=1

1

e(P1|p)
∑

g∈I(P1|p)

(Indχ)(FrobmP1
g)

mNpms

=

∞∑
m=1

1

e(P1|p)
∑

g∈I(P1|p)

rp∑
i=1

e(P′
i|p)f(P

′
i|p)∑

j=1

χ(γi,jσiFrob
m
P1
gσ−1

i γ−1
i,j )

mNpms
,

where we recall that the convention is that χ(σ) = 0 when σ ̸∈ Gal(M/M ′). Since σiI(P1|p)σ−1
i = I(Pi|p)

and σiFrobP1
σ−1
i = FrobPi

, this is the same as

∞∑
m=1

1

e(P1|p)

rp∑
i=1

e(P′
i|p)f(P

′
i|p)∑

j=1

∑
g∈I(Pi|p)

χ(γi,jFrob
m
Pi
gγ−1
i,j )

mNpms
.

Since γi,j ∈ D(Pi|p), where I(Pi|p) is a normal subgroup, we can further simplify to

∞∑
m=1

1

e(P1|p)

rp∑
i=1

e(P′
i|p)f(P

′
i|p)∑

j=1

∑
g∈I(Pi|p)

χ(FrobmPi
g)

mNpms

which is just
∞∑
m=1

1

e(P1|P′
1)

rp∑
i=1

f(P′
i|p)

∑
g∈I(Pi|p)

χ(FrobmPi
g)

mNpms
.

The problem now is to understand when the input to χ is in Gal(M/M ′). Let 1 ≤ i ≤ rp. If there exists g ∈
I(Pi|p) such that FrobmPi

g ∈ Gal(M/M ′), then we would have FrobmPi
g ∈ D(Pi|p)∩Gal(M/M ′) = D(Pi|P′

i)
and therefore the reduction modulo Pi of Frob

m
Pi
g, which a priori lived in Gal(κ(Pi)|κ(p)), actually fixes

κ(P′
i). Since g ∈ I(Pi|p), its mod-Pi reduction is trivial, so we have really concluded that FrobmPi

mod Pi

fixes κ(P′
i). Since

Gal(κ(Pi)/κ(P
′
i)) =

〈
Frob

f(P′
i|p)

Pi

〉
⊂ Gal(κ(Pi)/κ(p)) = ⟨FrobPi⟩ ,

it follows that f(P′
i|p) divides m. In other words, the terms where f(P′

i|p) ∤ m all vanish.
When f(P′

i|p)|m, we have

FrobmPi
I(Pi|p) ∩Gal(M/M ′) = FrobmPi

I(Pi|p) ∩D(Pi|P′
i)

Skinner–Venkatesh learning seminar-15



= (FrobPi(M/M ′))
m

f(P′
i
|p) I(Pi|P′

i),

where the first equality is because D(Pi|P′
i) = D(Pi|p) ∩ Gal(M/M ′) and the second one is because a

subset of D(Pi|P′
i) that is invariant under right-multiplication by I(Pi|P′

i) is determined by what subset of
Gal(κ(Pi)/κ(P

′
i)) it projects down to modulo Pi. Our Euler factor at p is therefore

∞∑
m=1

1

e(P1|P′
1)

rp∑
i=1

f(P′
i|p)

∑
g∈I(Pi|p)

χ(FrobmPi
g)

mNpms
. =

∞∑
m=1

1

e(P1|P′
1)

rp∑
i=1

f(P′
i|p)

∑
g∈I(Pi|p)

χ(Frob
mf(P′

i|p)
Pi

g)

mf(P′
i|p)Npmf(P

′
i|p)s

.

=

∞∑
m=1

1

e(P1|P′
1)

rp∑
i=1

∑
g∈I(Pi|p)

χ(Frob
mf(P′

i|p)
Pi

g)

m(NP′
i)
ms

.

=

∞∑
m=1

1

e(P1|P′
1)

rp∑
i=1

∑
g∈I(Pi|P′

i)

χ((FrobPi
(M/M ′))mg)

m(NP′
i)
ms

.

=

∞∑
m=1

1

e(P1|P′
1)

rp∑
i=1

∑
g∈I(Pi|P′

i)

χ((FrobPi
(M/M ′))mg)

m(NP′
i)
ms

.

=

rp∑
i=1

∞∑
m=1

1

e(P1|P′
1)

∑
g∈I(Pi|P′

i)

χ((FrobPi(M/M ′))mg)

m(NP′
i)
ms

.

=

rp∑
i=1

log
1

det((1−NP′
iρ(FrobPi(M/M ′)))|

V I(Pi|P′
i
))

= log

rpf∏
i=1

1

det((1−NP′
iρ(FrobPi(M/M ′)))|

V I(Pi|P′
i
))
.

This is exactly the product of all the Euler factors of LArtin(s, ρ) at the primes of M ′ over p, so we have
shown that

LArtin(s, ρ) = LArtin(s, Ind
Gal(M/K)
Gal(M/M ′)ρ)

It turns out that all representations of possibly non-abelian groups can be reached essentially by combining
Proposition 3.3, Lemma 3.4, and Proposition 3.5, with the disclaimer that sometimes we may need to divide
instead of multiplying when we apply Proposition 3.3. The reason for this is the following celebrated result
of Brauer.

Theorem 3.6 (Brauer’s theorem). Let G be a finite group, and suppose that χ is the character of a
representation ρ of G. Then

χ ∈ Z

[{
IndGHψ

}
H,ψ

]
,

where H runs over all subgroups of G and ψ runs over all 1-dimensional characters of H.

Proof. See [Ser1978].

Example 5. Let G = S3. The character table of G is

Conjugacy class Size of
conjugacy class

ψtriv ψalt ψstd

(·)(·)(·) 1 1 1 2
(··)(·) 3 1 -1 0
(· · ·) 2 1 1 -1
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The characters ψtriv and ψalt are already 1-dimensional, so the only thing to do is to write ψstd as a Z-linear
combination of inductions. In fact, it turns out that it is already induced, as we could have known already
using the fact that S3 is nilpotent. Since ψstd is of dimension 2, the place to go looking for characters it
might be induced from is the subgroup A3 ⊂ S3, which is cyclic of order 3. Let σ = (123) be a generator of
A3, and for i = 0, 1, 2 let χi be the character of A3 taking σ 7→ ζi3. Then by Frobenius reciprocity we have

dimC HomS3
(ψstd, Ind

S3

A3
χi) = dimC HomA3

(ψstd|A3
, χi)

= ⟨ψstd|A3
, χi⟩A3

=
1

3

2∑
j=0

ψstd(σ
j)χi(σ

j)

=
1

3

2∑
j=0

ψstd(σ
j)ζij3

=
1

3

(
2− ζi3 − ζ2i3

)
= 1

when i = 1, 2. By Maschke’s theorem, Schur’s lemma, and the fact that dimψstd = dim IndS3

A3
(anything), we

conclude that ψstd is precisely the induction from A3 to S3 of either one of the nontrivial characters of A3.

Example 6. Let G = S4. In this case G is no longer nilpotent, but we might as well hope that every
character will be induced. In fact, we know this a priori, because S4 is what Serre calls “hypersolvable” (at
least I think this is a reasonable translation): A4 ⊂ S4 is normal, and it contains inside it a copy of the Klein
4 group which is also normal in S4. The character table of G is

Conjugacy class Size of
conjugacy class

ψtriv ψalt ψstd ψstd⊗alt ψ

(·)(·)(·)(·) 1 1 1 3 3 2
(··)(·)(·) 6 1 -1 1 -1 0
(··)(··) 3 1 1 -1 -1 2
(· · ·)(·) 8 1 1 0 0 -1
(· · ··) 6 1 -1 -1 1 0

where the last column is deduced for instance from the decomposition of the regular representation. If a
character of dimension 3 is induced from a 1-dimensional subgroup, that subgroup has index 3. For example
by Sylow theorem, the only index-3 subgroup of S4 up to conjugacy is D8 (choose the ordering 1, 2, 3, 4 of
the set S4 acts on in order to fix one particular copy of D8). The nontrivial dimension-1 characters of D8

(the only relevant ones for us) are the following:

Conjugacy class Size of
conjugacy class

χ1 χ2 χ3

{1} 1 1 1 1
{r, r3} = {(1234), (2143)} 2 1 −1 −1

{rs, r3s} = {(12)(34), (23)(41)} 2 −1 1 −1
{r2} = {(13)(24)} 1 1 1 1

{s, r2s} = {(13)(2)(4), (24)(1)(3)} 2 −1 −1 1

(it just depends on the choice of order-4 subgroup of D8 to choose as the kernel). By Frobenius reciprocity,
we compute (leaving out the ones that are zero to save space)〈

ψstd, Ind
S4

D8
χ3

〉
= ⟨ψstd|D8 , χ3⟩D8

= 1〈
ψstd⊗alt, Ind

S4

D8
χ1

〉
= ⟨ψstd|D8 , χ1⟩D8

= 1
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and so ψstd = IndS4

D8
χ3 and ψstd⊗alt = IndS4

D8
χ1. For the 2-dimensional character ψ, we know it will

be induced from the index-2 subgroup A4 ⊂ S4. The dimension-1 characters of A4 must factor through
A4 → Aab

4 = A4/[A4, A4]. Since A4 is not abelian, [A4, A4] is nontrivial. Also, A4 contains a normal
subgroup H of order 4, namely the copy of Klein 4 generated by (12)(34) and (13)(24). Since the quotient
by this subgroup has order 3 and is therefore abelian, H contains [A4, A4]. But all the nontrivial subgroups
of the Klein 4 group are either of order 2 or the whole thing, and A4 has no normal subgroups of order 2, so
we deduce that [A4, A4] = H, and therefore that the nontrivial 1-dimensional characters of A4 come directly
from those of the quotient A4/H ∼= Z/3Z, i.e.

Conjugacy class Size of
conjugacy class

φ1 φ2

{1} 1 1 1
{(12)(34), (13)(24), (14)(23)} 3 1 1

{(123)(4), (243)(1), (134)(2), (142)(3)} 4 ζ3 ζ23
{(132)(4), (234)(1), (143)(2), (124)(3)} 4 ζ23 ζ3

and we compute again by Frobenius reciprocity that ⟨ψ, IndS4

A4
φ1⟩ = ⟨ψ, IndS4

A4
φ2⟩ = 1 and therefore that

the 2-dimensional character ψ of S4 can be induced from either one of the 1-dimensional characters of any
D8 ⊂ S4. This proves Artin’s conjecture for S4 extensions.

Example 7. LetG = S5, and let ψstd be the character of the standard representation. It is 4-dimensional and
irreducible by the general theory. If ψstd was a Z≥0-linear combination of induced 1-dimensional characters,
then it would decompose as a direct sum of inductions of 1-dimensional representations of subgroups of G.
Since ψstd is irreducible of dimension 4, that would imply it is induced from a 1-dimensional representation
of an index-4 subgroup of S5. But S5 has no index-4 subgroups: indeed, S5 has no subgroup of order 15
(such a group would have to be cyclic by Sylow theorems, and S5 contains no element of order 15), and any
group of order 30 contains a subgroup of order 15 (such a group H has an element of order 2 by Cauchy’s
theorem, which becomes an odd permutation when viewed as an element of S|H|, so H ∩ A|H| = ker sgn|H
would do the trick). Therefore, we have found our first example of a situation where negative coefficients are
required in Brauer’s theorem, and therefore where Artin’s conjecture does not follow simply from a certain
instance of Brauer’s theorem.

Example 8. This is a continuation of the previous example, where we now try to explictly write ψstd as a
Z-linear combination of inductions of 1-dimensional characters of subgroups of G = S5. I don’t know how
to do this by hand without enumerating all the subgroups of S5 and then using Frobenius reciprocity to
compute all the inductions to S5 of all the 1-dimensional characters of those subgroups. Since I am not very
enthusiastic about doing this by hand, I wrote a SAGE script to do it for me. This involved enumerating
all conjugacy classes of subgroups of S5, inducing all the 1-dimensional characters of those subgroups to S5,
and then computing the Smith normal form of a 7 × 57 integer matrix. Ultimately, the answer is actually
simple:

ψstd = −ψtriv + IndS5

S4
(1S4

),

where S4 ⊂ S5 can be chosen to be any of the 5 obvious choices. Fan Zhou has explained to me that this is
a special case of the Pieri rule. The other case of the Pieri rule is

ψalt⊗std = −ψalt + IndS5

S4
(altS4

).

In fact, now that my SAGE script is up and running, we might as well finish off the remaining three characters
of S5. The full character table is
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Conjugacy class Size of
conjugacy class

ψtriv ψalt ψstd ψstd⊗alt ψ5,1 ψ5,2 ψ6

{1} 1 1 1 4 4 5 5 6
(··) 10 1 −1 2 −2 1 −1 0

(··)(··) 15 1 1 0 0 1 1 −2
(· · ·) 20 1 1 1 1 −1 −1 0

(··)(· · ·) 20 1 −1 −1 1 1 −1 0
(· · ··) 30 1 −1 0 0 −1 1 0

(· · · · ·) 24 1 1 −1 −1 0 0 1

where I got the last three columns off of SAGE. Doing the Smith normal form computation in SAGE as
before, we get

ψ5,1 = IndS5

AGL1(F5)
χ1 − ψalt

ψ5,2 = IndS5

AGL1(F5)
1− ψtriv

ψ6 = IndS5

AGL1(F5)
χ2

where the character χ1 : AGL1(F5) → C× is given by composing the natural projection AGL1(F5) → F×
5

with the unique nontrivial real-valued 1-dimensional character of F×
5 (the one taking a primitive root to −1),

and the character χ2 : AGL1(F5) → C× is given by composing that same projection with either one of the
complex-values characters of F×

5 (the ones taking a primitive root to ±i).

To be precise, the fact that the coefficients could be negative means that we do not quite prove Artin’s
conjecture in this way, instead proving the statement with “holomorphic” replaced with “meromorphic”:

Corollary 3.7. Let M/K be a finite Galois extension, and ρ : Gal(M/K) → GL(V ) a finite-dimensional
complex representation. Then LArtin(s, ρ) has meromorphic continuation to the entire complex plane.

Proof. Let χ be the character of ρ. By Theorem 3.6, there are subgroups Gal(M/Mi) = Hi ⊂ Gal(M/K)
equipped with 1-dimensional characters ψi : Hi → C×, and integers ai ∈ Z, i = 1, . . . , r, such that

χ =

r∑
i=1

aiInd
Gal(M/K)
Gal(M/Mi)

ψi.

Noticing that the definition of the Artin L-series only depends on the character of the representation ρ and
extending the definition of LArtin(s, ψ) to arbitrary class functions f : Gal(M/K) → C as

LArtin(s, f) :=
∏
p

exp

 ∞∑
m=1

1

e(P|p)
∑

g∈I(P|p)

f(Frobmp g)

mNpms

 ,

we have convergence of these on ℜ(s) > 1 as well as the generalization of Proposition 3.3 given by

LArtin

(
s,
∑
i

aifi

)
=
∏
i

LArtin (s, fi)
ai .

Applying this to fi = Ind
Gal(M/K)
Gal(M/Mi)

ψi, and applying Proposition 3.5, we get

LArtin(s, ρ) =

r∏
i=1

LArtin(s, Ind
Gal(M/K)
Gal(M/Mi)

ψi)
ai

=

r∏
i=1

LArtin(s, ψi)
ai ,

and the meromorphic continuation of each of these r factors follows from Lemma 3.4 and Corollary 2.6.
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Example 9. Using the fact that the regular representation decomposes as
⊕

ρ(dim ρ)ρ where ρ runs over
the irreducible representations of Gal(M/K), we have

ζM (s) = LArtin(s, ρregular) =
∏
ρ

LArtin(s, ρ)

up to an entire nonvanishing function that doesn’t vanish at 1 (coming from Euler factors at non-split primes,
which have multiplicatively bounded contribution). This is the non-abelian analog of Proposition 2.7.

The functional equation satisfied by the (non-abelian) Artin L-function LArtin(s, ρ) extended meromorphi-
cally to the whole complex plane in Corollary 3.7 can also be written down explicitly using the decomposition

LArtin(s, ρ) =

r∏
i=1

LArtin(s, ψi)
ai

from Corollary 3.7 and the functional equations satisfied by the abelian L-functions LArtin(s, ψi) (which are
just the functional equations satisfied by Hecke L-functions by class field theory).

The following will definitely NOT be in the talk. Artin was able to analyze this more closely and write
down, somewhat more explicitly in terms of ρ as opposed to the data that comes from Brauer’s theorem,
the functional equation satisfied by the meromorphic continuation of L(s, ρ) to C, namely

Theorem 3.8. Let M/K be a finite Galois extension of number fields and ρ : Gal(M/K) → GL(V ) a
finite-dimensional irreducible complex representation with character χ. Let

Λ(s, ρ) := (|∆K |dim ρN(f(χ)))s/2L(s, ρ)
∏
v|∞

Lv(s, ρ),

where for all complex places v of K,

Lv(s, ρ) := 2(2π)−sΓ(s)dim ρ,

and for all real places v of K,

Lv(s, ρ) :=
(
π−s/2Γ(s/2)

)χ(1)+χ(cv)
2

(
π−(s+1)/2Γ((s+ 1)/2)

)χ(1)−χ(cv)
2

and cv is the generator of Gal(Lw/Kv), which is always trivial or Z/2Z. Then there is a constant W (χ) of
absolute value 1 such that Λ satisfies the functional equation

Λ(s, χ) =W (χ)Λ(1− s, χ).

Proof. See for example [Neu1999, §VII.12], and [Ser1968, Ch. VI] for the necessary theory of the Artin
conductor f(χ).

Langlands [Lan] and Deligne [Del1973] did some work on the Artin root number W (χ), which I know
nothing about.
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