
Math 223a: Algebraic Number Theory

Taught by Fabian Gundlach

Fall 2019

These notes are scribed by Kenz Kallal (me). My email is kenz.kallal@gmail.com.
Please contact me if you find any mistakes in these notes (all mistakes are mine and not
the instructor’s). You can also read the notes in real-time using the link [REDACTED].

Other administrative details are below:

• Section: Thursdays 4:30-5:30pm, SC411.

• CA Office hours: Wednesdays 7-10pm, Winthrop basement room S009 (later
moved to Sundays)

• Office hours: TTh 2-3pm, SC233.

• Email: gundlach@math.harvard.edu (Fabian Gundlach)

• Textbook: For infinite Galois theory, see Algebra: From the Viewpoint of Galois
Theory by Bosch [1]. Some good references for algebraic number theory and class
field theory are Neukrich’s Algebraic Number Theory [5], Lang’s Algebraic Number
Theory [2], and Milne’s notes entitled Class Field Theory [4].

• Midterm: None.

• Final: There will be a final paper (5–10 pages).

I am always available outside of office hours by email to answer any questions related to
the course material.

The main topics of this course are as follows:

• Infinite Galois theory

• Local fields

• Local class field theory via Lubin–Tate formal groups

• Galois cohomology, especially of local fields

• The main statements of global class field theory.

As such, it has the following prerequisites:

• Galois theory (e.g. math 123)

• Basic algebraic number theory (e.g. math 129)

• Basic topology (e.g. math 131).

Grades will be determined by:

• 70 percent homework, due Thursdays at noon. The 2 lowest grades will be dropped.

• 30 percent final paper.
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§1 September 3, 2019

The main goal of this course is class field theory. Though we won’t prove the global
version, it is useful to start out with a concrete example to motivate the theory and give
an idea of what it is about.

§1.1 Classical reciprocity laws

One of the main statements of global class field theory, namely Artin’s reciprocity law, is
a broad generalization of the classical reciprocity laws, of which quadratic reciprocity is
the simplest example. It has many important applications to algebraic number theory,
but the simplest way to view it is as a generalization of the classical reciprocity laws.

Let p be an odd prime. The law of quadratic reciprocity concerns the Legendre symbol
mod p, which is the unique surjective group homomorphism

( ⋅
p
) ∶ F×

p → {±1}.

For an arbitrary integer a, the Legendre symbol (ap) is 0 if p∣a and otherwise is ±1

depending on whether a is a perfect square (“quadratic residue”) mod p.

Lemma 1.1 (Euler’s criterion)

Let a ∈ Z. The Legendre symbol (ap) is congruent to a(p−1)/2 mod p. In particular,

a is a quadratic residue mod p if and only if a(p−1)/2 ≡ 1 mod p.

Proof. One way to do this is to exploit the fact that F×
p is cyclic. However, it can be

done directly. If a is a quadratic residue mod p, then a ≡ x2 mod p for some x ∈ F×
p , so

(working in Fp)

a(p−1)/2 = xp−1 = 1.

But a(p−1)/2 is always ±1 if a ≠ 0 (since its square is 1 and the polynomial x2 − 1 has the
two distinct roots ±1). Moreover, x(p−1)/2 − 1 has at most (p − 1)/2 roots in F×

p , and F×
p

contains (p− 1)/2 quadratic residues (for example because each nonzero perfect square in
Fp has exactly two square roots), so this proves that in fact x(p−1)/2 − 1 has the maximal
number (p − 1)/2 of roots in F×

p , and that the quadratic residues are exactly these roots.

As a result, a(p−1)/2 = −1 if a is a quadratic non-residue mod p and is 1 if a is a quadratic
residue mod p.

For a fixed p, the Legendre symbol (ap) depends only on a mod p. On the other hand,

it turns out that the Legendre symbol is also periodic in p for a fixed a (its value only
depends on p modulo a fixed integer n depending only on a). This is essentially the
law of quadratic reciprocity. Without proving the full result, we can see a few easy
examples.

Example 1.2

Let a = 0. Then (ap) = 0 for all p.
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Example 1.3

Let a = 1. Then (ap) = 1 for all p.

Example 1.4

Let a = −1. Then (ap) = (−1)(p−1)/2 so −1 is a QR mod p if and only if p ≡ 1 mod 4.

So indeed we see that at least in these special cases the Legendre symbol (ap) is periodic

in p. One obvious generalization is to look at cubic residues.

Example 1.5

Let a = 5. It turns out that whether a is a cubic residue mod p cannot be made to
depend on congruence conditions on p.

Example 1.6

The number of roots of x3 − 3x + 1 mod p depends only on p mod 9.

In this course we will explain the differing behavior between x3 − 5 and x3 − 3x + 91. We
might also explain how this generalizes to base field equal to an arbitrary number field.
In general, this question can take the following form:

Question 1.7. Let K be a number field and f(X) ∈ OK[X] a polynomial. Is there a
convenient description of the splitting behavior of f mod p depending on the nonzero
prime ideal p ⊆ OK?

Of course this is highly related2 to a slightly more abstract question

Question 1.8. Let L/K be an extension of number fields. Is there a convenient descrip-
tion of the splitting behavior of the primes of K in L? In particular, which primes have
some prescribed splitting type?

For example, the law of quadratic reciprocity amounts to (in the language of Ques-
tion 1.8) a concrete description of which primes p ∈ Z split completely in the quadratic
extension Q(√q), or alternatively (in the language of Question 1.7) a concrete description
of the splitting behavior of the polynomial X2 − q mod p. Class field theory will be
concerned with certain special cases of these types of questions (though we will see that
it still contains a massive generalization of Gauss’ law of quadratic reciprocity), namely
(in the langauge of Question 1.8) when L/K is Galois with abelian Galois group.

§1.2 Galois theory

Let K be a number field (or more generally an arbitrary global or local field3). The main
results of class field theory also contain a convenient description of the finite abelian
extensions of K. To this end, it is useful to consider all the finite Galois extensions of K

1Hint: one of them has abelian Galois group over Q and one of them doesn’t.
2See [3, Theorem 27] or [5, I.8.3]
3See [5, II.5]
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together by looking at the Galois4 group Gal(K/K). Since K/K is in general not finite
(for example when K is a number field it has finite extensions of arbitrarily large degree
which we could construct by adjoining square roots for instance), we need to spend some
time developing the theory of infinite Galois extensions.

Recall the fundamental theorem of finite Galois theory:

Theorem 1.9

Let M/K be a finite Galois extension, and G = Gal(M/K). The subfields of
M containing K are in inclusion-reversing bijective correspondence with the sub-
groups H ⊆ G via H ↦ MH , the fixed field of H. The inverse map is just
L ↦ Gal(M/L) with the canonical inclusion into Gal(M/K). Moreover, L =MH

is a Galois extension of K if and only if H is normal in G, in which case ev-
ery element of Gal(M/K) restricts to an element of Gal(L/K). So the (surjec-
tive) restriction homomorphism Gal(M/K) → Gal(L/K) induces an isomorphism
Gal(L/K) ≅ Gal(M/K)/Gal(M/L) = Gal(M/K)/H.

Proof. See [1, §4.1].

Although we can do finite Galois theory just using the definition ∣Aut(L/K)∣ = [L ∶K],
it is necessary in our case to use a more general definition:

Definition 1.10. A Galois extension L/K is an algebraic extension which is normal
and separable.

Remark 1.11. Theorem 1.9 is false as stated for infinite Galois extensions (see future
Example 2.1).

If M/K is a (possibly infinite) Galois extension, then every x ∈M lies in some finite
Galois extension of K (take the splitting field of the minimal polynomial of x over K). So
specifying an element of Gal(M/K) amounts to specifying its action on each finite Galois
subextension5. This can be stated in a useful way using an inverse limit:

Theorem 1.12

Let M/K be Galois and L the set of finite Galois subextensions L/K. For L ∈ L,
the groups Gal(L/K) form an inverse system, equipped with the projection maps
Gal(L/K)→ Gal(L′/K) whenever L′ ⊆ L. We have

Gal(M/K) ≅ lim←Ð
L∈L

Gal(L/K) ∶= {(σL)L∈L ∈ ∏
L∈L

Gal(L/K) ∶ L′ ⊆ L Ô⇒ σL∣L′ = σL′} ,

where the isomorphism is given by restriction to each factor Gal(L/K).

Proof. Let σ ∈ Gal(M/K). It’s obvious that restricting σ to each subextension L ∈ L
yields a valid group homomorphism

Gal(M/K)→ lim←Ð
L∈L

Gal(L/K).

4When K (local or global) has positive characteristic, it is not true that K/K is Galois, since it isn’t
separable (this is because K will not be perfect). In this situation, we can replace K =Kalg with the
separable closure Ksep ⊂ Kalg of K to get the Galois extension Ksep/K. This sublety will never be
important for us in this course so we might frequently write K when this will need to be understood
in some cases as Ksep.

5This morally why infinite Galois theory is often said to be a “formal consequence of the finite case”.
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If σ is trivial on each L ∈ L, then σ(x) = x for all x ∈ M (each such x is contained
in some L ∈ L as already mentioned), which means σ = id. So the homomorphism is
injective. To prove surjectivity, let (σL)L∈L ∈ lim←ÐGal(L/K). Now define σ ∈ Gal(M/K)
by σ(x) = σL(x) for any L ∈ L containing x. We need to check two things:

1. The definition of σ(x) does not depend on the choice of L ∈ L containing x.

2. σ is a bona fide element of Gal(M/K).

The first point is guaranteed by the definition of the inverse limit (since that definition
guarantees that all the σL’s agree on the Galois closure K ′ of K(x)/K because they
must all restrict to σK′). For the second one, let x, y ∈M , and let L be a finite Galois
extension of K contained in M containing both x and y (just take the Galois closure of
K(x, y)). Then σ(xy) = σL(xy) = σL(x)σL(y) = σ(x)σ(y) as desired.

Now we can discuss two basic examples: finite fields and cyclotomic extensions of
Q.

Example 1.13

Let q be a prime power, and consider the extension Fq/Fq. This extension is clearly
Galois (since Fp is perfect and by definition of algebraic closure the extension is
normal). Recall that the finite extensions of Fq are all Galois, all equal to Fqn for
some n, and with cyclic Galois group Z/nZ generated by the Frobenius automorphism
x ↦ xq. As a result, by the general description of the Galois group of an infinite
extension in Theorem 1.12,

Gal(Fq/Fq) ≅ lim←Ð
n∈N

Z/nZ,

where the inverse system is given by the natural modulo-m projection Z/nZ→ Z/mZ
whenever m∣n, since we have Fqm ⊆ Fqn if and only if m∣n and the Frobenius in
Gal(Fqn/Fq) restricts to the Frobenius in Gal(Fqm/Fq) (they are both defined by
exponentiation by q), and therefore the restriction maps are the ones Z/nZ→ Z/mZ
for m∣n sending 1 + nZ to 1 +mZ, as claimed.

By the Chinese remainder theorem, we can see thata

lim←Ð
n∈N

Z/nZ =∏
p

lim←Ð
n∈N

Z/pnZ =∏
p

Zp

where the product is over all rational primes p. Next lecture we will see why this
provides a counterexample to the infinite case of Theorem 1.9.

aIt’s a simple-enough exercise to exhibit the isomorphism and prove that it works.

Gal(Fq/Fq) ≅ lim←ÐZ/nZ ≅∏pZp is called the profinite completion of Z, also denoted Ẑ.
In general, the profinite completion of a group G is the inverse limit of the G/H (with
the obvious inverse system structure), where H runs over all normal subgroups of finite
index.
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Example 1.14

In the previous example, we took Fq, which is a union of finite extensions of degree
n with Galois group Z/nZ. In this example, we can consider the union of the fields
Q(ζn) where ζn is a primitive n-th root of unity. The union over all n of Q(ζn)
is a field because if x ∈ Q(ζn) and y ∈ Q(ζm) then xy, x + y ∈ Q(ζn, ζm) = Q(ζnm).
Letting this union of fields be Q(ζ∞), we know

Gal(Q(ζ∞)/Q) ≅ lim←Ð
n

(Z/nZ)×,

since each finite subfield of Q(ζ∞)/Q is contained in some Q(ζn)/Q (for instance,
by the primitive element theorem, any such finite subfield is of the form Q(α) for
some α ∈ Q(ζ∞), which means by definition α ∈ Q(ζn) for some n and therefore this
finite subfield is contained in Q(ζn)). By the Chinese remainder theorem, this is the
same as ∏p lim←Ðn(Z/pnZ)× =∏pZ×

p = Ẑ×. Here we view Ẑ as a ring and take its unit
group.
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§2 September 5, 2019

Today we will fix the fundamental theorem of Galois theory to work for infinite extensions.

§2.1 More infinite Galois theory

First, we finish off the counterexample from last time to the usual statement.

Example 2.1

Let G = Gal(Fq/Fq) ≅ Ẑ as discussed in Example 1.13, and consider the subgroup of
G given by H = ⟨ϕq⟩ ≅ Z, where ϕp denotes the Frobenius automorphism, given by
each coordinate equal to 1 (i.e. ϕq acts on each finite extension Fqn/Fq via x↦ xq).
The inclusion H ⊂ G produces the canonical inclusion Z ⊆ Ẑ.

The fixed field of H is the set of all x ∈ Fq such that xq = x. The polynomial xq −x
has degree q, so its roots are precisely the elements of Fq. So the fixed field is Fq.
But H is not all of G (for instance because the inclusion Z → Ẑ = ∏pZp is given
by inclusion into each coordinate, and Zp properly contains Z)a. This means that
Theorem 1.9 does not extend as-stated to the infinite case.
aThe fact that Z ⊊ Zp is easy to see in all sorts of ways. So far we have defined Zp = lim←ÐZ/prZ,

and we can just observe that there is no integer congruent to ∑r−1i=0 (−p)i mod pr since such an
integer a would have the property that (p + 1)a ≡ 1 mod pr for all r, and therefore (p + 1)a = 1
which is impossible if a ∈ Z. This is a special case of the fact that Zp contains the localization of
Z away from (p). In fact we have strict inclusions Z ⊊ Z(p) ⊊ Zp.

The rest of the lecture will be devoted to stating and proving the fundamental theorem of
Galois theory for infinite extensions, via a convenient topology, called the Krull topology,
on the Galois group that comes from the inverse limit structure given in Theorem 1.12.

Let M/K be a (possibly infinite) Galois extension. For intermediate extensions
K ⊆ L ⊆M , we have

Gal(M/L) = ⋂
L′⊆L

Gal(M/L′),

where L′ runs over the finite extensions of K contained in L. This motivates us to look
for a topology on Gal(M/K) such that Gal(M/L) ⊆ Gal(M/K) is closed for all such L
(since the arbitrary intersection of closed sets is closed). In particular, for any subgroup
H ⊆ G, we want Gal(M/MH) to be the closure of H. We also want Gal(M/K) to be a
topological group, so we can’t just take these to be exactly the closed subgroups. Instead
we take the unique topological group structure on Gal(M/K) with closed subgroups
around the identity given by the Gal(M/L). This will be a compact topological group,
so (as we will see) the open subgroups are the same as the closed ones of finite index.
Thus we should take as a basis of open subgroups around id the subgroups of the form
Gal(M/L) where L/K is finite. In fact it’s convenient to restrict the elements of the
base around id to where L/K is finite and Galois (so that infinite Galois theory becomes
more visibly connected to the finite case).

Definition 2.2. Define the Krull topology on Gal(M/K) using the base of open sets6

Uσ,L = σGal(M/L) = {τ ∈ Gal(M/K) ∶ τ ∣L = σ∣L}

6It’s easy to check that this is a valid basis of open sets. In particular, Uσ1,L1 ∩Uσ2,L2 is just the set of
all τ ∈ Gal(M/K) such that τ agrees with σ1 on L1 and with σ2 on L2. If this set is nonempty, it is
equal to Uσ′,L1 ⋅L2

for any σ′ ∈ Gal(M/K) restricting to σ1 on L1 and to σ2 on L2.
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running over all σ ∈ Gal(M/K) and finite Galois7 extensions L/K contained in M .

Roughly speaking, we should consider σ and τ to be close if they agree on a large finite
Galois subextension. Here again it’s useful that L/K is Galois so that σ and τ really do
restrict to bona fide elements of Gal(L/K).

Example 2.3

If M/K is a finite Galois extension, then for any σ, we can set L =M to see that
Gal(M/K) has the discrete topology (every subset is closed and open).

In fact, another way to define the Krull topology on Gal(M/K) is as the inverse limit

lim←Ð
L∈L

Gal(L/K)

in the category of topological groups where Gal(L/K) is given the discrete topology
(here L has the same meaning as it does in Theorem 1.12). That is to say, the Krull
topology on Gal(M/K) is equal to the induced topology from the inclusion

Gal(M/K) = lim←ÐGal(L/K) ⊆ ∏
L∈L

Gal(L/K).

This is because the isomorphism from Theorem 1.12 Gal(M/K) ≅ lim←ÐGal(L/K) sends
the open set Uσ,F to the set of elements of lim←ÐGal(L/K) whose F -coordinate equals σ∣F .
This open set is the intersection with lim←ÐGal(L/K) of the open set of ∏LGal(L/K)
given by

(∏
L≠F

Gal(L/K)) × {σ∣F }.

So the isomorphism sends a basis for the Krull topology to a basis for the induced
topology on the projective limit (since each finite Galois group Gal(L/K) has the discrete
topology). So the resulting topology on lim←ÐGal(L/K) is the same as the induced one
from the product. Now armed with some basic knowledge about the Krull topology, we
can proceed to prove the infinite Galois correspondence.

Proposition 2.4

If L is a subfield of M/K, then MGal(M/L) = L.

Proof. Suppose that x ∈M ∖L is fixed by every σ ∈ Gal(M/L). Let Lx be a finite Galois
extension of L containing x (e.g. the Galois closure of L(x)/L). By the finite Galois
theory of Lx/L, there is some element σ ∈ Gal(Lx/L) which does not fix x. But σ extends
to an element of Gal(M/L) by Zorn’s lemma, which contradicts the fact that x is fixed
by Gal(M/L). So no x ∈M ∖L is fixed by Gal(M/L), which proves the only nontrivial
part of the result, namely MGal(M/L) ⊆ L.

One part of the “Fundamental theorem of infinite Galois theory” is as follows:

7As noted before, the requirement that L/K is Galois doesn’t change the topology. For any finite L/K,
we have Gal(M/L) = ⋃σ∈Gal(M/L)Uσ,L′ where L′ is the Galois closure of L/K so Gal(M/L) is still
open under the Krull topology.
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Theorem 2.5

Let H be a subgroup of Gal(M/K). Then

Gal(M/MH) =H.

Proof. Let σ ∈ Gal(M/MH). To show that Gal(M/MH) ⊆H, we need to show that any
open neighborhood of σ has nontrivial intersection with H. Such an open neighborhood
contains one of the form8 σGal(M/T ) = Uσ,T for some finite Galois T /K. So fix a finite
Galois extension T /K. Then MH ∩ T = TH , so

σ∣T ∈ Gal(T /TH).

Since Gal(T /K) is finite, we know Gal(T /TH) is the set of restrictions of H to T
(every element of Gal(T /K) is a restriction from Gal(M/K); by finite Galois theory, the
elements of Gal(T /TH) are exactly the elements of Gal(T /K) which are restrictions from
H). So there is an element τ ∈H which agrees with σ on T . Hence, τ ∈H ∩Uσ,T which
means that (since T was chosen arbitrarily amongst finite Galois intermediate extensions
of M/K) any open neighborhood of σ ∈ Gal(M/MH) has nonempty intersection with H.
This proves the inclusion Gal(M/MH) ⊆H.

For the other inclusion, let σ ∈ Gal(M/K) ∖Gal(M/MH). So there is some x ∈MH

such that σ(x) ≠ x. We can take T ⊆M to be a finite Galois extension of K containing
x. Then Uσ,T has no intersection with H, because any element of Uσ,T has to agree with
σ when restricted to T , and no element of H does this (x is fixed by H but not by σ).
Therefore, Gal(M/MH) is closed. Combined with the inclusions

H ⊆ Gal(M/MH) ⊆H

we already have, it follows that

Gal(M/MH) =H

as desired.

So in the more general Galois correspondence (with the maps defined in the usual way),
the closed subgroups of Gal(M/K) correspond to the intermediate extensions. The
remaining part of the Galois correspondence is also still true in this scenario, and for
the exact same reasons (in fact we’re done dealing with the Krull topology; everything
from now is a restatement of the usual arguments). Suppose that a closed subgroup
H ⊆ Gal(M/K) has L = MH and thus Gal(M/L) = H. The embeddings σ ∶ L → M
fixing K correspond to cosets of H in Gal(M/K). Since M/K is Galois, we know
L/K is separable, so if L is finite then L = K(α) for some α ∈ L ⊂ M . In this case
the minimal polynomial for α splits completely into [L ∶ K] distinct factors over M
(since M/K is normal), so in fact there are [L ∶ K] such embeddings σ and we have
[Gal(M/K) ∶ H] = [L ∶ K]. If L/K is infinite then by looking at finite subextensions
(and extending the embeddings thereof) we see that [Gal(M/K) ∶H] =∞ as well. So

[Gal(M/K) ∶H] = [L ∶K]

in the extended sense. So in fact, under the Galois correspondence the closed subgroups
of finite index correspond to the finite intermediate extensions. Finally, the normal
subgroups still correspond to the Galois subextensions, for the reason that the conjugate
subgroup σHσ−1 corresponds to σ(L). So we have proved:

8It must contain some basis element σ ∈ Uτ,T and thus Uτ,T = Uσ,T by the definition of these sets.

11



Taught by Fabian Gundlach (Fall 2019) Math 223a: Algebraic Number Theory

Theorem 2.6 (Infinite Galois correspondence)

Let M/K be a Galois extension. There is a natural inclusion-reversing bijection of
sets

{closed subgroups of Gal(M/K)}→ {intermediate fields K ⊆ L ⊆M}

given by
H ↦MH ,

with inverse given by
L↦ Gal(M/L).

Under this bijection, the closed subgroups of finite index correspond to the finite
extensions L/K (more precisely the degree of the extension is equal to the index of
the subgroup), and H is normal in Gal(M/K) if and only if the corresponding L/K
is Galois, in which case we have Gal(L/K) ≅ Gal(M/K)/H.

§2.2 Galois groups as topological groups

In fact, the Krull topology also gives Gal(M/K) the structure of a topological group.

Definition 2.7. A group G with a topology is a topological group if the multiplication
map G ×G→ G and the inversion map G→ G are continuous.

Someone asked whether multiplication G ×G→ G being continuous is the same as the
multiplication by g map G→ G being continuous for each g ∈ G. It turns out there is a
counterexample (on Terence Tao’s blog9)

Example 2.8

Let G = (R,+) equipped with the cocompact topology (where the open sets are
the sets whose complements are compact, plus the empty set). Then the addition
by a fixed element is clearly continuous but you can check directly that the map
G ×G→ G is not.

Lemma 2.9

Let M/K be an algebraic field extension. Then Gal(M/K) is a topological group
under the Krull topology.

Proof. It suffices to show that the preimage of any basis element is open, under the
multiplication and inverse maps. First the inverse map. We claim that the preimage of
Uσ,L under the inverse map is Uσ−1,L. This is clear because an element τ ∈ Gal(M/K) has
the property that τ ∣L = σ∣L if and only if τ−1∣L = σ−1∣L. For the multiplication map, note
that the τ1, τ2 ∈ Gal(M/K) such that τ1τ2∣L = σ∣L are exactly the (τ1, τ2) restricting to
(τ1∣L, τ2∣L) such that (τ1∣L)(τ2∣L) = σ∣L. In particular, we want the preimage of σ∣L under
the multiplication map Gal(L/K) ×Gal(L/K)→ Gal(L/K) composed on the right with
restriction from Gal(M/K) ×Gal(M/K). Since these Galois groups have the discrete
topology, in fact Gal(L/K) ×Gal(L/K) is also discrete so the multiplication map

Gal(L/K) ×Gal(L/K)→ Gal(L/K)
9See https://math.stackexchange.com/questions/812513

12

https://math.stackexchange.com/questions/812513


Taught by Fabian Gundlach (Fall 2019) Math 223a: Algebraic Number Theory

is forced to be continuous. It remains now to show the continuity of the restriction map

Gal(M/K) ×Gal(M/K)→ Gal(L/K) ×Gal(L/K).

But this is obvious from the definition10 of the Krull topology, which essentially says
that the restriction homomorphism Gal(M/K)→ Gal(L/K) is continuous.

Lemma 2.10

Let G be a topological group, and U ⊆ G an arbitrary open subset. Then gU is open
for any g ∈ G, as is U−1 (the set of inverses of elements of U).

Proof. This follows directly from the fact that the inverse and multiplication maps are
continuous, and the fact that G has inverses (so we can consider the multiplication map
by g−1 for any g ∈ G).

Proposition 2.11

If G is a compact topological group, then a subgroup H ⊆ G is open if and only if H
is closed and has finite index.

Proof. If H is open, then it is closed because G = ⋃g∈G gH where this union can be made
disjoint by only taking distinct cosets of H. In particular, H is one of these cosets, so
complement of H is a union of open sets (by Lemma 2.10) which means H is closed (this
is a general fact about topological groups and does not depend on compactness). Since
G is compact, it must also have finite index (since we have written G as a disjoint union
of open sets which are cosets of H, so any finite subcover must be the entire cover and
therefore there are finitely many cosets). Conversely, suppose H is closed of finite index.
Then the same coset decomposition says that the complement of H is a finite union of
closed subsets (by Lemma 2.10), so H is open.

Proposition 2.12

G = Gal(M/K) is Hausdorff, compact, and totally disconnected

Proof. G is Hausdorff because any two distinct σ and σ′ in G are separated by the
open sets specified by a finite extension on which they disagree. In particular, there is
some x ∈M such that σ(x) ≠ σ′(x), so letting L be the Galois closure of K(x) we have
Uσ,L ∩Uσ′,L = ∅.

To show it is totally disconnected, it suffices to show that the basis elements Uσ,L are
clopen11. This is because Uσ,L = σU1,L and U1,L is an open subgroup and therefore12

closed by Proposition 2.11. So by Lemma 2.10, Uσ,L is clopen as desired.

10It’s definitely obvious if you accept the definition of the Krull topology as being an inverse limit in
the category of topological groups. Even using the original Definition 2.2 it’s obvious, because the
preimage of a single σ ∈ Gal(L/K) is Uσ′,L for a σ′ ∈ Gal(M/K) extending σ.

11Since G is Hausdorff, this means that any two points are in different connected components
12The fact that open implies closed doesn’t depend on compactness, but it doesn’t matter since we are

about to prove G is compact in the next paragraph.
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Finally, by Tychonoff’s theorem, ∏LGal(L/K) is compact, so it suffices to show that
lim←ÐGal(L/K) is closed in this product13. But it is defined just by imposing on

(σL)L∈L ∈ ∏
L∈L

Gal(L/K)

conditions of the form σL2 ∣L1 = σL1 whenever L1 ⊆ L2. Since arbitrary intersections of
closed sets are closed, it suffices to show that imposing one such restriction results in a
closed set. So consider such a subset

S = {(σL)L∈L ∈ ∏
L∈L

∶ σL2 ∣L1 = σL1}

for some fixed choice of L1 ⊆ L2 in L. Let (σL)L∈L ∈∏LGal(L/K) ∖ S. This means that

σL2 ∣L1 ≠ σL1 .

The open set

⎛
⎝ ∏
L∈L∖{L1,L2}

Gal(L/K)
⎞
⎠
× {σL1} × {σL2},

where the {σL1} is in the L1-coordinate and the {σL2} is in the L2-coordinate, contains
(σL)L∈L and has no intersection with S since σL2 ∣L1 ≠ σL1 . This proves that S is closed,
and therefore Gal(M/K) is compact as desired.

So in the infinite Galois correspondence we see that the closed subgroups of Gal(M/K)
correspond to the subextensions, and the open subgroups (i.e. closed of finite index)
correspond to the finite subextensions.

§2.3 Example: algebraic extensions of a finite field

Now we will observe the Galois correspondence in action by seeing what it says about finite
fields, namely intermediate extensions of Fq/Fq. As already remarked, by Theorem 2.6
and Proposition 2.11, the closed subgroups of Gal(Fq/Fq) correspond to the intermediate
extensions, and the open subgroups correspond to the intermediate extensions which
are finite over Fq. Recall from Example 1.13 and the fact from earlier today that the
isomorphism from Theorem 1.12 is a homeomorphism as well that we have an isomorphism
of topological groups14

Gal(Fq/Fq) ≅ Ẑ ≅∏
p

Zp.

So to understand the topology on Ẑ better, we should really go back to Zp. It’s clear
that Z is dense in Zp (for example if α ∈ Zp for any n ≥ 0 there is an an ∈ Z which reduces
to the same thing mod pn as the projection of α onto Z/pnZ and the an’s converge to α
in Zp by definition). We want to determine the closed subgroups of Zp. If a subgroup
contains x ∈ Zp, then (since Zp is an abelian group) it contains xZ ⊆ Zp. The closure of
this set is xZp (if y ∈ Zp and ai → y is a sequence of elements of Z converging to y, then
xai converges to xy15). Moreover, xZp = pvp(x)Zp since any element of Zp not divisible

13This is because we have already noted that the Krull topology on Gal(M/K) is the same as the
topology induced from the topology on lim←ÐGal(L/K) via the isomorphism of Theorem 1.12.

14We technically haven’t justified the fact that the group isomorphism Ẑ ≅∏pZp is also a homeomorphism,
but this is also a simple exercise.

15This uses the topological ring structure of Zp, which comes from the definition as an inverse limit of
rings
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by p is a unit in Zp (since it is a unit in each Z/pnZ). Note that it’s possible that x = 0,
in which case vp(x) = ∞ and xZp = 0 which is how we should think of pvp(x)Zp when
vp(x) =∞. So if H is a closed subgroup then it equal to

⋃
x∈H

pvp(x)Zp,

which is already of the form pvp(x)Zp for some x, namely any x ∈ H that minimizes
vp(x). So the closed subgroups of (Zp,+) are just the subgroups of the form pvZp where
v ∈ Z≥0 ∪ {∞}. We really want to know what the closed subgroups of Ẑ =∏pZp are. We

can repeat the same argument16 to conclude what we want about Ẑ:

Lemma 2.13

The closed subgroups of Ẑ ≅∏pZp are precisely those of the form

∏
p

pepZp

where each ep ∈ Z≥0 ∪ {∞}.

Proof. Let H be a closed subgroup of Ẑ ≅∏pZp. For any x ∈H, H contains the closure

of xZ ⊆ Ẑ. Since Ẑ is a topological ring and Z is dense in Ẑ (by essentially the same
argument for why Z is dense in Zp), the closure of xZ is

xẐ ≅ x∏
p

Zp.

Representing x ∈∏pZp as the tuple (xp)p, this is just

∏
p

pvp(xp)Zp.

So since it is closed, H is the subgroup of ∏pZp generated by the subgroups ∏p p
vp(xp)Zp

where x runs over all x ∈H. But in fact

∏
p

papZp +∏
p

pbpZp =∏
p

pmin(ap,bp)Zp

which proves that H is of the desired form (in particular it is ∏p p
epZp where ep is the

minimum of all the xp’s for x ∈H).

Now we can apply the Galois correspondence Theorem 2.6. The finite-index closed
subgroups, in the language of Lemma 2.13, are those for which all all of the ep are finite
and all but finitely many of them are zero (since ∣Zp/peZp∣ = pe). In other words, they
are of the form nẐ for integers n. This is consistent with what the Galois correspondence
says: the finite extensions of Fq are the fields Fqn . And the fixed field of nẐ is Fqn since
nẐ is the closure of nZ, whose fixed field we know is Fqn since Z ⊂ Ẑ is taken to be
generated by the Frobenius and Fqn is indeed defined to be the set of elements x ∈ Fq

such that xq
n = x (or alternatively because nẐ has index n in Ẑ so by Theorem 2.6 the

fixed field is the unique degree-n extension of Fq).

16As far as I can tell there’s no way to deduce this directly from the description of the closed subgroups
of Zp. In general the direct product of groups can of course have subgroups which don’t come from
taking the direct product of subgroups.

15



Taught by Fabian Gundlach (Fall 2019) Math 223a: Algebraic Number Theory

Moreover, via the isomorphism Ẑ ≅∏pZp, a tuple (xp)p ∈∏pZp acts on Fqpn ⊆ Fq via

α ↦ αq
xp mod pn

. So the fixed field of

∏
p

pepZp

is the compositum of all the Fqp
ep , which is understood to mean ⋃n≥0 Fqpn when ep =∞.

So this is what the algebraic extensions of Fq are (of course this is perfectly clear without
the use of the infinite Galois correspondence, but serves as an instructive example of how
the theorem works).

16
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§3 September 10, 2019

Today we will start to review some basic notions from introductory algebraic number
theory (e.g. math 129), though perhaps in a slightly more general setting than usual.

§3.1 Algebraic number theory basics: Dedekind domains

Definition 3.1. A Dedekind domain is an integral domain in which every nonzero
ideal factors (uniquely) as a product of nonzero prime ideals.

In particular, in a Dedekind domain R, every fractional ideal is invertible and factors
as a product of integer powers of nonzero primes.

Example 3.2

All PID’s are Dedekind domains. For example Z and k[T ] are Dedekind.

Example 3.3

Let K be a number field. The ring of integers OK is a Dedekind domain (see [3,
Theorem 14] or [5, I.3.1])

Recall that a Dedekind domain is integrally closed in its field of fractions. Indeed, recall
that another equivalent17 definition of Dedekind domain is as follows:

Definition 3.4. An integral domain R is a Dedekind domain if and only if all of the
following conditions are met:

1. R is integrally closed in its field of fractions.

2. R is Noetherian.

3. R has Krull dimension 1 (all nonzero primes are maximal).

We will typically work in the following setup: let K be a field, OK a Dedekind domain
with field of fractions K, L/K an algebraic extension of K, and OL the integral closure
of OK in L.

Lemma 3.5 (Krull–Akizuki Theorem)

If L/K is finite, then OL is a Dedekind domain.

Proof. It’s surprising that this is true without any further conditions on L/K, but it is: see
[5, I.8.1]. This is easier to see when L/K is separable, So we’ll recall the proof conditional
on the separability of L/K. By Definition 3.4, it suffices to show that OL is Noetherian
and has Krull dimension 1 (it is the integral closure of OK in L, so it already satisfies
the condition of being integrally closed in its field of fractions18). Let P be a nonzero
prime ideal in OL. Since 1 /∈P, we know that p = OK ∩P is a proper ideal in OK . Also,

17The fact that Definition 3.4 implies Definition 3.1 is a basic fact from math 129; see for instance
[5, I.3.3] or [3, Theorem 16]. The other direction is more obscure. A proof can be found in
http://www.math.uchicago.edu/~may/MISC/Dedekind.pdf.

18This is because of the standard fact from commutative algebra that if A ⊂ B ⊂ C are rings and c ∈ C is
integral over B and B is integral over A, then C is integral over A.
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it is a nonzero ideal of OK because there exists a nonzero α ∈P, which is integral over
OK , so there is a monic irreducible polynomial f(X) =Xn + an−1X

n−1 +⋯+ a0 ∈ OK[X]
such that f(α) = 0. Since α is nonzero and f is irreducible, f has nonzero constant term,
and therefore

αn + an−1α
n−1 +⋯ + a1α = −a0 ≠ 0.

This means −a0 ∈P since α is, but since a0 is a nonzero element of OK it follows that p
is a nonzero prime of OK . Since OK is Dedekind, we know p is a maximal ideal of OK .
So in the inclusion

OK/p ⊂ OL/P

we know that OK/p is a field, and that all the elements of the integral domain OL/P
are algebraic over the field OK/p. This is enough to conclude that OL/P is a field
and therefore P is maximal. One argument is that adjoining an algebraic element to
a field always yields a field, so OL/P is a direct limit of fields and is therefore a field.
Alternatively, if OL/P is not a field, then it has a nonzero maximal ideal m, and the fact
that the extension is algebraic shows via the same argument as before that m ∩OK/p is
a nonzero prime ideal of OK/p, but since this is a field we have a contradiction. Notice
that the Krull dimension of OL being 1 did not depend on the finiteness or separability
of L/K.

Now it remains to show that OL is Noetherian, which is where the properties we
assumed of L/K come in. Recall that when L/K is separable, we have a nondegenerate
trace pairing ⟨⋅, ⋅⟩ ∶ L × L → K given by ⟨x, y⟩ (this is easiest to see in characteristic
zero but is actually a characterizing property of separable extensions19). By clearing
denominators, we have a basis α1, . . . , αn ∈ OL for L/K. Since the trace pairing is
nondegenerate, this basis has a dual basis α∨1 , . . . , α

∨
n ∈ L∨, so we have inclusions

α1OK ⊕⋯⊕ αnOK ⊂ OL ⊂ O∨L ⊂ α∨1OK ⊕⋯⊕ α∨nOK

from which it follows that OL is stuck between two free OK-modules of rank n. This
does not mean that OL is free unless OK is a PID20, but just using the fact that OL is a
submodule of a free OK-module, we immediately see that OL is Noetherian (since direct
sums and submodules of Noetherian modules are Noetherian, so OL is Noetherian as an
OK-module and therefore also as a OL-module).

Example 3.6

When L/K is an extension of number fields and OK is the ring of integers of K, we
know that the integral closure of OK is the ring of integers OL in L, and is therefore
Dedekind as stated in Example 3.3.

§3.2 Algebraic number theory basics: Decomposition of primes

Let p be a prime of OK (from now on prime always means nonzero prime ideal). Then
there are possibly infinitely many primes of OL containing p, if L/K is infinite. If L/K
is Galois with Galois group G, then G acts on the primes of L lying over p. It is a basic
result from math 129 when L/K is finite, G acts transitively on the primes lying over p
(see [5, I.9.1]). We prove the general case now, assuming the finite case.

19see for instance https://kconrad.math.uconn.edu/blurbs/galoistheory/separable2.pdf
20see https://kconrad.math.uconn.edu/blurbs/gradnumthy/notfree.pdf for some good counterexam-

ples
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Theorem 3.7

G acts transitively on the primes lying over p.

Proof. Let P1,P2 be primes lying over p. Suppose for the sake of contradiction that
σ(P1) ≠ P2 for all σ ∈ G. So there is some x ∈ OL which is in P2 ∖ σ(P1), and taking
Fσ ⊂ L to be a finite Galois extension of K containing x, we have for all σ ∈ G,

σ(P1 ∩ Fσ) ≠P2 ∩ Fσ

since the right hand side contains x but the left hand side does not. Using the language
of Definition 2.2 to refer to the basis of open sets of G, for any σ′ ∈ Uσ,Fσ , since σ′ agrees
with σ on Fσ we know the same equation above holds for σ′ as well. By the compactness
of G (Proposition 2.12), we can write

G =
n

⋃
i=1

Uσi,Fσi

for some finite collection of σi ∈ G (since Uσi,Fσi is an open set containing σi and therefore
if we take σi to run over all elements of G we have an open cover which must have a
finite subcover).

Let F be the compositum of the Fσi . Since Fσi is Galois and finite over K, we know
that F /K is also a finite Galois extension. The point is that the compactness basically
allows us use F uniformly for all σ instead of using an Fσ for each σ, which then allows
us to invoke the finite version of the result. If τ ∈ Gal(F /K), then it is the restriction to
F of some τ̃ ∈ G, which means (by our expression for G as a finite union) that τ̃ is in one
of the Uσi,Fσi and by our previous remarks this implies that τ(P1 ∩ Fσi) ≠P2 ∩ Fσi , and
thus

τ(P1 ∩ F ) ≠P2 ∩ F.
This applies for all τ ∈ Gal(F /K), and P1 ∩ F and P2 ∩ F are primes in OF (we will
frequently just call these “primes in F”), so this contradicts the finite version of the
theorem.

So for any prime p in K, we have a transitive action of G = Gal(L/K) on the primes
of L lying over p. The next logical step is to look at the stabilizers of this action.

Definition 3.8. Let P∣p. Then we define the Decomposition group

D(P∣p) ∶= {σ ∈ G ∶ σ(P) =P}.

Lemma 3.9

For any P∣p, the decomposition group D(P∣p) is closed in G.

Proof. As usual, we just look at the finite Galois subextensions. The important claim is

DL/K(P∣p) =⋂
F

{σ ∈ Gal(L/K) ∶ σ(P ∩ F ) =P ∩ F )}

where the intersection is taken over all finite Galois intermediate extensions K ⊂ F ⊂ L
(where F /K is finite Galois). The inclusion of the left hand side into the right hand
side is simply because any σ ∈ Gal(L/K) restricts to an element of Gal(F /K), and in
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particular it takes elements of F to elements of F and elements of L − F to L − F . So if
σ takes P to P, it must take P ∩ F to itself as well.

For the inclusion of the right hand side into the left hand side, as usual the theme
is that every α ∈ L is contained in one of the F ’s that the intersection is being taken
over. Using this, the fact that σ(P∩F ) =P∩F for all such F immediately implies both
inclusions of σ(P) =P.

Anyway, now we have written DL/K(P∣p) as an intersection of subsets which are clearly
closed as a result of the fact that the restriction map Gal(L/K)→ Gal(F /K) is continuous
(a fact which we used in the proof of Lemma 2.9, where we observed that it is basically what
the definition of the Krull topology says): the set {σ ∈ Gal(L/K) ∶ σ(P∩F ) =P∩F )} is
the preimage under the restriction map of the closed set DF /K(P∣p) ⊂ Gal(F /K).

By the theory of group actions, the primes lying over p are in natural bijection with
the coset space G/D(P∣p) via gD(P∣p)↦ g(P). Moreover, the decomposition group is
equipped with a natural map given by projection

D(P∣p)→ Aut((OL/P)/(OK/p)).

In math 129, we showed that if the residue fields are finite and L/K is finite, then this
projection is surjective. In fact, it is true even without either of those conditions. We
prove this right now, first in the case where L/K is finite and then in general.

Proposition 3.10

Let L/K be a finite Galois extension with group G, OK a Dedekind domain with
field of fractions K, and OL its integral closure in L. For any prime P in OL lying
over the prime p in OK , the extension κ(P)/κ(p) = (OL/P)/(OK/p) is normal and
finite, and the natural map D(P∣p)→ Aut(κ(P)/κ(p)) is surjective.

Proof. First, since L/K is finite, we know by (the easy part of) Lemma 3.5 that OL is a
Dedekind domain, so P is maximal and thus κ(P) is a field. As remarked in the proof
of Lemma 3.5, we know OL is a finitely-generated module over OK , so κ(P)/κ(p) is
finite and thus algebraic. To show it is normal, consider an arbitrary element α ∈ κ(P)
with α ∈ OL. Since L/K is finite, we know α satisfies some monic irreducible polynomial
f(X) ∈ OK[X]. Since L/K is Galois and f has the root α ∈ L, actually f splits completely
into linear factors over L. All of its roots are in OL, so in fact we can just reduce each
linear factor mod P to see that f splits completely into linear factors over κ(P). So
the minimal polynomial of α, which divides f , also splits completely. As a result, the
extension κ(P)/κ(p) is normal. So far, this is the same as the usual proof. The problem
is that now that we haven’t assumed that κ(p) is perfect (or finite as the usual assumption
goes), we don’t know that κ(P)/κ(p) is separable. Luckily, this is fixed with a little bit
of extra maneuvering.

Let F be the separable closure of κ(p) inside κ(P). Then every element of Gal(F /κ(p))
has exactly one extension21 to Aut(κ(P)/κ(p)), which means that it suffices to show
that every element of Aut(κ(P)/κ(p)) with a particular restriction to Gal(F /κ(p)) lifts

21Since fields of characteristic zero are perfect, there is nothing to check in that case, and we can assume
we are in characteristic p > 0. Let a ∈ κ(P) − F so that the minimal polynomial f(X) ∈ κ(p)[X]
for a splits completely over κ(P) but is not separable (because the roots are not distinct). So f
shares a root with its derivative, which means that f ′(X) = 0. This means that f = g(Xp) for some
irreducible polynomial g ∈ κ(p)[X] of smaller degree, and thus we can repeat this finitely many

times to get f = g(Xpn) for some n, where g is separable. Therefore, ap
n

is separable over κ(p) so

ap
n

∈ F . This shows that every a ∈ κ(P) −F is the pn-th root of some element of F , so it satisfies the

20



Taught by Fabian Gundlach (Fall 2019) Math 223a: Algebraic Number Theory

to an element of D(P∣p). Then the usual proof works22. In particular, F /κ(p) is finite
and separable, so F = (κ(p))(a) for some a ∈ F , and so it suffices to show that the roots
of the minimal polynomial for a over κ(p) are all of the form σ(a) where σ denotes the
projection to the residue field of some σ ∈D(P∣p). If we can show that the polynomial

f(X) = ∏
σ∈D(P∣p)

(X − σ(a)) ∈ F [X]

has coefficients in κ(p), then we are done because that would imply that f divides a
power of the minimal polynomial for a over κ(p) (since all the roots of f are also roots
of this minimal polynomial), so since the minimal polynomial is irreducible, f is itself
a power of the minimal polynomial which means that indeed the Galois conjugates of
a over κ(p) are all of the form σ(a) as desired. To prove that f(X) has coefficients in
κ(p), let α ∈ OL be such that α = a, and α ∈ P′ for all primes P′ of OL other than P
(such an α exists by the Chinese remainder theorem, since from Lemma 3.5 we know OL
is a Dedekind domain and there are therefore finitely many such primes). Then σ(α) ∈P
for all σ ∈ G −D(P∣p), so the polynomial

∏
σ∈G

(X − σ(α)) ∈ OK[X]

reduces mod p to
X ∣G−D(P∣p)∣f(X)

which shows that indeed f has coefficients in κ(p) as desired.

We may deduce the infinite case directly from the finite case, with a little input from the
topological group structure of Gal(L/K) and one small lemma.

Lemma 3.11

Let L/K be a Galois extension, with an arbitrary intermediate extension K ⊂ F ⊂ L
such that F /K is Galois. Then the restriction map

DL/K(P∣p)→DF /K(P ∩ F ∣p)

is surjective.

polynomial Xpn − α for some α ∈ F with α = ap
n

. This polynomial is equal to (X − a)p
n

since we are
in characteristic p, and as a result the minimal polynomial for a over F has a single root, namely a
(but that root is not simple). It follows that any element of Aut(κ(P)/κ(p)) that fixes F must also
fix a, which means the kernel of the restriction map Aut(κ(P)/κ(p)) → Gal(F /κ(p)) is trivial and
thus (by the surjectivity, which we already know in general) we have the desired isomorphism

22In math 129, we did this by first moving K up to the fixed field of D(P∣p) so that we could assume that
G =D(P∣p) (see [6, Ch. 6, §6.2, Proposition 2]); In particular, Aut(κ(P ∩LD(P∣p))/κ(p)) = 1, which

means it suffices to lift elements of Aut(κ(P)/κ(P∩LD(P∣p))) to elements of Gal(L/LD
P∣p

) =D(P∣p).
Even after this, the argument is essentially the same but we avoid the step where we need to use the
Chinese remainder theorem. Also, it takes more work to do this when L/K is infinite: we need to show
that κ(P ∩LD) = κ(p), which is evident from degree considerations in the finite case given ∣D∣ = ef
and the multiplicativity in towers of ramification and inertial degrees. To do this, we show that
any finite subextension is trivial, which can be done just by taking a subextension K ⊂ F ⊂ LD(P∣p)

such that F /K is finite. Let F ′ be the Galois closure of F /K. The fact that F is fixed by D(P∣p) is
equivalent to F being fixed by D(P′∣p) since the first group surjects onto the second by restriction
(see Lemma 3.11). Now we are back in the finite case: F is a finite extension of K which is fixed by
the decomposition group of P ∩ F ′ where F ′ is a finite Galois extension of K containing F .
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Proof. We’ve already noticed in for example Lemma 3.9 that the restriction homomor-
phism really does map to the decomposition group downstairs. To check it is surjective,
let σF ∈DF /K(P∩F ∣p). Since F /K is Galois, we know that there is some σL ∈ Gal(L/K)
that restricts to σF on F . We just need to modify it so that it still restricts to σF but
lands in DL/K(P∣p).

We know that σL(P) is a prime in OL. By Theorem 3.7, there is a τ ∈ Gal(L/F ) such
that τ(σL(P)) =P, so actually τ ○ σL ∈D(P∣p) and restricts to σF on F since τ fixes F ,
as desired.

NB: we could have done this just using the finite case of Theorem 3.7 and Zorn’s lemma.
Or better yet, we could avoid use of transitivity of the action completely, just by (in the
finite case) using the fact that the restriction map D(P∣p)→D(P ∩ F ∣p) has kernel

D(P∣p) ∩Gal(L/F ) =D(P∣P ∩ F )

so this induces an injection

D(P∣p)
D(P∣P ∩ F ) →D(P ∩ F ∣p).

By the multiplicativity of ramification and inertial degrees, both sides have cardinality
e(P ∩ F ∣p)f(P ∩ F ∣p). Once we have the finite case, the Zorn’s lemma argument is
the same as usual. Consider the poset P consisting of pairs (F,σ) where F ∈ F and
σ ∈D(P ∩ F ∣p), where the ordering is just (F1, σ1) ≤ (F2, σ2) if F1 ⊂ F2 and σ2 extends
σ1. Any chain has an upper bound (just take the union of all the fields and use the
σ’s to define the element of the decomposition group where they are defined, which is
valid by the proof of Lemma 3.9). So by Zorn’s lemma, it has a maximal element, which
must have F = L by the finite case of the surjectivity (if F ≠ L then we can take an
intermediate extension F ⊂ F ′ ⊂ L which is finite over F and Galois over K; the finite
case tells us we can extend the σ ∈D(P ∩ F ∣p) to D(P ∩ F ′∣p)).

Theorem 3.12

Let L/K be a (possibly infinite) Galois extension, OK a Dedekind domain with field
of fractions K, and OL its integral closure in L. For any prime P in OL and p in
OK , the extension κ(P)/κ(p) = (OL/P)/(OK/p) is normal, and the natural map

D(P∣p)→ Aut(κ(P)/κ(p))

is surjective.

Proof. First, note that the proof of the fact that the primes of OL are maximal from
Lemma 3.5 did not depend on either the finiteness or separability of L/K, and therefore
in this context we really can say that κ(P) is a field. Also, the extension κ(P)/κp is
normal by same argument as in the finite case Proposition 3.10, basically from the fact
that L/K is normal. First of all, κ(P)/κ(p) is algebraic because any α ∈ κ(P) is the
reduction mod P of some α̃ ∈ OL, which has a minimal polynomial f ∈ OK[X]. So f(α)
is 0 in κ(p) as well where f is the reduction mod p of f , which means that α is algebraic
over κ(p). Moreover, the minimal polynomial of α over κ(p) divides f , and f splits into
linear factors over κ(P) since f does over L (all of the roots of f are in OL since f is
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monic with coefficients in OK). This means the minimal polynomial of x splits into linear
factors over κ(p), and therefore the residue field extension is normal23 as claimed.

For the surjectivity, we use the finite case Proposition 3.10. Recall from the proof of
Lemma 3.9 that

D(P∣p) = ⋂
F ∈F

{σ ∈ Gal(L/K) ∶ σ∣F ∈DF /K(P ∩ F ∣p)}

where F is the collection of all intermediate fields K ⊂ F ⊂ L such that F /K is finite
and Galois. So under the isomorphism from Theorem 1.12, the subgroup DL/K(P∣p) ⊂
Gal(L/K) is mapped isomorphically to the subgroup of lim←ÐF ∈F Gal(F /K) given by all

(σF )F ∈F such that σF ∈DF /K(P ∩ F ∣p) for each F . So we have an isomorphism

DL/K(P∣p)→ lim←Ð
F ∈F

DF /K(P ∩ F ∣p),

where the inverse system is given by the restriction maps DF1/K(P∩F1∣p)→DF2/K(P∩
F2∣p) whenever F2 ⊂ F1 (we saw in the proof of Lemma 3.9 that the restriction to
Gal(F2/K) lands in the decomposition group), given by sending

σ ↦ (σ∣F )F ∈F .
On the other side of things, let τ ∈ Aut(κ(P)/κ(p)). By the normality of κ(P∩F )/κ(p)
(proved in the same way as before but replacing OL with OF ), we know that τ restricts
to a valid element of Aut(κ(P ∩ F )/κ(p)) for each finite Galois intermediate extension
F . Moreover, an element α ∈ κ(P) is the reduction mod P of some α̃ ∈ OL. As usual,
we know α̃ is contained in some F ∈ F (for the usual reasons: take the Galois closure of
K(α)/K), so in fact α̃ ∈ OL ∩ F = OF . This means α ∈ κ(P ∩ F ). So by Theorem 1.1224,

Aut(κ(P)/κ(p)) ≅ lim←Ð
F ∈F

Aut(κ(P ∩ F )/κ(p))

given by
σ ↦ (σ∣κ(P∩F ))F ∈F

where the inverse system is the usual one given by the restriction homomorphisms
Aut(κ(P ∩ F1)/κ(P)) → Aut(κ(P ∩ F2)/κ(P)) (well-defined by the remarks earlier in
this paragraph) whenever F2 ⊂ F1. Under these isomorphisms, the projection

DL/K(P∣p)→ Aut(κ(P)/κ(p))
becomes the map

ϕ ∶ lim←Ð
F ∈F

DF /K(P ∩ F ∣p)→ lim←Ð
F ∈F

Aut(κ(P ∩ F )/κ(p))

given in the F -coordinate by the projection DF /K(P∩F ∣p)→ Aut(κ(P∩F )/κ(p)), which
is surjective by the finite case Proposition 3.10. Moreover, ϕ is continuous25. We want

23NB: the residue field extension is NOT always separable. One of the advantages of the additional
assumption that κ(p) is finite (which is true when K is a function field over a finite field or a number
field) is that it implies that the residue field extension is separable and thus Galois.

24At least by the modified version we’ve used already, which has the exact same proof except we replace
the word “Galois” with “normal,” and L is only required to contain enough finite normal intermediate
extensions to hit every point in the big field κ(P).

25Indeed, the topology on Aut(κ(P)/κ(p)) has a basis running over all F ∈ F consisting of the preimages
under restriction to Aut(κ(P ∩ F )/κ(p)) of any element τ . The preimage under ϕ of this restriction
is the set of all σ ∈ D(P∣p) that restrict to a preimage of τ in DF /K(P ∩ F ∣p), and is therefore an
open set in the topology on D(P∣p) since it is a (finite) union of basis elements. NB: it’s easy to check
that as long as our set of finite Galois subextensions F hits every element of L, the topology from
lim←ÐF ∈F Gal(F /K) is always the same (the proof is the same as the remarks after Example 2.3, where

we originally made this observation), so all the isomorphisms we have of decomposition groups or
automorphism groups of residue field extensions with inverse limits really are topological isomorphisms.
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to check that for any (τF )F ∈F ∈ lim←ÐF ∈F Aut(κ(P ∩ F )/κ(p)), ϕ−1((τF )F ∈F) is nonempty.

Of course, (τF )F ∈F corresponds to the element τ ∈ Aut(κ(P)/κ(p)) that restricts to τF
on each F ∈ F. In particular,

{τ} = ⋂
F ∈F

{g ∈ Aut(κ(P)/κ(p)) ∶ g∣F = τF } ,

and therefore
ϕ−1(τ) = ⋂

F ∈F

{σ ∈DL/K(P∣p) ∶ σ∣F = τF} .

Each of the sets here is nonempty by Proposition 3.10 and Lemma 3.11, and closed
in DL/K(P∣p) by definition of the Krull topology. So ϕ−1(τ) is the intersection of a
collection of nonempty closed subsets of D(P∣p). Since D(P∣p) is a closed subset of a
compact Hausdorff space Gal(L/K) by Proposition 2.12 and Lemma 3.9, it follows that
ϕ−1(τ) is an intersection of nonempty closed compact sets, and is therefore nonempty, as
desired.

Remark 3.13. In most cases, we will assume that the residue field OK/p is finite or at
least perfect (for instance this is the case when OK is the ring of integers in a number
field K, or when OK = F[X] for a finite field F). For now, we do not assume this unless
we say so explicitly.

Armed with this reduction map, it’s natural to consider

Definition 3.14. The kernel of the map D(P∣p)→ Aut(κ(P)/κ(p)) is called the inertia
subgroup I(P∣p).

By Theorem 3.12, if L/K is a Galois extension with group G, and P a prime of OL
lying over a prime p of OK , then

D(P∣p)/I(P∣p) ≅ Aut(κ(P)/κ(p)).

In fact, this is also an isomorphism of topological spaces, where the right hand side is
given the Krull topology (NB the definition of the Krull topology does not depend on
separability). This is because the projection D(P∣p) → Aut(κ(P)/κ(p)) is continuous
(which we remarked in the proof of Theorem 3.12) and surjective (part of the statement
of Theorem 3.12). It is also an open map, since it takes the basis element

{σ ∈D(P∣p) ∶ σ∣F = σF }

to the basis element

{τ ∈ Aut(κ(P)∣κ(p)) ∶ τ ∣κ(P∩F ) = ϕ(σF )}.

As a result, the induced map on the quotient is bijective, continuous, and open, and is
therefore an isomorphism of topological groups.

Lemma 3.15

I(P∣p) is a closed subgroup of G.

Proof. The argument is almost identical to that of Lemma 3.9. In particular, any
a ∈ κ(P) lifts to an α ∈ OL, which is contained in OL∩F = OF for some intermediate field
K ⊂ F ⊂ L where F /K is finite and Galois. As a result, α ∈ κ(P ∩ F ) which is a finite
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normal extension of κ(p) (by the first part of Proposition 3.10). So the intermediate
extensions κ(P ∩ F )/κ(p) for F /K finite, Galois and contained in L are enough so that

I(P∣p) =⋂
F

{σ ∈ G ∶ σ∣F ∈ IF /K(P ∩ F ∣p)}

since any element of the right hand side is in D(P∣p) (by the intersection formula from
Lemma 3.9), and therefore induces an element of Aut(κ(P)/κ(p)) that restricts to the
identity on κ(P ∩ F ) for each F . This implies it is the identity on all of κ(P) since all
α ∈ κ(P) are in κ(P ∩ F ) for some F , which proves the inclusion of the right hand side
in the left. The inclusion of the left hand side into the right is obvious. So I(P∣p) is an
intersection of closed sets (which are closed by the same argument we used in Lemma 3.9)
and is therefore closed as desired.

Remark 3.16. Alternatively, Lemma 3.15 is true just because the inertia group is
the kernel of the continuous homomorphism from the decomposition group to the
automorphism group of the residue field extension, which is Hausdorff under the Krull
topology.

Since G acts transitively on the primes P∣p (Theorem 3.7), we can get all the decomposi-
tion and inertia groups by taking conjugates of just one, as

D(σ(P)∣p) = σD(P∣p)σ−1

and
I(σ(P)∣p) = σI(P∣p)σ−1

(the first one is trivial, and the second one follows from the fact that κ(P) ≅ κ(σP)
via α ↦ σ(α)). So if G is abelian (or if these subgroups are just normal), then the
decomposition and inertia groups only depend on the prime downstairs. Also, I(P∣p) is
normal in D(P∣p) since for any σ ∈D(P∣p) we have

σI(P∣p)σ−1 = I(σP∣p) = I(P∣p).

Definition 3.17. If I(P∣p) is trivial, then we say that p is unramified in L.

So if L/K is a Galois extension with prime P in OL lying over p in OK with p
unramified, then by Theorem 3.12,

D(P∣p) ≅ Aut(κ(P)/κ(p)).

If we further stipulate that κ(p) is finite and L/K is finite, then since by the first part
of Proposition 3.10, κ(P)/κ(p) is finite, the group Aut(κ(P)/κ(p)) is the Galois group
of an extension of finite fields and is therefore cyclic, with canonical choice of generator
given by x↦ x∣κ(p)∣. So we may define we can pull the Frobenius map back to D(P∣p)
through the isomorphism to associate a generator of a cyclic group

FrobP ∈D(P∣p)

to each prime P∣p. In particular, our isomorphism D(P∣p) ≅ Gal(κ(P)/κ(p)) tells us
that the following definition is well-defined:
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Definition 3.18. Let L/K be a finite Galois extension, OK a Dedekind domain with
field of fractions K with integral closure OL in L. Let P be a prime in OL lying over p in
OK , and suppose that κ(p) is finite and p is unramified in L. The Frobenius element
corresponding to P∣p is the unique element FrobP ∈ Gal(L/K) satisfying

FrobP(x) ≡ x∣κ(p)∣ mod P

for all x ∈ L.

Again, because any σ ∈ Gal(L/K) provides an isomorphism κ(P)→ κ(σ(P)), we have

FrobσP = σFrobPσ
−1,

so for a prime p of OK , the Frobenius defines a conjugacy class of Gal(L/K). When
Gal(L/K) is abelian this means the Frobenius element depends only on p, and we can
extend linearly to get a group homomorphism I(K) → Gal(L/K), where I(K) is the
group of fractional ideals of OK . This is what Artin’s global reciprocity law involves.

Remark 3.19. Suppose we drop the assumption that L/K is finite. Now, κ(P)/κ(p) is
a possibly infinite (separable) algebraic extension of a finite field, so its Galois group is a
quotient of Ẑ by a closed subgroup (see Example 1.13, Example 2.1, and Lemma 2.13
and the discussion following it). Now there is still a canonical “Frobenius” element
of Gal(κ(P)/κ(p)), namely the one given by x ↦ x∣κ(p)∣. We recall that the subgroup
generated by this Frobenius element (which corresponds to Z ⊂ Ẑ) is dense in Ẑ =
Gal(κ(p)/κ(p)), which one can check directly (by the definition of Ẑ or by the fact that
the finite extensions of κ(p) are cyclic with Galois group generated by the Frobenius).
So when we take quotients and pull back under the isomorphism with D(P∣p), we still
obtain a canonical choice of Frobenius element in the decomposition group, but it does
not generate the whole thing; instead it generates a dense subgroup.

Since by now we’ve already assumed L/K is finite and κ(p) is finite and p unramified
in order to define the Frobenius element, we should make the usual remarks about what
this has to do with the splitting of primes. Now, we only assume L/K is finite and
Galois. Since G acts transitively on the primes lying over p, the residue field extensions
κ(P)/κ(p) are all isomorphic for the primes P lying over p. They have the same degree,
namely fp (the inertial degree of P∣p), and again by the transitivity we have

pOL = (∏
i

Pi)ep ,

where the Pi are the primes lying over p and the positive integer ep is the ramification
index of P∣p. We’ve already remarked that since G acts transitively on the Pi, we know
that the cosets of D(P∣p) in G are in bijection with the Pi, so the number of prime
factors is [G ∶ D(Pi∣p)] (any Pi works). We showed in math 12926 the “fundamental
identity” ∑ eifi = [L ∶K], where ei and fi are the ramification indices of the primes lying

26In math 129 we probably didn’t prove this “fundamental identity” in the full generality, but it isn’t hard
to do. Recall that the three ingredients are (1) the Chinese remainder theorem, (2) the fact that OL/Pe

is e-dimensional as a κ(P)-vector space, and (3) the fact that OL/pOL is an [L ∶K]-dimensional vector
space over κ(p). The Chinese remainder theorem still applies: since L/K is finite, Lemma 3.5 implies
that OL is Dedekind, so the ideals Pei

i are pairwise comaximal. And we still have the exact sequence of
κ(P)-vector spaces 0→ OL/Pe−1 → OL/Pe → OL/P→ 0, so that part of the argument is unchanged.
The only part that requires modification is the proof that OL/pOL is an [L ∶K]-dimensional vector
space over κ(p). To do that, we can check directly that using the multiplicative set S = OK − p, the
inclusion OK → S−1OK induces an isomorphism of fields κ(p) = OK/pOK → S−1OK/pS−1OK which
results in an isomorphism of κ(p)-vector spaces OL/pOL → S−1OL/pS−1OL, so since localization

26



Taught by Fabian Gundlach (Fall 2019) Math 223a: Algebraic Number Theory

over p (this holds for arbitrary finite separable L/K). So in our case (L/K is Galois so
definitely separable), we have

[L ∶K] = ∣G∣ = epfp[G ∶D(P∣p)]

and as a result
D(P∣p) = epfp.

Since D(P∣p)/I(P∣p) ≅ Aut(κ(P)/κ(p)) by Proposition 3.10, if we assume further that
κ(P)/κ(p) is separable, then we know it is a finite Galois extension by Proposition 3.10,
and thus

fp = [κ(P) ∶ κ(p)] = ∣Gal(κ(P)/κ(p))∣ = [D(P∣p) ∶ I(P∣p)] = epfp

I(P∣p)

so the ramification index is ep = ∣I(Pi∣p)∣. This summarizes what the decomposition and
inertia groups have to do with the splitting of primes in finite Galois extensions, when
the residue field extension is separable. It also explains why we say that p is unramified
if its inertia groups are trivial, and the following definition:

Definition 3.20. Let L/K be a Galois extension, P a prime in OL lying over p in OK .
Then p splits completely in L if D(P∣p) is trivial.

Now we return to the case of a general Galois extension, first proving the analogue of
Lemma 3.11 for the inertia group.

Lemma 3.21

Let L/K be a Galois extension, OK a Dedekind domain with field of fractions K,
and OL its integral closure in L. For any prime P in OL lying over p in OK and
intermediate extension K ⊂ F ⊂ L such that F /K is Galois, the restriction map

I(P∣p)→ I(P ∩ F ∣p)

is surjective.

Proof. We have a commutative diagram

preserves integral closures and Dedekind domains, and the localization of a Dedekind domain at a
prime is a DVR (and in particular a PID), and pS−1OK is the prime in S−1OK , it suffices to prove
the result in the case where OK is a PID. In that case, the argument is the same as in 129: since
L/K is separable, as remarked in the proof of Lemma 3.5, we know that OL is a finitely-generated
OK-module, and since it is an integral domain and OK is a PID, it is actually a free OK-module of
rank [L ∶K]. Writing OL =⊕[L∶K]

i=1 ωiOK , we have pOL =⊕[L∶K]
i=1 ωipOK , So OL/pOL is a direct sum

of [L ∶ K] copies of κ(p). Alternatively, one can avoid the local argument and apply Nakayama’s
lemma (see [5, I.8.2]).
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1 1 1

1 IL/F (P∣P ∩ F ) IL/K(P∣p) IF /K(P ∩ F ∣p)

1 DL/F (P∣P ∩ F ) DL/K(P∣p) DF /K(P ∩ F ∣p) 1

1 Aut(κ(P)/κ(P ∩ F )) Aut(κ(P)/κ(p)) Aut(κ(P ∩ F )/κ(p)) 1

1 1 1
in which the first row is exact because the kernel of the restriction map I(P∣p)→ I(P∩F ∣p)
is

I(P∣p) ∩Gal(L/F ) = I(P∣P ∩ F ),

the second row is exact because the same is true with I replaced with D and because of
Lemma 3.11, the third row is exact because κ(P)/κ(p) is normal and so is κ(P∩F )/κ(p)
by the first part of Theorem 3.12, and the columns are all exact by the second part
of Theorem 3.12. Moreover, the inertia subgroups are all normal subgroups of the
decomposition groups, so we can apply the snake lemma where we think of the inertia
groups as kernels of the vertical maps and the trivial groups on the bottom as cokernels
(beware, the snake lemma does not hold in general for groups; you need to check that
the appropriate subgroups are normal). Thus we obtain a snake map which provides an
exact sequence

1→ IL/F (P∣P ∩ F )→ IL/K(P∣p)→ IF /K(P ∩ F ∣p)→ 1

thus proving the desired surjectivity.

Now we collect everything we have learned about how inertia and decomposition groups
behave under taking subextensions.

Theorem 3.22

Let L/K be a Galois extension, OK a Dedekind domain with field of fractions K,
and OL its integral closure in L with a prime P lying over a prime p in OK . For
any closed subgroup H ⊂ Gal(L/K), we have

DL/K(P∣p) ∩H =DL/LH(P∣P ∩LH)

and
IL/K(P∣p) ∩H = IL/LH(P∣P ∩LH).

If H is also a normal subgroup, then we have surjective restriction maps DL/K(P∣p)→
DLH/K(P ∩LH ∣p) and IL/K(P∣p)→ ILH/K(P ∩LH ∣p) which means that the restric-

tion map of Galois groups Gal(L/K)→ Gal(LH/K) induces isomorphisms

DL/K(P∣p)/DL/LH(P∣P ∩LH) ≅DLH/K(P ∩LH ∣p)

and
IL/K(P∣p)/IL/LH(P∣P ∩LH) ≅ ILH/K(P ∩LH ∣p).

28



Taught by Fabian Gundlach (Fall 2019) Math 223a: Algebraic Number Theory

Proof. The Galois correspondence Theorem 2.6 implies that running over all closed
H ⊂ Gal(L/K) is the same as running over all intermediate extensions K ⊂ F ⊂ L and
setting H = Gal(L/F ), and running over all normal closed H ⊂ Gal(L/K) is the same
as running all over intermediate extensions F with F /K Galois. The first part of the
statement regarding the compatibility under taking intersections (i.e. moving the base
field up) is something which we have already taken to be true a few times (for instance
in the proof of Lemma 3.21 because it is pretty simple to check:

DL/K(P∣p) ∩Gal(L/F ) =DL/F (P∣P ∩ F ),

since both are defined to be the subset of Gal(L/F ) consisting of all σ such that σ(P) =P,
and

IL/K(P∣p) ∩Gal(L/F ) = IL/F (P∣P ∩ F ),

since both are defined to be the subset of DL/F (P∣P∩F ) consisting of all σ which induce
the trivial automorphism on κ(P). The remainder of the statement (the surjectivity
of the restriction maps of inertia and decomposition groups) is just Lemma 3.11 and
Lemma 3.21.

So the theme is that the inertia and decomposition groups are compatible with taking
subextensions.
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Example 3.23

Consider the cyclotomic extension Q(ζn)/Q, and suppose n = pkm where p is prime
and (m,p) = 1. Since the Galois group is abelian, the decomposition groups and
inertia groups only depend on the downstairs prime, so we call them I(p) and D(p).
Much of this computation is review from math 129, but I’ll repeat it anyway. We
begin with a special case, namely when m = 1 so that n = pk. In this case, we claim
that the ring of integers of Q(ζpk) has exactly one prime lying over p, with full
ramification and no inertia. The construction is done explicitly: we claim that the
prime lying over p is given by (1 − ζpk). First, we compute

N(1 − ζpk) = NQ(ζ
pk

)/Q(1 − ζpk)

= ∏
a∈(Z/pkZ)×

(1 − ζapk)

= Φpk(1)

where Φpk denotes the pk-th cyclotomic polynomial. Luckily,

Φpk(X) = Xpk − 1

Xpk−1 − 1
= 1 +Xpk−1 +X2pk−1 +⋯ +X(p−1)pk−1

so in fact N(1− ζpk) = p, which proves that (1− ζpk) is a prime in the ring of integers

of Q(ζpk) with trivial inertia. Moreover, if a ∈ (Z/pkZ)×,

1 − ζa
pk

1 − ζpk
= 1 + ζpk +⋯ + ζa−1

pk ∈ OQ(ζ
pk

)

which means that the Galois conjugates of (1 − ζpk) are all equal as ideals, so p does
not split at all in Q(ζpk), has trivial inertia, and full ramification. This means that

DQ(ζ
pk

)/Q(p) = IQ(ζ
pk

)/Q(p) = (Z/pkZ)×. Now let’s consider the opposite extreme,

namely (n, p) = 1, so n =m. We know p is unramified in Q(ζm) by a discriminant
computation for example (see the discussion after [3, Theorem 8]), so it has a well-
defined Frobenius which is given by ζm ↦ ζpm (see [6, Théorème 6.4.1]), i.e. the
residue class of p in (Z/mZ)×. So DQ(ζm)/Q(p) = ⟨p⟩ and IQ(ζm)/Q(p) = 1. Luckily,
the field we are interested in is

Q(ζpkm) = Q(ζpk)Q(ζm)

and the elements of the Galois group (Z/nZ)× are determined by their restrictions to
the Galois groups of the two smaller cyclotomic extensions. By Theorem 3.22, I(p)
restricts to Q(ζpk) as the full Galois group (Z/pkZ)× and to Q(ζm) as the trivial
subgroup. This means that every element of I(p) has (Z/mZ)×-coordinate 1, and
yet every possible (Z/pkZ)×-coordinate is attained, so in fact

I(p) = (Z/pkZ)× × {1} ⊂ Gal(Q(ζn)/Q) ≅ (Z/pkZ)× × (Z/mZ)×.

Similarly, D(p) restricts to all of (Z/pkZ)× in the first coordinate, and to ⟨p⟩ ⊂
(Z/mZ)× in the second coordinate, but it also contains I(p) = (Z/pkZ)××{1}, which
means in fact

I(p) = (Z/pkZ)× × ⟨p⟩ ⊂ Gal(Q(ζn)/Q) ≅ (Z/pkZ)× × (Z/mZ)×.
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In other words, for cyclotomic extensions of Q we can determine the entire splitting
behavior (or at least the information of the decomposition and inertia groups) of a prime
based on its residue mod n. The same is therefore true for subfields of Q(ζn).

The inertia and decomposition groups are also useful for splitting up L/K into ex-
tensions where only one type of splitting happens at a time on the way from p to
P.

Let Z = LD(P∣p) and T = LI(P∣p), so that

K ⊂ Z ⊂ T ⊂ L

and T /Z is Galois since I(P∣p) is normal in D(P∣p) and both of these are closed (by
Lemma 3.9 and Lemma 3.15), so

Gal(L/Z) =D(P∣p), Gal(L/T ) = I(P∣P).

So by Theorem 3.22,
DL/Z(P∣P ∩Z) =DL/K(P∣p).

Let’s go back to the case from math 129 where L/K is finite. Then this implies that

e(P∣P ∩Z)f(P∣P ∩Z) = e(P∣P)f(p∣p)

and therefore by the multiplicativity of inertial degree and ramification index, we see
that

e(P ∩Z ∣p) = f(P ∩Z ∣p) = 1.

So there is no growth in residue field corresponding to P when we go from K to Z. But
if we increase the size of Z at all, then the decomposition group upstairs must shrink
(since it is already all of Gal(L/Z)), so Z is the maximal subextension such that P∩Z ∣p
has trivial ramification and inertia. Similarly, by Theorem 3.22, I(P∣P ∩ T ) = I(P∣p), so
if we also assume that the residue field extension is separable so that ∣I ∣ = e, then T is
the maximal subextension in which P ∩ T ∣p has trivial ramification. Since I is normal in
D, it is also the maximal subextension of L/Z such that P ∩Z is unramified in L. By
looking at the inertial degrees, we see that the only growth in the residue field happens
from κ(P ∩Z) to κ(P ∩ T ). So the slogan is as follows: as we go up from p to P, all of
the splitting occurs between K and Z (though there might be other primes in Z lying
over p which do not have trivial ramification and inertia), all of the growth in the residue
field occurs between Z and T , and all of the ramification happens between T and L.

We can also get this to work when L/K is infinite. Let F ⊂ LD(P∣p) be finite over
K, and let F ′ be its Galois closure over K. Then by Theorem 3.22, every element of
DF ′/K(P∩F ′∣p) is the restriction of some element of DL/K(P∣p), and therefore F is fixed
by DF ′/K(P∩F ′∣p). Since F ′/K is finite, by the finite case we know that κ(P∩F ) = κ(p).
Since this holds for all finite subextensions F of Z, and the union of all the κ(P ∩ F )
is κ(P ∩Z) by the same argument as in Theorem 3.12, it follows that κ(P ∩Z) = κ(p).
So even in the infinite case, the residue field does not grow from p to P ∩ Z. It’s also
true that no ramification happens from p to P ∩Z, since it doesn’t happen in any finite
subextension (Z/K is not Galois, so this is the only definition that makes sense).

Again, by Theorem 3.22, we know that T is the maximal Galois subextension of L/Z
such that IT /Z(P ∩ T ∣P ∩ Z) = 1, and therefore by Definition 3.17, it is the maximal
Galois subextension in which P ∩Z is unramified. Since Gal(L/T ) = IL/T (P∣P ∩ T ), we
know by Theorem 3.12 that Aut(κ(P)/κ(P ∩ T )) = 1. If the residue field extension is
separable this implies the residue field does not grow from P ∩ T to P.
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Remark 3.24. Notice that in a lot of this we really only cared about one prime at a
time, or in the relative setting, one prime upstairs and its intersection downstairs. So
it will be useful (or at least convenient) to pass to the local setting (where much of the
content of this class will take place), which will be explained soon.
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Let M/K be a finite Galois extension with group G, OK a Dedekind domain with field
of fractions K, OL its integral closure in L, and p a nonzero prime ideal in K which
is unramified in M . Let P be any prime of M lying over p. The decomposition group
D(P∣p) tells us all the primes lying over p, since the elements G/D correspond to prime
ideals by the orbit-stabilizer theorem and the fact that G acts transitively on the primes
P∣p. We also know that ∣D∣ = f(P∣p) and therefore p splits completely in M if and only
if D is trivial. We can consider an arbitrary subgroup H ⊆ G and the fixed field L =MH .
We obtain a prime in OL by taking P∩OL. By the transitivity of the action of G on the
primes of M lying over p, this shows that the primes of L lying over K are in bijection
with the double cosets (of H and D) in G. Moreover, the intertial degrees are

[κ(σP ∩L) ∶ κ(p)] = ∣D∣
∣σDσ−1 ∩H ∣ .

p splits completely in L if and only if G/D/H = [L ∶ K] = ∣G/H ∣. This is equivalent to
saying that D ⊆ gHg−1 for all g ∈ G. So this characterizes the splitting of primes in an
arbitrary extension in terms of their splitting in a bigger Galois extensions.

Lemma 4.1

Let M be the Galois closure of L/K. Then p splits completely in L if and only if it
splits completely in M .

Proof. We know that p splits completely in M iff D = 1 and that it splits completely in
L iff D ⊆ ⋂g∈G gHg−1 = H ′. So it suffices to show that the second one implies the first.

Since H ′ is a normal subgroup of G, MH′
we have

L ⊆MH′ ⊆M.

and MH′/K is Galois. If H ′ is nontrivial this would contradict the fact that M is the
smallest extension of L which is Galois over K (that is the definition of the Galois
closure).

Theorem 4.2

Let K be a number field and n ≥ 1. Then the following are equivalent:

1. For any two prime numbers p ≡ p′ mod n, then (p) and (p′) split in the same
way in K.

2. K ⊆ Q(ζn).

3. For any primes p, p′ ≡ 1 mod n, either both of them split completely in K or
neither of them do.

Proof. First, we show that 2 Ô⇒ 1 (as usual we will exploit the nice structure of the
frobenius for cyclotomic fields). First, suppose that p and p′ divide n. Then they must be
equal (they are congruent mod n). So we can consider the case where p and p′ are both
coprime to n. Therefore, p, p′ are both unramified in Q(ζn). They have Frobenius element
Frobp = p mod n ∈ (Z/nZ)× (in particular they have the same Frobenius element). Since
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the Frobenius generates the decomposition group, this implies that p and p′ have the
same splitting type in Q(ζn) and therefore in K by the previous machinery. To prove
that 3 Ô⇒ 2, since a prime splits completely if and only if it splits completely in the
Galois closure, we can replaces K with its Galois closure and assume K/Q is Galois. An
unramified prime p splits completely if and only if its Frobenius is trivial in Gal(K/Q).
Let L =K(ζn) =K ⋅Q(ζn).

L

K Q(ζn)

Q

Then Gal(L/Q) surjects by restriction onto Gal(K/Q) and Gal(Q(ζn)/Q) = (Z/nZ)×.
If K is not inside Q(ζn), then Gal(L/K) does not contain Gal(L/Q(ζn)), so there exists
some σ ∈ Gal(L/Q) such that σ restricts to id on Q(ζn) but not on K. By the Chebotarev
density theorem, there is a prime p of Q with Frobp(Q(ζn)) = id (i.e. p ≡ 1 mod n) and
not splitting completely in K, as well as a prime p that splits completely in both. This
proves 3 Ô⇒ 2.

For those unfamiliar with the statement, we restate the Chebotarev Density Theorem
below:

Theorem 4.3

Let L/K be a finite Galois extension of number fields. Let C be a conjugacy class in
Gal(L/K). Then, the set of (unramified) primes p of K with Frobenius element in
C has Dirichlet density ∣C∣/∣G∣.

Recall that Dirichlet density is defined with respect to the ordering of the prime ideals
according to their norm. In fact, one can show that the result is also true for natural
density with respect to this ordering.

Example 4.4

Let G = S3. Then the conjugacy classes of G are just the identity, the two-cycles,
and the three-cycles. Let p be an unramified prime. If Frobp is the identity then p
splits completely. So the density of the primes that split completely is 1/6. If Frobp
is a two-cycle, then D is generated by a two-cycle so it is just Z/2Z, which means it
splits into three different ideals with probability 1/2. If Frobp is a three-cycle, then
∣D∣ = 3, so p splits into 2 primes with probability 1/3.

If L/K is infinite, then there are many parts that need to be salvaged. For example, it is
possible that infinitely many primes ramify, and the fraction ∣C∣/∣G∣ is not well-defined.
Even if we take a normalized Haar measure on G, most of the time the measure of C is
zero.

Now we return to the problem of quadratic residues. Now that we see that the
periodicity is related to being contained in a cyclotomic extension, we can view quadratic
reciprocity as a special case of that.
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Example 4.5

We will see that Q(√n) ⊆ Q(ζ4n). So the splitting behavior of p in Q(√n) depends
only on p mod n. It suffices to show the inclusion when n = q is prime. The case
p = 2 is done separately. We can just compute directly that

√
2 = ζ8 + ζ−1

8 . Otherwise,
we know that the quadratic subextensions of Q(ζq) correspond to subgroups of index
2 of (Z/qZ)× which is cyclic of even order q − 1 (this is why we need to deal with q
even as a separate case). Since this is even there is exactly one subgroup of even order
(the subgroup H containing all the quadratic residues mod q), and by computing
the discriminants we can get that this subfield is Q(√q) ⊆ Q(ζq). Another way to
see this is is by computing the Gauss sum

α = ∑
x∈(Z/qZ)×

(x
q
) ζxq .

A Galois conjugate of α looks like

∑
x∈(Z/qZ)×

(x/y
q

) ζxq

which is the same as

∑
x∈(Z/qZ)×

(x
q
)(y

q
) ζxq

which is ±α, so the Gauss sum should have degree 2 over Q (it only has two Galois
conjugates). We can even compute α2 directly, to get

α2 = ∑
x1,x2

(x1x2

q
) ζx1+x2q = (−1

q
) q = ±q

depending on the value of q mod 4. So in particular Q(√±q) ⊆ Q(ζq). Since√
−1 ∈ Q(ζ4) this shows that Q(√q) ⊆ Q(ζq).
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Remember that we found a criterion for the splitting type of a polynomial mod p to
depend only on p mod n, namely that the splitting field is contained in Q(ζn) for some n.
It turns out that this is the same thing as the splitting field being abelian.

Theorem 5.1 (Kronecker–Weber)

A finite Galois field extension K/Q is abelian if and only if K ⊂ Q(ζn) for some n.
As a result, the maximal abelian extension of Q is Qab = Q(ζ∞) which we saw has
Galois group Ẑ×.

Definition 5.2. The least n such that K ⊆ Q(ζn) is called the conductor for K. Note
that it is the gcd of all n that work.

Example 5.3

Let K = Q(√a). Then K is abelian with Galois group Z/2Z. It can be seen that
the conductor is ∣dK ∣.

Given the success of Kronecker–Weber in the case of Q, we can ask

Question 5.4. Let K be a number field. What are the abelian extensions of K? What
is Kab? What is Gal(Kab/K)?

The determination of the abelian extensions of K is unknown except for when K is Q
(Kronecker–Weber) or an imaginary quadratic field (the theory of complex multiplication
on elliptic curves).

One useful strategy for approaching this problem is a “local–to–global” approach,
which starts with the corresponding local problem involving the field of p-adic numbers
Qp.

Theorem 5.5 (Local Kronecker–Weber)

Let Qp be the field of fractions of Zp. Then

Qab
p = ⋃

n≥0

Qp(ζn).

More generally, if K is a number field we can obtain an explicit description of Kab
p

and its Galois group.

Why study Qp first?
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Example 5.6

Let f(X1, . . . ,Xr) ∈ Z[X1, . . . ,Xr]. Does f have a root in Zr? One way to show
that this doesn’t have a solution is to show that it doesn’t have a solution mod n for
some n ∈ Z. Another possible obstruction to f having a root in Z would be because
it does not even have a root in R. Checking whether f has a root in R belongs
to the realm of numerical analysis. By the Chinese remainder theorem, f has a
solution mod all n if and only if it has a solution in Zrp for all p. This implies that f
has a root mod p. In fact, most of the time roots in Fp lift to roots in Zp (this is
“Hensel’s Lemma”). So if we want to show that f has no solutions, then we should
try to show that it has no solutions mod p for any p. If these are equivalent for a
class of polynomials, that class is said to have the Hasse Local-Global Principle. For
example, Hasse and Minkowski showed that the binary quadratic forms satisfy the
local-global principle.

In general, we can expect Fp to be easier than Zp, and Zp to be easier than Z. So it is
very useful (if some kind of local-global principle holds) to study the simpler rings/fields
instead.

Definition 5.7. Let K be a field. A discrete valuation on K is a map v ∶K →R∩{∞}
such that

• v(x) =∞ if and only if x = 0.

• v(xy) = v(x) + v(y).

• v(x + y) ≥ min(v(x), v(y)).

• v(K) has a smallest positive element s ∈ R, so that v(K) = sZ.

We can always multiply a discrete valuation by 1
s to get a normalized discrete val-

uation, a discrete valuation whose value group (the image of K under v) is equal to
Z ∪ {∞}.

Example 5.8

Let OK be a Dedekind domain with field of fractions K and a nonzero prime ideal
p ⊆ OK . Then the p-adic valuation on K is defined by

vp(x) = sup{n ∈ Z ∶ x ∈ pn}.

In other words, it is the exponent of p in the unique expansion of the fractional ideal
x ⋅OK as a product of prime powers.

Note that if v is a discrete valuation on K then

v(1) = v(−1) = 0,

v(x/y) = v(x) − v(y),
and (most importantly) if v(x) ≠ v(y) then in fact we have the equality

v(x + y) = min(v(x), v(y)).

If K is a number field, then there is a famous result, due to Ostrowski, which states
that all the discrete valuations are p-adic.
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Definition 5.9. Let v be a normalized discrete valuation on K. Then the valuation
ring of K is

OK,v = {x ∈K ∶ v(x) ≥ 0}
(it is a principal ideal domain), and it has group of units

O×K,v = {x ∈K ∶ v(x) = 0}.

The non-units in OK,v form an ideal. As a result, OK,v is a local ring with maximal ideal
pv equal to the set of non-units. Since OK,v is Dedekind, every ideal is therefore of the
form pnv for some n ≥ 0. So for any uniformizer for v, namely a πv ∈K with v(πv) = 1
[in other words πv ∈ pv − p2

v], we can write that any ideal in OK,v is of the form (πnv ) for
some n ≥ 0. If a ≤ b, then we have an isomorphism of OK,v-modules

pav/pb ≅ OK,v/pb−av .

From the fact (proved inside the definition oops) that the valuation ring is a DVR, we
have the following as well:

Lemma 5.10

If I is the ideal generated by α1, . . . , αr in OK,v, then I is generated by any αi with
smallest valuation.

Example 5.11

Let K = Q and v = vp for a rational prime p. Then

OK,v = Z(p) = {a
b
∶ b /≡ 0 mod p}

is just the localization of Z at (p).

If OK is a DVR, then OK,v = OK . In general, if you start with a Dedekind domain which
is not a DVR, then by taking the valuation ring of its field of fractions at a particular
p-adic valuation you end up with something larger than OK . Moreover, taking valuation
rings leaves important invariants intact. For example, we have a ring isomorphism

OK/pn ≅ OK,v/pnv .

Now back to the question of classifying the valuations on a number field, and ultimately
the proof of Ostrowki’s theorem.

Theorem 5.12

Any normalized discrete valuation on Q is vp for some rational prime p.

Proof. We know OQ,v ⊆ Q is a subring, so Z ⊆ OQ,v. Since pv ∩ Z is a maximal ideal
containing only elements of positive valuation (in particular not 1), we know

pv ∩Z = pZ

for some rational prime p. As a result, v(p) ≥ 1, and v(q) = 0 for all q ≠ p. Because of
how valuations work on products and by unique factorization of Z, we can deduce that
v = vp (there must be some element of valuation 1, so v(p) = 1, then proceed by prime
factorization).
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The other distinguished example of this theory (other than number fields) is that of
function fields over a finite field.

Lemma 5.13

A finite field Fq has no discrete valuations.

Proof. Any nonzero element of Fq is a root of unity, so v(x) = 0 for all x ∈ Fq, which
means v cannot be a legitimate valuation.

Lemma 5.14

An algebraically closed field K has no discrete valuations.

Proof. without loss of generality v is normalized, so there is an x ∈K such that v(x) = 1.
Then v(√x) = 1/2 which contradicts the fact that v is normalized.

Theorem 5.15

Let k be a finite field or an algebraically closed field. Then any normalized discrete
valuation on K = k(T ) is v = vf for some irreducible polynomial f ∈ k[T ], or v = vdeg,
the valuation given by taking v(a/b) = deg(b) − deg(a).

Proof. Restrict v to k. Then v∣k× = 0 by the previous two lemmas. In particular, k ⊆ OK,v.
If v(T ) ≥ 0, then k[T ] ⊆ OK,v. So pv ∩ k[T ] is a nonzero prime ideal (f(T )) and it
follows that v = vf(T ). On the other hand, if v(T ) < 0 then k[1/T ] ⊆ OK,v. As a result,
pv∩k[1/T ] is a nonzero prime ideal containing 1/T , and thus v is the (1/T )-adic valuatoin
which is the same as vdeg, as desired.

Back to number fields. Notice that for example Z(p) ⊆ Zp, but Zp is a lot nicer. The
construction of Zp can be generalized to take the completion of any field with respect to
a discrete valuation.

Definition 5.16. Let K be a field with a discrete valuation v. Then the completion
of OK,v with respect to v is

ÔK,v = lim←Ð
n≥0

OK,v/pnv .

Moreover, OK,v is complete if it is equal to its completion via the embedding that takes
an element to its residue in each coordinate. The completion of K with respect to v is
just the field of fractions of the completion of OK,v.

Example 5.17

The completion of Ẑ(p) is Zp, whose field of fractions is Qp.

Definition 5.18. Let v be a discrete valuation on K with finite residue field κ(v) =
Ov/pv ≅ Fq. Then we define the norm (also called an absolute value) on K coming
from v to be given by

∣x∣v = q−v(x).
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This is the norm that comes naturally out of the Haar measure on K. Intuitively, this
definition means that x, y ∈ K are close if they are divisible by a high power of pv. In
fact, the norm coming from v is a norm on K as a Q-vector space, and thus gives it the
structure of a metric space. It satisfies the axioms of a nonarchimedean norm. The
completion of K and OK,v with respect to the norm coming from v actually coincide
with the definitions above.

Lemma 5.19

ÔK,v is the completion of OK,v ⊆K with respect to ∣ ⋅ ∣v, and analogously for K and
Kv.

Lemma 5.20

If S ⊆ Ov is a set of representatives for the residue field, then each a ∈ ÔK,v can be
written uniquely as a convergent series

a =
∞

∑
n=0

αiπ
i
v

where αi ∈ S and πv is a fixed uniformizer for v. Each a ∈ Kv may be written
uniquely as

a = πmv
∞

∑
i=0

aiπ
i
v

where a0 /∈ pv.

Note that v extends to a discrete valuation on Kv via

v(liman) = lim v(an)

(by this definition the resulting valuation is discrete and normalized if the original one
was). Because of this, the valuation ring of the completion is the same as the completion
of the valuation ring, and same for the maximal ideal. A canonical isomorphism between
residue fields can also be given.
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Definition 6.1. A local field is a field K which is complete with respect to a discrete
valuation and whose residue field is finite.

Example 6.2

Qp is a local field. Its valuation ring is Zp and its residue field is Fp.

For any local field K, the valuation ring OK,v is compact because OK,v ⊆∏n≥1OK,v/pv.
Remember that every element of Zp can be written as a convergent power series ∑aipi.

The units of Zp are the elements whose first digit (a0) is nonzero.

Theorem 6.3

Let v be a normalized discrete valuation on K. For any n ≥ 1, consider the higher
unit group

U (n) = 1 + pnv = {x ∈K ∶ v(x − 1) ≥ n} ⊆ O×K,v.

Then O×v /U (n) ≅ (OK,v/pnv )× and U (n)/U (n+1) ≅ OK,v/pv.

Proof. The first isomorphism can be made natural. In particular we have a natural map
O×K,v → (OK,v/pnv )×, and its kernel is U (n). The second isomorphism is not natural. We

use the surjective map U (n) → OK,v/pv given by

1 + πnv t↦ t mod pv

and see that its kernel is equal to U (n+1). This isomorphism is not canonical because it
depends on a choice of uniformizer.

Lemma 6.4 (Hensel’s Lemma, most basic version)

Let K be complete with respect to the discrete valuation v. Let f(X) ∈ OK,v[X]
and a ∈ OK,v/pv be a simple root of f(X). Then there is exactly one root f in OK,v
which reduces to a mod pv.

Proof. To prove the existence, we need to construct a sequence of elements α1, . . . ∈ OK,v
such that f(αn) → 0 as n →∞ and αn converges in K. To do this is suffices to ensure
that

∣αn+1 − αn∣v ≤ ∣f(αn)∣v
because this ensures that the sequence is Cauchy. For α0, take any α0 ≡ α mod pv. Then
∣f(α0)∣ < 1 and ∣f ′(α0)∣ = 1 since α0 is a simple root mod p. The procedure looks a lot
like Newton’s method, but in our case it will always succeed. In particular, we take

αn+1 = αn −
f(αn)
f ′(αn)

,

so that
∣αn+1 − αn∣ = ∣f(αn)∣.
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By Taylor expansion of polynomials, we know

f(αn + t) = f(αn) + f ′(αn)t mod t2,

so in fact (applying this to t = −f(αn)/f ′(αn)) we have

∣f(αn+1)∣ = ∣f(αn + t)∣ ≤ ∣t∣2 = ∣f(αn)∣2.

Using the construction, it is clear that f(αn)→ 0 since ∣f(α0)∣ < 1. We also have

∣αn+1 − αn∣ < ∣f(αn)∣→ 0,

so by telescoping a sum and using the nonarchimedean triangle inequality it follows that
αn is Cauchy.

Example 6.5

Let a ∈ Z which is a quadratic residue mod p, where a is nonzero mod p and
p ≠ 2. Then a = x2 for some x ∈ Zp, by applying Hensel’s lemma to the polynomial
f(X) =X2 − a. Then f ′(X) = 2X so if p ≠ 2 and a ≠ 0 mod p then any root of this
mod p is simple and Hensel’s lemma lets us lift the root to Zp. But lifting the root
can fail in both cases we left out. For example, p is clearly not a square in Zp, and 3
is not a square in Z/4.

Example 6.6

Zp contains all (p − 1)-th roots of unity. This is because you can apply Hensel’s
lemma to f(X) =Xp−1 − 1, which has p − 1 distinct simple roots in F×

p .

There is also a stronger version of Hensel’s lemma

Theorem 6.7 (Hensel’s lemma for factors)

Let K be complete with respect to the normalized discrete valuation v. If f(X) ∈
OK,v[X] factors in the residue field as

f(X) = h(X)g(X) mod p,

where h, g are coprime. Then there are h(X), g(X) ∈ OK,v such that

f(X) = g(X)h(X)

and g ≅ g mod p and analogously for h, plus deg(h) = deg(h) and same for g.

Proof. See Neukirch, Theorem II.4.6

There are also useful tricks for dealing with the valuations of roots of polynomials given
their coefficients (the general idea is that of Newton polygons)

Lemma 6.8

Let f(X) = anXn +⋯ + a0 ∈ K[X] be irreducible. Then v(ai) ≥ min(v(an), v(a0))
for all i.
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Proof. Without loss of generality we can clear denominators to force v(ai) ≥ 0, and
v(ai) = 0 for some i. Let i be the minimal index such that v(ai) = 0, so that

f(X) =Xi(anXn−i +⋯ + ai) mod pv.

Unless one of these polynomials is constant mod pv (i.e. i = 0 or n), Hensel’s lemma
says that f(X) is not irreducible. In the exceptional cases, we always have v(aj) ≥ 0 =
min(v(an), v(a0)).

§7 September 24, 2019

Remember the lemma from last class:

Lemma 7.1

Let f(x) = a0 + a1x+⋯anxn be an irreducible polynomial over a complete discretely
valued field. Then v(ai) ≥ min(v(an), v(a0)).

One reason it is relevant is because of

Theorem 7.2

Let K be complete with respect to the discrete valuation v, and L/K a finite
extension of degree n. Then there is exactly one extension v′ of L that extends K.
It is given by v′(x) = 1

nv(NL/Kx)

Proof. First of all, v′ at least restricts to v on K (obvious from its definition). NL/Kx = 0
if and only if x = 0, so the fact that v′(x) = 0 if and only if x = 0 follows from the same
property of v. It is also clear that v′(xy) = v′(x) + v′(y) by the multiplicativity of the
norm.

Lemma 7.3

x ∈ L is integral over OK,v if and only if v′(x) ≥ 0

Proof. Let f(X) = a0 + a1X +⋯ + at−1X
t−1 +Xt be the minimal polynomial of x. Then

t = [K(x) ∶K], and

NL/K = ±a[L∶K(x)]
0 .

If x is integral over OK,v then all the coefficients of the minimal polynomial are in OK,v,
so NL/K(x) has nonnegative valuation, and hence v′(x) = (1/n)v(Nx) ≥ 0. Conversely, if
v′(x) ≥ 0, then v(a0) ≥ 0, and by the lemma v(ai) ≥ 0 for all i, and thus f has coefficients
in the valuation ring.

The nonarchimedean triangle inequality can be proved in the following way: WLOG
assume that v′(x) ≥ v′(y). Then v′(x/y) ≥ 0, so x/y is integral over OK,v. The same is
true of x/y + 1 and therefore v′(x + y) ≥ v′(y) = min(v′(x), v′(y)) as desired. We should
also show that L is complete under v′. The fact that L is complete with respect to v′ is
a special case of the general fact that any finite dimensional normed vector space over a
complete field is complete (in particular it has nothing to do with how we defined v′).
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It remains to show that v′ is unique. Let v′′ be some other extension of v to L. Then
OL,v′′ is an integrally closed PID containing Ov, so by the lemma

Ov′ ⊆ Ov′′ .

So pv′′ ∩Ov′ is a nonzero prime ideal of O′v, so actually

pv′ ⊆ pv′′ .

If v′′(x) ≥ 0, then v′′(1/x) ≤ 0, so 1/x /∈ pv′′ and thus 1/x /∈ pv′ which means v′(1/x) ≤ 0,
i.e. v′(x) ≥ 0. This means that in fact Ov′ = Ov′′ and thus v′ = v′′, as desired. If v′′(x) ≥ 0,
then v′′(1/x) ≤ 0, so 1/x /∈ pv′′ and thus 1/x /∈ pv′ which means v′(1/x) ≤ 0, i.e. v′(x) ≥ 0.
This means that in fact Ov′ = Ov′′ and thus v′ = v′′, as desired.

The fact that v′ is unique tells us that v′ ○ σ = v′ (in the Galois case), so taking the sum
over all σ tells us v′(NL/K) = nv′(α). This is what motivates the construction of v′ in
the theorem.

Corollary 7.4

Finite extensions of local fields are local fields.

Proof. Let pvOL,v′ = pev′ . So v′(π′v) = 1
ev

′(πv), and thus v′(L×) = 1
ev(K

×) so v′ is discrete,
which is all we had left to show.

Corollary 7.5

There is exactly one valuation v′ on K extending v, but it is not discrete (in fact its
value group is dense in R).

It might also not be true that K is complete with respect to v′. But its completion at v′

is still algebraically closed. Still, the valuation ring at v′ is the integral closure of OK,v
and it has a single nonzero prime which is the set of elements of positive valuation.

If K is complete wrt a discrete valuation v, then we call the corresponding normalized
discrete valuation vK . We also denote the extension to K by vK . Also, we might as well
stop writing OK,v and write OK when K is a local field, etc.

If L/K is finite, then vL(x) = evK(x) where e is the ramification index of L/K.

Corollary 7.6

If f(X) ∈K[X] is irreducible, then all of its roots have the same valuation.

Remark 7.7. Let f(X) ∈ R[X] be irreducible. Then in fact f has degree 1 or 2, and all
the roots have the same valuation (if there are more than one then they are conjugates).
Note that ∣x∣C =

√
∣xx∣R is the only extension of the absolute value to C.

Where did all the primes go? Let OK be a Dedekind domain with field of fractions K,
p ⊆ OK a nonzero prime, L/K a finite extension, and OL the integral closure of OK in L.
Then

pOL = pe11 ⋯perr .

We can show that L⊗Kp ≅ Lp1 ×⋯ ×Lpr , and the analogous isomorphism holds for the
rings of integers.

44



Taught by Fabian Gundlach (Fall 2019) Math 223a: Algebraic Number Theory

Proof. Recall that Ôp = lim←ÐOK/pnK , so when we tensor by OL we get

r

∏
i=1

lim←ÐOL/p
ein
i ,

which is the same as the product of the Ôpi , because the tensor product commutes with
inverse limits (this works if L/K is separable, in which case OL is a finitely-generated
OK-module). The fact for the fields follows from this.

Recall the general form of the Dedekind-Kummer theorem: If p∣[OL ∶ OK[α]] for some
α ∈ L, then its minimal polynomial factors in Ôp[X] as f1⋯fr where fi is irreducible of
degree [Lpi ∶Kp]. Moreover, fi factors mod p as fi(X) = gi(X)ei with gi irreducible of
degree equal to f(pi∣p).

Theorem 7.8

Let K be a field with valuation v and r1, . . . , rn ∈K. WLOG assume v(r1) ≤ v(rn).
Then the coefficients of

∏
i

(X − ri)

satisfy v(an−i) ≥ v(r1) +⋯v(ri). If i = n or v(ri) < v(ri+1).

Proof. By “Vieta”, we know an−i is (up to a sign) a sum of products of i of the roots.
The smallest possible valuation is the term coming from the first i roots (since they come
in order). So the result follows from the nonarchimedean triangle inequality.

This basically begins the theory of Newton polygons. The theorem we just proved
says that the Newton polygon of f(X), namely the lower convex hull of the points
(i, v(ai)), encodes the valuations of the roots via the slopes of the line segments comprising
it.

Corollary 7.9

If f is irreducible, its Newton polygon is just a line segment since all roots have the
same valuation.

The Newton polygon of the product of polynomials can be written down in terms of the
two Newton polygons (since you just take the union of the roots).

Corollary 7.10 (Corollary of Corollary)

If the Newton polygon of f is a line segment which contains no integer points except
the endpoints, then f must be irreducible.

Corollary 7.11 (Eisenstein’s criterion; Corollary of Corollary of Corollary)

f(X) is irreducible if its Newton polygon is the line segment [(0,1), (n,0)].

Newton polygons are a good tool for checking how a polynomial factors, but it isn’t
always sufficient for determining even whether is is reducible.
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Let OK be a Dedekind domain with field of fractions K, L/K a Galois extension, and
P ⊆ OL a prime lying over p ⊆ OK . In that case, there is a canonical identification

Gal(LP/Kp) ≅D(P∣p).

If L/K is already complete then the decomposition group is the entire Galois group
(there is only one prime upstairs). The inertia group in the completion is the same as
the inertia group, too (since taking completions leaves the residue fields invariant). If
L/K is a finite Galois extension, and

pOL = (p1⋯pr)e,

then Gal(L/K) permutes the fields in L⊗KKp =∏r
i=1Lq according to the way it permutes

the primes. This is another technical thing you can use to translate between local and
global.

Theorem 8.1

Let K be complete with respect to a discrete valuation, and L/K a finite extension
of ramification index e, inertial degree f , and degree n. Then n = ef .

Proof. Let ω1, . . . , ωf ∈ OL be so that their reductions mod PL are a basis for κL/κK .

Then we claim that {ωiπjL}1≤i≤f,0≤j≤e is a basis for OL/OK . For linear independence
(which we can just do over K), suppose

0 =∑
i,j

aijωiπ
j
L = 0.

For any j, we have

vL (∑
i

aijωi) = min
i

{vL(aij)} = min
i

{evK(aij)}

which is divisible by e unless it is ∞. The reason why it is equal to the minimum of the
valuations is because of the fact that the ωi mod pL are a basis for κL. If a1j has the
smallest valuation, then

vL (∑
i

aijωi) = vL(a1j) + vL (∑
i

aij

a1j
ωi) ,

where we know aij/a1j ∈ OK . If the sum on the RHS has positive valuation, then the
linear independence of the ωi mod pL means that all the aij/a1j have positive valuation
which is a contradiction (take i = 1).

So in the big sum, each term ∑i aijωiπjL has valuation congruent to j mod e if it is
finite. In particular, no two summands have the same valuation, so the sum cannot be
zero unless all the aij were zero in the first place.

It remains to show that the basis elements span OL. To do this we will construct

sequences a
(t)
ij ∈ OK such that

∑
i,j

a
(t)
ij ωiπ

j
L → x
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as t→∞. Take a
(0)
ij = 0. Let

vL(x −∑aijωiπ
j
L) = j0 + es.

Then take a
(t+1)
ij = a(t)ij for j ≠ j0 and take a

(t)
ij0

so that

x −∑a(t)ij ωiπ
j
L

πj0+esL

≅∑
i

a
(t+1)
ij0

πsK
ωi
πj0L

πj0L
mod pL,

so
vL(x −∑a

(t+1)
ij ωiπ

j
L) ≥ vL(x −∑a

(t)
ij ωiπ

j
L) + 1.

Theorem 8.2

The local fields are the following:

• The finite extensions of Qp

• Fq((T )) the field of Laurent series over Fq in a single variable.

Proof. Let K be a local field of residue field κK = Fq. We will separate between the case
of zero and nonzero characteristic. Suppose K has characteristic zero, so that Q ⊆ K.
Then p ∈K but p is zero in the residue field, so v(p) > 0 and hence v is a multiple of the
p-adic valuation on Q. Since K is complete, this means Qp ⊆K. Since the residue field
of K is finite and v is discrete on K, the previous lemma tells us that [K ∶ Qp] is finite.

If the characteristic of K is nonzero, then it must be p (since we can’t have p and p′

both zero in the residue field or else the residue field would have only one element). So
we have Fp ⊆K. The polynomial Xq −X has q distinct roots in Fq. By Hensel’s lemma,
this polynomial also has q distinct roots in K, so in fact Fq ⊆K. Since every element of
K can be written as a convergent Laurent series in a uniformizer whose coefficients are
in a system of representatives for the residue field (which in this case can just be taken
to be the copy of Fq inside of K), this proves that K is the set of the formal Laurent
series.

Now we will begin the study of class field theory. First, we state “class field theory for
finite fields”. As usual, this begins with the statement of an “Artin reciprocity law”.
Let k = Fq. The injective homomorphism θk ∶ Z → Gal(Fq/Fq) which takes 1 to the

Frobenius map has dense image. That is because Z is dense in Ẑ. The finite extensions
`/k correspond to finite index subgroups U = nZ of Z, by taking U = θ−1

k (Gal(Fq/`)). So
the Frobenius map gives us an isomorphism

θ`/k ∶ Z/U → Gal(`/k).

There is a similar isomorphism called the “local reciprocity law”,
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Theorem 8.3

Let K be a local field. There is an injective homomorphism θK ∶K× → Gal(Kab/K)
with dense image. The finite abelian extensions of K correspond to open subgroups
U of K× of finite index via U = θ−1(Gal(Kab/L)), and

θL/K ∶K×/U → Gal(L/K).

The key fact is that the kernel of θL/K is actually NL/K(L×).

The proof of the local reciprocity law will be one of the main goals of this class. It’s also
true that the local and finite reciprocity maps are compatible, in the following way: Also,

K× Gal(Kab/K)

Z Gal(k/k)

vK

θK

θ

the “norm limitation theorem” says that this kind of approach will only be helpful for
abelian extensions. In particular, for a nonabelian extension, the norm subgroup is the
same as the norm subgroup of the maximal abelian subextension.

Let K be a local field with residue field κ, and Kur the maximal unramified extension
of K (it turns out that this is separable). Then this is the fixed field of the inertia
subgroup I(p(Ksep/pK), so

Gal(Kur/K) ≅ Gal(κKsep/κK).

The fact that Xqf is separable means that it splits completely in Ksep, and thus Fqf ⊆
κKsep , which means κKsep = Fq. So Gal(Ksep/K) ≅ Gal(Fq/F) = Ẑ (NB this implies

Kur/K is abelian). By Hensel’s lemma, Xqf −X has qf roots in Kur. So actually the
maximal unramified extension of K is easy to construct: it is equal to

Kur = ⋃
f≥1

K(ζqf − 1) = ⋃
gcd(m,q)=1

K(ζm).

Under the isomorphism Gal(Kab/K) ≅ OK × Ẑ, the inertia subgroup corresponds to O×K .
In particular, the field fixed by H is unramified if and only if H contains O×K , and we
have an equivalence of categories between the unramified extensions of K and the finite
field extensions of the residue field of K.
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First we corrected some mistakes from previous lectures. The first was about the tensor
product OL ⊗ ÔK,p only decomposing as the desired product if L/K is separable. The
other was that if L/K is an extension of local fields, then we can’t always write πeL = πK
since πeL won’t necessarily be in K.

Last, time we showed that Gal(Kur/K) ≅ Ẑ. This time, we will prove I(Kab/K) ≅ O×K .
Consider a totally ramified finite extension L/K of local fields. Then from our previous
description specialized to the case f = 1, we know that

1, πL, . . . , π
e−1

is an OK-basis for OL.

Lemma 9.1

The minimal polynomial of πL is an Eisenstein polynomial

Proof. The degree of the minimal polynomial is e, and vK(πL) = 1/e, so by the theory of
Newton polygons the minimal polynomial is Eisenstein.

Conversely, if α is a root of an Eisenstein polynomial then K(α)/K is totally ramified
by the same type of argument.

According to the local Artin reciprocity law, the open subgroups H ⊆ Gal(Kab/K) ≅
O×K × Ẑ correspond to the abelian extensions of K, and the ones corresponding to the
totally ramified ones are those for which H → Ẑ is surjective.

WARNING: the compositum of the totally ramified abelian extensions of K need not
be totally ramified. For example, X2 − πK is Eisenstein of degree 2 and so produces a
totally ramified extension of degree 2. So is X2 − tπK . But the compositum contains

√
t,

which means (if t is not a perfect square mod ∣κ(K)∣) the residue field has to increase in
size and hence the compositum is not totally ramified. So, despite the fact that we like
to think of THE maximal unramified (abelian) extension, we will never have a canonical
choice of maximal totally ramified extension; though it will be useful in local class field
theory to make a specific choice of maximal totally ramified extension.

The analysis of where I(Kab/K) is mapped to to under the Artin map leads to the
theory of higher ramification groups. We want to show that it is mapped to by O×K .
Remember we had a filtration of O×K

O×K ⊇ U (1)
K ⊇ ⋯

of higher unit groups. The corresponding subgroups of the Galois group are called the
higher ramification groups:

Definition 9.2. Let OK be a Dedekind domain with field of fractions K, L/K a finite
Galois extension, and OL the integral closure of OK in L. The s-th ramification group
of a prime P ⊆ OL is defined to be

Is(P∣p) ∶= {σ ∈D(P∣p) ∶ σ(a) ≡ a mod Ps+1 for all a ∈ OL},

in other words it is the set of all σ ∈D(P∣p) such that iL/K(σ) ≥ s + 1, where iL/K(σ) ∶=
mina∈OL(vP(σ(a) − a)).
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Example 9.3

I−1 is the decomposition group, and I0 is the inertia subgroup.

The ramification groups give a filtration of the Decomposition group, and they are
trivial for sufficiently large s since L/K is finite and iL/K is finite for nontrivial elements.
Moreover, all of the ramification groups are normal subgroups of the decomposition
group.

It is also enough just to look at a set of generators of OL as an OK-algebra. In the
case where L/K are local fields, there will always be a single such generator.

Let F /K be a subextension of L. Then Gal(L/F ) ⊆ Gal(L/K) and

Is(P∣P ∩ F ) = Is(P∣p) ∩Gal(L/F ).

We’d like this to also be compatible with taking quotients. The problem is that the
valuation gets rescaled when we go downstairs, so we can’t just do it directly. Instead we
need to renormalize the numbering, to obtain the upper numbering of the ramification
groups.

Lemma 9.4

Let L/K be a finite Galois extension of local fields. Then

Is(L/K) ∶= {σ ∈ I(L/K) ∶ σ(πL) ≡ πL mod Ps+1}

i.e.
{σ ∈ I(L/K) ∶ σ(πL)/πL ∈ U (s)

L }

Proof. Let F be the maximal unramified subextension. Then (since it is the fixed field
of the inertia group)

Is(L/K) = Is(L/F )
and since L/F is totally ramified, we have OL = OF [πL], so this is what we want it to be
by the above remark about generators.

Suppose again that OK and OL are Dedekind domains as before. Then D(P∣p) =
Gal(LP/Kp) and the ramification groups of P∣p are the same as the Is(LP/Kp). This is
a consequence of the definitions (taking completions doesn’t change the value groups or
residue fields).

Theorem 9.5

Let L/K be a finite Galois extension of local fields. We obtain injective group

homomorphisms I/I1 → O×L/U
(1)
L and Is/Is+1 → U

(s)
L /U (s+1)

L .

Proof. The homomorphisms are constructed by taking

σIs+1 ↦
σ(πL)
πL

U
(s+1)
L .

First, this homomorphism does not depend on the choice of uniformizer, because if u

is a unit in OL and σ ∈ Is then vL(σ(u))/u ∈ U (s+1)
L . Checking these are injective group

homomorphisms is straightforward from the same ideas.
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D/I = Gal(κL/κK) = Z/fZ, and I/I1 embeds into O×L/U
(1)
L = κ×L, while I1/I2 embeds

into κL. If p is the residue characteristic, then this means ∣I1/I2∣ is a power of p, and
∣I/I1∣ is coprime to p. The fact that these quotients are abelian (they inject into abelian
things) means that G is solvable. And I1 is the (unique) p-Sylow subgroup of I0.

It’s another useful fact about local fields (useful in our case for talking about ramification
groups) that the ring extension is always monogenic

Lemma 9.6

If L/K is a finite extension of local fields, then OL = OK[α] for some α.

Proof. Let Fqn/Fq be the residue field extension. By Hensel’s lemma, ζqn−1 ∈ OL. If this
is not already a generator, just consider

α = ζqn−1 + πL.

Then mod p2
L,

αq
n − α = (ζ + π)qn − (ζ + π)

= ζqn − ζ − π
= −π

so vL(αq
n − α) = 1 and therefore we can get a uniformizer from α. This uniformizer plus

ζqn−1 generate OL as an algebra, so we are done.
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The higher ramification groups of an extension of local fields actually are enough to
determine the different ideal of the extension. We will state this in terms of the discrimi-
nant:

Theorem 10.1

Let L/K be a finite Galois extension of local fields. Then

vK(dL/K) = f(L/K) ⋅ ∑
σ≠1∈Gal(L/K)

iL/K(σ) = f(L/K)
∞

∑
s=0

(∣Is∣ − 1).

Proof. We’ve shown that actuallyOL has a power basis overOK , namely 1, α,α2, . . . , α[L∶K]−1,
and by the usual Vandermonde matrix computation, the discriminant of the extension
is the ideal generated by NL/K(f ′(α)) where f is the minimal polynomial of α. In
particular,

vK(dL/K) = vK(∏
σ,τ

(σα − τα))

= vK(∏
σ

σ∏
τ

(α − τα))

= [L ∶K]∑
τ≠1

vK(α − τα)

so by renormalizing we have

f(L/K)∑
τ≠1

vL(α − τα)

as claimed.

Example 10.2

Consider the extension Qp(
√
p)/Qp, whose ring of integers is Zp[

√
p] since 2 is

invertible in Zp when p is odd. Then Gal(Qp(
√
p)/Qp) = Z/2Z, and if σ is the

nontrivial element of the Galois group then we have

iL/K(σ) = vQp(
√
p)(−

√
p −√

p) = 1.

So I0 is the entire Galois group and the rest of the ramification groups are trivial.

Example 10.3

Consider Q2(
√
p)/Q2, where p is 3 mod 4. Then i(σ) is the valuation of −2

√
p which

is 2. So the first two ramification groups are Z/2 and the rest are trivial.

Example 10.4

Take Q2(
√

2)/Q2. Then i(σ) = v(−2
√

2) = 3.
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All of these objects are compatible with the corresponding ones for global fields (compare
the valuations we just computed with the discriminants of the quadratic number fields).
What we actually care about is the cyclotomic extensions, since we want to study abelian
extensions of local fields (in this case by local Kronecker-Weber).

Example 10.5

The Galois group of Kn = Qp(ζpn)/Qp. We know that (ζpn − 1) is the only prime in
Q(ζpn). So

Gal(Kn/Qp) = Gal(Q(ζpn)/Q) = (Z/pnZ)×

and therefore

Gal(Kn/Km) = {r ∈ (Z/pnZ)× ∶ r ≡ 1 mod pm}.

Let 1 ≠ r ∈ (Z/pnZ)×. Then

i(Kn/Qp)(φr) = vKn(ζrpn − ζpn) = vKn(ζr−1
pn − 1) = vKn(φr(ζ

pt

pn − 1))

where r − 1 = ptk (take t = vp(r − 1)), which is just

vKn(ζpn−t − 1) = e(Kn/Kn−t)vKn−t(ζpn−t − 1) = pt.

This shows that Is(Kn/Qp) = Gal(Kn/Kt), where t ≥ 0 is the minimal integer ≤ n
such that s ≤ pt − 1 or t = n.

To convert from the ramification groups and those of a subextension, there is a whole
technical setup involving the following function, used to convert between the upper and
lower indexing schemes.

Definition 10.6. Let ηL/K(s) = ∫ s0 dx
[I0∶Ix]

= 1
e(L/K) ∑σ min(iL/K(σ), s+1) (you can check

these are the same by looking at the derivative).

The y-coordinate of the places where ηL/K bends are all integers, as long as L/K is
abelian (this is called the Hase-Liu-Arf theorem).

Definition 10.7. Let It(L/K) = Iη−1
L/K(t)(L/K).

Theorem 10.8 (Herbrand’s Theorem)

Let K ⊆ L′ ⊆ L be a tower of Galois extensions, where G = Gal(L/K), H = Gal(L/L′),
and G/H = Gal(L′/L). Then It(L′/K) is the image of It(L/K) under the projection
G→ G/H.

Proof. We’ll need some technical lemmas first.

Lemma 10.9

For any σ ∈ G, iL′/K(σ∣L′) = 1
e(L/L′) ∑τ∈H iL/K(στ).

Proof. If σ∣L′ = id, then both sides are ∞. Now suppose it is not id. Then for a choice of
generator αL/K ,

iL/K(στ) = vL(σταL/K − αL/K)
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and
iL′/K(σ∣L′) = vL(σαL′/K − αL′/K)

so we need to show that

vL(σαL′/K − αL′/K) = ∑
τ∈H

vL(σταL/K − αL/K) = vL(∏
τ∈H

(σταL/K − αL/K)).

Let the thing inside the valuation on the LHS be a, and the thing inside the valuation on
the RHS be b. We will first show that vL(a) ≤ vL(b). Let f(X) = ∏τ∈H(X − ταL/K) ∈
OL′[X] be the minimal polynomial of αL/K over L′. Then

(σf)(X) = ∏
τ∈H

(X − σταL/K)

and thus
(σf − f)(αL/K) = (σf)(αL/K) − f(αL/K)

which is just ±b since f(αL/K) = 0. The coefficients of σf − f are of the form σc − c for
c ∈ OL′ , so they all have valuation at least vL(a). As a result, vL(b) ≥ vL(a). Now we
show the opposite inequality. The fact that αL/K is a generator for OL as an OK-algebra
means that αL′/K = g(αL/K) for some g ∈ OK[X]. So αL/K is a root of the polynomial
g(X) − αL′/K ∈ OL′[X], which means

f(X)∣(g(X) − αL′/K)

in OL′[X]. After applying σ and plugging in αL/K , we get

(σf)(αL/K)∣(σg)(αL/K) − σαL′/K .

The LHS is just ±b and the RHS is αL′/K − σαL′/K = −a, which proves that vL(b) ≤
vL(a).

Corollary 10.10

Even for infinite extensions, we can define

It(L/K) = {σ ∈ Gal(L/K) ∶ ∀L ⊇ L′/K finite Galois subextension , σ∣L′ ∈ It(L′/K)}.

Example 10.11

Gal(K∞/Qp) = Z×
p , and in upper numbering the t-th higher ramification group of

this extension is just the subset of elements of Z×
p congruent to 1 mod (pt), i.e. the

higher unit group U (t). This suggests that there is some general framework in which
the higher unit groups correspond via a natural isomorphism (the Artin map!!!) with
the higher ramification groups.
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Lemma 11.1

iL′/K(σ∣L′) = 1
e(L/L′) ∑τ∈Gal(L/L′) iL/K(στ).

Lemma 11.2

IηL/L′(s)
(L′/K) is the image of Is(L/K) under the quotient Gal(L/K)→ Gal(L′/K).

Proof. We need to check that for any σ ∈ Gal(L/K),

iL/K(σ∣L′) − 1 = ηL/L′(max
τ∈H

{iL/K(στ) − 1}).

The left hand side is
max{s∣σ∣L′ ∈ Is(L′/K)}

and the maximum in the right hand side is

max{s ∶ στ ∈ Is(L/K)}.

WLOG we can assume the maximum occurs at τ = id, and thus (since Is is a group),

iL/K(στ) = min(iL/K(σ), iL/K(τ)).

By the previous lemma, we have

iL′/K(σ∣L′/K) = 1

e(L/L′) ∑τ∈H
iL/K(στ)

= 1

e(L/L′) ∑τ∈H
min(iL/K(σ), iL/K(τ))

= ηL/L′(iL/K(σ) − 1)

By the characterization of η from last class.

This almost proves Herbrand’s theorem but we need one more lemma.

Lemma 11.3

ηL/K = ηL′/K ○ ηL/L′

Proof. The kernel of Is(L/K)→ IηL/L′(s)
(L′/K) is Is(L/K) ∩Gal(L/L′) = Is(L/L′). So

∣Is(L/K)∣ = ∣IηL/L′(s)
(L′/K)∣ ⋅ ∣Is(L/L′)∣.

Since I0(L/K) is just the intertia group, we also know that

∣I0(L/K)∣ = e(L/K) = e(L′/K)e(L/L′) = ∣I0(L′/K)∣ ⋅ ∣I0(L/L′)∣.

So using the definition of η, we get

η′L/K(s) = 1

[I0 ∶ Is(L/K)] =
1

[I0 ∶ IηL/L′(s)
(L′/K)]

1

[I0 ∶ Is(L/L′)]
= η′L′/K(ηL/L′(s))η′L/L′(s)

which is what we want by the chain rule (checking at zero and integrating gives the
desired result)
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Proof of Herbrand’s Theorem. From the previous two lemmas, we can just see that

It(L′/K) = Iη(L′/K)−1(t)(L/L)

is the image of
Iη−1
L/L′(η

−1
L′/K(t)) = Iη−1

L/K(t)(L/K) = It(L/K)

as desired.

Now a few words about the Hasse–Arf theorem.

Theorem 11.4 (Hasse–Arf)

If L/K is an abelian extension of local fields, the corners of the graph of ηL/K have
integer coordinates.

More generally, if L/K is nonabelian, consider the class function

aL/K ∶ G→ Z

which takes σ ≠ id to −f(L/K)iL/K(σ) and the identity to f(L/K)∑τ≠id iL/K(τ). This
is called the Artin representation of L/K, and Artin showed that it is the character of a
representation of G over C. The number of times the trivial representation shows up in
the Artin representation is

⟨aL/K , triv⟩ =
1

∣G∣ ∑σ∈G
aL/K(σ) = 0.

We can also compute that
⟨aL/K , regG⟩ = vK(dL/K)

from the formula involving higher ramification groups and the valuation of the discrimi-
nant.

Lemma 11.5

aL/K =
∞

∑
s=0

1

[I0 ∶ Is]
(regG − IndGIstrivIs),

where the induced character of the trivial character is (since Is is normal) [G ∶ Is]
when σ ∈ Is and 0 otherwise. In upper numbering, we have

aL/K = ∫
∞

−1
(regG − IndGIttrivIt)dt.

Using this one can deduce the Hasse-Arf theorem. There is also a relationship in the
other direction using Brauer’s theorem from representation theory.

§11.1 Back to class field theory

In local CFT, so far we have computed Gal(Kur/K) ≅ Ẑ. The kernel of the projection
Gal(Kab/K) → Gal(Kur/K) is I(Kab/K). We want to construct an Artin reciprocity
isomorphism from O×K to I(Kab/K) which takes the higher unit groups to the higher
ramification groups.
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Definition 11.6. A Galois extension L/K of local fields is tamely ramified if I1(L/K) =
1.

If L/K is finite, then L/K is tamely ramified iff e(L/K) is not divisible by the
characteristic of the residue field, p. That is because I1 is the p-Sylow subgroup of I.
In particular, if p does not divide [L ∶ K] then L/K is tamely ramified. The maximal
tamely ramified subextension of L/K is the fixed field of I1 (the lower index is not a
typo). The lower index is okay because for any L ⊇ L′ ⊇K with L′/K Galois, we have

I1(L′/K) = Iε(L′/K) = Iε′(L′/K)

which is the image under the quotient of Iε
′(L/K), which is the same as the image of Iε′′ .

If ε is made small enough, all of these will be less than 1 so we are good.

Theorem 11.7

The maximal tamely ramified extension of a local field K with residue field Fq is

Ktame = ⋃
m≥1

(m,q)=1

Kur(π1/m
K ).

For any α ∈Ktame, Xm −α has m distinct roots in Ktame. In particular, write α = β ⋅πCK
with β ∈ O×K . Then by taking derivatives we see that Xm − β has m distinct roots in the
residue field of Ktame, and therefore in Ktame as well by Hensel’s lemma.
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First, a warning. If K is a local field, then Kur is an infinite extension of K and is not
complete with respect to the unique extension of the valuation of K. So a priori we
cannot apply Hensel’s lemma to it. On the other hand, we CAN apply Hensel’s lemma
because Hensel’s lemma only involves finitely many elements so you can restrict to a
finite Galois subextension and apply it there.

Theorem 12.1

Let K be a local field of residue field Fq. Then the maximal tamely ramified
extension of K is

Ktame = ⋃
m≥1,(m,q)=1

K(ζm, π1/m
K ) = ⋃

t≥1

K(ζqt−1, π
1/(qt−1)
K ).

Proof. First we need to show that this is actually tamely ramified. To do this it suffices
to show it for each of the fields whose union is being taken (by the properties of the

upper numbering). Notice that the tower K ⊆K(ζm) ⊆K(ζm, π1/m
K ) has first step which

is unramified, and second step totally ramified. The ramification index is e =m so in fact
the second step is tamely ramified and we are done.

Next we need to show that if L/K is a finite Galois tamely ramified extension, then

L ⊆K(ζm, π1/m
K ) for some m. Splitting L into its unramified part L′ = L ∩Kur ⊆K(ζm)

and its totally ramified part L/L′. We know from before that L = L′(πL). Let f(X) ∈
OL′[X] be the (Eisenstein) minimal polynomial of πL over L′. It suffices to show that

f(X) splits completely in Kur(π1/e
K ). Recall that (i.e. f is Eisenstein) f has very bad

Newton polygon (it reduces mod p to something with a massive root). However, the
roots ri of f have valuation 1/e (since πeL has the same valuation as πK). So instead we

take ri/π1/e
K , which are the roots of g(X) = f(π1/e

K X). The Newton polygon of g is now
just flat, and all the coefficients have valuation at least one. So divide by πK to get that

1
πK
f(π1/e

K X) has Newton polygon which sits on the x-axis. By construction,

g(X) ∈ O
Kur(π

1/e
K )

[X]

and
g(X) ≡Xe + c mod p

which means g actually has e simple roots mod p, and thus by Hensel’s lemma (using
the fact that (e, q) = 1) these roots lift to e distinct roots of g. It follows that our

original polynomial f splits completely in Kur(π1/e
K ), as desired [because this implies

that πL ∈Kur(π1/e
K )].

Now for the Galois group. Recall that the maximal unramified extension of K has Galois
group Ẑ which is the closure of the copy of Z generated by the Frobenius. Moreover,

Gal(Kur(π1/m
K )/Kur) ≅ Z/mZ

where this is just generated by the automorphism sending π
1/m
K ↦ ζmπ

1/m
K (this is fine

because Kur contains ζm). As a result,

Gal(Ktame/Kur) = lim←Ð
(m,q)=1

Gal(Kur(π1/m
K )/Kur) = lim←ÐZ/mZ
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and you can check what the restrictions have to look like, but this will be the same as
(via the Chinese remainder theorem)

∏
`≠p

Z`.

It is topologically generated by τ , the automorphism that corresponds to 1 in each copy
of Z/mZ. You can also lift the Frobenius to Ktame by taking

φq(π1/m
K ) = π1/m

K

and
φq(ζm) = ζqm,

making sure to choose the m-th roots in a way in which this is actually well-defined. In
fact, Gal(Ktame/K) is topologically generated by τ and φq in the sense that

Gal(Ktame/K) = ⟨τ⟩ ⋊ ⟨φq⟩

where of course φqτφ
−1
q = τ q.

Example 12.2

Now let’s look at a finite extension. Take L = K(ζqt−1, π
1/(qt−1)
K ). Our arguments

show that
Gal(L/K) = Z/(qt − 1) ⋊Z/t.

The open subgroups of Gal(Ktame/K) correspond to the finite subextensions and are
the same as the finite index subgroups. In particular, Gal(Ktame/K)n has finite index
in Gal(Ktame/K) and so K has only finitely many tamely ramified Galois extensions of
degree n. On the homework we showed that in characteristic zero there are finitely many
(arbitrarily ramified) Galois extensions of given degree. But this is false in characteristic
p:

Example 12.3

K = Fpk((T )) has infinitely many Galois extensions with Galois group Z/pZ.

Theorem 12.4

The maximal tamely ramified abelian extension of K is

Ktame,ab =Kur(π1/(q−1)
K )

and its Galois group is Z/(q − 1)Z × Ẑ.

Proof. To do this we can just mod out by the commutator to compute the abelianization
of the Galois group. Or just look explicitly at the presentation for the Galois group. In
particular, take

τ = τ ∣
Kur(π

1/(q−1)
K )

and
φq = φq ∣Kur(π

1/(q−1)
K )

.
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These commute because conjugating τ by φq gives you τ q which is the same as τ . So at

least Ktame,ab is abelian. The other direction is almost the same. Let L/K be a finite
tamely ramified abelian extension. Then defining τ and φq just by restriction to L, they

must commute, which implies that τ = τ q, i.e. τ has order dividing q − 1. So Ktame,ab has
degree at most q − 1 over Kur, which means it is actually equal to the thing we wrote
before.

Remark 12.5. This is expected because by Artin reciprocity O×K × Ẑ = Gal(Kab/K) so
we expect to get Gal(Kab,tame/K) by modding out by I1(Kab/K) which maps under the

reciprocity mapping to U
(1)
K . Then recall that O×K/U (1)

K ≅ F×
q .

Remark 12.6. We proved the following on the homework: if f(X) ∈ OK[X] is Eisenstein
of degree q − 1 and α ∈K is a root of f , then Kur(α) =Ktame,ab.
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If L/K is a finite Galois extension of local fields with residue field extension Fqn/Fq,

then we have canonical embeddings I/I1 → O×L/U
(1)
L ≅ F×

qn and In/In+1 → U
(n)
L /U (n+1)

L ≅
Fqn , which are given by σ ↦ σ(πL)/πL (and are independent of the choice of uni-
formizer).

Lemma 13.1

If L/K is abelian, then we have embeddings I/I1 → F×
q and In/In+1 → Fq.

Fake proof. Let ϕ̃q ∈ Gal(L/K) be a lift of the Frobenius automorphism. For any σ ∈ In,

we have (mod U
(n+1)
L )

ϕ̃q(σ(πL)/πL) =
ϕ̃qσ(πL)
ϕ̃q(πL)

= σϕ̃q(πL)
ϕ̃q(πL)

which has to be the same mod U
(n+1)
L as the ratio of the q-th powers.

This proof is fake because the isomorphism with Fqn is noncanonical. So from this
proof we only conclude that I/I1 → F×

q .

Legit proof. For n ≥ 1, if σ ∈ In we can write σ(πL)/πL = 1 + πnLx, and

ϕ̃q(1 + πLx) ≡ 1 + πnLx mod U
(n+1)
L

ϕ̃q(πL)nϕ̃q(x) ≡ πnLx mod pn+1
L

ϕ̃q(πL)
πnL

ϕ̃q(x) ≡ x mod pL

ϕ̃q(πL)n
πnL

xq ≡ x mod pL.

This means x satisfies this particular polynomial over Fqn , which has at most q roots.
So, the image of In/In+1 → Fqn has size at most q, which gives an (EXTREMELY
NONCANONICAL) injection In/In+1 → Fq.

What’s important is that we have a bound on the sizes of quotients of successive
ramification groups.

Theorem 13.2 (Local Kronecker–Weber)

Qab
p = Qp(ζ∞) = ⋃m≥1,(p,m)=1 Qp(ζm) ⋅⋃k≥0 Qp(ζpk).

Proof assuming Hasse–Arf. Assume that Qab
p properly contains Qp(ζ∞). Then

H = Gal(Qab
p /Qp(ζm))

is nontrivial. It’s a general fact about the upper numbering for infinite extensions that

∞

⋂
n=0

In(Qab
p /Qp) = 1

[because in any finite extension K/Qp, the upper ramification groups are eventually zero].
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Let n ≥ 0 be the least nonnegative integer such that H is not contained in In(Qab
p /Qp).

If n = 0, then
(Qab

p )H /⊇ (Qab
p )I0

where the LHS is Qp(ζ∞) and the RHS is an unramified extension of Qp. This is a
contradiction. Now suppose n ≥ 1. We have a map

In−1(Qab
p /Qp)/In(Qab

p /Qp)→ In−1(Qp(ζ∞)/Qp)/In(Qab
p /Qp).

By the minimality of n,
H ⊆ In−1(Qab

p /Qp),

and the map above is given by reduction mod H, so the kernel contains H/In(Qab
p /Qp).

Since H is not inside of this (by definition of n), the kernel is nontrivial, so

∣In−1/In(Qab
p /Qp)∣ > ∣In−1/In(Qp(ζ∞)/Qp)∣.

But in fact the exact opposite of this is true by the previous lemma.

Corollary 13.3

Gal(Qab
p /Qp) ≅ Ẑ × Z×

p . Also, In(Qab
p /Qp) = Gal(Qab

p /⋃ m≥1
pm+1 /÷m

Qp(ζm)) [this is

because of the homework problem concerning the upper numbering of the ramification
groups for cyclotomic extensions of Qp].

More generally, let
K0 ⊆K1 ⊆ ⋯ ⊆ ⋯

be abelian extensions of K such that K0 =Kur, In(Kn/K) = 1, and [Kn+1 ∶Kn] = q − 1
if n = 0 and q if n ≥ 1. Then Hasse–Arf implies that ⋃n≥0Kn.

In Lubin–Tate theory, we will see exactly how to construct these fields to get “explicit
local class field theory,” by noticing that the roots of unity are the torsion points of a
particular group structure upstairs, and generalizing this to the appropriate group. The
method of constructing these groups is by formal group laws. Basically, the group law
should be given by power series.

Definition 13.4. A (commutative) formal group over a ring R is a power series
F (X,Y ) ∈ R[[X,Y ]] such that

1. F (X,Y ) = F (Y,X) [commutativity]

2. F (F (X,Y ), Z) = F (X,F (Y,Z)) [associativity]

3. F (X,Y ) ≡X + Y mod degree 2.

It’s often the case in formal group laws that other important properties (which in
the usual group theory you would have to specify) follow from the very basic ones. For
example, it will follow that F (0,X) =X.

Example 13.5

Take the additive group Ga =X + Y .
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Example 13.6

There’s also the multiplicative group

Gm = (1 +X)(1 + Y ) = 1 +X + Y +XY.

This is basically saying multiplication is linear near 1.

Definition 13.7. A homomorphism of formal groups f ∶ F → G is a power series
f(X) ∈ R[[X]] with f(0) = 0 such that

f(F (X,Y )) = G(f(X), f(Y )).

Lemma 13.8

If f(X) = ∑∞
n=1 anX

n ∈ R[[X]], then the following are equivalent:

1. There exists some g ∈ R[[X]] such that f(g(X)) = g(f(X)) =X

2. a1 ∈ R×.

Proof. A lot of these things are just bash with power series. Let g(X) = b0 + b1X + ⋯.
Then

X = g(f(X) = b0 + (deg ≥ 1)

so b0 = 0 at least. Moreover,

X = f(g(x)) = b0 + a1b1X + (deg ≥ 1)

so a1 ∈ R×. In fact, to go the other way we can directly recursively construct a right
inverse one coefficient at a time.

Suppose f(g(X)) = X. Then b0 = 0 and b1 = 1/a1. Assume we have coefficients
b0, . . . , bn−1 so that f(b1X +⋯ + bn−1X

n−1) agrees with X until degree n. This will force
the choice of bn. In particular, take bn so that

f(b1X +⋯ + bn−1X
n−1) =X − a1bnX

n + (deg ≥ n + 1)

and it works out. Similarly, there is an h such that g(h(X)) =X, and thus

g(f(X)) = g(f(g(h(X)))) = g(h(X)) =X.

so g is also a right inverse to f .

Definition 13.9. A formal module F over R is a formal group F ∈ R[[X,Y ]] plus a
ring homomorphism R → EndR(F ) satisfying a↦ [a]F (X), where

[a]F (X) = aX + (deg. ≥ 2)

for all a ∈ R, where the endomorphism ring EndR(F ) is defined to be the send of formal
group endomorphisms of F , where we need to remember that adding two endomorphisms
is done using the group law F .
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Let K be a local field.

Definition 14.1. A Lubin–Tate series for a uniformizer πK is a power series e(X) ∈
OK[[X]] such that

1. e(X) ≡Xq mod πK

2. e(X) ≡ πKX mod deg. 2.

Example 14.2

In reality we’ll only need one such series, and the most convenient examples are
polynomials. For example, e(X) =Xq + πKX or more generally e(X) =Xf(X) for
any Eisenstein polynomial f with constant coefficient πK .

Example 14.3

When K = Qp, e(X) = (X + 1)p − 1 works. As far as I know this is the important
motivating example.

Theorem 14.4

Let e(X) be a Lubin-Tate series for πK . Then there is a unique formal OK-module
Fe, called the Lubin-Tate module for e(x), such that [π]Fe(X) = e(X).

Example 14.5

Let K = Qp, π = p, e(X) = (X + 1)p − 1. The unique formal OK-module with this
property is Fe = Gm, since [a]Fe(X) = (X + 1)a − 1, which specializes to e(X) when
a = π.

The key technical lemma that lets you prove things like this (especially uniqueness
statements about Lubin-Tate modules or power series) is as follows:

Lemma 14.6

Let e(X), ẽ(X) be two Lubin–Tate series for πK , and let a1, . . . , ar ∈ OK . Then there
is a unique power series φ(x1, . . . , xr) ∈ OK[[x1, . . . , xr]] such that φ(x1, . . . , xr) =
a1x1 +⋯ + arxr + (deg. ≥ 2) and e(φ(x1, . . . , xr)) = φ(ẽ(x1), . . . , ẽ(xr)).

Proof. We know the linear terms of φ, so we can inductively construct the terms of higher
degree (and this choice we will see is unique and actually works). Write X = (x1, . . . , xr),
e(X) = (e(x1), . . . , e(xr)), φ(X) = φ(x1, . . . , xr) to save space. We will inductively
construct φn, the homogeneous degree-n part of φ. Suppose for the inductive hypothesis
that we have constructed φ1, . . . , φn−1 such that

e(φ1(X) +⋯ + φn−1(X)) = φ1(ẽ(X)) +⋯ + φn−1(ẽ(X)) + deg ≥ n.
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For example (in the base case), setting n = 2 we just need to look at linear terms of
everything, and we see that this is satisfied by the choice of φ1 because

a1ẽ(X1) +⋯ + arẽ(Xr) = a1πX1 +⋯arπXr mod deg ≥ 2.

In general, we have (just by looking at degrees of terms and what can possibly contribute
to the sum mod higher degree)

e(φ1(X) +⋯ + φn(X)) = e(φ1(X) +⋯ + φn−1(X)) + πφn(X) + (deg ≥ n + 1)

while

φ1(ẽ(X)) +⋯ + φn(ẽ(x)) = (φ1 +⋯ + φn−1)(ẽ(X)) + πnφn(X) + (deg ≥ n + 1).

So we are forced to take φn to be the homogeneous degree n part of

e(φ1(X), . . . , φn−1(X)) − (φ1 +⋯ + φn−1)(ẽ(X))
πn − π .

It remains to check that this has coefficients in OK , which is actually forced by the
condition that e(X) ≡Xq mod πK and the same for ẽ. In particular, it shows that

e((φ1 + φn−1)(X)) ≡ (φ1 +⋯ + φn−1)(ẽ(X)) mod πK .

Proof of the Theorem using this lemma. By the lemma, there is a unique Fe(X,Y ) such
that Fe(X,Y ) ≡X + Y mod deg 2 and

e(Fe(X,Y )) = Fe(e(X), e(Y ))

(so a unique group law for which e is an endomorphism). From the same lemma, for any a
there is a unique choice of [a]Fe(X) = aX +deg ≥ 2 such that e([a]Fe(X)) = [a]Fe(e(X)).
So there is at most one choice of Lubin–Tate module structure (given by these choices).
We need to check that this is actually a valid Lubin–Tate module. So we need to check
Fe is a bona fide group law, and that our choice of [a]Fe (the action of OK on the
group) makes it into a bona-fide OK module. All of these are routine applications of the
uniqueness statement of the lemma. For example, take the associative law. The power
series Fe(X,Fe(Y,Z)) and Fe(Fe(X,Y ), Z) both have linear terms X + Y +Z, and they
both commute with e (since Fe does). So the lemma tells us they are the unique solution
described. Consider also the distributive law [a]Fe(Fe(X,Y )) = Fe([a]Fe(X), [a]Fe(X))
for a ∈ OK . Both are the unique solution to φ(X,Y ) = aX + aY mod deg ≥ 2 which
commute with e. All the others follow the exact same scheme.

We said in the example that we “only need one Lubin–Tate series”. That is because of
another consequence of this stuff, which says that the group laws Fe are all isomorphic if
the same choice of πK is always made.

Theorem 14.7

If e(X), ẽ(X) are Lubin–Tate series for the same uniformizer πK of K, then Fe and
Fẽ are isomorphic as formal OK-modules.
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Proof. By the lemma, there is a unique f(X) ≡ X mod deg ≥ 2 such that f(e(X) =
ẽ(f(X)). The uniqueness statement of the lemma shows that f is a homomorphism
Fe → Fẽ (in exactly the same way as the previous theorem), and this f is invertible
because it has linear coefficient 1. So we have produced the desired isomorphism.

After having developed the theory of formal modules, what we actually want is to use
these group laws to construct points which we will adjoin in order to get totally ramified
extensions of K (this is what we want in local CFT). To do this we will use one of the
formal modules Fe to construct a bona fide OK-module structure on the maximal ideal
of the separable closure of K. First of all, by the nonarchimedean triangle inequality it’s
easy to see that for any formal group law F over OK , we can define an actual group law
on pK by x + y ∶= F (x, y) [this power series will always converge to an element of the
maximal ideal]. Similarly, a formal OK-module also produces an OK-module structure
on pK .

Example 14.8

Take F = Ga. Then F induces the standard additive OK-module structure on pK .

Example 14.9

Take F = Gm. Then F induces the OK-module structure on pK given by the
multiplicative group structure on 1 + pK .

But we want to find elements in K to adjoin. So extend the valuation on K to every
finite extension of K. The power series involved all converge on pK , because we can
always reduce to the finite extension K(x, y). This we can use to construct the abelian
extensions Kn from before such that

Kab = ⋃
n≥0

Kn.

Choose a uniformizer πK and consider one of the Lubin-Tate modules F for πK , with
e(X) = [π]F (X). This is all in analogy to the fact that over Qp (from local Kronecker–
Weber) that we should get the Kn’s from adjoining p-th roots of unity. For a general
group law, these should be the torsion points of the action of powers of [π]F . So we
consider the sets of torsion points

F (n) = {λ ∈ pK ∶ [πn]F (λ) = 0}

so we can let Kπ,n be given by adjoining all the elements of F (n) to K. We have a tower
of extensions

K =Kπ,0 ⊂Kπ,1 ⊂ ⋯

We need to prove (as we saw was necessary) that Kπ,n is a totally ramified extension of
K of appropriate degree.
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Let e(X) ∈ OK[[X]] be a Lubin–Tate series (recall that this means e(X) ≡Xq mod pK
and X ≡ πKX mod deg ≥ 2). We obtained a unique Lubin–Tate module F such that

[πK]F (X) = e(X)

(the isomorphism class of F depends on the choice of πK but not on F ). Moreover, we
turned F into a bona fide group by plugging in points of positive valuation in K. The
πnK-torsion points of F are then

F (n) = {λ ∈ pK ∣[πnK]F (λ) = 0},

and we will consider the fields Kπ,n obtained by adjoining F (n) to K.

Lemma 15.1

Let n ≥ 1. Then ∣F (n)∣ ≤ qn. Also, F (n) ⊋ F (n − 1). For any λn ∈ F (n) ∖ F (n − 1),
actuallyK(λn)/K is a totally ramified extension of degree qn−1(q−1) with uniformizer
λn.

Proof. Since up to an isomorphism of actual groups, this doesn’t depend on the choice of
e, we will always just take e(X) =Xq + πX. Then λ ∈ F (n) if and only if en(λ) = 0. But
en is a polynomial of degree qn, so it has at most qn roots. This establishes the bound
∣F (n)∣ ≤ qn. For the remaining statements, we use induction over n.

First, take n = 1. Then λ ∈ F (1) if and only if λq + πλ = 0, and λ ∈ F (0) if and only if
λ ≠ 0. So in fact

λq−1 + π = 0

so λ satisfies an Eisenstein polynomial, forcing the extension K(λn)/K to be totally
ramified of degree q − 1, and with uniformizer λn. For the inductive step, suppose the
statement is established for n−1. Let λ′ = e(λ). Then λ ∈ F (n) if and only if λ′ ∈ F (n−1)
and λ /∈ F (n − 1) if and only if λ′ /∈ F (n − 2). By the inductive hypothesis there exists a
λ′ ∈ F (n − 1) ∖ F (n − 2), and its valuation (by the fact that this is totally ramified) is

vK(λ′) = 1

qn−2(q − 1) .

The polynomial e(X)−λ′ =Xq +πX −λ′ is Eisenstein since λ′ is a uniformizer for K(λ′),
so by taking λ to be a root of it, we are done. In particular, K(λ′, λ)/K(λ′) is totally
ramified of degree q, but K(λ′, λ) =K(λ) [λ′ is a polynomial in λ], so in the end we have
a tower of totally ramified extensions where the degree gets multiplied by q, and thus
K(λ)/K is a totally ramified extension of the specified degree.

Theorem 15.2

The OK-module F (n) is isomorphic to OK/pnK . So in particular its size is exactly
qn.

Proof. By the previous lemma, choose λ ∈ F (n) ∖ F (n − 1). Analogously to the case
where K = Q, where you get all the roots of unity just by exponenting a primitive root
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of unity, we’ll get all the λ’s by hitting λ with [a]F for each a ∈ OK . In particular we
have an OK-module homomorphism

OK → F (n)

given by
a↦ [a]F (λ).

The kernel contains pmK if and only if [πmK]F (λ) = 0 which is equivalent to m ≥ n. So in
fact the kernel of this map equals pn. It remains to show surjectivity. But this is obvious
just from computing sizes. We have so far an injective homomorphism

OK/pnK → F (n),

where the LHS has size qn and the RHS we already know has size at most qn. So this
forces the RHS to have size exactly qn so we are done.

Corollary 15.3

Kπ,n/K is a Galois extension with Galois group (OK/pnK)×.

Proof. WLOG e(X) = Xq + πKX. By definition, Kπ,n is the splitting field of en(X),
and we saw earlier (just by the description in terms of the polynomials involved in
the induction) that Kπ,n/K is separable. So in fact it is Galois. Also, any element
σ ∈ Gal(Kπ,n/K) induces an OK-module automorphism of F (n). We have

∣Gal(Kπ,n/K)∣ = qn−1(q − 1)

and (from the identification of elements of the Galois group with module automorphisms)
an injective map

Gal(Kpi,n/K)→ AutOK(F (n)) ≅ AutOK(OK/pnK) ≅ (OK/pnK)×.

The LHS and RHS have the same size, so in fact we have an isomorphism, as desired.

Corollary 15.4

Kπ ∶= ⋃n≥0Kπ,n is a Galois extension of K with Galois group O×K .

Proof. The theorem tells us that

Gal(Kπ/K) ≅ lim←Ð(OK/pnK)×

which is exactly what we claim it is.

Theorem 15.5

It(Kπ,n/K) = Gal(Kπ,n/Kπ,t) ≅ U (t)
K /U (n)

K .
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Proof. Consider a nontrivial automorphism σ ∈ Gal(Kπ,n/K) corresponding to a ∈
O×K/U (n)

K . If a does not fix Kπ,1, i.e. a /∈ U (1)
K , then

iKπ,n/K(σ) = vKπ,n(σ(λn) − λn)
= vKπ,n([a]F (λn) − λn)
= 1

because [a]F (λn) is divisible by λn exactly once (by definition of a Lubin–Tate power
series) and λn is a uniformizer for Kπ,n. More generally, if σ ∈ Gal(Kπ,n/Kπ,t) ∖
Gal(Kπ,n/Kπ,t+1), i.e. a ∈ U (t)

K /U (n)
K ∖ U (t+1)

K /U (n)
K , then (writing a = 1 + bπtK for b a

unit)

iKπ,n(σ) = vKπ,n(σ(λn) − λn)
= vKπ,n([a]F (λn) − λn)
= vKπ,n(λn−t)
= qt

Using the fact that Kπ,n/Kπ,n−t is totally ramified. This shows that in lower numbering,

I0 ≅ O×K/U (n)
K ,

I1, . . . , Iq−1 ≅ U (1)
K /U (n)

K ,

Iq, . . . , Iq2−1 ≅ U
(2)
K /U (n)

K ,

et cetera until
Iqn−1 = 1

so by computing the indices of these groups inside each other and applying the definition
of the upper numbering, we get the desired statement.

Corollary 15.6

It(Kπ/K) = Gal(Kπ/Kπ,t) ≅ U (t)
K ⊆ O×K ≅ Gal(Kπ/K).

Corollary 15.7 (Local CFT, assuming Hasse–Arf)

The maximal abelian extension of K is Kur ⋅Kπ, and thus Gal(Kab/K) ≅ Ẑ ×O×K .
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Today the goal is to actually construct the local Artin reciprocity map. Last time
we constructed the maximal abelian extension of a local field K, but the construction
depended on the choice of πK .

Theorem 16.1 (Construction of the local Artin map)

The map
θ ∶K× → Gal(Kab/K) = Gal(KurKπ/K) ≅ Ẑ ×O×K

given by aπnK ↦ (n, a) is injective with dense image and independent of the choice
of uniformizer πK .

Proof. The fact that θ is injective with dense image is obvious from the definition, as Z is
dense in Ẑ. To show that it is independent of π is more annoying. Take two uniformizers
πK and π′K for K. They have Lubin–Tate modules F and F ′, respectively. They are
nonisomorphic as formal modules, but the OK-modules they induce on the completion
of Kur. This can be shown using almost the same technique as for the proof that any
Lubin–Tate series for the same uniformizer induce isomorphic Lubin–Tate modules. The
proof is in Neukirch’s Algebraic Number Theory, Chapter V, Thm. 2.2, Corollary 2.3.
See Theorem 5.5 also.

Corollary 16.2

The subgroup Gal(Kab/Kπ) corresponds under the Artin reciprocity map to ⟨π⟩ ⊆K×.
So, Kπ ≠Kπ′ when π and π′ are distinct uniformizers for K.

Now we turn to the question of how to go from local to global. One example is how to
go from local Kronecker–Weber to the global version.

Theorem 16.3

Qab = Q(ζ∞).

Proof. Recall (for example as a consequence of Minkowski’s theorem) that Q has no
nontrivial unramified extensions. Actually we will do it now. Recall that K/Q being
unramified means that its discriminent dK ∈ Z is ±1. By Minkowski’s theorem, there
exists a nonzero a ∈ OK such that

∣NK/Q(a)∣ ≤ n!

nn
( 4

π
)
n/2 √

∣D∣ < 1

which is impossible since the norm of any nonzero element of OK is a nonzero rational
integer.

Let K/Q be a finite abelian extension. Changing a prime upstairs just conjugates
the corresponding ramification group, so since it is abelian actually all the ramification
groups I(p∣p) are the same if p remains fixed. For ease of notation, write It(p) to be this
well-defined subgroup of Gal(K/Q). Let ap ≥ 0 be minimal such that Iap(p) is trivial.
Let n =∏p p

ap . We want to show that K ⊆ Q(ζn). Replace K with K ⋅Q(ζn). Note that
(from the homework) I

ap
Q(ζn)/Q

(p) = 1 implies that Iap(K ⋅Q(ζn)/Q) is still 1. To show
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the desired equality, it now suffices to show the degree is what it should be. We know
that Kp/Qp has trivial Iap , so

Kp ⊆ (Qab
p )Iap(Qab

p /Qp) = Qur
p (ζpap ).

Moreover, I0(Kp/Qp) has a surjection (given by the quotient) from I0(Qp(ζpap )/Qp) =
(Z/papZ)×, so taking the product over all p we get

RRRRRRRRRRR
∏
p

I0(p)
RRRRRRRRRRR
≤ ∣(Z/nZ)×∣.

The subfield of K fixed by ∑p I0(p) ⊆ Gal(K/Q) is unramified, so actually it is equal to
Q [here by the sum of the groups we mean the thing generated by it; this is smaller in
size than the product]. Putting this into the previous inequality, we see that

[K ∶ Q] ≤ [Q(ζn) ∶ Q]

so we are done.

Now we will do some Kummer Theory.

Theorem 16.4 (Hilbert 90)

Let L/K be a cyclic extension with Galois group generated by σ. Then α ∈ L× has
norm 1 iff it is of the form β/σ(β) for some β ∈ L×.

Proof. Only one direction is not obvious. For the other direction, you just take

β = t + ασ(t) +⋯ + ασ(α)⋯σn−2(α)σn−1(t),

so that
ασ(β) = β.

You can use linear independence of characters to show that t can be chosen to make β
nonzero.

Corollary 16.5 (Kummer Theory, cyclic case)

Let K be a field containing n distinct n-th roots of unity, i.e. ζn ∈ K and the
characteristic of K does not divide n. Then each Galois extension L/K with cyclic
Galois group of order n is obtained from K by adjoining an n-th root.

Proof. This is a direct application of Hilbert’s theorem 90 to ζn. We have NL/K(ζn) =
ζnn = 1, so by Hilbert 90 there is a b ∈ L× such that ζn = b/σ(b). Raising this to the n-th
power, we see that bn = σ(bn). So actually bn ∈K×. So we predict that in fact L =K(b).
To do that it suffices to check that b is not fixed by any power of σ which is not the
trivial automorphism. But we know that b/σ(b) = ζn, so we can induct to see that this is
indeed impossible.
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Theorem 16.6 (Integral Hilbert 90)

Let L/K be a Galois extension of local fields with Gal(L/K) ≅ Z/nZ generated by

σ. Then there exists r ≥ 1 such that for all a ∈ U (r)
L , N(a) = 1 if and only if there

exists b ∈ U (1)
L such that a = b/σ(b).

Proof. As before take b = t + aσ(t) +⋯ + aσ(a)⋯σn−2(a)σn−1(t). Now take t ∈ L× with
trace 1 (this is possible by scaling any element of nonzero trace), and let r = −vK(t) + 1.
Then you can check that

vK(b − 1) ≥ 1

as desired.
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Today we continue the discussion of Kummer theory. Suppose K contains n distinct n-th
roots of unity. Then we saw that every cyclic degree n extension of K is of the form
K(b1/n) for some b ∈K. Its Galois group is Z/nZ with generator corresponding to the
automorphism b1/n ↦ ζnb

1/n.

Definition 17.1. Let K be a local field containing n distinct n-th roots of unity. The
group of n-th roots of unity in K is denoted µn = {ζin} ≅ Z/nZ.

Recall that the local reciprocity map

ρK ∶K× → Gal(Kab/K)

has dense image. For any a, b ∈K×, we can define the Hilbert symbol (a, b) to be the
n-th root of unity ω such that ρK(a)(b1/n) = ωb1/n. Note that this is independent of the
choice of n-th root of b because the n-th roots of unity all lie in K and are therefore
fixed by ρK(a). We know from local CFT (the kernel of the local Artin map for a finite
extension is just the norms from upstairs) that

(a, b) = 1 ⇐⇒ a ∈ NK(b1/n)/K(K(b1/n)×).

Since the degree divides n, it’s definitely true that the n-th powers of elements of K× are
norms. So we can check that

1. (cn, b) = 1 for all b, c ∈K×.

2. (a, cn) = 1 for all a, c ∈K×.

It’s just as clear that the Hilbert symbol is multiplicatively bilinear (this is just definition-
pushing). Basically all this is is a system for keeping track of what the Artin symbol is
on a Kummer extension of local fields. Such an extension is a natural thing to consider
for example if you want to generate the law of quadratic reciprocity. To summarize, the
Hilbert symbol is a bilinear pairing

(⋅, ⋅) ∶K×/(K×)n ×K×/(K×)n → µn

Notice that K×/(K×)n is finite. To show this it suffices to show that O×K/(O×K)n is finite
because of the noncanonical isomorphism O×K × Z ≅ K×. By Hensel’s lemma applied
to the polynomial Xn − t, we can conclude that for t ∈ O×K sufficiently close to 1 this
polynomial has a root, and therefore the set of n-th powers is open. Technically this
requires a slightly stronger form of Hensel’s lemma than the one we actually proved in
class (I did it in section). Open subgroups of a compact topological group like O×K are
finite index so we are done.

Lemma 17.2

For all x ∈K and b ∈K× such that xn ≠ b,

(xn − b, b) = 1.

Proof. You just need to show that xn − b is a norm from K(b1/n)/K. For simplicity
assume the Galois group is all of Z/nZ. The norm of x − b1/n is

n−1

∏
i=0

(x − ζinb1/n) = xn − b
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so we are done in this case. In general if [K(b1/n) ∶ K] = n/d, in which case b = cd for
some c ∈K× and we still get what we want by taking the norm of

d−1

∏
i=0

(x − ζinb1/n).

Corollary 17.3

(a,1 − a) = 1 for all a ≠ 0,1, and (a,−a) = 1 for a ≠ 0.

Corollary 17.4

The Hilbert symbol is skew-symmetric.

Proof. We can directly compute

(a, b)(b, a) = (a,−a)(a, b)(b, a)(b,−b) = (a,−ab)(b,−ab) = (ab,−ab) = 1

Corollary 17.5

a is a norm from K(b1/n) if and only if b is a norm from K(a1/n).

It’s also true that the Hilbert pairing is nondegenerate: if (a, b) = 1 for all b, then a is an
n-th power (it suffices to prove this by skew-symmetry). This is obvious because if a is
not an n-th power then [K(a1/n) ∶K] > 1 and the Chebotarev density theorem (or if you
want the full strength of local Artin reciprocity) implies that there exists a b for which
the Artin symbol of b is not the identity.

Corollary 17.6

Let b1, . . . , br ∈ K× be a system of representative for K×/(K×)n. Then L =
K(b1/n1 , . . . , b

1/n
r ) is the maximal abelian extension of K of exponent dividing n.

Its norms in K× are exactly (K×)n.

Proof. We know that

Gal(Kab/K) =⋂
i

Gal(Kab/K(b1/ni ))

so under Artin reciprocity we get

NL/KL
× =⋂

i

N
K(b

1/n
i )/K

(K(b1/ni )×)

=⋂
i

{a ∈K× ∶ (a, bi) = 1}

= (K×)n

by the nondegeneracy of the Hilbert symbol.
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Theorem 17.7

Assume that p does not divide n, where p is the maximal ideal of K. Let the residue
field of K be Fq. Then

(a, b) ≡ ((−1)v(a)v(b) b
v(a)

av(b)
)
q−1
n

mod p

(the fact that µn ⊆ K and p does not divide n means that µn ⊆ Fq and therefore
n∣(q − 1); so the exponent is actually an integer; the same fact also guarantees that
this formula uniquely determines the Hilbert symbol, since it is an n-th root of unity,
which we just argued remain distinct in Fq = OK/p).

Proof. Using the fact that both sides are bilinear in a and b, it suffices to do it in the
following cases:

1. a = π, b = −π for π a uniformizer of K.

2. b ∈ O×K and a is a unit or a uniformizer.

but actually we proved (1) earlier (skew-symmetry). For the second part, remember that
the reciprocity map K× → Gal(Kab/K) is compatible via the valuation map K× → Z and
the projection Gal(Kab/K) → Gal(Fq/Fq) with the frobenius Z → Gal(Fq/Fq) = Ẑ. So
actually

(ρK(a) mod pKab) = ρFq(vk(a)) = ϕvk(a)q .

As a result,

ρK(a)(b1/n) = (b1/n)qv(a) = (a, b)b1/n

and rearranging this yields

(a, b) = (b1/n)qv(a)−1 = b
qv(a)−1

n

which is actually the same mod p to the desired (bv(a))(q−1)/n because v(a) = 0 or 1.

Corollary 17.8

The Legendre symbol is defined by the unique n-th root of unity in K satisfying

(u
q
)
n

≡ u(q−1)/n mod p

Theorem 17.9

(uq )n = 1 ⇐⇒ (u mod p) ∈ (F×
q )n.

Proof. Same as usual, use the fact that F×
q is cyclic of order q − 1.

Note that this Legendre symbol is actually defined to be (π,u) for any choice of uniformizer
π ∈K.
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Theorem 17.10

Let n = 2. Then (a, b) = 1 if and only if ax2 + by2 = z2 has a nontrivial solution over
K.

Proof. The Hilbert symbol being 1 is equivalent to a being a norm from K(
√
b)×, i.e. (if

this extension actually has degree 2)

a = z2 − by2.

and we have a solution with x = 1. The rest is just checking.
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Last time, recall that we had to assume that a is a unit or a uniformizer in case (2) of
the computation of the Hilbert symbol. Actually this is not necessary. Suppose u ∈ F×

q ,
v ∈ Z and n divides q − 1. We want to show that

u(q
v−1)/n ≡ uv

q−1
n mod q

for which by Fermat’s little theorem it suffices to show that

qv − 1

n
≡ v q − 1

n
mod q − 1

which is obvious by writing the LHS as

q − 1

n
(1 +⋯ + qv−1).

Now we begin the topic of group cohomology.

§18.1 Group cohomology

Let G be a finite group.

Definition 18.1. A (left) G-module is an abelian group A with a left action of G,
where this action is compatible with the group operation of A.

Group cohomology is something which is applied to a pair (G,A) consisting of a group
G and G-module A.

Example 18.2

Any abelian group A and any group G with the trivial action on A (take all of G to
the identity in End(A)) form a valid G-module. Typically Z and Z/nZ will have the
trivial action of G. We’ll see that group cohomology applied to Z will let us read off
the size of G.

Example 18.3

The objects of obvious interest are the Galois extensions L/K with the action of
Gal(L/K) on the abelian group (L,+) or (L×,×). The subgroup µn(L) consisting of
the n-th roots of unity also works. Similarly, the actions above of Gal(L/K) restrict
to actions on OL and O×L. If L and K are number fields, then the group of fractional
ideals of L, denoted I(L), is equipped with an action of Gal(L/K) which obviously
descends to an action on the class group of L. If E is an elliptic curve defined over
K, E(L) has an obvious action of Gal(L/K) too.

The G-modules form a category.

Definition 18.4. Let A,B be G-modules. A G-module homomorphism from A to
B is an abelian group homomorphism f ∶ A→ B with the property that f(g ⋅ a) = g ⋅ f(a)
for all a ∈ A and g ∈ G.
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Choosing the G-modules as objects and G-module homomorphisms as morphisms
makes the G-modules into a bona fide category. The abelian groups A ⊕B and B/A
(when A ⊆ B) are G-modules in the obvious way.

A G-module is also the same thing as a module over the group ring Z[G] (for example
because a ring map from Z[G] to End(A) is determined by a choice of image for each
element of G).

Definition 18.5. The group of invariants of A is

AG ∶= {a ∈ A ∶ g ⋅ a = a∀a ∈ A}.

Note that −G is a functor from the category of G-modules to the category of abelian
groups.

Definition 18.6. The group of covariants of A is

AG ∶= A/B

where B is the subgroup of A generated by the set of elements of the form ga − a for
g ∈ G and a ∈ A. Taking covariants is also a functor from the category of G-modules to
the category of abelian groups.

Notice that the group of invariants of A is the largest submodule with trivial induced
G-action, and the group of covariants is the largest such quotient.

There is a canonical element N ∈ Z[G] given by the sum of all g ∈ G. Applying it to
an element a ∈ A is just taking the “norm” ∑g ga.

The group of invariants is of obvious interest given the examples above. Let’s compute
some.

Example 18.7

Take Z with the trivial action of G. Then Z = ZG = ZG. For any x ∈ Z we have
Nx = ∣G∣x.

Example 18.8

Take L/K a Galois extension and G = Gal(L/K), and take the usual action of G on
L. Then for x ∈ L we have Nx = ∑g∈G gx = TrL/K x. Similarly, if we take the action
of G on L× instead, Nx = NL/Kx for x ∈ L×.

Example 18.9

LG =K, (L×)G =K×, (O×L)G = OK , etc.

Example 18.10

I(L)G ⊇ I(K), with equality iff L/K is unramified.

Example 18.11

Let E be an elliptic curve over K. Then E(L)G = E(K).
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Lemma 18.12 (The beginning of the exact hexagon I did in section)

If 0→ A→ B → C → 0 is an exact sequence of G-modules, these maps restrict to an
exact sequence

0→ AG → BG → CG.

Proof. Straightforward.

Example 18.13

Let L/K be a Galois extension of local fields with group G. We have an exact
sequence of G-modules

1→ O×L → L× → 1

e(L/K) ⋅Z→ 0

but when we take invariants we get only the exact sequence

1→ O×K →K× → 1

e(L/K) ⋅Z

where the last map is not surjective since its image is just Z (unless L/K was
unramified to begin with).

Example 18.14

Suppose G = {e, σ} is cyclic of order 2. This has a nontrivial action on Z where σ is
given by negation. We call this G-module Z̃. We have an exact sequence

0→ Z̃
⋅2→ Z̃→ Z/2Z→ 0

and taking G-invariants gives

0→ 0→ 0→ Z/2Z

where the last map is clearly not surjective.

Instead of writing down the definition of cohomology, we’ll first explicitly write down the
definition of H1.

Definition 18.15. The abelian group of inhomogeneous 1-cochains is

C1(G,A) ∶= {(ag)g∈G ∶ ag ∈ A∀g ∈ G}.

The inhomogeneous 1-cocycles are

Z1(G,A) ∶= {(ag)g∈G ∶ agh = ag + gah∀g, h ∈ G}

and the inhomogeneous 1-coboundaries are

B1(G,A) ∶= {(ga − a)g∈G ∶ a ∈ A} ⊆ Z1(G,A).

Then as usual you define the first cohomology group

H1(G,A) ∶= Z1(G,A)/B1(G,A).
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As usual H1 is a functor from the category of G-modules to the category of abelian
groups.

Theorem 18.16 (the next part of the exact hexagon)

If 0→ A→ B → C → 0 is a short exact sequence of G-modules, then we can extend
the previous exact sequence to

0→ AG → BG → CG
δ→H1(G,A)→H1(G,B)→H1(G,C).

Proof. There’s no point explaining this too much since in reality it follows from generalities
of homological algebra. Let’s go over the definition of δ. For any c ∈ CG, choose b ∈ B
mapping to c. Then gb − b reduces mod A to

g(b mod A) − (b mod A) = gc − c = 0

so gb−b ∈ A, and hence (gb−b)g∈G ∈ Z1(G,A). It remains to check that this is well-defined,
i.e. it gives the same result (modulo B1(G,A)) regardless of the choice of b. But this is
clear from the fact that b is unique mod A.

To check exactness at CG, we need to compute the kernel of δ. Suppose c ∈ CG and
δ(c) = 0. This means there exists b ∈ B such that b ∈ A and gb − b − 0, i.e. b ∈ BG and
c = δ(b) as desired.

Definition 18.17. A G-module A is free if it satisfies the following (equivalent) condi-
tions:

1. A is a free Z[G]-module.

2. A ≅⊕i∈I Z[G] for some set I.

3. A is a Z[G]-module with a basis.

Definition 18.18. A G-modules A is coinduced if it satisfies one of the following
(equivalent) statements:

1. A ≅ HomZ(Z[G],X) for some group X with trivial G-action. Here the G-action
on A is just given by

(g ⋅ f)(h) = f(g−1h)

2. A is just the set of maps from G to X with the obvious action of G.

3. A ≅ {(xg)g∈G}.

4. A is the group of formal sums ∑xgg where xg ∈X.

Definition 18.19. A G-module A is induced if it satisfies one of the following (equiva-
lent) statements:

1. A ≅ Z[G]⊗ZX for some abelian group X where G acts by acting on the first tensor
factor.

2. A ≅ {∑xgg ∶ xg ∈X,xg = 0 for all but finitely many g}

For finite groups G this is the same as coinduced anyway.

80



Taught by Fabian Gundlach (Fall 2019) Math 223a: Algebraic Number Theory

Example 18.20

(Z/2Z)[G] is coinduced and induced but not free.

The cohomology groups are actually the unique groups satisfying a set of axioms (this
should be familiar from algebraic topology).

Theorem 18.21

There is a unique family of cohomology functors H i(G,−) from the category of
G modules to the category of abelian groups satisfying the following axioms:

1. If A is coinduced then H i(G,A) = 0 for all A and i ≥ 1.

2. If 0→ A→ B → C → 0 is a short exact sequence of G-modules, then there is a
long exact sequence

0→ A→ B → C →H1(G,A)→H1(G,B)→H1(G,C)→H2(G,A)→ ⋯

3. The construction of the long exact sequence is natural in the usual sense (a
map of short exact sequences induces a map of long exact sequences).

By convention, you set H0(G,A) = AG.

81



Taught by Fabian Gundlach (Fall 2019) Math 223a: Algebraic Number Theory

§19 November 5, 2019

Recall the theorem from last time:

Theorem 19.1

There is a unique family of cohomology functors H i(G,−) from the category of
G modules to the category of abelian groups satisfying the following axioms:

1. If A is coinduced then H i(G,A) = 0 for all A and i ≥ 1.

2. If 0→ A→ B → C → 0 is a short exact sequence of G-modules, then there is a
long exact sequence

0→ A→ B → C →H1(G,A)→H1(G,B)→H1(G,C)→H2(G,A)→ ⋯

3. The construction of the long exact sequence is natural in the usual sense (a
map of short exact sequences induces a map of long exact sequences).

Proof. First we prove uniqueness. This is accomplished via a dimension-shifting argument
(we will prove uniqueness for H i given uniqueness for H i−1). Consider the injective
homomorphism of G-modules

A→ {maps G→ A} = A∗

given by
a↦ (g ↦ g−1a).

This gives a short exact sequence

0→ A→ A∗ → A∗/A→ 0.

Also the definition of A∗ tells us immediately that A∗ is coinduced. The G-module
structure on A∗ is given by

(gf)(h) = f(g−1h).

So we have a long exact sequence

0→ AG → (A∗)G → (A∗/A)G →H1(A)→H1(A∗)→H1(A∗/A)→H2(A)→ ⋯

and since the cohomology of coinduced modules needs to be trivial we know that
H i(A∗) = 1 for all i ≥ 1, so

H1(G,A) = coker((A∗)G → (A∗/A)G)

and for i ≥ 1 it’s even better:

H i+1(G,A) =H i(G,A∗/A),

which inductively proves that the cohomology groups are uniquely defined by these
conditions. A similar argument shows that the action on morphisms is uniquely defined.
I guess this also gives an inductive construction of the cohomology groups.

It’s much more useful to use the derived functor construction instead. To do it we’re
going to pick a free resolution of Z as a G-module with the trivial action (it will be
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convenient when doing computations to explicitly choose a free resolution). This is an
exact sequence of G-modules

⋯→ P2 → P1 → P0 → Z→ 0

where all Pi are free. Then you apply the HomG(−,A) functor to this sequence (after
omitting the Z as usual) to get a cochain complex

0
d0→ HomG(P0,A) d

1

→ HomG(P1,A) d
2

→ ⋯

whose cohomology we can take, as usual defining

H i(G,A) ∶= ker(di+1)/im(di).

Notice that

H0(G,A) = ker(d1) = HomG(P0/d1(P1),A) = HomG(Z,A) = AG.

Now we explain the construction of the long exact sequence. If 0→ A→ B → C → 0 is
a short exact sequence of G-modules, then the fact that the Pi’s are free means that

0→ HomG(Pi,A)→ HomG(Pi,B)→ HomG(Pi,C)→ 0

is exact, and maps via the induced maps to the exact sequence

0→ HomG(Pi+1,A)→ HomG(Pi+1,B)→ HomG(Pi+1,C)→ 0

and then an application of the snake lemma gives the map.

Example 19.2

Let G = Z/nZ generated by σ. Then there’s an obvious free resolution

⋯→ Z[G]→ Z[G]→ Z[G]→ Z→ 0

where the map Z[G] → Z is the map taking ∑g agg → ∑g ag and the other ones
alternate between σ − 1 and the norm N ∶ Z[G] → Z[G]. The induced cochain
complex is

0→ HomG(Z[G],A)→ HomG(Z[G],A)→ ⋯

But all of these are equal to A because a G-module homomorphism from Z[G] to A
is determined by the image of σ, and the maps just alternate between the action of
σ − 1 and NG ∶ A→ A. Then we can see that

H0(G,A) = AG,

and the rest are periodic:

H i(G,A) = ker(N)
(σ − 1)A

when i is odd, and

H i(G,A) = AG

NGA

when i is even and positive.
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The cyclic case is the only one we’ll actually need when we do class field theory (pretty
much anything about abelian extensions can be deduced from the cyclic case). The
computation we did above shows that the cohomology groups are actual things we are
interested in from class field theory (so that hopefully cohomology will help us prove
them).

Example 19.3 (example of example)

Let G = Gal(L/K) where L/K is cyclic. If A = L×, then AG = K×, kerNG = {α ∈
L× ∶ NL/Kα = 1}, and

im(σ − 1) = {σ(y)/y ∶ y ∈ L×}.

By Hilbert 90, kerNG = im(σ − 1), so H1(G,L×) is trivial (this is actually true
regardless of whether G is cyclic and is also called Hilbert’s theorem 90 even though
it was proved by Emmy Noether). So then

H2(G,L×) =K×/NL/KL
×

which is of obvious interest for class field theory.

Example 19.4

Now set A = L (so now everything is additive, and the “norm” coming from the
action of G is actually the trace on L/K). We see that AG =K, ker(N) = im(σ − 1)
by additive Hilbert 90, so H1(G,L) = 0, and NA = TrL = K, so actually all the
cohomology groups are trivial (as long as G is cyclic) except H0 =K.

For general groups G, the standard free resolution is given by taking Pi to be the free
Z-module on Gi+1 equipped with the diagonal action of G. This is a free Z[G]-module
of rank ∣G∣i, which we can give basis

{(1, g1, . . . , gi) ∶ g1, . . . , gi ∈ G}.

these somehow correspond to the standard simplices in singular (co-)homology. The
maps di ∶ Pi → Pi−1 are given on the Z[G]-basis elements by

(g0, . . . , gi)↦
i

∑
j=0

(−1)j(g0, . . . , ĝj , . . . , gi).

The fact that di ○ di−1 = 0 is standard. We still need to show exactness, which can be
done by showing the maps hi ∶ Pi → Pi+1 given by (g0, . . . , gi) ↦ (1, . . . , gi) are chain
homotopies.

We can view the G-module HomG(Pi,A) as the set of tuples (ag0,...,gi ∶ (g0, . . . , gi) ∈
Gi+1) with the property that

agg0,...,ggi = gag0,...,gi .

This is called the group of homogeneous i-cochains. The differentials are just given by

di(ag0,...,gi) =
i

∑
j=0

(−1)jag0,...,ĝ0,...,gi .
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Recall we had defined the space of i-homogeneous cochains

C̃i(G,A) ∶= HomG(Pi,A) = {f̃ ∶ Gi+1 → A ∶ f̃(gg0, . . . , ggi) = gf̃(g0, . . . , gi)}.

The differential on the homogeneous cochains was defined the same way it usually is, e.g.
for singular homology:

di ∶ C̃i−1(G,A)→ C̃i(G,A)
by

(dif̃)(g0, . . . , gi) =
j

∑
j=0

(−1)j f̃(g0, . . . , ĝj , . . . , gi)

and then H i(G,A) = ker(di+1)/im(di). In practice it’s better to reduce dimensions by 1.

Definition 20.1. The group of inhomogeneous i-cochains is

Ci(G,A) = {(ag1,...,gi)g1,...,gi ∶ ag1,...,gi ∈ A}.

There is an isomorphism (this is maybe not the most obvious one)

C̃i(G,A) ≅ Ci(G,A)

via
f̃ ↦ (f̃(1, g1, g1g2, . . . , g1⋯gi))g1,...,gi∈G.

You can write down an explicit formula for the differentials, but we’ll just write it down
for the first few.

d1 ∶ C0(G,A) ≅ A→ C1(G,A)
is given by

a↦ (ga − a)g∈G.
Meanwhile,

d2 ∶ C1(G,A)→ C2(G,A)
is given by

(ag)g∈G ↦ (g1ag2 + ag1 − ag1g2)g1,g2∈G
and (though we hopefully will nver have to use it)

d3 ∶ C2(G,A)→ C3(G,A)

is given by

(ag1,g2)g1,g2∈G ↦ (g1ag2,g3 − ag1g2,g3 + ag1g2,g3 + ag1,g2g3 − ag1,g2).

And the homology groups can be defined as usual.

Example 20.2

From our computation of d1, we have

H0(G,A) = ker(d1) = {a ∈ A ∶ ga − a = 0∀g ∈ G} = AG.

Similarly, ker(d2) is the group of “crossed homomorphisms”, namely the set of maps
f ∶ G→ A such that f(g1g2) = f(g1)+ g1f(g2), and im(d1) is the group of “principal
crossed homomorphisms, namely the set of maps g ∶ G → A of the form g ↦ ga − a
for some a ∈ A. So H1(G,A) is the crossed homomorphisms modulo the principal
crossed homomorphisms.
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Now we move on to the most important (for us) application of group cohomology, namely
the case where G is the Galois group of a field extension.

Theorem 20.3

Let L/K be a finite Galois extension with Galois group G. Then L is a coinduced
G-module.

Proof. The normal basis theorem says that there exists an x ∈ L such that {gx ∶ g ∈ G}
form a K-basis for L. This implies that L ≅K[G] as a G-module (the K-basis for L is in
bijection with G, and the action of G on it is the same as the action of G on itself).

This results in something which is maybe somewhat stronger than additive Hilbert
90:

Corollary 20.4

H i(G,L) = 0 for all i ≥ 1.

The multiplicative Hilbert 90 theorem is generalized by the cohomological version of it.
Without any cyclic hypothesis on G:

Theorem 20.5 (“Hilbert 90”, due to Noether)

H1(G,L×) = 1.

Proof. Let (ag)g∈G ∈ Z1(G,L×), so it is a crossed homomorphism. Then we know (using
multiplicative notation since we are in L×)

agh = (ag)(g ⋅ ah)

for all g, h ∈ G. The proof goes pretty much like that of Hilbert 90. In particular, let
x ∈ L (this is analogous to the variable t from our proof in the cyclic case)

b = ∑
g∈G

agg(x)

(which can be made nonzero by appropriate choice of x via the linear independence of
characters). Then it’s immediate from the definition that

agg(b) = b∀g ∈ G

as desired (this proves all the 1-cocycles are 1-coboundaries and thereforeH1 is trivial).

§20.1 Functoriality in G

Now back to group cohomology in general.

Definition 20.6. Let A be a G-module and A′ a G′-module. We call group homomor-
phisms µ ∶ G′ → G and f ∶ A→ A′ compatible (for cohomology) if

f(µ(g′)a) = g′f(a)∀g′ ∈ G′, a ∈ A.
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Given two such compatible homomorphisms, we get homomorphisms

C̃n(G,A)→ C̃n(G′,A′)

given by
(ag0,...,gn)g0,...,gn∈G ↦ (f(aµ(g′0),...,µ(g′n))g′0,...,g′n∈G′ .

Example 20.7

If G = G′ with µ = id, then this is the map Hn(G,A)→Hn(G,A′) coming from the
functor Hn(G,−).

Definition 20.8. For H ⊆ G a subgroup, the inclusion µ ∶ H → G plus f = id ∶ A → A
induce (via the above construction) the restriction homomorphism

Res ∶Hn(G,A)→Hn(H,A).

Example 20.9

Let n = 0. The restriction homomorphism H0(G,A)→H0(H,A) is just the canonical
inclusion of AG into AG.

Notice that a resolution of Z by free G-modules is also a resolution by free H-modules,
so these things can all be computed using the same resolution.

Definition 20.10. For H ⊆ G a normal subgroup and any G-module A, the projection

G→ G/H

and inclusion AH → A (where AH has the obvious G/H-module structure) induce the
inflation homomorphism

Inf ∶Hn(G/H,AH)→Hn(G,A).

Definition 20.11. For H ⊆ G and any H-module A, the induced G-module of A is

IndGHA = Z[G]⊗Z[H] A.

Here Z[H] acts on Z[G] on the right, but in the G-module structure for the tensor
product, G acts on the Z[G]-coordinate on the left. Alternatively, it is the set of maps
φ ∶ G→ A such that φ(hg) = hφ(g).

Here a map φ ∶ G→ A corresponds to

∑
g∈GÓ

H

g−1 ⊗ φ(g).

Example 20.12

If H = 1, then
IndGHA = Z[G]⊗Z A = {maps φ ∶ G→ A}.

Similarly to in representation theory we have Frobenius reciprocity.
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Theorem 20.13

Let H ⊆ G be a subgroup, A a G-module, and B an H-module. Then

HomG(A, IndGHB) ≅ HomH(A,B).

Proof. The isomorphism is given by sending the G-module homomorphism a ↦ (g ↦
φ(a)g) to the H-module homomorphism a ↦ φ(a)1. The inverse is given by sending
a↦ f(a) to a↦ (g ↦ f(ga)).

The functor IndGH from the category of H-modules to the category of G-modules is
actually exact.

Theorem 20.14 (Shapiro’s Lemma)

Let H ⊆ G be a subgroup, A an H-module. Then there is a canonical isomorphism

Hn(G, IndGHA) ≅Hn(H,A).

Proof. Let ⋯ → P1 → P0 → Z → 0 be a free resolution of G-modules. By a previous
remark it is also a free resolution of H-modules. By Frobenius reciprocity,

HomG(Pi, IndGHA) ≅ HomH(Pi,A)

which commutes with the differentials, which is exactly what is necessary.

Example 20.15

Let n = 0. Then Shapiro’s lemma shows that

(IndGHA)G ≅ AH .
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Last time we discussed the functoriality of group cohomology. Let H ⊆ G be a subgroup.
This inclusion induces the restriction and inflation homomorphisms

Res ∶Hn(G,A)→Hn(H,A)

and
Inf ∶Hn(G/H,A)→ Gn(G,A)

under the additional hypothesis that H is normal in G. We also stated Shapiro’s
lemma:

Lemma 21.1

If H ⊆ G is a subgroup, and A is an H-module, then

Hn(G, IndGHA) ≅Hn(H,A)

which was a straightforward consequence of Frobenius reciprocity.

Definition 21.2. For H ⊆ G of finite index, and any G-module A, the homomorphism

IndGHA→ A

given by (using the definition IndGHA = A⊗Z[H] Z[G])

g ⊗ a↦ g ⋅ a.

This homomorphism induces a homomorphism of cohomology groups

Cor ∶Hn(H,A) ≅Hn(G, IndGHA)→Hn(G,A).

This is called the corestriction homomorphism.

Lemma 21.3

The composition Cor ○Res ∶Hn(G,A)→Hn(G,A) is multiplication by [G ∶H].

Proof. Let Pi be a free resolution ofG-modules for Z. Cor○Res is induced by HomG(Pi,A)→
HomH(Pi,A) ≅ HomG(Pi, IndGHA). Using the definition of IndGHA as the set of maps
from G to A, this takes f ∈ HomG(Pi,A) to the element of HomG(Pi, IndGHA) which
maps

p↦ (g ↦ f(gp))
(this is just tracing through the Frobenius reciprocity isomorphism). The map [g ↦
f(gp)] ∈ IndGHA is (using the tensor product definition) the same as ∑g∈G/H g

−1 ⊗ f(gp),
and under corestriction this goes to the element of HomG(Pi,A)

p↦ ∑
g∈G/H

g−1f(gp) = ∑
g∈G/H

f(p) = [G ∶H]f(p)

as desired.

Remark 21.4. Hn(1,A) is A if n = 0 and 0 in higher dimensions.
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Corollary 21.5

∣G∣ ⋅Hn(G,A) = 0 for all n ≥ 1.

Proof. Apply the lemma with H = 1, so that Hn(H,A) = 0 and the lemma says that
multiplying by ∣G∣ is the zero map.

Remark 21.6. If the multiplication-by-∣G∣ map A → A is an isomorphism, then this
means Hn(G,A) = 0 for all n ≥ 1.

Theorem 21.7

Let H ⊆ G be a normal subgroup and A a G-module. Let n ≥ 1. If H i(H,A) = 0 for
all i = 1, . . . , n − 1, then

0→Hn(G/H,AH) Inf→ Hn(G,A) Res→ Hn(H,A)

is exact (it is called the inflation-restriction exact sequence).

Proof. The proof is by induction on n. For n = 1, you just need to compute the maps on
the level of inhomogeneous cocycles.

To go from n to n + 1, let A∗ = HomZ(Z[G],A) = {maps G → A}. The short exact
sequence

0→ A→ A∗ → A∗/A→ 0

of G-modules induces a long exact sequence, a section of which looks like

0 =Hk(G,A∗)→Hk(G,A∗/A)→Hk+1(G,A)→Hk+1(G,A∗) = 0

for k ≥ 1 (since A∗ is coinduced). So this gives an isomorphism Hk(G,A∗/A) ≅
Hk+1(G,A). Now taking k = 0, we get fewer zeroes, and the exact sequence is

0→ AH → (A∗)H → (A∗/A)H →H1(H,A) = 0

and roughly as before

Hn+1(G/H,AH) ≅Hn(G/H, (A∗/A)H).

By induction the exact sequence

0→Hn(G/H, (A∗/A)H) Inf→ Hn(G,A∗/A) Res→ Hn(H,A∗/A)

is isomorphic (via the isomorphisms we just described) to

0→Hn+1(G/H,AH) Inf→ Hn+1(G,A∗/A) Res→ Hn+1(H,A∗/A).

We didn’t check that the diagram actually commutes.
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§21.1 The cup product

Let A,B be G-modules and r, s ≥ 0. Then A⊗Z B is also a G-module.

Definition 21.8. The cup product

⌣∶Hr(G,A) ×Hs(G,B)→Hr+s(G,A⊗B)

is defined on inhomogenous cocycles by

f̃1 ⌣ f̃2(g0, . . . , gr+s) = f̃1(g0, . . . , gr)⊗ f̃2(gr, . . . , gr+s).

Example 21.9

Let r = s = 0. Then the cup product is the map

⌣∶ AG ×BG → (A⊗B)G

given by
(a, b)↦ a⊗ b.

Remark 21.10. You can check a bunch of basic properties for the cup product:

1. (x ⌣ y) ⌣ z = x ⌣ (y ⌣ z)

2. x ⌣ y = (−1)rsy ⌣ x if we identify A⊗B ≅ B ⊗A.

3. For H ⊆ G,
Res(x ⌣ y) = Res(x) ⌣ Res(y)

and
Cor(x ⌣ Res(y)) = Cor(x) ⌣ y

§21.2 Group homology

Remember that AG ∶= A/⟨ga − a ∶ g ∈ G,a ∈ A⟩ is the largest quotient of A on which G
acts trivially.

Definition 21.11. The kernel of the augmentation map Z[G]→ G given by ∑agg ↦
∑ag is called the augmentation ideal I (sometimes called IG).

Remark 21.12. AG = A/IA. Also I has Z-basis given by {g − 1}g≠1
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Theorem 21.13

There is a unique family of group homology functors

Hi(G,−) ∶ ModG → Grp

satisfying the following axioms:

1. If 0→ A→ B → C → 0 is a short exact sequence of G-modules, then we get a
long exact sequence of groups

⋯→H1(G,A)→H1(G,B)→H1(G,C)→ AG → BG → CG → 0.

2. If A is induced, then Hi(G,A) = 0 for all i ≥ 1.

3. A map of short exact sequences induces a map of long exact sequences.

Proof. The proof is the same as for cohomology, but for the explicit construction it’s
obtained from HomG(Pi,A) instead of the tensor product.

Theorem 21.14

H1(G,Z) ≅ Gab.

Proof. The short exact sequence

0→ I → Z[G]→ Z→ 0

induces a long exact sequence, a part of which looks like

H1(G,Z[G])→H1(G,Z)→ IG → Z[G]G → ZG → 0

where IG means the maximal quotient of I on which G acts trivially (not I). Since
Z[G] is induced and IG = I/I2 and Z[G]G = Z[G]/I and ZG = Z, this is really an exact
sequence

0→H1(G,Z)→ I/I2 → Z[G]/I → Z→ 0,

except the map I/I2 → Z[G]/I is the zero map so H1(G,Z) ≅ I/I2. The isomorphism

Gab ≅ I/I2

is given by g ↦ g − 1 mod I2. This map is clearly surjective. Moreover, since I has basis
{g − 1}, we know that I2 has basis

{(g1 − 1)(g2 − 1)} = {(g1g2 − 1) − (g1 − 1) − (g2 − 1)}.
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Today we will talk about Tate cohomology. This will allow us to combine the definitions
of homology and cohomology, and to fix the issues that happen in dimension zero (recall
that in the cyclic case the long exact sequence was almost periodic; this will force it to
be periodic with period 2)

Definition 22.1. The Tate cohomology groups (sometimes denoted Ĥ too) are
Hn
T (G,A) ∶=Hn(G,A) for n ≥ 1,

H0
T (G,A) = AG/NA,

H−1
T (G,A) = ker(N)/IA,

and H−n(G,A) =Hn−1(G,A) for n ≥ 1.

Theorem 22.2

A short exact sequence of G-modules 0 → A → B → C → 0 induces a long exact
sequence of groups

H−1
T (G,A) H−1

T (G,B) H−1
T (G,C)

H0
T (G,A) H0

T (G,B) H0
T (G,C)

H0
T (G,A) H0

T (G,B) H0
T (G,C)

Proof. Both sides of the sequence come from the long exact sequences for homology and
cohomology, but the H0

T ’s have been engineered to make them fit together. In particular,
the last part of the long exact sequence for homology

H0(G,A)→H0(G,B)→H0(G,C)→ 0

maps (by taking norms) to the first part of the long exact sequence for cohomology

0→H0(G,A)→H0(G,B)→H0(G,C)

so if we restrict to the kernel of the norm on the H0’s and mod out by the norm on the
H0’s we are good for exactness.

Another way to construct the Tate cohomology groups is to take a free resolution of
G-modules

0← Z← P0 ← P1 ← P2 ← ⋯
and the dual resolution

0→ Z→ P−1 → P−2 → ⋯
obtained by taking P−i = Hom(Pi,Z) to get a long exact sequence

⋯← P−2 ← P−1 ← P0 ← P1 ← P2 ← ⋯

and then take the cohomology of this cochain complex.
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Theorem 22.3

If A is a coinduced G-module, then all the Tate cohomology groups vanish.

Proof. We only need to check this in dimensions n = 0,−1, and this is on the homework.

The restriction and corestriction maps, as well as cup products, can be extended to
the Tate cohomology groups by dimension shifting (maybe there is some problem with
extending inflation to negative indices).

Example 22.4

Remember that when G is cyclic the cohomology groups are particularly nice (the
long exact sequence will be periodic). The Tate cohomology is even nicer, and its
long exact sequence becomes the “exact hexagon.” Let G ≅ Z/nZ with generator σ.
Take the free resolution of G-modules

Z
ε← Z[G] σ−1← Z[G] N← Z[G]← ⋯.

When we take Homs we get Hom(Z[G],Z) ≅ Z[G] in the usual way, so computing
the cohomology of the big cochain complex we see that Hn

T (G,A) = AG/NA for all
even n and Hn

T (G,A) = ker(N)/IA for all odd n.

Example 22.5

H−2
T (G,Z) =H1(G,Z) = Gab (we proved this earlier). The corestriction map

H−2
T (H,Z)→H−2

T (G,Z)

for a subgroup H ⊆ G is given by the inclusion of Hab → Gab. Also the restriction
map

H−2
T (G,Z)→H−2

T (H,Z)

is the map Gab →Hab induced by the map

G→Hab

given by
g ↦∏

i

hi

where xi ∈ G are a choice of right coset representatives in G/H and hi are such that
gxi = xjihi for hi ∈H.

For local class field theory, we want to construct the Artin reciprocity isomorphism

ρL/K ∶K×/NL/K(L×)→ Gal(L/K)

which after taking inverse limits is an injective map

K× → Gal(Ksep/K)sep
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with dense image. To do this we might use the cup product that comes from

H−2
T ×H2

T →H0
T

since H0
T (Gal(L/K), L×) =K×/NL×, H−2

T (G,Z) = Gab.

Theorem 22.6

If L/K is a finite Galois extension of local fields with group, then there is a canonical
isomorphism

H1(G,O×L) ≅
1

e
Z/Z

Proof. Properly normalizing the valuation on L, take the short exact sequence

1→ O×L → L×
vL→ 1

e
Z→

which induces a long exact sequence on cohomology

1→ O×K →K× → 1

e
Z→H1(G,O×L)→H1(G,L×).

The last term is trivial by Hilbert 90, and the map from K× → 1
eZ is still the valuation so

it is the inclusion Z→ 1
eZ, and thus by exactness we have the desired isomorphism.

Theorem 22.7

If L/K is an unramified Galois extension of local fields with groupG, thenHk
T (G,OL) =

1 for all k ∈ Z.

Proof. Since L/K is unramified and Galois, it is cyclic, and thus H1
T is trivial. We also

know in the cyclic case that the Tate cohomology groups are all equal to H0
T or H1

T , so it
remains to show H0

T is trivial. But we know

H0
T (G,O×L) = O×K/NL/KO×L = 1

by an old homework problem.

Theorem 22.8

If L/K is unramified of degree n = [L ∶K], there is a canonical isomorphism

Hk
T (G,L×) ≅

⎧⎪⎪⎨⎪⎪⎩

1, k ≡ 1 mod 2
1
nZ/Z, k ≡ 0 mod 2

.

Proof. Hilbert 90 gives the result in odd dimension (again using the 2-periodicity of the
Tate cohomology groups for cyclic groups). For H2

T (though we technically did H0
T on

the homework), again take the short exact sequence

1→ O×L → L× → Z→ 0
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and part of its induced long exact sequence

H2(G,O×L)→H2(G,L×)→H2(G,Z)→ 1.

From the previous theorem, H2(G,O×L) = 1, and on the homework we will see that

H2(G,Z) ≅H2(G,Q/Z) ≅ 1

n
Z/Z,

so putting this into the exact sequence gives the desired automorphism.

The isomorphism H2(G,L×) ≅ 1
nZ/Z is the invariant map, denoted invL/K . This H2

is called the Brauer group, and it classifies central simple algebras over K.

Remark 22.9. Taking n = 0, we see that H0
T (G,L×) =K×/NL× ≅ Z/nZ.

Lemma 22.10

If K ⊆ L ⊆M is unramified, then the following diagram commutes:

H2(Gal(L/K), L×) 1
[L∶K]

Z/Z

H2(Gal(M/L),M× 1
[M ∶K]

Z/Z

Inf

∼

∼

For infinite extensions L/K, we have an isomorphism

Gal(L/K) = lim←Ð
F /K finite subext.

Gal(F /K)

and if A is a continuous Gal(L/K)-module

Hn(Gal(L/K),A) = limÐ→
F /K finite subext.

Hn(Gal(F /K),AGal(L/F ))

where the maps in the direct system are just the inflation maps.

Example 22.11

H1(Gal(L/K), L×) = 1 for all infinite extensions L/K (take the limit of Hilbert 90).
Also Hn(Gal(L/K), L) = 0 for all n ≥ 1, and

H2(Gal(Kur/K), (Kur)×) = limÐ→
n≥1

1

n
Z/Z = Q/Z
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Recall that last time we sketched how to do cohomology for infinite extensions:

Hn(L∣K,A) = limÐ→
F ∣Kfin.Gal.

Hn(F ∣K,AGal(F ∣K)) = ∐
F ∣K

Hn(F ∣K,AGal(F ∣K))/ ∼,

where ∼ is generated by the relations c1 ∼ c2 iff F1 ⊇ F2 and c1 = Inf(c2), where
c1 ∈Hn(F1/K,AGal(F1/K)) and c2 ∈Hn(F2/K,AGal(F2/K)).

Remember the Inf-Res exact sequence: if H i(F1/F2,A
Gal(L/F1)) = 0 for i = 1, . . . , n − 1,

then Inf ∶ Hn(F1/K,⋯) → Hn(F2/K,⋯) is injective. By Hilbert 90, H1(L/K,L×) = 1,
and the additive version says that Hn(L/K,L) = 0 for all n ≥ 1. So the inflation map

H2(L/K,L×)→H2(Kur/K, (Kur)×)

is injective and corresponds under the −1 isomorphisms to the inclusion of 1
nZ/Z into

Q/Z.
Now to compute H2 of Ksep. The Inf-Res exact sequence is

0→H2(Kur/K, (Kur)×) Inf→ H2(Ksep/K, (Ksep)×) Res→ H2(Ksep/Kur, (Ksep)×).

We will compute
H2(Ksep/Kur, (Ksep)×) = 1,

thus yielding an isomorphism

H2(Ksep/K, (Ksep)×) ≅H2(Kur/K, (Kur)×) ≅ Q/Z.

To compute this H2, the most convenient way uses the identification with the Brauer
group.

§23.1 Crash course on the Brauer group and Division algebras

Definition 23.1. Let K be a field. A division K-algebra is a finite-dimensional
K-algebra D in which every nonzero element has an inverse. It is central if its center
is equal to K. The Brauer group Br(K) is the set of isomorphism classes of central
division K-algebras.

Lemma 23.2

if K is algebraically closed, Br(K) = {K}.

Proof. Let D be a division algebra over K, and let x ∈ D. The powers of x in D are
linearly dependent, since D is finite-dimensional. Thus x is algebraic over K, and since
K is algebraically closed this means x ∈K. This is because K(x) is a field extension of
K, since multiplication in there is clearly commutative.

Lemma 23.3

Br(R) = {R,H} where H denotes the real quaternion algebra. There is one more
non-central algebra over R, namely C.
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Proof. later.

If L/K is a field extension and D is a central division K-algebra, then

D ⊗K L ≅Mn×n(E)

for some n ≥ 1, where E is some central division L-algebra E. Taking D to E defines a
map

Br(K)→ Br(L),
which once we define the group structure on the Brauer group will be a homomorphism.
So we define the relative Brauer group

Br(L/K) = {D ∈ Br(K) ∶ ∃n ≥ 1,D ⊗L ≅Mn(L)}.

Example 23.4

H⊗R C =M2×2(C), so
Br(C/R) = Br(R).

More generally, Br(Ksep/K) = Br(K).

Corollary 23.5

For any central division K-algebra D, actually dimKD = n2 for some positive integer
n.

Proof. D⊗K Ksep ≅Mn(Ksep) for some n, and the dimension of this over Ksep, which is
n2, is the same as dimKD.

Remark 23.6. The maximal subfields L of D all have degree n =
√

dimKD.

D splits (this just means D ⊗K L =Mn×n(L)) over any such maximal subfield L.

Definition 23.7. The group structure on Br(K) is defined as follows: The product of
D and D′ is the central division K-algebra E such that

D ⊗K D′ =Mn×n(E).

Example 23.8

K is the identity element in Br(K), since tensoring by it doesn’t do anything.

Example 23.9

H ⊗R H ≅ M4×4(R) (since we know E must be R from the fact that the Brauer
group has size 2, and the dimension must be 16).

The only perhaps non-obvious part of proving the Brauer group is a group is showing
the existence of inverses. To do that, we define the opposite K-algebra Dopp ∈ Br(K),
which is the same as an additive group but the multiplication is defined so that the new
xy is what yx used to be.
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Theorem 23.10 (Wedderburn)

Br(Fq) = {Fq}.

Proof sketch. All maximal subfields of D ∈ Br(K) have degree n, so they’re all isomorphic
as fields to Fqn . By Noether–Skolem, they are all conjugate, and hence D× is a union of
conjugates of a single subgroup, which we saw on the homework is impossible.

Theorem 23.11

Let K be a local field. The maximal unramified extension has

Br(Kur) = {Kur}.

Proof. Let D ∈ Br(Kur) be nontrivial. Then dimKD = n2. The valuation on K extends
uniquely to Kur. This valuation then has a unique extension to D, though this is maybe
not completely obvious. One way to write it down is as

vK(x) = 1

n2
vK(ND/K(x))

where as usual ND/K(x) denotes the determinant of the matrix for left-multiplication by
x in D. As usual we can take the valuation ring OD, and pD, generated by a uniformizer
πD of valuation 1, etc.

Moreover, if x ∈D×, then we know that vK(x) ∈ 1
nZ, since the degree of K(x) divides

n and the ramification index divides that. So

vK(D×) ⊂ 1

n
Z.

Since κ(D) = OD/pD is a central division κ(Kur) = κ(K)-algebra, it must be equal
to κ(K). It follows that (1, πD, . . . , πn−1

D ) generates D as a K-vector space, which is a
contradiction.

Remark 23.12. If K is a local field and D in its Brauer group of degree n2, then the
ramification index [vK(D×) ∶ vK(K×)] and the residue field degree [κ(D) ∶ κ(K)] are
both equal to n.
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Today we will explain why the Brauer group is the same as H2.
Let D ∈ Br(L/K) split over L, so that D ⊗K L =Mn×n(L). Let σ ∈ Gal(L/K) acts on

D ⊗K L where the action on pure tensors is specified by leaving D fixed and acting on
L/K. By Noether–Skolem, the automorphisms of Mn×n(L) are given by conjugation by
an element of GLn(L), and hence this action provides a map

Gal(L/K)→ GLn(L)

(σ gets mapped to a choice of aσ ∈ GLn(L) such that the action of σ on D⊗L corresponds
in Mn×n(L) to conjugation by aσ). So for any σ, τ ∈ Gal(L/K) and x ∈D ⊗L,

στ(x) = aστxa−1
στ = aσaτxa−1

τ a
−1
σ

so the element
bσ,τ ∶= aστa−1

τ a
−1
σ

is in the center of GLn(L) which is just L×. The tuple

(bσ,τ)σ,τ∈Gal(L/K)

is a valid inhomogeneous cocycle in C2(Gal(L/K), L×) which is well-defined up to 2-
coboundaries. This is how the map Br(L/K)→H2(Gal(L/K), L×) is defined.

Remark 24.1. For local fields, the isomorphism Br(K) ≅ Q/Z can be described as
follows: Let D ∈ Br(K) be of dimension n2. Let L ⊆ D be a maximal subfield, which
must have degree n. We can also choose L to be unramified. Because D is central,
by Noether–Skolem, the K-automorphisms of L ⊆D are given by conjugation by some
element of D×, unique up to multiplication by y ∈ Z(D×) =K×. Since L/K is unramified,
we should be concerned with the Frobenius automorphism ϕL/K . There is some y ∈D×

such that ϕL/K(x) = yxy−1, and D ∈ Br(K) corresponds to vK(y) ∈ Q/Z (remember we
had a canonical way to extend the valuation to D).

To go the other way, it suffices to see how to go from 1/n to a division ring. Let L/K
be the degree-n unramified extension of K. Define the K-algebra

D =
n−1

⊕
i=0

Lei

(here L is not necessarily in the center) with multiplication satisfying

eixe
−1
i = ϕiq(x)

and

eiej =
⎧⎪⎪⎨⎪⎪⎩

ei+j , i + j ≤ n − 1

πK ⋅ ei+j−n, i + j ≥ n

Lemma 24.2

For a degree n extension L/K of local fields, the diagram

Br(K) Q/Z

Br(L) Q/Z

∼

×n

∼

commutes. Thus, Br(L/K) ≅ 1
nZ/Z.
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Lemma 24.3

Let D be a central division K-algebra of degree n2 over a local field K. Then D
contains every degree-n field extension of K.

Proof. By looking at the definition of Br(K) ≅ Q/Z, we see that D is an n-torsion
element, and hence for any degree n extension L/K, D ∈ Br(L/K), and thus D splits
over L. By something we didn’t prove I think, this means L ⊆D.

§24.1 Back to Galois cohomology

Let L/K be a degree n extension of local fields. The Tate cohomology groups were

H−2
T (L/K,Z) =H−1

T (L/K,Z) ≅ Gal(L/K)ab,

H0
T (L/K,L×) ≅

K×

NL/KL×

and

H2
T (L/K,L×) ≅ Br(L/K) = 1

n
Z/Z.

So we get a bilinear product map

H−2
T (L/K,Z) ×H2

T (L/K,L×)→H0
T (L/K,L×)

which is just a cup product

Gal(L/K)ab × 1

n
Z/Z→K×/NL/KL

×.

It turns out that the homomorphism

Gal(L/K)ab →K×/NL/KL
×

given by x↦ x ⌣ (1/n mod Z) is actually the inverse of the CFT isomorphism, but we
haven’t proven it yet. This was discovered by Tate:

Theorem 24.4 (Tate’s Theorem)

Let G be a finite group and A a G-module. Assume that for all H ⊆ G, we have
H1(H,A) = 0 and H2(H,A) is cyclic of size ∣H ∣ (these two things are guaranteed in
the number theory situation). Let γ be a generator of H2(G,A) = Z/∣G∣Z. Then
the cup product map

Hr
T (G,A)→Hr+2

T (G,A)

given by x↦ x ⌣ γ is an isomorphism.

Proof. The proof is long and starts with a lemma.

Lemma 24.5

Let G be a finite group, and A a G-module. Assume that H1(G,A) = 0 and that
H2(G,A) = 0 for all H ⊆ G. Then all the Tate cohomology groups vanish.
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Proof. In the case where G is cyclic, we already saw that the Tate cohomology groups were
all equal to H1 or H2 so without needing this for all subgroups we are immediately done.
So we might hope to prove it when G is solvable. Let H ⊊ G be a proper normal subgroup,
where we can assume that G/H is cyclic of prime order. By induction, we can assume
that Hr

T (H,A) = 0 for all r, since H is solvable. So we can use the inflation-restriction
exact sequence

0→Hr(G/H,AH)→Hr(G,A)→Hr(H,A) = 0

which tells us that in fact
Hr(G/H,AH) ≅Hr(G,A)

so since G/H is cyclic, and we already know the lemma for cyclic groups, it follows
that Hr(G,A) = 0 (after verifying the hypotheses for G/H) for all r ≥ 1 (since the
inflation-restriction sequence only works in this case). Let’s check it directly for r = 0.
Let x ∈H0(G,A) = AG. We just need to show that x is a norm with respect to G. We
know that

AG/NG/H(AH) =H0
T (G/H,AH) = 0,

so there exists y ∈ AH such that

NG/Hy = ∑
g∈G/H

gy = x.

And since AH/NHA = H0
T (H,A) = 0, we know that this y is an H-norm from A, i.e.

there exists a z ∈ A such that ∑h∈H hz = y. Putting these together, we have

NGz = NG/HNHz = x

as desired. This proves that H0
T (G,A) = 0. For r < 0 we exploit dimension-shifting. Take

the short exact sequence

0→ A′ → Z[G]⊗Z A→ A→ 0

where the one in the middle is H-induced for all H ⊂ G, so the corresponding long exact
sequence is actually just a bunch of isomorphisms (the Tate cohomology of the middle
one is always zero) and we have isomorphisms

Hr+1
T (H,A′) ≅Hr

T (H,A)

for all H ⊆ G and r ∈ Z. In particular, H1
T (H,A′) ≅ H0

T (H,A) = 0. Also, H2
T (H,A′) ≅

H1
T (H,A) = 0 by the hypothesis of the lemma. Then proceeding by induction, the lemma

is proved.
Somehow the case of general groups is a formal consequence of the case of solvable

groups. In general, any p-Sylow subgroup Gp of G is solvable, so Hr
T (Gp,A) = 0 for all

r ∈ Z. Recall that we had restriction and corestriction maps between Hr
T (G,A) and

Hr
T (Gp,A) such that

0 = Cor ○Res = [G ∶ Gp] ⋅ id.

But if x is a nonzero element of Hr
T (G,A) has order divisible by p, then since p does not

divide [G ∶ Gp] this is a contradicton (multiplication by this is supposed to kill x).

Note that Res(γ) generates H2(H,A) for any subgroup H ⊆ G, because of the fact
that restriction composed with corestriction is multiplication by [G ∶H] (so you get a
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contradiction if the image of restriction has fewer than ∣H ∣ elements). Let ϕ = (ϕσ,τ)σ,τ∈G
be a cocycle representing γ ∈H2(G,A). Consider the G-module

A(ϕ) = A⊕⊕
σ≠1

Zeσ

with G-action given by
σeτ = eστ − eσ − ϕσ,τ

where the eστ is replaces by ϕ1,1 if στ = 1. This is defined to force (from the definition of
the cocycles, recall the “crossed homomorphisms” definition)

d1((eσ)σ∈G) = (ϕσ,τ)σ,τ∈G
so the map H2(G,A)→H2(G,A(ϕ)) sends γ to 0. For any H ⊆ G, the exact sequence

0→ I → Z[G]→ Z→ 0

induces the long exact sequence

0→ IH → Z[G]H → Z→H1(H,I)→H1(H,Z[G])→H1(H,Z)→H2(H,I)→H2(H,Z[G])
where we know by hypothesis that H1(H,Z[G]) =H2(H,Z[G]) = 0, so actually

H2(H,I) ≅H1(H,I) ≅ Hom(H,I) = 0

and
H1(H,I) = coker(Z[G]H → Z) = Z/∣H ∣Z.

We can also exploit the short exact sequence

0→ A→ A(ϕ)→ I → 0

where the map A(ϕ)→ I is given by 0 on A and eσ ↦ σ − 1. This induces the long exact
sequence

0 =H1(H,A)→H1(H,A(ϕ))→H1(H,I)→H2(H,A)→H2(H,A(ϕ))→H2(H,I) = 0

where we also know H1(H,I) = Z/∣H ∣Z and H2(H,A) ≅ Z/∣H ∣Z is generated by Res(γ).
The image of Res(γ) in H2(H,A(ϕ)), by the compatibility with all these maps of Res,
is just Res of the image of γ in H2(G,A(ϕ)), which must be 0 (we proved this earlier in
this proof). So the map H2(H,A)→H2(H,A(ϕ)) is zero, and hence

H2(H,A(ϕ)) = 0.

Moreover, the surjectivity of the map H1(H,I)→H2(H,A) proves it is an isomorphism
since both have size ∣H ∣, and thus

H1(H,A(ϕ)) = 0

since it is the kernel. So the lemma proves that Hr
T (G,A(ϕ)) = 0 for all r ∈ Z.

Now we take some more exact sequences, namely

0→ A→ A(ϕ)→ I → 0

which by the long exact sequence gives Hr+2
T (G,A) ≅Hr+1

T (G, I), and

0→ I → Z[G]→ Z→ 0

which by the long exact sequence gives Hr+1
T (G, I) ≅Hr

T (G,Z). So in the end

Hr+2
T (G,A) ≅Hr

T (G,A)
which you can check is the same map that is asked for in the statement of the theorem.

How to determine D from R = Mn(D)? Let I ≠ 0 be a minimal right R-ideal. Then
I ≅Dn (the space of row vectors), and D ≅ End(I) where this isomorphism is given by
multiplication on the left by x ∈D.
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Last time we talked about Tate’s theorem on Galois cohomology, which we had proved
modulo the proof of a certain lemma. I’ve filled it in in yesterday’s notes.

§25.1 The local existence theorem

Let K be a local field. Recall that the class field correspondence is supposed to be a
bijection: for any finite index open subgroup U of K×, there is supposed to be a unique
abelian L/K with NL× = U . This is called the “local existence theorem.”

Lemma 25.1

If U ⊆K× is a norm subgroup, then so is any subgroup containing U .

Proof. Let U = NL/K(L×), and L/K abelian. The Artin reciprocity map provides an
isomorphism

θL/K ∶K×/NL/KL
× → Gal(L/K)

so if we let H = θL/K(V mod U) it’s clear that M ∶= LH has norm group V .

Lemma 25.2

If U1, U2 ⊆K× are norm subgroups, then so is U1 ∩U2.

Proof. From the basic properties of the Artin map it’s clearly the norm subgroup
corresponding to the compositum of the class fields for U1 and U2.

Now we are ready to prove the local existence theorem

Theorem 25.3

Every open subgroup of finite index in K× is a norm subgroup.

Proof. Since K× ≅ O×K ×Z, any finite-index open subgroup of it must contain a power of
a uniformizer, so

U ⊇ U (r)
K ⋅ πsK

for some positive integers s, r. But by Fermat’s little theorem,

U
(r)
K ⊇ (O×K)q

r−1

which means that we actually have a further containment of the n = (qr − 1)-th powers

U ⊇ U (r)
K ⋅ πsK ⊇ (K×)n.

This means (by one of the lemmas above) it suffices to show that the group of n-th
powers contains a norm subgroup. When the characteristic of K does not divide n and
ζn ∈K, we are immediately done via Kummer theory (you can obtain L by adjoining the
n-th roots of everything in K×).

Now in the general case (still assuming that the characteristic of K doesn’t divide n),
we need to adjoin the appropriate root of unity ζn. Let K ′ =K(ζn) and (using the above
thing) take L′/K ′ to be the class field for (K ′×)n. Let M/K be the Galois closure of L′

over K. This is a class field for a subgroup contained inside the n-th powers (by the
transitivity of the norm) so we are done by the lemma.
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§25.2 Class field theory

So far we have a bunch of statements for class field theory.

Theorem 25.4 (Finite (i.e. unramified) class field theory)

The Frobenius map θk ∶ Z→ Gal(Fq/Fq) has dense image. Let k = Fq. For any finite
extension `/k, we have a commutative diagram

Z Gal(`/`))

Z Gal(k/k)
where the first vertical map is just multiplication by n, and induces an isomorphism

Z/nZ ≅ Gal(`/k).

Theorem 25.5 (local Artin reciprocity)

Let K be a local field. Then we have a reciprocity map

K× → Gal(Kab/K)

with dense image. Also, the reciprocity map takes the higher unit groups to the
upper-indexed higher ramification groups. Uniformizers in K× get mapped to
Frobenii in Gal(Kab/K). If k denotes the residue field of K, then the following
diagram commutes:

K× Gal(Kab/K)

Z Gal(k/k) ≅ Ẑ

(corresponding to the fact that the unramified part of the Artin map is the one
given by the vk-power of the Frobenius; the Gal(k/k) is really code for Gal(Kur/K)).
In general, for finite extensions abelian extensions L/K, the diagram

L× Gal(Lab/L)

K× Gal(Kab/K)
commutes and induces an isomorphism K×/NL/K(L×)→ Gal(L/K).

I discussed global CFT in section, and we’ll talk about it briefly in the last lecture.
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§26 December 3, 2019

First, we confess to lying about the definition of a local field. In fact, we have only
been working with nonarchimedean local fields. There are two more (archimedean) ones,
namely R and C. The maximal abelian extensions of R and C are both C, and in each
case we want a surjective map

K× → Gal(K/K)

et cetera, and the kernel has index 2 when K = R, so it is actually R>0 and the Artin
map for R is just the reduction to R×/R≥0 = Z/2Z. For C it is just the constant map to
the trivial group.

The local fields are important because they arise as completions of global fields.

Definition 26.1. A global field is either

(a) A number field (finite extension of Q)

(b) A global function field (finite extension of Fq(T )).

A global field K comes with a ring of integers OK , which is the integral closure of Z if
K is a number field, and the integral closure of Fq[T ] if K is a global function field.

For each prime p in OK , we get a local field Kp (by taking completions with respect to
vp) with an embedding K →Kp.

Definition 26.2. A place of K is either an embedding of K into R or C, or K →Kp

for a prime p.

As usual, each place v comes with a norm

∥⋅∥v ∶K →R≥0

which for v = vp is given by

∥x∥p = (∣κ(p)∣)−vp(x),

and for embeddings v ∶K →R is given by ∣v(x)∣, and for embeddings v ∶K →C is given
by ∣v(x)∣2. The reason for the way we have normalized and squared (even though this
makes the triangle inequality fail), is to force a product formula to hold, namely

Theorem 26.3

For any x ∈K×, ∏v∥x∥v = 1.

Example 26.4

Let K = Q. Then there is one place for every rational prime, and one infinite place
v corresponding to the standard embedding of Q into R. If x = ±∏p p

ap , then

∥x∥p = p−ap

so ∏p∥x∥p =∏p p
−ap = ∥x∥−1

∞ which means the product formula holds for Q.

Actually the proof of the product formula in general relies mostly on the above example.
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Definition 26.5. Let K be a global field. The ring of adeles on K is

AK =
′

∏
v

Kv = {(xv)v ∈∏Kv ∶ xv ∈ Ov for almost all v} .

N.B. Ov is not well-defined for v infinite.

Definition 26.6. The idèle group is

A×
K =

′

∏
v

K×
v = {(xv)v ∈∏K×

v ∶ xv ∈ O×v for almost all v} .

The adeles and idéles also come with a topology, with a WARNING: the topology on
the idéles should NOT be the same as the subspace topology for them as a subset of the
adeles. The topology on AK is given by the basis of open sets

∏
v

Uv,

where all Uv ⊂Kv are open and all but finitely many of them are equal to Ov.
Similarly, we can define a topology on A×

K where you replace Kv with K×
v and Ov with

O×v .
The embeddings K → Kv give rise to diagonal embeddings K → AK and K× → A×

K .
This map is useful for studying local-global principles (we used it in section to prove a
local-global principle for norms in cyclic extensions).

The product formula implies that K× is discrete in A×
K . Of importance to class field

theory is the quotient group (equipped with the quotient topology)

CK = A×
K/K×,

which is called the idèle class group. An automorphism σ of K induces automorphisms
of AK and A×

K (it permutes the places though), and this action agrees with the action
of σ on K× ⊆ A×

K . As a result, we actually have an action on CK . Most importantly, if
L/K is a finite Galois extension, there is a norm map

NL/K ∶ CL → CK

given by taking the product of the actions of all σ ∈ Gal(L/K).
In fact, it’s possible to do this without the Galois restriction. For any finite extension

L/K, we have
AL ≅ AK ⊗K L

so multiplication by x can be written down as a matrix with entries in AK and we can
take its determinant.
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CL Gal(Lab/L)

CK Gal(Kab/K)

NL/K

Theorem 26.7 (Global Class Field Theory)

There is a homomorphism

CK = A×
K/K× θK→ Gal(Kab/K)

with dense image. If K is a number field,

• θK is surjective

• θK has kernel ∏v∶K→R R>0 ×∏v∶K→C C>0.

If K is a function field, there are no infinite places, and

• θK is injective

• θK has dense image, namely {σ ∈ Gal(Kab/K) ∶ σ∣Fq ∈ Z ⊆ Ẑ = Gal(Fq/Fq)}.

Moreover, the open finite-index subgroups of CK correspond bijectively to the Galois
groups Gal(Kab/L) for finite abelian L/K.

In fact, the global map is compatible with the local ones. The local Artin reciprocity
map was originally (I think) defined just by taking the embedding

K×
v → A×

K/K×

and then taking the global reciprocity map (and proving that the image is in the
decomposition group of v). This compatibility also means that you could define the
global map from the local ones, but it isn’t actually clear that the resulting map only
depends on the residue mod K×.

For finite extensions L/K, we have a commutative diagram from which it follows that
the reciprocity map is actually an isomorphism

CK/NL/K(CL)→ Gal(L/K).

§26.1 The Brauer group of a global field

Recall that for a local field Kv, we had a bijection

Br(Kv)
inv→ Q/Z.

How about the Brauer group of a global field?
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Theorem 26.8 (Fundamental exact sequence)

For any global field K, there is an exact sequence

0→ Br(K)→⊕
v

Br(Kv)→Q/Z→ 0

where the first map is given in each coordinate v by D ↦ Ev where

D ⊗K Kv ≅MKv(Ev)

and the second map is just the sum of the isomorphisms Br(Kv)→Q/Z.

§26.2 Applications

For any a, b ∈ Q×
v , recall that the degree-2 Hilbert symbol is

(a, b)v =
⎧⎪⎪⎨⎪⎪⎩

1, ax2 + by2 = z2 has a nontrivial solution

−1 else

and that it is multiplicatively bilinear and skew-symmetric. If p ≠ 2 and a, b ∈ Z×
p then

(a, b)p = 1. If p ≠ 2 and a ∈ Z×
p , then (a, b)p is the Legendre symbol (ap).

Also, remember that for any a, b ∈ Q×
p , the invariant of the quaternion algebra (a, b)Qp

is

invp(a, b)Qp =
⎧⎪⎪⎨⎪⎪⎩

0 mod Z, if ax2 + by2 = z2 has a nontrivial solution

1/2 mod Z, else

so actually this invariant contains the same information as the Hilbert symbol.

Corollary 26.9

Let a, b ∈ Q×. Then by the fundamental exact sequence,

∑
v

invv(a, b)Qv = 0

and thus ∏v(a, b)v = 1.

Corollary 26.10

Quadratic reciprocity (this uses the above corollary and the computation on problem
set 8 problem 2).

Theorem 26.11

The equation
y2 + z2 = (3 − x2)(x2 − 2)

has no rational solution.
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proof sketch. The Hilbert symbol this with −1 is

(3 − x2,−1)v(x2 − 2,−1)v = (y2 + z2,−1)v = 1.

So (3−x2,−1)v = (x2−2,−1)v = ±1, and in particular the numbers av = invv(3−x2,−1)Qv =
invv(x2 − 2,−1)Qv need to sum to zero by the fundamental exact sequence. You can
compute that a∞ = ap = 0 for all odd p, and that a2 = 1/2, which is a contradiction.

References

[1] S. Bosch. Algebra: From the Viewpoint of Galois Theory. Springer, 2018.

[2] S. Lang. Algebraic number theory, volume 110 of Graduate Texts in Mathematics.
Springer Science & Business Media, 2013.

[3] D.A. Marcus. Number fields, volume 8 of Universitext. Springer, 1977.

[4] J.S. Milne. Class field theory, 1997. URL: http://www.math.lsa.umich.edu/

jmilne.

[5] J. Neukirch. Algebraic number theory, volume 322 of Graduate Texts in Mathematics.
Springer Science & Business Media, 2013.
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