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§1 January 28, 2019

§1.1 Topics

The topics we will cover are the following:

1. Unique factorization. Any n ∈ Z factors uniquely as a product of primes. For rings
of integers of number fields, how is this salvaged?

2. Class groups

3. Unit groups

4. Local fields

One application of these topics is to Diophantine equations.

1. [Fermat’s Christmas Theorem] If p ≡ 1 (mod 4) then there are a, b ∈ Z such that
a2 + b2 = p.

2. [Pell’s Equation] Let d be a squarefree integer. What are the integer solutions to
a2 − db2 = 1?

§1.2 Number Fields and their Rings of Integers

Important prerequisites from linear algebra:

1. Vector spaces and linear maps between them

2. Cayley–Hamilton Theorem

Definition 1.1. A number field is a field K of characteristic zero (i.e. K ⊇ Q) such
that K is a finite dimensional vector space over Q. In other words, as a vector space
over Q, K is noncanonically isomorphic to Qn for some n ∈ N.

Example 1.2

Let d be a squarefree (possibly negative) integer, and K = Q(
√
d). To be specific,

K = Q[X]/(X2 − d). The dimension of K as a Q-vector space is

dimQK = 2.

This is because the elements 1 and x form a basis for K. As a Q-vector space,
K = Q ⋅ 1 +Q ⋅ x.

We can define a number field in a similar way by adjoining a root of any irreducible
polynomial over Q.

Lemma 1.3

If K is a number field, α ∈K, then there exists a monic polynomial f ∈ Q[X] such
that f(α) = 0.
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Proof 1. Let d = [K ∶ Q] (this is an easier notation for dimQK). The powers 1, α,α2, . . . , αd

are linearly dependent over Q since K is d-dimensional as a Q-vector space and there
are d + 1 elements of K in the list. This means that there exist a0, . . . , ad ∈ Q such that

a0 + a1α +⋯ + adαd = 0.

Dividing through by ai, where i is as large as possible such that ai ≠ 0, we get the desired
monic polynomial. NB: this proof also guarantees the existence of f with degree at most
d.

Proof 2. Let L be a field and V a vector space over L of dimension d <∞. If ϕ ∶ V → V
is an L-linear map, then the characteristic polynomial of ϕ, Pϕ(X) ∈ L[X], has degree d.
The Cayley–Hamilton Theorem says that

Pϕ(ϕ) = 0

as an element of End(V ) [recall that polynomials in L[X] can be evaluated at elements
of End(V )].

The characteristic polynomial of ϕ can be defined in the following way: Consider
the L[X]-module given by V ⊗L L[X], which is identified noncanonically to the free
L[X]-module L[X]d. The determinant (i.e. the top alternating power) of the map
X − ϕ ∈ EndL[X](V ⊗L L[X]) is the characteristic polynomial of ϕ (here X stands for
the map given by multiplication by X). NB: noncanonically, X −ϕ is given by the matrix
X ⋅ id − ϕ, since X is in the base ring.

Now we abuse Cayley–Hamilton to prove the lemma. In particular, let ϕα be the
Q-linear map K →K given by x↦ x ⋅ α. Cayley–Hamilton says that the characteristic
polynomial of ϕα is satisfied by ϕα, i.e.

Pϕα(ϕα) = 0 ∈ End(K).

One can check that Pϕα(ϕα) is the Q-linear endomorphism of K given by multiplication
by Pϕα(α). The conclusion of Cayley–Hamilton therefore tells us that multiplication by
Pϕα(α) kills everything in K. Since 1 ∈ K, it follows that Pϕα is a monic polynomial
with coefficients in Q of degree d that kills α.

Questions from algebra: If K = Q[X]/h(X) where h is irreducible, then any α ∈ K
satisfies a monic polynomial. What is the polynomial for α2, α3? What about α + β?

Definition 1.4. If K is a number field, the ring of integers OK ⊆ K is the set of all
α ∈K such that there exists a monic polynomial f ∈ Z[X] with f(α) = 0.

NB (from Alex Wei): it is not obvious from the definition that OK is a ring. We will
prove that it is later.

Lemma 1.5 (Gauss’s Lemma)

If f ∈ Z[X] is monic and f = f1f2 where f1, f2 ∈ Q[X] are monic, then f1, f2 ∈ Z[X].

Proof. Homework problem.
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Lemma 1.6

If α ∈K, the following are equivalent:

1. α ∈ OK .

2. The minimal polynomial of α has integer coefficients

Proof. Recall that the minimal polynomial f0 of α is the monic polynomial with the
following two properties:

i. f0(α) = 0

ii. if g ∈ Q[X] such that g(α) = 0, then f ∣g.

NB: f0 is just a (uniquely determined by the condition that it is monic) generator for
the ideal given by the kernel of the map Q[X]→Q[α] given by evaluation at α.

The proof of the lemma is as follows: (ii) obviously implies (i). For the other direction,
we abuse Gauss’s lemma. Suppose that there exists a monic f ∈ Z[X] such that f(α) = 0.
Then the minimal polynomial f0 divides f in Q[X], i.e. there is a g ∈ Q[X] such that
f = f0g. Gauss’s lemma guarantees that f0 ∈ Z[X].

§1.3 Quadratic fields

Example 1.7

Let K = Q(
√

2). Then OK = Z[
√

2]. The proof is as follows: if b ≠ 0, the minimal
polynomial of a + b

√
2 is

(X − (a + b
√

2))(X − (a − b
√

2)) =X2 − 2aX + a2 − 2b2.

So by Lemma 1.6, a + b
√

2 ∈ OK if and only if 2a, a2 − 2b2 are integers.
NB: this isn’t completely tautological. For example, the ring of integers of Q(

√
5)

is Z[(1 +
√

5)/2]. Note that the minimal polynomial of (1 +
√

5)/2 is

(X − (1 +
√

5)/2)(X − (1 −
√

5)/2) =X2 −X − 1 ∈ Z[X].

However, in the case of Q(
√

2) it works out: 2a ∈ Z means a ∈ 1
2Z and a2 ∈ 1

4Z.
Since a2 − 2b2 ∈ Z, it follows that b2 ∈ 1

8Z. This means that the denominator of b can
have at most a single factor of 2, from which it follows that b2 ∈ 1

4Z. So 2b2 ∈ 1
2Z,

and from a2 − 2b2 ∈ Z we know a2 ∈ 1
2Z. By the same argument as before (a cannot

have any factors of 2 in the denominator or else its square would have denominator
divisible by 4), a ∈ Z. We conclude then that 2b2 ∈ Z, hence b ∈ Z as well. The result
OK = Z[

√
2] follows.

The example generalizes to all quadratic fields.

Proposition 1.8

If K = Q(
√
d) for d squarefree, then

OK =
⎧⎪⎪⎨⎪⎪⎩

Z[
√
d] if d /≡ 1 (mod 4),

Z [1+
√
d

2 ] if d ≡ 1 (mod 4)
.
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Proof. We have K = Q +Q ⋅
√
d. If α = a + b

√
d ∈K −Q then it has minimal polynomial

(X − (a + b
√
d))(X − (a − b

√
d)) =X2 − 2aX + a2 − db2

so by Lemma 1.6, α ∈ OK iff 2a, a2 − db2 ∈ Z. If α ∈ OK we can write a = A/2 for some
A ∈ Z, and we have

A2 − 4db2 = A2 − d(2b)2 ∈ 4Z.

If a /∈ Z, i.e. A is odd, then A2 ≡ 1 (mod 4) and thus d(2b)2 ≡ 1 (mod 4). So, b cannot
be an integer. Since d is squarefree, it has at most one factor of 2. It follows by looking
at the denominator of d(2b)2 that 4b2 ∈ Z which means b ∈ 1

2Z. The fact that b /∈ Z means
that 2b is an odd integer and thus (2b)2 ≡ 1 (mod 4). Since d(2b)2 ≡ 1 (mod 4), it also
follows that d is 1 mod 4. Part of the result falls out of this analysis: if d /≡ 1 (mod 4),
then we showed that A is even, so a ∈ Z, and db2 ∈ Z so since d is square-free, b ∈ Z as
well. Hence, OK = Z[

√
d] (the inclusion Z[

√
d] ⊆ OK is obvious from computing minimal

polynomials).
If d ≡ 1 (mod 4), then we can check that the minimal polynomial of (1 +

√
d)/2 has

integer coefficients, so OK contains Z[(1 +
√
d)/2]. Any α ∈ OK must have the form

α = A/2 + b
√
d for some A ∈ Z, so we can look at α −A(1 +

√
d)/2 = (b −A/2)

√
d. Since

this is in OK , its minimal polynomial has integer coefficients, which means

(b −A/2)2d ∈ Z.

The usual argument tells us b −A/2 ∈ Z, hence b is of the form B/2 where B has the
same parity as A. So we can write a+ b

√
d as (1+

√
d)/2 plus an element of Z[

√
d], from

which it follows that OK = Z[(1 +
√
d)/2].

We used twice in this proof that OK is a ring. We will show tomorrow that this is true
in the general setting.

Note: it’s often convenient to write that in the case d ≡ 1 (mod 4), OK is the set of all
(A +B

√
d)/2 such that A,B ∈ Z with the same parity. This way, it is immediate that

OK is a free Z-module of rank 2. For example, one possible basis is given by

1,
1 +

√
d

2
.

Instead of using the fact that OK is a ring, we could have shown directly by computing
minimal polynomials that when d ≡ 1 (mod 4), any (A +B

√
d)/2 with A,B of the same

parity lies in OK ; moreover, we already showed that any element of OK is of the form
(A +B

√
d)/2 where A,B ∈ Z and that if A is odd then B is odd. It suffices to show that

if A is even then so is B, but coincidentally we also showed this when finishing off the
d /≡ 1 (mod 4) case (when we showed that if a ∈ Z then b ∈ Z).
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§2 January 30, 2019

“Were you coming from somewhere else or are you just horribly irresponsible?” – Mark
Kisin on coming to class after 1:30pm.

First, we filled in the second proof of Lemma 1.3, and the proof of Proposition 1.8
from last class.

§2.1 Integral Closures and Rings of Integers

In the computation from last class (see Proposition 1.8), we showed that if K is a number
field of degree 2, then OK is a finitely generated free abelian group of rank 2. This is
true in general, but first we will pay the debt we accrued last class by showing that OK
is a ring.

Note that Cayley–Hamilton also works over arbitrary commutative rings with unity.
Let R be such a ring. If M is a finitely generated free R-module of rank d and ϕ is an
R-endomorphism of M , then we can construct the characteristic polynomial of ϕ in the
same way, and it vanishes at ϕ. We will show this in section on Friday.

In this class, a “ring” always refers to a commutative ring with unity.

Definition 2.1. Let A ⊆ R be rings. An element α ∈ R is called integral over A if there
exists a monic polynomial f(X) ∈ A[X] such that f(α) = 0. We say that R is integral
over A if every α ∈ R is integral over A. Finally, we define the integral closure of A in
R to be the set of α ∈ R which are integral over A.

Example 2.2

If K is a number field, then OK is the integral closure of Z in K.

Proposition 2.3

If A ⊆ R are rings, then the integral closure of A in R is a subring of R.

Proof. Denote by A′ the integral closure of A in R. We need two important lemmas to
proceed.

Lemma 2.4

Let M be a finitely generated A-module. Let α ∶M →M be an A-linear map. Then
there exists a monic polynomial over A that vanishes on α.

Proof. NB: this is stronger than the previous statement of Cayley–Hamilton over a ring,
since it only assumes that M is finitely-generated instead of free.

If M is free, then the result is true by Cayley–Hamilton: we have a monic polynomial
Pα ∈ A[X] which vanishes on α.

If M is finitely generated by d elements, there is a surjective A-linear map Ad →M .
Since a linear map out of Ad is determined by where it sends a basis, the action of α
on M induces an A-linear map α̃ ∶ Ad → Ad (we can send the basis element xi to an
arbitrary lift of α(xi); note that the lifts are not uniquely determined). To be precise,
we have a commutative diagram

8
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Ad M

Ad M

α̃ α

We know that Pα̃(α̃) = 0 by Cayley–Hamilton for free modules of finite rank. By using
the same choices for lifts of images under α that we use to induce α̃ from α, we can
check that Pα̃(α̃) is induced by Pα̃(α) ∶M →M . Since the diagram commutes and the
sideways maps are surjective, it follows that Pα̃(α) = 0 as well.

Lemma 2.5

The following are equivalent:

(1) f(α) = 0 for some monic f ∈ A[X].

(2) A[α] ⊆ R is finitely-generated as an A-module.

(3) A[α] is contained in a subring M ⊆ R such that M is a finitely generated
A-submodule of R.

Proof. If f(α) = 0, then the map A[X]→ A[α] given by evaluation at α factors through
A[X]/(f) via the canonical projection. But A[X]/(f) is generated as an A-module by
1, . . . ,Xd−1 where d = deg f . Since the map A[X]/(f) → A[α] is surjective, it follows
that A[α] is finitely generated as an A-module. This shows that (1) implies (2). That
(2) implies (3) is obvious so it suffices to show (3) implies (1).

Finally, if (3) holds, then M is closed under multiplication by α, so we have an A-linear
map ϕα ∶ M → M given by multiplication by α. By Lemma 2.4, there exists a monic
polynomial f(X) ∈ A[X] such that f(ϕα) = 0. Since f(ϕα) is the A-linear endomorphism
given by multiplication by f(α), it follows from the fact that 1 ∈M that f(α) = 0, as
desired.

Lemma 2.5 lets us prove the proposition. Since 0,1 ∈ A ⊆ A′ already, it suffices to
show that A′ is closed under addition and multiplication. Let α,β ∈ A′. Then by
the previous lemma, A[α] and A[β] are finitely-generated A-modules. Note that since
A[X] ⊆ (A[α])[X], the fact that β is integral over A implies that it is integral over A[α].
So A[α,β] is finitely generated as an A[α]-module by the lemma. Since A[α] is finitely
generated as an A-module for the same reason, the pairwise products of the generators
form a generating set for A[α,β] as an A-module, which is therefore finitely generated
as an A-module. Since α + β and αβ are in A[α,β], part (3) of Lemma 2.5 tells us that
both of them are integral over A, as desired.

Corollary 2.6

Let K be a number field. Then OK is a ring.

9
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§3 February 4, 2019

Last time, we proved that if A ⊆ R are rings, then the integral closure of A in R is a
subring of R. This was Proposition 2.3, and its proof relied mostly on Lemma 2.5.

§3.1 Are Integral Closures Finitely Generated?

Let the integral closure of A in some R ⊇ A be A′. It is not necessarily true that A′ is
finitely generated as an A-module: for example, the algebraic closure of a finite field is
not finite (thus cannot be finite-dimensional). Similarly, the integral closure of Z in Q
contains Z[{

√
d}d>1] which is not finitely generated as a Z-module.

Proposition 3.1

Let A ⊆ B ⊆ C be rings, where C is integral over B and B is integral over A. Then
C is integral over A.

Proof. Let α ∈ C. It suffices to show that α is integral over A. Since it is integral over B,
there are some b0, . . . , bn−1 ∈ B such that

b0 + b1α +⋯ + bn−1αn−1 + αn = 0.

Consider the subring B1 = A[b0, . . . , bn−1] ⊆ B. Since the bi’s are integral over A (because
they are in B), repeated application of part (2) of Lemma 2.5 tells us that B1 is a
finitely-generated A-module [by taking pairwise products of generators, A[b0, b1] being a
finitely-generated A[b0]-module and A[b0] being a finitely-generated A module implies
that A[b0, b1] is a finitely-generated A-module]. Since α is integral over B1 (this is evident
from the polynomial α satisfies), we actually know that B1[α] is finitely generated over
A.

Finally, α ∈ B1[α], so part (3) of Lemma 2.5 tells us that α is integral over A as
desired.

Recall from our computation of OK in the case that K is a quadratic extension of Q
that we had a basis of two elements for K. In general this should be true [in these notes
we will frequently interchange the terms “abelian group” and “Z-module”]:

Theorem 3.2

Let K be a number field and suppose that OK is a finitely generated abelian group.
Then OK is a finitely-generated free abelian group of rank [K ∶ Q].

Proof. For now, assume that OK is a finitely generated abelian group (later we will abuse
the properties of the trace on an algebraic number field to show this fact). We will show
its rank is equal to what we want it to be.

Notice that OK generates K as a Q-vector space. This is for the following reason: if
α ∈K, then it satisfies a monic polynomial

f(X) =Xd + ad−1Xd−1 +⋯ + a0.

where the ai’s are rational. Clearing denominators, we can choose m ∈ Z such that
mai ∈ Z for all i. Then

mdf(X) = (mX)d +mad−1(mX)d−1 +⋯ +mda0

10
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so mα ∈ OK . Hence, all of K is contained in the Q-span of OK , as desired. In more
abstract terms, the multiplication map

OK ⊗Z Q→K

is surjective. In fact, the map is also injective. Consider an arbitrary element ∑αi ⊗ bi ∈
OK ⊗Z Q. If it is in the kernel, then

0 =∑αibi.

Taking m ∈ Z so that mbi ∈ Z for all i, we know

0 =∑αi(bim).

In OK ⊗Z Q, it follows by tensoring with 1 that

0 =∑αi ⊗ (bim) =m∑αi ⊗ bi

hence ∑αi ⊗ bi = 0 as desired.
Since OK is torsion-free, the structure theorem for modules over a PID tells us that

it is isomorphic as a Z-module to Zd for some d ∈ N. Since we have isomorphisms of
Q-vector spaces

OK ⊗Z Q ≅K ≅ Q[K ∶Q]

and
OK ⊗Z Q ≅ (Z⊗Z Q)d = Qd

it follows that d = [K ∶ Q] by the fact that finite-dimensional vector spaces are determined
uniquely up to isomorphism by their dimension (K has Q-linearly independent sets of
size d and no larger).

§3.2 The Trace and Norm

To show that OK is a finitely-generated Z-module and generally study its properties we
will frequently exploit the trace and norm on K. In general, let A ⊆ B be an extension of
rings where B is finitely-generated as an A-module.

Definition 3.3. Let α ∈ B and let ϕα ∶ B → B be the A-linear map given by x ↦ x ⋅ α.
The trace of α is

TrB/A(α) = tr(ϕα).

The norm of α is
NB/A(α) = det(ϕα).

We also denote by Pα the characteristic polynomial of ϕα.

Lemma 3.4

If α ∈ OK , then Pα(X) ∈ Z[X]

Proof. Let Pα,0 be the minimal polynomial of α over Q. Then we can write

Pα,0 = det(X − ϕα∣Q(α))

11



Taught by Mark Kisin (Spring 2019) Math 129: Number Fields

since this polynomial is monic of degree [Q(α) ∶ Q] and the minimal polynomial has
this degree and divides it (by Cayley–Hamilton). Recall that Pα = det(X − ϕα∣K). If
v1, . . . , vn is a Q(α)-basis for K where n = [K ∶ Q(α)], then

K = Q(α) ⋅ v1 +⋯ +Q(α) ⋅ vn.

Then ϕα acts on K by acting on each copy of Q(α), so the matrix for ϕα is block-diagonal,
with the diagonal consisting of n identical copies of the matrix for ϕα acting on Q(α) as
a vector space over Q. Since the determinant of a block-diagonal matrix is the product of
the determinants of the blocks, it follows that Pα = Pnα,0 (NB: this shows that the minimal
polynomial and characteristic polynomial are much more tightly related in this case than
in the general theory of finite-dimensional vector spaces). Since α ∈ OK , Lemma 1.6 tells
us that Pα,0 and hence Pα have integer coefficients, as desired.

NB: since the trace of an operator is the Xd−1-coefficient of the characteristic polynomial
and the determinant is the constant coefficient, it follows from our observation that
Pα = Pnα,0 that the trace of α is n times the Xd−1-coefficient of the minimal polynomial
for α; and the norm of α is the n-th power of the constant coefficient of the minimal
polynomial. Moreover, by definition and the multiplicativity of degrees of field extensions,

n = [K ∶ Q(α)] = [K ∶ Q]/d.

We will see these facts in a different light (i.e. without using the characteristic polynomial)
in section.

12
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§4 February 6, 2019

Last class, we showed in Theorem 3.2 that if K is a number field then OK spans K
as a Q-vector space and it is a free abelian group of rank [K ∶ Q] (assuming it is
finitely-generated). The proof that OK is finitely generated as an abelian group relies on
the trace pairing.

§4.1 The Trace Pairing and Dual Subgroup

Definition 4.1. The trace pairing on K is the bilinear form

K ×K →Q

given by
⟨x, y⟩ ∶= TrK/Q(xy).

Checking that the trace pairing is bilinear follows from the general properties of
the trace (it is additive; this is because it is the trace of the matrix corresponding to
multiplication by α).

Lemma 4.2

The trace pairing is nondegenerate, i.e. it identifies K ≅K∨ ∶= HomQ(K,Q).

Proof. We need to review the facts about the duals of vector spaces. If V is a finite-
dimensional vector space over, say, Q, then the dual space of V is defined to be the
vector space HomQ(V,Q), i.e. the set of Q-linear maps from V to Q endowed with the
obvious Q-linear structure. If e1, . . . , en is a basis for V , then the action of any f ∈ V ∨

is determined by its action on the ei’s so one can check that we have a basis e∨1 , . . . , e
∨
n

for V ∨ given by e∨i (ej) = δij [if you haven’t seen this before it is a very useful exercise to
work out why this is a basis for V ∨]. Hence, V and V ∨ have the same dimension (they
are identified, albeit noncanonically).

Recall that a pairing sends a space to its dual via x↦ ⟨−, x⟩, where ⟨−, x⟩ denotes the
element of K∨ taking α to ⟨α,x⟩. Since the dual space of a finite-dimensional vector
space has the same dimension (we just sketched that one can construct a dual basis given
by e∨i (ej) = δij), it suffices to show that this map is injective, i.e. that for all nonzero
x ∈ K, the map ⟨−, x⟩ ∈ K∨ is nonzero, i.e. that for all nonzero x ∈ K there exists an
α ∈K such that TrK/Q(αx) ≠ 0. Since x ≠ 0, we can take α = x−1, and see that

TrK/Q(αx) = TrK/Q(1) = [K ∶ Q] ≠ 0

since the Q-endomorphism of K given by multiplication by 1 corresponds to the identity
matrix, which has [K ∶ Q] 1’s along the diagonal. The fact that this doesn’t vanish in Q
follows from the fact that Q has characteristic zero.

NB: The above lemma actually holds for any finite separable field extension though the
proof cannot be done in the same way if the characteristic divides [K ∶ Q].

The identification K ≅K∨ means that we may regard the elements of K∨ as elements
of K. In particular, it will be useful to consider a Q-basis e1, . . . , en for K, and consider
its dual basis e∨1 , . . . , e

∨
n ∈K∨ ≅K. Observe that

δij = e∨i (ej) = ⟨e∨i , ej⟩ = TrK/Q(e∨i ⋅ ej) (4.1)

13
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where the second equality is by definition of the identification K →K∨ [as the element
e∨i ∈K must be identified with ⟨−, e∨i ⟩ ∈K∨, so the action of e∨i considered as an element
of K∨ must be by pairing with e∨i ].

Definition 4.3. For any (additive) subgroup L ⊂K, the dual group of L is defined to
be

L∨ = {α ∈K ∶ TrK/Q(αx) ∈ Z for all x ∈ L}.
Note that such a dual subgroup can be defined for any subgroup of a vector space with

respect to any nondegenerate bilinear form. Even without a bilinear form on V to relate
it to V vee you can define the dual of a subgroup to be a subgroup of the dual vector
space. In general, the dual of a lattice in a finite-dimensional vector space is a lattice in
the dual space. One can see this using the dual basis:

Lemma 4.4

If L = Ze1 +⋯ +Zen, then
L∨ = Ze∨1 +⋯ +Ze∨n.

Proof. Let β ∈ K. Then we can write β = ∑aie∨i using the dual basis for V ∨ and the
identification V ≅ V ∨ given by the trace pairing. Recall that β ∈ L∨ is equivalent to
TrK/Q(β ⋅ x) ∈ Z for all x ∈ L, which is (using the basis for L) equivalent to

TrK/Q(β ⋅ ei) ∈ Z

for all ei’s. Of course, for any i,

TrK/Q(β ⋅ ei) = TrK/Q (∑aje
∨
j ei) = ai

by (4.1) so β ∈ L∨ if and only if all the ai’s are in Z, which is equivalent to β ∈ Ze∨1+⋯+Ze∨n,
as desired.

§4.2 Finite-Generation of the Ring of Integers

Note that from the definition, if L1 ⊆ L2 are subgroups of K, then L∨2 ⊆ L∨1 (taking dual
subgroups is inclusion-reversing).

Proposition 4.5

Let K be a number field. Then OK is finitely-generated as an abelian group.

Proof. Recall that if e1, . . . , en is a basis for K over Q, then we can scale them by integers
to obtain a basis e′1, . . . , e

′
n for K over Q such that each e′i ∈ OK . Take L ∶= Ze1 +⋯+Zen.

By the previous lemma, the fact that taking dual subgroups is inclusion-reversing, and
the fact that OK is contained in its dual (it is closed under multiplication and any element
of OK has integral trace), we have inclusions

Ze1 +⋯ +Zen ⊆ OK ⊆ O∨K ⊆ (Ze1 +⋯ +Zen)∨ = Ze∨1 +⋯ +Ze∨n.

Hence, OK is stuck between two free abelian groups of rank n, which means it is a
free abelian group of rank n (this is part of the proof of the PID structure theorem;
alternatively one can take the Q-span and look at dimensions). We have finally concluded
that not only is OK finitely generated as an abelian group, but we also have an alternative
proof of the fact that its rank is n = [K ∶ Q]. This proof also tells us that O∨K is a free
abelian group of rank n.

14
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NB: This proof relies heavvily on the fact that the trace pairing is nondegenerate
(definitely true in characteristic zero). But if we take an extension which isn’t separable
then this fails. For example, let K = Fp(x1/p) considered as an extension of Fp.
K has a basis given by 1, x1/p, . . . , x(p−1)/p. The trace form is determined by where it

takes basis vectors. In particular,

TrK/Fp(x
i/p, xj/p) = TrK/Fp(x

(i+j)/p).

If i + j ≠ 0 modulo p, then multiplication by x(i+j)/p permutes the basis with no fixed
points, so the diagonal of the matrix given by multiplication by x(i+j)/p only contains
zeroes. If i+ j = 0 modulo p, then actually x(i+j)/p = x and the trace of x is px = 0, so the
trace is identically zero and thus the trace form is degenerate. That being said, one can
prove by other means that the integral closure of Fp[x1/p] in Fp(x1/p) is finitely-generated
as a module over Fp[x1/p].

§4.3 The Discriminant of a Number Field

Since OK ⊆ O∨K both have rank n = [K ∶ Q], the inclusion has finite index.

Definition 4.6. The discriminant of K is, up to a sign, the index

[O∨K ∶ OK] = ∣O∨K/OK ∣

The actual definition is as follows:

Definition 4.7. Let α1, . . . , αn ∈ OK be a basis for it over Z (i.e. as an abelian group).
The discriminant of K is defined by

DK = det(TrK/Q(αiαj)),

where TrK/Q(αiαj) is the matrix whose (i, j)-entry is TrK/Q(αiαj).

Doesn’t it depend on the choice of basis? The answer is no. It is well-defined (any
basis you choose will result in the same number for the discriminant). We will prove this,
along with the equivalence of the two definitions, next class.

Today, we compute an example.

Example 4.8

Let K = Q(
√
d), d squarefree, be a quadratic number field. If d /≡ 1 (mod 4), then

OK = Z[
√
d] has a basis given by 1,

√
d. So

DK = det [ TrK/Q(d) TrK/Q(
√
d)

TrK/Q(
√
d) TrK/Q(1) ] = det [2d 0

0 2
] = 4d.

If d ≡ 1 (mod 4), then OK = Z[(1 +
√
d)/2] has a basis given by 1, (1 +

√
d)/2. So

DK = det [TrK/Q((1 +
√
d)2/4) (1 +

√
d)/2

(1 +
√
d)/2 1

] = d.

Actually the example is a pretty good result:
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Proposition 4.9

Let K = Q(
√
d) where d is a squarefree integer. Then

DK =
⎧⎪⎪⎨⎪⎪⎩

4d, if d /≡ 1 (mod 4),
d, if d ≡ 1 (mod 4)

.

The following is a preview of things to come; none of it is rigorously jus-
tified but it is meant to give an answer to Forrest’s question “why is the
discriminant useful”: One way in which the discriminant is useful is that it controls
the ramification of primes. One notion of ramification is the ramification of covering
maps (e.g. of Riemann surfaces) in which a covering map is “d-ramified” at a point if it
has fibers (preimages) of size d locally around the point, but only a single point in the
fiber at the point (one example is the polynomial map x ↦ x2 on the Riemann sphere
C ∪ {∞}. Most points have two preimages, except zero and infinity have 1.)

The idea is that number fields should be viewed geometrically in the same way. It
might make a little more sense why this is “geometric” if you know about affine schemes
but we can still formally define the ramification phenomena of a number field. In fact, do
not ask me about affine schemes because I do not know. For every prime p in Z, there
might be many prime ideals q in OK that contain p. Moreover, some more of the ideals

q ⊃ q2 ⊃ q3 ⊃ ⋯

might still be big enough to contain p. When this happens, we say that p ramifies
in K. We will see later that the ideal pOK factors uniquely into prime ideals in OK ,
and containment of ideals is equivalent to divisibility, so this is equivalent to asking
whether a prime factor appears more than once in the factorization of p in OK . The
study of ramification in a number field generates a rich and useful theory which includes
both DK and O∨K . The discriminant completely controls which primes in Z ramify in
OK :

Theorem 4.10

Let K be a number field and p a prime in Z. Then p ramifies in K if and only if
p∣DK

For this reason, one of the most convenient ways to figure out which primes ramify is to
compute DK and then factor it. Similarly, we can take the “inverse of O∨K as a fractional
ideal of K” to get the different ideal in OK . In the same way as the discriminant, the
different ideal controls which primes q in OK are ramified over q ∩Z.
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Recall from last class: let K be a number field. Then we have the complementary module
(last time we called it the “dual subgroup”)

O∨K = {α ∈K ∶ TrK/Q(xy) ∈ Z}.

§5.1 Revisiting Discriminants and the Complementary Module

Last class we stated but did not prove the following equivalent formulation of the
discriminant.

Lemma 5.1

D(α) = [O∨K ∶ OK], where α = (α1, . . . , αn) is a Z-basis for OK .

Before getting to this, we still need to show that the discriminant of a number field is
well-defined. Then we will begin to set up some more theory about the discriminant Let
α1, . . . , αn and β1, . . . , βn be Q-bases for K. Take α,β to be the column vectors with the
bases as entries. Let

D(α,β) = det(TrK/Q(α ⋅ βt)),

so that the discriminant is just equal to D(α,α) where α is a Z-basis for OK .

Lemma 5.2

If M is an n × n matrix with entries in Q, and take α′ =M ⋅ α. Then

D(α′, β) = detM ⋅D(α,β).

Proof. We just compute

D(α′, β) = det(TrK/Q(M ⋅ α ⋅ βt))
= det(MTrK/Q(α ⋅ βt))
= (detM) ⋅ det(TrK/Q(α ⋅ βt)).

The key step is taking M out of the trace. This is allowed because the entries of M are
in Q and the trace is Q-linear (you can write down the details for a small matrix and
see that it works if you want).

Corollary 5.3

If α,β are bases for K, then then up to a sign, D(α,β) depends only on the modules
⊕ni=1Zαi and ⊕ni=1Zβi.

Proof. Let α′1, . . . , α
′
n be a different basis for the same Z-module

Zα1 +⋯ +Zαn.

Then α and α′ are related by an invertible matrix M with integer coefficients, where
M−1 also has integer coefficients (this comes from writing down the fact that each basis
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element can be written as a Z-linear combination of the other basis). Hence, by the
multiplicativity of the determinant, detM = ±1 (in particular it must be a unit in Z). By
Lemma 5.2, it follows that D(α′, β) = ±D(α,β). The same argument holds for the second
argument β, so indeed up to a sign D(α,β) only depends on the Z-spans of α,β.

Corollary 5.4

If α1, . . . , αn is a Z-basis for OK , then the discriminant D(α) does not depend on
the choice of α.

Proof. If there are two bases α,α′ then our work in the proof of Corollary 5.3 tells they
are related by some matrix M with determinant ±1, so Lemma 5.2 yields

D(α′) =D(α′, α′) = (detM)2D(α) =D(α)

as desired.

Corollary 5.4 shows that the “absolute discriminant” DK of the number field K is
well-defined as defined in Definition 4.7

Lemma 5.5

Suppose L = Zα1 +⋯+Zαn has a submodule L′ = Zα′1 +⋯Zα′n where both spanning
sets are bases for K/Q. Then if M is the matrix with integer coefficients such that
α′ =M ⋅ α, then the index of L′ in L is

∣L/L′∣ = [L ∶ L′] = ±detM.

Proof. Changing α to another basis of L doesn’t change either side of the equality
[L ∶ L′] = ±detM, since it multiplies M by a matrix whose determinant is ±1. So, it’s
enough to prove the lemma for any choice of basis for L. From the proof of the Structure
Theorem for Modules over PID (recall from the first section or from Samuel, ch. 1),
we know that there are bases e1, . . . , en ∈ L and f1e1, . . . , fnen ∈ L′ where the fi’s are
integers. So, the index we want to compute is

∣L/L′∣ = ∣e1Z/e1f1Z∣⋯∣enZ/enfnZ∣ =∏ fi = detM

as desired.

Big Brain Donut Proof. We might as well take V to be the Q-vector space given by K
and do this in slightly more generality. Tensoring up by R, we have

V ⊗Q R = Qn ⊗Q R ≅ Rn.

the submodule L′ ⊆ L of V is a lattice in V ⊗Q R. We get a map of donuts

(V ⊗Q R)/L′ → (V ⊗Q R)/L.

The areas of the donuts (i.e. the areas of fundamental parallelotopes of the lattices) are
therefore related via the matrix M, namely by

vol ((V ⊗R)/L′) = [L ∶ L′]vol ((V ⊗R)/L) .

The geometric properties of the determinant tell us that the same equation is true if we
replace [L ∶ L′] with ∣detM∣ so we are done.
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Corollary 5.6

DK = ±[O∨K ∶ OK].

Proof. Recall from Proposition 2.4 and Theorem 3.2 that OK has a Z-basis e1, . . . , en
and therefore by Lemma 4.4 O∨K has a dual basis e∨1 , . . . , e

∨
n satisfying

⟨ei, e∨j ⟩ = TrK/Q(eie∨j ) = δij .

Since OK ⊆ O∨K , the dual basis is related to the basis for OK via

α =M ⋅ α∨.

And we can compute the discriminant

det(Tr(α ⋅ αt)) = det(Tr(M ⋅ α∨ ⋅ αt)) = det(MTr(α∨ ⋅ α)) = detM = ±[O∨K ∶ OK]

from the previous lemma.

§5.2 Linearly Disjoint Fields

Let K,L be number fields, and K ⋅L be their composite. What is OK ⋅L?

Example 5.7

We know OK for K = Q(
√
d). What is OK , where K = Q(

√
d1,

√
d2)?

Definition 5.8. We say that number fields K,L are linearly disjoint if

[K ⋅L ∶ Q] = [K ∶ Q] ⋅ [L ∶ Q],

i.e. if the bound [K ⋅L ∶ Q] ≤ [K ∶ Q] ⋅ [L ∶ Q] is attained with equality.

Note: the composite K ⋅ L is only well-defined because we can embed K and L into a
common algebraic closure Q and take the field generated by them.

Example 5.9

Take K = Q(21/3) and L = Q(21/3 ⋅ ζ3). Both are defined as different subfields of
C, though they are isomorphic (computing the minimal polynomial of generating
elements) as

L ≅K ≅ Q[x]/(x3 − 2).

On the other hand,
L ⋅K = Q(21/3, ζ3)

is the splitting field for x3 − 2 and has degree 6 (you have to check that ζ3 is not in
Q(21/3)). In this case, we see that L,K are not linearly disjoint, and despite the
fact that they are isomorphic, their composite properly contains both of them.

Note that L,K are linearly disjoint if and only if L⊗QK is a field, and in this case it
is isomorphic to L ⋅K via the map L⊗QK → L ⋅K given by multiplication. This map
is always surjective by definition (check this, e.g. by writing down bases). If K ⊗Q L is
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a field, then the map is injective since it is nonzero, so the isomorphism of Q-algebras
yields an equality of dimensions

[L ∶ Q][K ∶ Q] = dimQ(L⊗QK) = dimQ(L ⋅K),

which means K,L are linearly disjoint. Conversely, if K,L are linearly disjoint then the
equality of dimensions tells us the map is injective and we are similarly done.

The following is a useful way to compute rings of integers, and we will prove it next
time:

Proposition 5.10

Let K,L be linearly disjoint number fields and let dK , dK be their discriminants.
Then

OL⋅K ⊆ 1

gcd(dK , dL)
OK ⋅OL

NB: We switched from the notation DK to dK for the discriminant of a number field.
Other notations include ∆K , dK , δK .

Corollary 5.11

If L,K are linearly disjoint and their discriminants are coprime, then OK ⋅L = OK ⋅OL.

Example 5.12

OQ(
√
5,
√
7) = Z [1+

√
5

2 ,
√

7], since dQ(
√
5) = 5 and dQ(

√
7) = 28 are coprime by Propo-

sition 4.9 and we (you) can check that Q(
√

5),Q(
√

7) are linearly disjoint.

Example 5.13

Computing discriminants, the proposition gives

OQ(
√
7,
√
11) ⊆

1

4
Z[

√
7,

√
11].

Actually, (
√

7−
√

11)/2 is in the ring of integers (check this by computing the minimal
polynomial over Z[

√
11]; recall from Proposition 3.1 that if α is integral over B

and B is integral over A then α is integral over A; alternatively one can take the
minimal polynomial and multiply it by its conjugate to get a minimal polynomial
with integer coefficients by Galois theory – the elements of Gal(Q(

√
11)/Q) must

all fix the coefficients so the coefficients are in Q ∩OQ(
√
11) = Z).
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Last time, we showed that the discriminant of a number field is well-defined (it does not
depend on the Z-basis of OK that you use to define it). We also stated a nice result: the
discriminant is equal (up to a sign) to the index [O∨K ∶ OK]. This time, we filled in a
second (donut-related) proof of a lemma related to this fact (the proof we used last time
basically used the structure theorem) and wrote down the proof of the result itself. All
of these are added to the notes from last class.

§6.1 Rings of Integers of Composites of Linearly Disjoint Fields

Proposition 6.1

Let L/K be number fields, and recall we have the trace map TrL/K ∶ L→K. Then
TrL/K(OL) ⊆ OK .

Proof. First we show a general version of the Gauss Lemma:

Lemma 6.2 (Gauss’s Lemma for OK)

If f = gh where f ∈ OK[X] and g, h ∈ K[X] where all three are monic, then
g, h ∈ OK[X].

Proof. Let K̃ be a splitting field for f . If α̃ ∈ K̃ is a root of f , then α̃ is in the integral
closure of OK in K̃. The transitivity of integral closures (see Proposition 3.1) tells us
that α̃ is in the integral closure of Z in K̃ which is OK̃ . So g splits in K̃ and its roots
are a subset of the roots of f ,

g = ∏
α∈S

(X − α) ∈ OK̃[X] ∩K[X] = OK[X]

and the same argument works for f . The fact that OK̃ ∩K = OK comes from the fact

that OK is the integral closure of OK in K̃.

Let α ∈ OK . The trace of α is a coefficient of Pα(X) = detK(X − α∣L). Recall that this
is the [L ∶ K(α)]-th power of the minimal polynomial of α over K. Since α ∈ OK , its
minimal polynomial over K has coefficients in OK which means that its trace is in OK ,
as desired. The fact that Pα,0 ∈ OK comes from Gauss’s lemma: we know Pα,0∣P(α,0)/Q,
and P(α,0)/Q has coefficients in OK , so the same is true of Pα,0.

Suppose K ′/K are number fields, M ⊆ K ′ an OK-module. M has a complementary
module with respect to K:

Definition 6.3. The complementary module of M with respect to K is

M∨K = {α ∈K ′ ∶ TrK′/K(αm) ∈ OK for all m ∈M}

NB: If M is an OK-module, then so is M∨K . Now we have the tools to prove the big
proposition from last class.
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Proposition 6.4

If K,L are linearly disjoint fields, then

OK ⋅L ⊆ 1

gcd(dK , dK)OK ⋅OL.

Proof. Let e1, . . . , en be a Z-basis for OK . Then (recall K ⊗Q L ≅ K ⋅ L is a field and
through this isomorphism we have OK ⋅OL ≅ OK ⊗Z OL; frequently we will interchange
these two notations)

OK ⊗Z OL = e1 ⋅OL +⋯ + en ⋅OL.

So
K ⋅L ≅K ⊗Q L = e1L +⋯ + enL,

i.e. e1, . . . , en is an L-basis for K ⋅L. Let’s compute

(OK ⊗Z OL)∨K = {α ∈ L ⋅K ∶ TrL⋅K/K(αβ) ∈ OK for all β ∈ OL ⊗Z OK}.

For α ∈ L ⋅K, we have

α ∈ (OK ⊗Z OL)∨K ⇐⇒ TrL⋅K/K(αβ) ∈ OK for all β ∈ OL ⊗OK .
⇐⇒ TrL⋅K/K(αβ) ∈ OK for all β ∈ OL

(this equivalence follows from our OL-basis for OK ⊗OL, NB every element of this basis
is in OK). Note that if α = ∑αiei where αi ∈ OL, then

TrL⋅K/K(αβ) = TrL⋅K/K(∑ eiαiβ) =∑ eiTrL⋅K/K(αiβ) =∑ eiTrL/Q(αiβ).

So (using the fact that the ei’s are a Z-basis for OK) all the above is equivalent to

TrL/Q(αiβ) ∈ Z

for all i (for all β ∈ OL), which is equivalent to αi ∈ O∨L for all i. The fact that
TrL⋅K/K = TrL/Q on L comes from recalling that the trace is just the trace of the
multiplication map, which has the same matrix either way.

The computation above amounts to the following:

(OK ⊗OL)∨K = OK ⊗Z O∨L

[because we showed being in the dual is equivalent to all the L-components being in
the dual of OL] We know that OK ⊗OL = OK ⋅OL ⊆ OK ⋅OK . Taking complementary
modules with respect to K, we have

OL⋅K ⊆ O∨KL⋅K ⊆ (OK ⊗OL)∨K = OK ⊗O∨L.

Since a group is always killed by its order, we know that (by Corollary 5.6) dL sends O∨L
to OL which means O∨L ⊆ 1

dL
⋅OL. Applying the whole argument again except switching

the roles of K and L, we get

OK ⋅L ⊆ 1

dL
OK ⋅OL ∩

1

dK
OK ⋅OL

which implies the proposition.
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§7 February 20, 2019

Today Mark Kisin is travelling, so his student Robert Cass is teaching class.

§7.1 Trace, Norm and Discriminant using Embeddings

Though the definitions of the norm and trace we have been using are somewhat more
natural (see Definition 3.3), it’s much more useful to define them in the following way.
Let L/K be an extension of number fields of degree n, and let K be an algebraic closure
of K (or indeed any algebraically closed field containing K). Then the primitive element
theorem tells us L =K[α] for some α ∈ L, so any embedding σ ∶ L→K is determined by
where it sends α. Moreover, it must send α to one of the roots of fα,0 in K (this is a
calculation using the fact that σ is a homomorphism and fα,0(α) = 0). For each root α′

we have an isomorphism
K[α] ≅K[α′] ≅K[x]/(fα,0)

and these are all included in K, so actually we have one embedding of K[α] into K for
each root α′ ∈K of fα,0. This polynomial splits completely since K is algebraically closed
and has characteristic zero, which means there are exactly [L ∶K] distinct embeddings
σ ∶ L→K. One way to define the trace and norm is using sums and products of these
embeddings:

Definition 7.1. Let L/K be an extension of number fields and α ∈ L. The trace of α is

TrL/K(α) ∶= ∑
σ∶L→K

σ(α).

The norm of α is
NL/K(α) ∶= ∏

σ∶L→K
σ(α)

Sometimes when we want to emphasize the fact that K might not be Q we call these
the relative trace and relative norm. We still need to show that this formulation is
equivalent to the one given in Definition 3.3:

Proposition 7.2

Let L/K be an extension of number fields and α ∈ L. Then TrL/K(α) is equal to
the trace of the K-vector space endomorphism of L given by multiplication by α.
The norm NL/K(α) is the same as its determinant.

Proof. This will be a homework problem.

Since we have a new definition of the trace, we can obtain a possibly more convenient
definition of the discriminant.

Lemma 7.3

Let α = (α1, . . . , αn) be a basis for L over K. Then

D(α) = det(σj(αi))2

where σj runs over all n embeddings of L into K.

23



Taught by Mark Kisin (Spring 2019) Math 129: Number Fields

Proof. Just compute

D(α) = det(∑
s

σs(αiαj))

= det(∑
s

σs(αi)σs(αj))

= det((σi(αj))⊺i,j(σi(αj))i,j)
= det(σj(αi))2

by basic properties of the determinant.

Corollary 7.4

Suppose L =K[x] where x ∈ L and x has minimal polynomial f of degree n. Then

D(1, . . . , xn−1) = (−1)
n(n−1)

2 NL/K(f ′(x)).

Proof. Relabelling σi(x) as xi, we can write

det(σi(xj))2 = det(xji )
2.

This is called the Vandermonde determinant. It’s an exercise in permuting rows and
columns of matrices to show that this determinant is

∏
i<j

(xi − xj)2.

[NB this is the discriminant of the polynomial f , since the xi’s are exactly the roots of
f ] We can rewrite this product as

(−1)
n(n−1)

2 ∏
i≠j

(xi − xj) = ±∏
i
∏
j≠i

(xi − xj).

Since the xi’s are just the roots of f , we have (using the product rule)

f ′(X) =∏
i
∏
j≠i

(X − xj).

So, using the fact that xi = σi(x), we know (since f ′ is just a polynomial with coefficients
in K)

σi(f ′(x)) = f ′(xi) =∏
i
∏
j≠i

(xi − xj)

so that from before,

D(α) = (−1)
n(n−1)

2 ∏
i≠j

(xi − xj) = (−1)
n(n−1)

2

n

∏
i=1
σi(f ′(x)) = (−1)

n(n−1)
2 NL/K(f ′(x))

as desired.
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§7.2 Cyclotomic Fields and their Rings of Integers

Let p be an odd prime, and consider the cyclotomic field K = Q(ζp), where ζp denotes
a primitive p-th root of unity. What is [K ∶ Q]?

Lemma 7.5

The minimal polynomial of ζp is Xp−1
X−1 =Xp−1 +⋯ + 1.

Proof. We abuse Eisenstein’s criterion:

Lemma 7.6 (Eisenstein’s criterion)

Let f(x) ∈ Z[x] be monic and given by f(x) = xn + an−1xn−1 +⋯a0. If p∣ai for all i
but p2 does not divide a0, then f is irreducible.

Proof. Suppose f(x) = g(x)h(x). By Gauss’s lemma, we can assume g, h are monic
with integer coefficients. Reducing the coefficients mod p (applying the projection
Z[x]→ Fp[x]) we have

f(x) = xn = g(x)h(x).

Since Fp is a field we know g, h must be (positive) powers of x. This is impossible because
the constant term of f cannot be divisible by p twice.

To show the p-th cyclotomic polynomial is monic it suffices to show that f(x + 1) is
irreducible. Using the binomial theorem,

f(x + 1) = (x + 1)p − 1

x
= x

p + pxp−1 +⋯ + px
x

= xp−1 + pxp−2 +⋯ + p

which satisfies Einenstein’s criterion. Hence, f(x + 1) and thus f(x) is irreducible.

So it is clear that [K ∶ Q] = p − 1.

Proposition 7.7

K is Galois with Galois group Gal(K/Q) ≅ (Z/pZ)×.

Proof. Note that K is generated only by roots of f . Moreover, all the roots of f are
contained in K (the roots of unity are all powers of ζp), so K is a splitting field for f . It
follows that K is a Galois extension of Q.

Let i ∈ (Z/pZ)×. We can send i to the unique automorphism of K that sends ζp to ζip.
This yields the desired isomorphism

(Z/pZ)× → Gal(K/Q),

since it is clearly injective and we know that ∣Gal(K/Q)∣ = [K ∶ Q] = p − 1 by the fact
that K is Galois.

What is the ring of integers of K? Actually it is what you expect.
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Proposition 7.8

The ring of integers of Q(ζp) is OK = Z[ζp].

We are not going to prove this right away; first there will be computations. Fix an
algebraic closure Q/Q. Since [K ∶ Q] = p − 1 there are p − 1 embeddings of K into Q.
The embeddings of ζp are all distinct roots of f , so we can write

f(x) = ∏
σ∶K→Q

(x − σ(ζp)) =
p−1
∏
i=1

(x − ζip).

Actually, f(x) is the characteristic polynomial of the multiplication map by ζp (one way
to see this is to recall that the characteristic polynomial is the [K ∶ Q(ζp)]-th power of
the minimal polynomial, but this power is equal to 1). So (being satisfied with this or
invoking the alternate Definition 7.1 and the homework proof of its equivalence) the trace
of ζp is just the sum of these embeddings,

TrK/Q(ζp) =
p−1
∑
i=1

ζip = −1.

Since raising ζp to a (nonzero mod p) power just permutes the embeddings, we have

TrK/Q(ζip) = −1

for any i ∈ (Z/pZ)×. Similarly, we can compute (using the additivity of the trace)

TrK/Q(1 − ζip) = p.

For the norm, we have a similar formula as the product of the Galois conjugates,

NK/Q(1 − ζip) =
p−1
∏
j=1

(1 − ζjp) = f(1) = p.

Lemma 7.9

Let p ∈ Z and K be as above. Then

(1 − ζp)OK ∩Z = pZ.

Proof. We observe that
p = f(1) ∈ (1 − ζp)OK ∩Z

since f(1) = ∏(1 − ζip) and ζip ∈ OK . Since pZ is a maximal ideal in Z, it follows that
(1 − ζp)OK ∩Z is either Z or pZ.

Moreover, 1− ζp is not a unit (its norm is p ≠ ±1; you should check that something is a
unit iff its norm is a unit in Z). So, (1 − ζp)OK is a proper ideal, i.e. it does not contain
1, which means (1 − ζp)OK ∩Z also does not contain 1. Hence this ideal is equal to pZ
as desired.
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Corollary 7.10

If y ∈ OK , then TrK/Q(y(1 − ζp)) ∈ pZ.

Proof. Writing it as a sum of Galois conjugates,

TrK/Q(y(1 − ζp)) =∑
σ

σ(y)(1 − ζip).

For any i ∈ (Z/pZ)×, we can compute

1 − ζip
1 − ζp

= 1 +⋯ + ζi−1p ∈ OK

which means that the elements 1 − ζip all generate the same ideal (they divide each other
pairwise over OK). Since σ(y) ∈ OK for all σ [it is integral over Z because it satisfies the
same monic polynomial as y; it is in K because y is a Q-linear combination of powers of
ζp, so σ takes it to another such linear combination], we know that this trace is in the
ideal (1 − ζp)OK . From Lemma 7.9, it follows that TrK/Q(y(1 − ζp)) ∈ pZ as desired.

Now we can compute the ring of integers of K.

Proposition 7.11

The ring of integers of K = Q(ζp) is

OK = Z[ζp].

Proof. Let x = a0 + a1ζp +⋯ + ap−2ζp−2p ∈ OK . Then

x(1 − ζp) = a0(1 − ζp) + a1ζp(1 − ζp) +⋯ + ap−2ζp−2p (1 − ζp).

Taking the trace,
TrK/Q(x(1 − ζp)) = a0p.

This is because the positive (and less than p-th) powers of ζp all have the same trace
(they are all primitive p-th roots of unity), so the traces of all of the terms except the
first one vanish. This trace has to be in pZ by Corollary 7.10, so a0 ∈ Z. We can repeat
the same argument on (x− a0)ζ−1p ∈ OK (NB ζ−1p can be written as a positive power of ζp
so this is definitely in OK) to get that all of the ai’s are in Z, which yields the desired
result.

We are interested in the following question: The Galois group of K has order p − 1, so it
has a unique subgroup of index 2 (this is a general fact about cyclic groups) and hence
a quadratic subfield Q(

√
d). What is this subfield? This question has some very nice

applications for number theory but we won’t get to the answer today.
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§8 February 25, 2019

Let p be an odd prime (the choice p = 2 yields ζ2 = −1 so Q(ζ2) = Q is not interesting).
Last class we were looking at the number field K = Q(ζp), and we determined its ring

of integers OK = Z[ζp]. So, OK has a Z-basis 1, . . . , ζp−2p . We also noticed that the
discriminant of such a basis is, up to a sign, equal to NK/Q(f ′(ζp)) where f is the
minimal polynomial for ζp over Q.

Also, recall that the Galois group of Q(ζp)/Q is (Z/pZ)× which we know from algebra
is a cyclic group of order p − 1. When p is odd, it’s a fact from algebra that this group
has exactly one subgroup of index 2, so by Galois theory Q(ζp) has a unique quadratic
subfield. We would like to compute it.

§8.1 Discriminant of Cyclotomic Field

In Corollary 7.4, we can plug in the minimal polynomial for ζp to obtain:

Corollary 8.1

If L = Q(ζp), then
dL = ±pp−2.

Proof. By Proposition 7.11, OL has a Z-basis given by powers of ζp, namely 1, . . . , ζp−2p .
So the discriminant we want to compute is just the discriminant of this tuple. Recall
that the minimal polynomial of ζp is

f(X) = 1 +X +⋯ +Xp−1 = X
p − 1

X − 1
.

Using the product rule on the fact that Xp − 1 = (X − 1)f(X), we have

pXp−1 = f ′(X)(X − 1) + f(X)

and substituting ζp for X yields

f ′(ζp)(ζp − 1) = pζp−1p .

Computing the norm,

NL/Q(f ′(ζp)) = NL/Q (pζ
p−1
p

ζp − 1
) = pp−1

NL/Q(ζp)p−1

NL/Q(ζp − 1) = ±pp−2

from the norms we computed last class [NL/Q(ζp) = 1 and NL/Q(ζp − 1) = p]. From
Corollary 7.4, actually we know

dL = ±NL/Q(f ′(ζp))
= ±pp−2

as desired.
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§8.2 More Facts about the Discriminant

The following makes sense given the analogy between ramification of number fields and
branch points of Riemann surfaces: the discriminant dL controls ramification of OL over
Z, and dK controls ramification of OK over Z. If K ⊆ L, then geometric intuition tells us
that a “branch point” of OK over Z is forced to also be a “branch point” of OL over Z.
Since (we will see) the primes in Z which ramify upstairs in K are exactly those dividing
dK , and those which ramify upstairs in L are exactly those dividing dL, we should expect
from this intuition that dK ∣dL.

That being said, there isn’t anything more than an analogy between branch points of
Riemann surfaces and ramification of primes in number fields:

• “If you proved that ramificaiton of primes in number fields literally had something
to do with Riemann surfaces, you would probably win a Fields medal.”

As usual, for now none of this intuition is rigorously justified; it is just meant to serve as
an inspiring picture:

• “I won’t even bother asking if there are any questions; you are either inspired, or
you are not.”

First, we do a long-overdue lemma on the transitivity of the trace in towers (NB: the
analogous result for norms is also true by the same proof)

Lemma 8.2

Let K ⊂ L ⊂M be fields of characteristic zero, with [M ∶K] <∞. Then for α ∈M ,

TrM/K = TrL/K(TrM/L(α))

Proof. By the homework, the trace is just the sum of the embeddings into an algebraic
closure of the bottom field, so

TrM/K(α) = ∑
σ∶M→K

σ(α).

Each embedding σ of M into K restricts to an embedding τ ∶ L → K. Hence, the
embeddings σ ∶M →K are precisely the embeddings extending each τ ∶ L→K. Such σ
can be viewed as the embeddings of M into an algebraically closed field containing L
(since τ embeds L in a fixed way into K; recall that it only matters that the embeddings
are to an algebraically closed field containing L. This field does not have to be “the
algebraic closure” of L). In other words,

TrM/K(α) = ∑
τ ∶L→K

∑
σ∶M→K

restricting to τ

σ(α) = ∑
τ ∶L→K

τ(TrM/L(α)) = TrL/K TrM/L(α)

as desired.

Using the transitivity of the trace in towers, we can formalize our intuition about
discriminants of extensions of number fields.

Lemma 8.3

Suppose Q ⊆K ⊆ L are number fields. Then dK ∣dL.
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Proof. If α ∈ O∨K and β ∈ OL, then

TrL/Q(αβ) = TrK/Q ○TrL/K(αβ) = TrK/Q(αTrL/K(β))

since α ∈K. Since β ∈ OL, the trace on the inside is in OK by Proposition 6.1, hence the
trace we are interested in is in Z by the fact that α ∈ O∨K . This means that α ∈ O∨L, since
we just showed TrL/Q(αβ) ∈ Z for all β ∈ OL; it follows that O∨K ⊂ O∨L.

Notice that
OL ∩O∨K ⊆ OL ∩K = OK

but OL ∩O∨K also clearly contains OK so in fact OL ∩O∨K = OK . The result is that we
have an inclusion of finite abelian groups

O∨K/OK → O∨L/OL

which tells us that the orders of these groups divide each other, i.e.

[O∨K ∶ OK] ∣ [O∨L ∶ OL].

By Corollary 5.6, this is equivalent to the desired dK ∣ dL.

§8.3 What is the Quadratic Subfield of Q(ζp)?

We can use the machinery of the discriminant to deduce, with great ease and satisfaction,
what the quadratic subfield of Q(ζp) is. For K = Q(

√
d), we know from Proposition 4.9

that dK = d if d ≡ 1 (mod 4) and dK = 4d otherwise. If K is a subfield of Q(ζp), then by
Lemma 8.3 and Corollary 8.1 we must have dK ∣pp−2, so since d is squarefree, we know
d = ±p and d ≡ 1 (mod 4). In fact, these congruences (and the fact that ±p are distinct
modulo 4) show that d = p if p ≡ 1 (mod 4) and d = −p if p ≡ 3 (mod 4).

Alternatively, we can show explicitly that Q(
√
d) ⊆ Q(ζp) by computing Gauss sums.

The goal will be to explicitly write
√±p as a linear combination of powers of ζp. Let’s

define the Legendre symbol in a somewhat more algebraic way (it is clear why this
definition is equivalent to the more elementary one).

Definition 8.4. The Legendre symbol

( ⋅
p
) ∶ Gal(Q(ζp)/Q)→ {±1}

is the unique group homomorphism with kernel H ⊆ Gal(Q(ζp)/Q) equal to the unique
subgroup of index 2.

By definition, we know
√
d is fixed by H. If σ /∈H, then σ(

√
d) = −

√
d. Let

g = ∑
σ∈G

(σ
p
)σ(ζp) ∈ OQ(ζp).

Applying τ ∈ G to both sides and abusing the fact that the square of the Legendre symbol
is 1,

τ(g) = ∑
σ∈G

(σ
p
) τσ(ζp)

= (τ
p
) ∑
σ∈G

(τ
p
)(σ

p
) τσ(ζp)

= (τ
p
) g,
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which means g2 is fixed by τ(g) for all τ ∈ G. By Galois theory, it follows that g2 ∈ Q.
We have

g =
p−1
∑
i=1

( i
p
) ζip

so

g2 = ∑
a,b∈{1,...,p−1}

(a
p
)( b

p
) ζa+bp

writing b = ta, we have

g2 =∑
a,t

(a
p
)(at

p
) ζa+atp =∑

t

( t
p
)∑
a

ζa(1+t)p .

If t ≠ −1, then 1 + t ≠ 0 so a(1 + t) runs over all of (Z/pZ)× and the inside sum is just
TrQ(ζp)/Q(ζp) = −1. If instead t = −1, the inside sum is clearly p − 1. So

g2 = (−1

p
) (p − 1) − ∑

t≠−1
( t
p
)

= (−1

p
)p −∑

t

( t
p
) .

The sum on the right is zero since summing any nontrivial character on a group gives
zero [exercise: if G is a finite group and χ ∶ G→C× is a nontrivial group homomorphism,
then ∑g∈G χ(g) = 0]. Now we have

g2 = (−1

p
)p.

What is sometimes called the “first supplement to the law of quadratic reciprocity” states

that (−1p ) is 1 if and only if p is 1 mod 4 [exercise: prove this fact using the fact that

(Z/pZ)× is cyclic]. So, if p ≡ 1 (mod 4), we get
√
p ∈ Z[ζp], and if p ≡ −1 (mod 4), we

get
√−p ∈ Z[ζp]. From this, we easily recover the description of the unique quadratic

subfield of Q(ζp).

31



Taught by Mark Kisin (Spring 2019) Math 129: Number Fields

§9 February 27, 2019

Today we will start talking about the generalization of unique factorization for number
fields.

§9.1 Dedekind Domains

Definition 9.1. An integral domain A is called a Dedekind domain if it satisfies all
three of the following conditions:

(1) A is Noetherian.

(2) Any nonzero prime ideal in A is maximal.

(3) A is integrally closed in its field of fractions.

Recall the definition of a Noetherian ring :

Definition 9.2. A ring A is called Noetherian if any ascending chain I1 ⊆ I2 ⊆ ⋯ is
eventually stationary.

For example, Z is clearly Noetherian: an ascending chain of ideals is generated by
a sequence of (WLOG nonnegative) integers n1, n2, . . . such that ni+1 ∣ ni which must
clearly be stationary since after any zeroes it is a nonincreasing sequence of positive
integers. Recall, too, the definition of a prime ideal

Definition 9.3. An ideal p ⊆ A is called a prime ideal if ab ∈ p implies a ∈ p or b ∈ p
for all a, b ∈ A.

The following are useful characterizations of prime and maximal ideals:

Lemma 9.4

Let A be a ring. An ideal I ⊆ A is prime if and only if A/I is an integral domain.

Lemma 9.5

Let A be a ring. An ideal I ⊆ A is maximal if and only if A/I is a field.

Not all primes are always maximal. For example, in Z[X], we have a prime ideal p ⋅Z[X]
(check this by modding out and noticing that Fp[X] is an integral domain) which is
properly contained in the proper ideal (p,X). This corresponds to the fact that Z[X]
has Krull dimension higher than 1.

The reason why we are talking about Dedekind domains is because OK is one.

Proposition 9.6

Let K be a number field. Then OK is a Dedekind domain.

Proof. The hard part of this proof is the following lemma:
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Lemma 9.7

If I ⊆ OK is a nonzero ideal, then ∣OK/I ∣ <∞.

Proof. Let α be a nonzero element of I. Set Pα(X) = det(X−α∣OK) where the determinant
is taken using a Z-module basis for OK . Then

0 = Pα(α) = αd + ad−1αd−1 +⋯ ±NK/Q(α).

Rearranging, we have that NK/Q(α) is a Z-linear combination of powers of α, so in fact
n ∶= NK/Q(α) ∈ Z ∩ I. So, we have n ⋅OK ⊆ I, hence a surjection

OK/(n ⋅OK)→ OK/I.

Using the fact that OK is a free Z-module of finite rank, the left hand side is finite, which
forces the same to be true of OK/I.

Now for the rest of the proposition. First, we show that OK is Noetherian. It is isomorphic
as a Z-module to Zm, which we know is a Noetherian Z-module (fact: a direct sum of
Noetherian modules is Noetherian). Any increasing sequence of ideals of OK is certainly
an increasing sequence of Z-submodules, so any such sequence must also be stationary.
This proves the Noetherianness of OK as a ring. Alternatively, we can use Lemma 9.7 to
achieve surjections

OK/I1 → OK/I2 → ⋯

which must eventually be stationary because these rings are all finite.
To show that OK is integrally closed in K, we just apply the transitivity of integral

closures to get that the integral closure of OK in K is the integral closure of Z in K,
which is OK back again.

The most interesting part of the proof is to show that all nonzero primes are maximal.
Let p be a nonzero prime ideal in OK . Lemma 9.7 tells us OK/p is a finite integral
domain via Lemma 9.4. Actually, any finite integral domain is a field [let C be a finite
integral domain, and α ∈ C be nonzero. The map C → C given by multiplication by α
is injective because α is nonzero and C is an integral domain; so actually the map is
surjective and we conclude that α is invertible, hence C is a field]. So, we know OK/p is
a field, hence p is maximal via Lemma 9.5.

Before we see examples, we’d like to state what the general theory is. This is different
from how physics is normally done, where the examples are done regardless of whether
there exists a theory of which they are examples. More quotes from Professor Kisin:

• Once, Mark Kisin was interested in a paper in mathematical physics, but the whole
introduction to the paper was a massive example. So, he emailed the authors asking
them about exactly which vector bundle over which curve the computations were
about. In the end, they had no idea.

• In physics, if whatever you are computing matches what your particle accelerator
says, then you are a winner.
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§9.2 Fractional Ideals and the Factorization Theorem

We are interested in factorization into primes. Let A be a Dedekind domain, K its field
of fractions, and I, J additive subgroups of K. We want to be able to multiply I and J
to get an additive subgroup of K. To do this, we take the subgroup generated by the
products of elements of I and J , i.e.

I ⋅ J = {
n

∑
i=1
αiβi ∶ αi ∈ I, βi ∈K}.

If I, J are A-submodules of K, then I ⋅ J is clearly an A-submodule of K as well.

Definition 9.8. A fractional ideal I ⊆K is a nonzero A-submodule such that d ⋅ I ⊂ A
for some nonzero d ∈ A.

The reason for this expanded definition of an ideal is that we would like to take the
inverse of ideals.

Lemma 9.9

If I, J are fractional ideals, then so are I + J and I ⋅ J .

Proof. There must be d, d′ ∈ A such that d ⋅ I ⊆ A and d′ ⋅ J ⊆ A. It follows from the
definitions that dd′I ⋅ J ⊆ A, and dd′(I + J) ⊆ A.

NB: if I is a fractional ideal of A, then I ⋅A is contained in I since I is an A-module.
But 1 ∈ A, so it also contains I which means I ⋅A = I.

The result of this remark is that the fractional ideals of A form a commutative semigroup:
The multiplication of ideals is commutative and associative (exercise), and they have
an identity element given by the ideal A. It is our goal to show that actually they
form a group. How can we construct the inverse of a fractional ideal? Next class we
will figure this out, and we’ll be able to prove the most important fact about Dedekind
domains:

Theorem 9.10

Any fractional ideal I has a unique inverse I−1, i.e. a unique element satisfying
II−1 = A. There is also a unique factorization

I =∏
p

pνp

where the product runs over all nonzero primes p and all but finitely many of the νp
are zero. If I ′ = ∏p p

ν′p is some different fractional ideal, then I ⊇ I ′ if and only if
νp ≤ ν′p for all p.

One consequence of the last part of the theorem is the following: if I is an ideal in A, then
its factorization into primes has all nonnegative exponents (since A is just the product of
the 0-th power of all the primes). Finally, we can do some examples of factorizations of
ideals into primes.
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Example 9.11

Unique factorization into irreducible elements does not always hold. Here is the
standard example: let K = Q(

√
−5) so OK = Z[

√
−5]. Then

6 = 2 ⋅ 3 = (1 +
√
−5)(1 −

√
−5).

What’s more, all of the elements we have factored this into are irreducible and not
the same up to units. Here’s how you can figure this out: if 1+

√
−5 = ab, then using

the definition of the norm as a product of Galois conjugates,

NK/Q(1 +
√
−5) = 6 = NK/Q(a)NK/Q(b).

It’s also clear from the multiplicativity of the norm and the definition of the norm
in terms of coefficients of minimal polynomials that an element of OK is a unit if
and only if its norm is ±1. Also, since the norm of x + y

√
−5 is x2 + 6y2, it clearly

cannot be 2 or 3. This means that at least one of a or b has norm ±1, which means
at least one is a unit, i.e. 1+

√
−5 is irreducible. The same procedure can be used to

deduce that 1 −
√
−5, 2, and 3 are irreducible. Since 2 and 3 have different norms

that 1 ±
√
−5, we know these factorizations really are into irreducibles and really are

different up to units.

Example 9.12

We can see unique factorization into primes still seems to hold in the ring OK from
the previous example. For example, take the prime ideals

p = (1 +
√
−5,2) = (1 −

√
−5,2)

and
q1 = (1 +

√
−5,3), q2 = (1 −

√
−5,3).

Then [exercise] we can check that pq1 = (1 +
√
−5), pq2 = (1 −

√
−5), (3) = q1q2 and

(2) = p2. This way, the principal ideals from last time factor further into primes and
we do not arrive at a contradiction:

(6) = (2)(3) = (1 +
√
−5)(1 −

√
−5) = p2q1q2.

In general, we can crank the handle to figure out how to factorize in OK .

Example 9.13

OK = Z[
√
−5] = Z[X]/(X2 − 5),

and
OK/2OK ≅ F2[X]/(X2 − 5) ≅ F2[X]/((X + 1)2).

If a prime p contains 2, then we have a surjection

OK/2OK → OK/p

so we decide to try p = (2,X + 1) = (2,1 −
√
−5). The same works for (3).
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Here is a preview: we can take the ideal class group

ClA = {Fractional ideals of A}/{Principal fractional ideals of A}.

It will be a major goal to show that this group is finite and to develop techniques for
computing it (c.f. the Minkowski bound). Moreover, this group is the obstruction to A
having unique factorization into irreducible elements: if the class group is trivial, then A
has unique factorization into irreducibles since it is a PID. In Example 9.12, the ideal
class group has order 2 and is generated by A and p.
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§10 March 4, 2019

§10.1 Factorization in Dedekind Domains

Last time, we had prime ideals

p = (1 +
√
−5,2)

q1 = (1 +
√
−5,3)

q2 = (1 −
√
−5,3)

in the ring of integers of Q(
√
−5). We had factorizations into prime ideals

(2) = p2, (3) = q1q2, (6) = p2q1q2.

If p = (a), then p2 = (a2). So 2 = a2 ⋅ f for some f in the ring of integers, which is
a contradiction [taking norms, N(a)2 divides 4]; so the class group is not trivial (in
particular p is not principal).

Suppose we want to find all factorizations of 21 into irreducibles in Q(
√
−17). To do

this, we need to factorize 3 and 7.
We have

OK = Z[
√
−17] = Z[X]/(X2 + 17).

So
OK/3 ⋅OK = F3[X]/(X2 − 1) = F3[X]/((X + 1)(X − 1)).

From this, we intuitively should expect that 3 has prime factors (3,
√
−17±1), and indeed

we can check by hand that these are prime and that

(3) = (3,
√
−17 + 1)(3,

√
−17 − 1).

In the future we will prove a general result which will allow us to compute ideal factor-
izations in a somewhat broader setting (that of a number ring with a power basis).

Using the same machine,

OK/(7) = F7[X]/(X2 − 4) = F7[X]/((X − 2)(X + 2))

so we expect
(7) = (7,

√
−17 − 2)(7,

√
−17 + 2).

We need to check that these ideals are not principal. Suppose that q1 = (a). Then aq2 = 3
for some q2 ∈ q2. Taking the norm down to Q, we have

9 = N(3) = N(a)N(q2).

Since q2 is a proper ideal, the norm of q2 cannot be a unit. The same holds for (a), so
the norm of both must be ±3. In fact, both have norm 3 because this field is imaginary
quadratic so (you can check that) every element has positive norm. But we can also check
that no element of the ring of integers has norm 3, which means we have a contradiction.
So far, we have factorized (3) and (7) as products of prime ideals which we know are not
principal.

Suppose 21 = a ⋅ b. Then taking norms, we have

32 ⋅ 72 = N(a) ⋅N(b).
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Since 3 and 7 are not the norms of any element, the only possibilities are N(a) = 9,N(b) =
49 or N(a) = N(b) = 21. In the first case, we have 9 = x2 + 17y2, i.e. x = ±3 and y = 0. So
we recover the factorization 21 = 3 ⋅ 7 (which we have to check works). In the second case,
we have

21 = x2 + 17y2,

so x = ±2 and y = ±1 from which we recover the factorization (2 +
√
−17)(2 −

√
−17). In

terms of ideals, this factorization just gives

21 = (q2p2)(q1p1).

The fact that there are only two factorizations into irreducibles comes from the fact that
the class group is Z/4Z. In particular, we can get γ = [p2] = [q1] a generator for the class
group, and γ3 = [p1] = [q2]. This way, the only way p2 can be multiplied by something
to get a principal ideal is by p1 or q2 (hence we can only get two factorizations of (21) as
a product of principal ideals since we showed all these primes are nonprincipal). This
calculation also shows that the class group cannot have size 2: if it did, we could recover
many more factorizations of 21 by pairing the ideals together to be principal.

§10.2 Towards the Factorization Theorem

Proposition 10.1

Let A be a Dedekind domain which is not a field. Then every maximal ideal m ⊂ A
is invertible.

Proof. The obvious candidate for an inverse is the “ideal quotient”

m′ = {x ∈K ∶ x ⋅m ⊆ A}.

It’s easy to see that m′ is a fractional ideal: if 0 ≠ d ∈ m, then d ⋅m′ ⊆ A.
The definition immediately tells us mm′ ⊆ A, so it remains to check the other inclusion.

What’s more, m′ contains A, so
m ⊆ mm′ ⊆ A.

In particular, mm′ is either equal to m or A. In the first case, let x ∈ m′. Then we have

⋯ ⊂ x2 ⋅m ⊂ x ⋅m ⊂ m.

In particular, xn ∈ d−1A where d clears the denominators of m′, so A[x] is a fractional
ideal in K. Since A is Noetherian, A[x] is a finitely-generated A module, which means x
is integral over A. Since A is integrally closed in K, actually x ∈ A. For now, this lets us
conclude that m′ ⊆ A so actually m′ = A.

• At Princeton, there was a speaker who was giving a talk, and he kept describing
his results as: theorem 1, theorem 2, theorem 3 etc. Andrew Wiles was in the
audience, and he said “I’ve only proved two theorems in my whole life”.

Lemma 10.2

If p ⊆ A is prime, and a1, . . . ,an are ideals in A such that a1⋯an ⊆ p, then ai ⊆ p for
some i.
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Proof. Suppose none of them are contained in p. Then there exist xi ∈ ai such that xi /∈ p.
It follows that their product is not in p by the fact that p is prime. This contradicts the
assumption that the product of the ideals is p.

The crucial lemma on which ideal factorization hinges is the following:

Lemma 10.3

Every ideal of A contains a product of nonzero primes

Proof. Let Φ be the set of ideals which do not contain a product of nonzero primes.
Assume for the sake of contradiction that Φ is nonempty. Then since A is Noetherian, Φ
has a maximal element b (one equivalent definition of a Noetherian ring is that every
nonempty set of ideals has a maximal element). Suppose that b is not prime. Then
there are x, y ∈ A such that xy ∈ b and x, y /∈ b. So b +Ax and b +Ay properly contain b.
Since b is maximal in Φ, it follows that b +Ax, b +Ay contain a product of primes. In
particular, their product contains the product of these two products of primes, so the
ideal

(b +Ax)(b +Ay) = b2 + xb + yb + xyA

contains a product of primes. But since xy ∈ b, this ideal is actually contained in b; so
this contradicts the fact that b does not contain a product of primes. From this we can
conclude that Φ is empty, in other words every ideal contains a product of nonzero primes
as desired.

Look at a nonzero element a ∈ m. Then Lemma 10.3 tells us that aA contains a product
of primes p1⋯pn where n is as small as possible. By Lemma 10.2, it follows that WLOG
m ⊇ p1 (NB: m is maximal so it is prime). All primes are maximal, so actually p1 = m.
Let b = p2⋯pn. Then aA cannot contain b (this would contradict the minimality of n).
In particular, there exists an element b ∈ b such that b is not in aA. We have

m ⋅ b ⊆ mb = p1b ⊆ aA.

So mba−1 ⊆ A, i.e. b/a ∈ m′ = A. Finally this means b ∈ aA, which contradicts our choice
of b. This means our original assumption that m′m = m is false, hence m′ is the desired
inverse.
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Today we will finally show the main theorem on Dedekind domains. Last time we already
showed one part of it, namely that the fractional ideals have inverses.

§11.1 Unique Factorization of Ideals in Dedekind Domains

Theorem 11.1

Let A be a Dedekind domain, and b be a fractional ideal. Then b factors uniquely
as a product of (possibly negative) powers of nonzero prime ideals of A.

Proof. First, there exists a nonzero d ∈ A such that db ⊆ A. So we can write

b = db ⋅ (Ad)−1,

so it’s enough to show existence of a factorization into primes in the case where b ⊆ A
(because we could then apply it to Ad and db). NB: the fact that inverses are unique is a
general property of groups (once we have existence, uniqueness is a consequence); this
allows us to notice that the inverse of a product of primes is always the same product
with the exponents negated.

Let Φ be the set of ideals which are not a product of primes. Let a be a maximal
element of Φ. Since a ≠ A, it is contained in some prime p. By Proposition 10.1, there
exists a fractional ideal p′ of A such that pp′ = A. Hence,

a ⋅ p′ ⊆ pp′ = A

Since p′ contains A, we actually know ap′ contains a. In fact, this containment is strict:
if not, then if x ∈ p′, we know x ⋅ a ⊆ a. So we have a descending chain

a ⊇ x ⋅ a ⊇ x2a ⊇ ⋯

Since A is Noetherian, this implies that x is integral over A, hence it is in A since A is
integrally closed in K. So, p′ = A which is a contradiction.

In the end, we have a strict containment

ap′ ⊋ a.

Since a was chosen to be maximal in Φ, we know that ap′ has a prime factorization, and
multiplying by p yields a factorization for a.

The uniqueness of factorizations follows from the existence of inverses. If we have two
factorizations for the same ideal,

∏
p

pn(p) =∏
p

pn(p)
′
.

Multiplying by inverses, this means

∏
p

pn(p)−n(p)
′ = A.

Bringing all the negative exponents to the right, it suffices to show that if

pα1
1 ⋯pαrr = pβ11 ⋯pβnn

where all the exponents are positive, then all the exponents must be equal. Notice that
p1 contains the product of the powers of the qi’s, so (by Lemma 10.3) it is equal to one
of the qi’s. We can proceed inductively to get that the factorizations are the same.
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Corollary 11.2 (“to contain is to divide”)

If I and J are fractional ideals, then I ⊇ J if and only if the exponents in the
factorization of I are bounded by the exponents in the factorization of J .

Proof. I ⊇ J is equivalent to

A ⊇ I−1J =∏
p

pn(p)
′−n(p)

which we showed previously is true if and only if the exponents here are nonnegative.

§11.2 Computing Prime Decompositions in Extensions of Number Fields

Now we give a very useful lemma for computing how a prime splits in extensions of
Q.

Lemma 11.3

Let K be a number field and p a rational prime, such that OK is of the form
Z[α] ≅ Z[X]/(f0,α) for some α ∈ OK . Then

OK/(p ⋅OK) ≅ Fp[X]/(f̄),

and since Fp is a UFD, we have a factorization into irreducible polynomials

f̄ = f̄e11 ⋯f̄enn .

Then
p ⋅OK =∏

i

peii

where pi = (p, fi(α)) where fi is an arbitrary lift of f̄i.

Proof. First, (p, fi(α)) is prime because

OK/pi = Fp[X]/(f̄ , f̄i) = Fp[X]/(f̄i)

which is a field because f̄i is irreducible. Setting I = ∏i p
ei
i , we know I ⊆ (p) because

under the reduction of OK modulo (p), I gets sent to

∏
i

f̄i(α)ei = 0.

Writing

p ⋅OK =∏
i

p
e′i
i ,

we know
p ⋅OK ↦∏ f̄

e′i
i (α)

which must be zero in the quotient by (p). So we must have a divisibility of polynomials
which yields the opposite inequality e′i ≥ ei.

In general, the direct use of this computational technique is limited: When K is not
quadratic, its ring of integers does not necessarily have a power basis.
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§12.1 Splitting of Primes in Cyclotomic Fields

The lemma from last time applies in one other important case, namely the cyclotomic
field Q(ζp) with ring of integers Z[ζp].

Example 12.1

We have
OK = Z[X]/f = Z[Y ]/g(Y )

where f(X) = (Xq − 1)/(X − 1) and g(Y ) = f(Y + 1). We can compute

OK/(p) = Fp[Y ]/Y p−1

which means by the lemma
(p) = (p, ζp − 1)p−1

is the factorization of p into primes in OK . We may check directly that this
factorization is the same as writing

(p) = (ζp − 1)p−1

[one way to see this is to show directly that p is in (ζp − 1)].

All the material above will be on the midterm.

§12.2 The Ideal Norm

Now, we are starting a new topic (the finiteness of the class group and the geometry of
numbers), which will not be tested on the midterm. The geometry of numbers will be
our main tool, and in general when we have objects analogous to the class group (like the
Tate-Shafarevich group of an elliptic curve) the fact that we do not have the geometry of
numbers makes it much harder to prove the finiteness of the group.

Definition 12.2. Let a be an ideal in OK . The norm of a is

N(a) ∶= ∣OK/a∣ .

Proposition 12.3

Let FIK be the group of fractional ideals of K. There exists a homomorphism

N ∶ FIK →Q×

with the following properties:

(i) If a ⊆ OK is an ideal, then N(a) is just the norm of a as an ideal.

(ii) If x is a nonzero element of OK , then N(x ⋅OK) = ∣NK/Q(x)∣.

Proof. By unique factorization, FIK is a free abelian group on the nonzero primes of
OK . So, there is a unique group homomorphism N ∶ FIK →Q× taking p to ∣OK/p∣. To
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prove the first desired property, it suffices to show that

∣OK/ap∣ = ∣OK/a∣∣OK/p∣.

By one of the isomomorphism theorems, it suffices to show that

∣OK/p∣ = ∣a/ap∣

where the quotients are quotients of OK-modules. In fact, a/ap is killed by p so it is an
OK/p-module. So it suffices to show it is one-dimensional as a OK/p-vector space. In
particular, we want to show that the only subspaces of a/ap are zero and itself. Since
the OK-submodules of a containing p and those of a/p are in bijection via the canonical
projection, it suffices to show that the only ideals of OK containing ap and contained in
a are exactly those two ideals. This follows directly from unique factorization (recall the
slogan: to contain is to divide).

Now we are left with the second desired property (the norm of a principal ideal is the
absolute value of the norm of the generator). Let x be a nonzero element of OK . Then
the norm of x is equal to the determinant of the Q-linear operator ϕx ∶K →K given by
multiplication by x.

Lemma 12.4

If ϕ ∶ Zn → Zn is a map of abelian groups with nonzero determinant, then

∣detϕ∣ = ∣Zn/ϕ(Zn)∣.

Proof. We already proved this (see the matrix proof and the big brain donut proof of
Lemma 5.5).

From the lemma, we get
∣NK/Q(x)∣ = ∣OK/xOK ∣

as desired.

§12.3 The Geometry of Numbers and Finiteness of the Class Group

We want to prove that the class number of a number field is finite. The way we’ll do this
is via the Minkowski bound; the idea is the following:

Proposition 12.5

Let K be a number field. There exists a constant c > 0 depending only on K such
that for any fractional ideal b ⊆ OK there exists an x ∈ b with ∣NK/Q(x)∣ ≤ cN(b).

Corollary 12.6

The class group of K is finite.

Proof. The point is that any ideal class in ClK has a representative which is an ideal.
In particular, any fractional ideal I is in the same ideal class as dI where d is chosen to
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clear the denominators of I. If a ⊆ OK is an ideal, then the proposition says that there is
an x ∈ a−1 such that ∣NK/Q(x)∣ ≤ cN(a)−1. This is the same as saying

N(x ⋅ a) ≤ c.

In particular, the ideal class of a is represented by an ideal ⊆ OL (namely x ⋅ a) with
norm at most c. So, it suffices to show that there are only finitely many ideals of a given
norm.

If N(b) = n ∈ Z, then since a finite abelian group is killed by its order, we know
n ⋅OK ⊆ b. If we factorize n ⋅OK , unique factorization into prime ideals tells us there are
only finitely many choices for b. Alternatively, the set of such b is in bijection with the
set of ideals of OK/n ⋅OK , which is finite.

In practice, computing the class group will follow the same lines as the proof: we’ll have
an explicit description of c, and we’ll factor the ideal (n) into primes for all positive
integers n ≤ c. The idea of the geometry of numbers is that we have inclusions

OK ⊆K →K ⊗Q R ≅∏R ×∏C

where the products are over all the real and complex embeddings of K. The reason for
the isomomorphism is that by the primitive element theorem, K = Q[X]/(f) for some
monic irreducible polynomial f ∈ Q[X], and by factoring f into irreducibles over R we
get an isomorphism with ∏iR[X]/fi, which is the same as the desired product (we’ll go
over this in more detail later). Moreover, OK sits inside K as a free Z-module, and when
we embed it in K ⊗Q R we’ll see that any ideal of OK embeds in this tensor product as
a lattice. It’ll be the goal to bound the sizes of points in a fundamental domain of this
lattice.
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Last time we defined the norm N ∶ FIK →Q× a group homomorphism from the group
of fractional ideals of OK to the multiplicative group of Q, and we noticed that for any
x ∈K we have ∣NK/Q(x)∣ = N((x)).

§13.1 Embedding OK as a Discrete Subgroup of Rn

Let K be a number field. We have an embedding

σ ∶ OK →K ⊗Q R = OK ⊗Z R.

By the primitive element theorem, we can write

K ≅ Q[X]/f(X)
for some irreducible f ∈ Q[X]. In R[X], f factors into irreducibles as

f(X) = f1(X)⋯fr1(X)fr1+1(X)⋯fr1+r2(X)
where f1, . . . , fr1 are of degree 1, and the rest are of degree 2. So we have an isomorphism

K ⊗Q R ≅∏R[X]/fi(X) ≅ Rr1 ×Cr2

The embedding σ ∶ OK → Rr1 × Cr2 is given by all the real embeddings on the real
coordinates, and one choice of complex embedding from each conjugate pair on the complex
coordinates (this is fine up to the automorphism of C given by complex conjugation).
Are you happy with this or not? This is like Brexit, you have to choose one or the
other.

Example 13.1

Let K = Q(
√

2). Then r1 = 2 and r2 = 0. The two real embeddings are given by√
2 ↦ ±

√
2. So, the image of OK in R2 is just the lattice spanned by (1,1) and

(
√

2,−
√

2).

Example 13.2

Let K = Q(
√
−1). Then the image of OK = Z[i] in C is given by the usual complex

embedding - it’s the lattice spanned by 1 and i.

Lemma 13.3

σ(OK) ⊆ Rr1 ×Cr2 is discrete.

Proof. If x ∈ OK is nonzero, then NK/Q(x) ∈ Z is nonzero, and it is equal to the product
of τ(x) as τ runs over the embeddings K →C (this includes the “real” embeddings). It
follows that

∣∏
τ

τ(x)∣ ≥ 1,

so there exists a τ such that ∣τ(x)∣ ≥ 1. This means that B(0, 1/2) ∩ σ(OK) = {0}, where
B(0,1/2) is the ball of radius 1/2 around zero under the sup norm. Since σ(OK) is a
subgroup of Rr1 ×Cr2 , it was actually enough to show that zero was isolated (if any
other point was not isolated we could subtract that point from a sequence converging to
it to get a sequence converging to zero, for example).
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There’s a reason why we only take one complex embedding per pair. It’s because we want
to take just enough embeddings so that σ(OK) is not only discrete, but has the same
rank as the dimension of the space it sits inside of. This way, σ(OK) is a lattice in that
vector space. Actually, the rank is the only obstruction to discrete subgroup of Rn being
a lattice in the other sense (being generated over Z by a basis of Rn).

Example 13.4

Q +Q ⋅
√

2,Z +Z ⋅
√

2 ⊆ R are not discrete (exercise). Even though it is isomorphic
to Z2, the second one fails to be discrete because its rank is too big.

Proposition 13.5

Let H ⊆ Rn be a discrete subgroup. Then H is generated as an abelian group by r
linearly independent vectors for some r ≤ n. So H ⊗Z R ≅ Rr →Rn.

Proof. We need a lemma from topology.

Lemma 13.6

A subgroup H ⊆ Rn is discrete if and only if H ∩K is finite for all compact K ⊆ Rn.

Proof. If H is discrete, choose an open set U containing 0 such that H ∩U = {0}. Any
Cauchy sequence {hi} ⊆H must have hi − hj eventually always in U (it’s immediately in
H because H is a group), which means that hi − hj = 0 for sufficiently large i, j i.e. {hi}
is eventually constant and hence converges in H. So, H is closed. It follows that H ∩K
is compact and discrete. The definition of compactness tells us that H ∩K is finite.

In the other direction, suppose H ∩K is finite for any choice of K. Then H ∩B(0, r)
is finite for any r. Since finite sets of points are always isolated, for small enough r′ < r
we know H ∩B(0, r′) = {0} so H is discrete.

Let e = (e1, . . . , er) be a maximal set of elements of H which are R-linearly independent.
Consider the parallelepiped

P = {x ∈ Rn ∶ x = α1e1 +⋯αrer, αi ∈ [0,1]}.

P is compact, so by the lemma P ∩H is finite. We should expect that the elements of
P ∩H generate all of H, since we expect P to be a bunch of copies of a fundamental
parallelogram.

If x ∈ H, then by the maximality of e there are {λi} ∈ R such that x = ∑i λiei. For
j ≥ 1, let

xj ∶= jx −∑[jλi]ei =∑{jλi}ei ∈ P,
i.e. a choice of representative of jx inside P . [here [a] denotes the greatest integer at
most a and {a} denotes the fractional part of a]. Note that xj ∈ P ∩H since H is a group.
Taking j = 1, we get

x = x1 +∑[λi]ei
so every x ∈H is a finite Z-linear combination of elements of P ∩H. Since P ∩H is finite
this means H is finitely generated.

The fact that P ∩H also tells us that there is some j < k such that xk = xj , and thus

(k − j)λi = [kλi] − [jλi]
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for all i which means the λi’s are irrational.
So, H ⊆ ∑Q ⋅ ei, hence H ⊗Z Q = ∑Q ⋅ ei. Since H is finitely generated, there is a

positive integer d such that

d ⋅H ⊆∑Z ⋅ ei ⊆H ⊆∑Q ⋅ ei

which means the rank of H is equal to r ≤ n.

This is a particular example of the theory of lattices in Rn

§13.2 Lattices

Definition 13.7. A lattice H ⊆ Rn is a discrete subgroup of rank n.

What we just proved is essentially the following.

Corollary 13.8

Let H ⊆ Rn be a discrete subgroup. Then the following are equivalent:

(i) H is a lattice.

(ii) H spans Rn over R.

(iii) H ⊗R ≅ Rn.

(iv) Rn/H has finite volume.

Proof. (i) is equivalent to (ii) and (iii) by the proposition. What do we mean by the
volume of Rn/H. Intuitively it’s the volume of the fundamental parallelepiped of H, but
we don’t know yet that it is well-defined. In fact, the volume of Rn/H is well-defined
regardless.

Around the origin 0 ∈ Rn we can take a small enough open set U such that U maps
bijectively onto its image via the projection to Rn/H. We do this by taking an open set
V containing 0 such that V ∩H = {0}, and then taking U = 1

2V . This allows us to write
down the volume of Rn/H by taking vol(π(U)) = vol(U) for an open set U mapping
bijectively onto its image.

Less canonically, we can do it via the volume of a fundamental domain. Let e1, . . . , er
be a Z-basis for H. Choose er+1, . . . , en ∈ Rn such that e1, . . . , en is a basis for Rn. Take
P to be the fundamental domain

P ∶= {∑αiei ∶ 0 ≤ αi < 1 for i = 1, . . . , r}.

If r < n then P has infinite volume and otherwise it clearly has finite volume since it is
bounded. It clearly maps bijectively onto Rn/H so in fact Rn/H has volume equal to
the volume of P , which is finite iff H is a lattice.
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Joe Harris told a story: Ahlfors taught a class and Joe was often the only person there.
Once, Joe showed up 20 minutes late and Ahlfors was there giving the lecture with zero
students.

NB: when the weather starts to get warmer, students always get to class later. But
it’s not warm yet!!

§14.1 The Geometry of Numbers

Suppose H is a lattice, and let Pe be the fundamental domain using a partical basis e of
H. Since the volume of Rn/H is well-defined, we’ve already shown that vol(Pe) does
not depend on e. This is morally the right way to prove it, but there’s a less canonical
way to do it if you want to define the volume as the volume of a fundamental domain
instead.

Lemma 14.1

µ(Pe) depends only on H and not on e.

Proof. If e1, . . . , en and f1, . . . , fn are different Z-bases for H, then the matrix M taking
e to f has determinant ±1 since it is invertible over Z. By standard properties of the
determinant,

µ(Pf) = ∣det(M)∣µ(Pe) = µ(Pe)

as desired.
We’d like to prove this “standard” property of the determinant though. Actually, both

the map M ↦ detM and the map M ↦ µ(Pf)/µ(Pe) satisfy the same universal property:
as maps (Rn)⊗n → R they factor through ∧nRn. So, they differ by a constant factor.
Checking they have the same value on, say, the identity matrix we can be done.

Theorem 14.2 (Minkowski)

Let H ⊆ Rn be a lattice, and S ⊆ Rn be a measurable set such that µ(S) > vol(H).
Then there exist x, y ∈ S such that x ≠ y and x − y ∈H.

Proof. This is the pidgeonhole principle. If π ∶ S → Rn/H is injective, then S maps
bijectively to a subset of Rn/H which therefore has volume equal to µ(S) > vol(H). This
ic a contradiction.

Different proof. Let e1, . . . , en be a Z-basis for H. Then

S = ⊔
h∈H

S ∩ (h + Pe).

By the properties of measure,

µ(S) = ∑
h∈H

µ(S ∩ (h + Pe))

= ∑
h∈H

µ((−h + S) ∩ Pe).
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If the sets (−h + S) ∩ Pe are all disjoint, then the right hand side is at most µ(Pe) which
is a contradiction. So there are distinct h,h′ ∈ H such that −h + S and −h′ + S have a
common element, which means there are distinct x, y ∈ S such that

x − y = h − h′ ≠ 0

and is in H since H is a group. This was the desired conclusion.

The result of this is a very useful result, which is what people usually mean when they
say “Minkowski’s Theorem”

Corollary 14.3

Suppose H ⊆ Rn is a lattice and S ⊆ Rn is a measurable, symmetric and convex. If

(a) µ(S) > 2nvol(H) or

(b) µ(S) ≥ 2nvol(H) and S is compact,

then S contains a nonzero element of H.

Proof. First we do the case where µ(S) > 2nvol(H). Let S′ = 1
2S. Then µ(S′) =

2−nµ(S) > vol(H). The theorem tells us that there are x, y ∈ S′ which differ by an
element of H. In particular, we have a nonzero element of H given by

x − y = 2x − 2y

2
= 2x + (−2y)

2
∈ S

as desired. This proves part (a).
Now consider the case where S is compact. For any ε > 0 we can take the slightly

larger compact, measurable, symmetric, convex set (1 + ε)S and use the fact that
µ((1 + ε)S) > µ(S) ≥ 2nvol(H) to apply part (a) to (1 + ε)S. In particular,

(1 + ε)S ∩ (H ∖ {0}) ≠ ∅.

Each one of these intersections is finite by the compactness of (1 + ε)S. We may write
S ∩ (H ∖ {0}) as the nested intersection

⋂
ε>0

(1 + ε)S ∩ (H ∖ {0}).

A nested intersection of finite (or indeed compact) nonempty sets must be nonempty, so
we are done.
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We can restrict the embedding OK → Rr1 × Cr2 as a lattice to an embedding of an
arbitrary ideal a ⊆ OK . Actually, any such ideal embeds as a sublattice of σ(OK) since
it is a submodule of finite index, and we can compute its volume.

§15.1 Volumes of Sublattices

Proposition 15.1

Let M ⊆K be a submodule of rank n. Then σ(M) ⊆ Rn has

vol(σ(M)) = 2−r2 ∣det(σi(xj))∣

where the xj ’s are a Z-basis for M .

Proof. Since OK spans K, there exists a positive integer d such that d ⋅M ⊆ OK (take the
lcm of the required d for each basis element of M). This means that σ(M) ⊆ d−1σ(OK).
Since σ(OK) is discrete, so is σ(M). It has the right rank (it is a finite index subgroup of
σ(OK)), so σ(M) is a lattice in Rn ≅ Rr1 ×Cr2 ≅ Rr1 ×Rr2 × (iR)r2 . The 2r2 complex
embeddings come in complex conjugate pairs, and we denote them by σr1+1, . . . , σr1+r2
and their conjugates. The basis elements map to

σ(xi) = (σ1(xi), . . . , σr1(xi),
1

2
(σr1+1 + σr1+1)(xi), . . . ,

1

2
(σr1+r2 + σr1+r2)(xi),

1

2i
(σr1+1 − σr1+1)(xi), . . . ,

1

2i
(σr1+r2 − σr1+r2)(xi)).

The volume of σ(M) is the absolute value of the determinant of the matrix whose rows
are the σ(xi)’s. Taking out the factors of 1/(2i) in the last r2 columns, this is equal to
2−r2 times the determinant of the matrix whose rows are

(σ1(xi), . . . , σr1(xi),
1

2
(σr1+1 + σr1+1)(xi), . . . ,

1

2
(σr1+r2 + σr1+r2)(xi),

(σr1+1 − σr1+1)(xi), . . . , (σr1+r2 − σr1+r2)(xi)).

subtracting 1/2 times the last r2 columns from the r2 columns before them, we obtain
the matrix whose rows are

(σ1(xi), . . . , σr1(xi),σr1+1(xi), . . . , σr1+r2(xi),

(σr1+1 − σr1+1)(xi), . . . , (σr1+r2 − σr1+r2)(xi)).

Finally, adding the middle r2 columns back to the last r2 we get the rows σj(xi), as
desired.

Corollary 15.2

If a ⊆ OK is an ideal, then σ(a) is a lattice and

vol(σ(a)) = 2−r2 ∣dk∣1/2N(a).
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Proof. In the case that a = OK , we know from the proposition that the desired volume is
2−r2 ∣dk∣1/2 via the definition of the discriminant (c.f. Lemma 7.3).

In general, σ(a) is a sublattice of σ(OK) by the proposition, and the projection map

Rn/σ(a)→Rn/σ(OK)

is a N(a)-to-one covering map of manifolds, which means vol(a) = N(a)vol(OK) as
desired.

Pedestrian proof. You can use the structure theorem for modules over a PID to show
that if Λ ⊆ Λ′ are lattices, then

vol(Λ)/vol(Λ′) = [Λ ∶ Λ′].

See the proofs of Lemma 5.5.

§15.2 The Minkowski Bound and Finiteness of the Class Group

We may abuse these calculations and the machinery of the geometry of numbers to prove
the finiteness of the class group.

Proposition 15.3

If a ⊆ OK is an ideal, then there exists an x ∈ a such that

∣NK/Q(x)∣ ≤ ( 4

π
)
r2 n!

nn
∣dk∣1/2N(a).

Proof. Let t ∈ R+, and consider the region

Bt = {(y1, . . . , yr1 , z1, . . . , zr2) ∈ Rr1 ×Cr2 ∶∑ ∣yi∣ + 2∑ ∣zi∣ ≤ t},

which is easily seen to satisfy the hypotheses of Minkowski’s theorem. The volume of Bt
is

µ(Bt) = 2r1 (π
4
)
r2 tn

n!
.

Choose t so that
µ(Bt) = 2nvol(σ(a)) = 2n−r2 ∣dk∣1/2N(a),

i.e.
tn = 2n−r1π−r2n!∣dk∣1/2N(a).

So, there exists a nonzero x ∈ a such that x ∈ Bt. Since

∣NK/Q(x)∣ =∏ ∣σi(x)∣ =
r1

∏
i=1

∣σi(x)∣ ⋅
r1+r2
∏

i=r1+1
∣σi(x)∣2,

by AM-GM we know

∣NK/Q(x)∣ ≤ 1

n

⎛
⎝
r1

∑
i=1

∣σi(x)∣ + 2
r1+r2
∑

i=r1+1
∣σi(x)∣

⎞
⎠

so actually the norm satisfies the inequality we wanted it to.

51



Taught by Mark Kisin (Spring 2019) Math 129: Number Fields

Corollary 15.4

Every ideal class in ClK contains an ideal b ⊆ OK such that N(b) ≤ ( 4
π
)r2 n!

nn ∣dk∣
1/2.

Proof. Let c ∈ ClK . Take a ⊆ OK be an ideal with [a] = −c. Take x ∈ a such that
∣NK/Q(x)∣ satisfies the bound from the proposition. The ideal

b = x ⋅ a−1 ⊆ OK

then has norm equal to ∣NK/Q(x)∣ ⋅ N(a)−1 which is indeed at most the Minkowski
bound.

Corollary 15.5

The class group of any number field is finite.

Proof. The Minkowski bound tells us that only finitely many positive integers can be the
norm of an ideal in OK , and since an ideal contains its norm (if n = N(a) then n ⋅OK ⊂ a
since n ∶= ∣OK/a∣), there are finitely many ideals of a given norm. Hence, the class group
is finite.
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Today we will explain how to use the Minkowski bound to compute ideal class groups.

§16.1 Minkowski Bound Computations

Example 16.1

Let K be a quadratic field. The Minkowski bound tells us that any ideal class has a
representative of norm at most (2/π)∣dk∣1/2 if r2 = 1 and otherwise if r1 = 1 then any
ideal class has a representative of norm at most (1/2)∣dK ∣1/2.

Example 16.2

Let K = Q(i). Then the Minkowski bound says that every ideal class has a represen-
tative of norm at most 4/π < 2. Since there is only one ideal of norm 1, namely OK
it follows that the class group is trivial, hence Z[i] is a PID.

Example 16.3

K = Q(
√
−5). The Minkowski bound says that every ideal class has a representative

of norm at most
2

π

√
4 ⋅ 5 < 3.

The only ideal of norm 1 is OK . By the multiplicativity of the norm, it suffices to
find the prime ideals of norm 2. If N(p) has norm 2, then p divides the ideal (2).
We can use the usual method to compute the prime factorization of (2):

(2) = (2,
√
−5 − 1)2.

Hence, the only prime of norm 2 is (2,
√
−5 − 1) which we checked is nonprincipal.

So, this ideal is in a different class from the identity, hence the class group is Z/2Z.

Example 16.4

Let K = Q(
√
−11). The Minkowski bound is

2

π
∣11∣1/2 < 3

so we just need to factorize the ideal (2). It turns out to remain prime in OK as a
result of the fact that X2 −X + 1 is irreducible over F2. So there are no such ideals
of norm 2, hence the class group is trivial.
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Example 16.5

Let K = Q(
√
−17). The Minkowski bound tells us there is a representative of each

ideal class of norm at most 5. So it suffices to find the prime ideals dividing (2), (3),
and (5). The usual procedure gives

(2) = (2,
√
−17 − 1)2 = p

(3) = (3,
√
−17 − 1)(3,

√
−17 + 1) = q1q2

and that (5) remains prime. So, the representatives of ideal classes are restricted to

{OK ,p, q1, q2,p2}.

But p2 is already principal (it is (2)), so we are down to

{OK ,p, q1, q2}.

The class group has order between 1 and 4. NB: p is not principal because if it were
principal then there would be an element of OK whose norm is 2 which we can check
is impossible. Similarly, we may check that q1, q2 are nonprincipal. So the class
group has size 2 or 4 (it can’t have order 3 because p has order 2). To show that the
class group is Z/4Z, we just need to show that there exists an element whose order
is not 1 or 2. So, we just need to show that q21 is not principal. If q21 = (a + b

√
−17)

then we can check by computing norms that a2 + 17b2 = 9, i.e. a = ±3 and b = 0. But
this does not satisfy the desired property since if q21 = (3) then q1 = q2.

• Next time you think you’ve solved a millenium problem, somebody should shoot
you on the spot, so that you think you’ve solved it when you die. When Heegner’s
proof of the fact that there are only finitely many quadratic imaginary fields of
class number 1 was found to be incorrect, he died thinking that he hadn’t solved it.
But Stark later found that the error was of an insignificant nature and Heegner’s
proof works.

Theorem 16.6 (Heegner)

There are finitely many quadratic imaginary fields K with ClK = {1}.

In real quadratic fields, since there is a negative sign in the equation for the norm, it’s
somehow easier for ideals to be principal.

Example 16.7

LetK = Q(
√

7). The Minkowski bound says that every ideal class has a representative
of norm at most 2. In fact 2 factors as

(3 −
√

7)(3 +
√

7)

so all the relevant prime ideals are principal and the class group is trivial.
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Example 16.8

Let K = Q(
√
−23). The Minkowski bound says that every ideal class has a repre-

sentative of norm at most 3. Letting α = (1 +
√
−23)/2, we can factor the relevant

ideals
(2) = (2, α)(2, α − 1) = p1p2

and
(3) = (3, α)(3, α − 1) = q1q2.

We may check that p1, q1 are not principal, but that p1q1 is principal. So

[p1] = −[q1] = [q2]

and
[p2] = −[p1] = [q1].

So the class group is equal, as a set, to

{1, [p1], [p2]}

and since p21 is not principal we are guaranteed that the class group is Z/3Z.
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Today’s class is taught by Lynnelle Ye, a student of Mark Kisin. The main goal will be to
prove that there are only finitely many number fields of a given discriminant. Professor
Kisin said we were used to a certain level of witty comments, which Lynelle says she may
not be able to provide.

§17.1 Bounding the Discriminant

Proposition 17.1

Let K be a number field with [K ∶ Q] = n. Then

∣dK ∣ ≥ π
3
(3π

4
)
n−1

.

Proof. The Minkowski bound guarantees the existence of an integral ideal b ⊆ OK such
that

1 ≤ N(b) ≤ ( 4

π
)
r2 n!

nn
∣dK ∣1/2.

Rearranging, we obtain

∣dK ∣ ≥ (π
4
)
2r2 n2n

(n!)2 ≥ (π
4
)
n n2n

(n!)2 .

This bound grows at least exponentially, with common ratio at least

π

4

(n + 1)2(n+1)
(n + 1)!2

(n!)2
n2n

≥ π
4
(1 + 1

n
)
2n

≥ 3π

4

(the last part is via the binomial theorem), as desired.

Corollary 17.2

If K ≠ Q, then ∣dK ∣ > 1. In other words there is only one number field of discriminant
1.

This corollary can be useful because (via the upcoming connection between the discrimi-
nant and ramification) it shows that Q has no nontrivial unramified extension.

Theorem 17.3

Fix d ∈ N. Then there exist only finitely many number fields K ⊆ C such that
∣dK ∣ = d.

Proof. By the exponential bound in Proposition 17.1, it suffices to show that there are
finitely many number fields of degree n with r1 real embeddings, r2 complex embeddings,
and discriminant d. Define B ⊆ Rr1 ×Cr2 by the following: in case (a), there exists at
least one real embedding. In that case, define

B = {(y1, . . . , yr1 , z1, . . . , zr2) ∈ Rr1 ×Cr2 ∶ y1 ≤ 2n−1 (π
2
)
−r2

∣d∣1/2, ∣yi∣ ≤ 1/2, ∣zi∣ ≤ 1/2}.
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In case (b), there are no real embeddings, and we define instead

B = {(z1, . . . , zr2) ∈ Cr2 ∶ ∣z1 − z1∣ ≤ 2n (π
2
)
1−r2

∣d∣1/2, ∣z1 + z1∣ ≤ 1/2, ∣zi∣ ≤ 1/2}.

We can check that Minkowski’s theorem holds, since µ(B) = 2nvol(σ(OK)). So, there is
some nonzero x ∈ OK such that σ(x) ∈ B. The claim is that K = Q(x). Once we have
proven this, we can use the fact that σi(x) is uniformly bounded for all K. Hence x
satisfies a polynomial of degree n with integers coefficients whose coefficients are uniformly
bounded. So, there are only finitely many x and hence finitely many K.

To show K = Q(x), the following works.

∣NK/Q(x)∣ = ∣∏σi(x)∣ =
r1

∏
i=1

∣σi(x)∣
r1+r2
∏
r1+1

∣σi(x)∣2.

Since all but one of the σi’s have absolute value less than 1, and ∣NK/Q∣ ∈ N, it is
guaranteed that ∣σ1(x)∣ > 1 and all the rest are < 1. Actually in case (b) it’s slightly
different: you get one complex conjugate pair whose magnitudes are greater than 1, and
you need to check from the definition of B in that case that this conjugate pair must
have different values; in particular σ1(x) cannot be real.

Suppose K strictly contains Q(x). Then the map σ1 extends in multiple different ways
from Q(x) to K. This contradicts the fact that σ1 has a different value on x from all
the other embeddings, which means K = Q(x) as desired.

§17.2 The Unit Theorem

The next topic is on the group of units of the ring of integers. It is called Dedekind’s
“Unit Theorem.”

Theorem 17.4 (Dedekind)

As an abelian group, O×K is isomorphic to µK ×Zr1+r2−1, where µK is the group of
roots of unity in K.

The machine that lets us see the structure of the unit group is that of a lattice in a
subspace logarithmic space, times the group of roots of unity. In particular, there is a
homomorphism of abelian groups

L ∶K× →Rr1+r2

given by
x↦ (log ∣σ1(x)∣, . . . , log ∣σr1+r2(x)∣).

To prove the theorem, it will suffice to show that the kernel of L is equal to µK and that
L(O×K) is a lattice in the (r1+r2−1)-dimensional hyperplane W given by ∑ yi+2∑ zi = 0.

We’ve known deep down in our bones that the following lemma is true for a while. It’s
proof is not hard.

Lemma 17.5

An element x ∈ OK is a unit if and only if N(x) = ±1.
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Proof. If x is a unit, then it has an inverse x−1 ∈ OK . The multiplicativity of the norm
says that

N(x)N(x−1) = 1

so N(x) ∈ Z× = {±1}.
In the other direction, suppose that N(x) = ±1. Then x satisfies some integer polyno-

mial of the form
xn + an−1xn−1 +⋯ + x ± 1 = 0

so factoring out an x and moving the ±1 over yields an explicit inverse for x.
Alternatively, the product of the nontrivial Galois conjugates of x is the inverse of x in

K. The Galois conjugates are algebraic integers in Q, as is their product, so the inverse
of x in K is an algebraic integer, i.e. it is in OK .

Alternatively again, N(x) = ±1 means OK/(x) has cardinality 1, so (x) = OK , i.e. x is
a unit.

If x ∈ O×K then taking the log we get 0 = ∑r1i=1 log ∣σi(x)∣ + 2∑r1+r2i=r1+1 log ∣σi(x)∣ so indeed
L(O×K) ⊆W .
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Today’s class is also taught by Lynelle Ye.

§18.1 The Proof of the Unit Theorem

Recall that W is a distinguished hyperplane in logarithmic space Rr1+r2 , and that the
units of OK map into W under the logarithm map L. To prove the unit theorem, we
need to first check two things:

(a) ker(L∣O×K) is finite.

(b) L(O×K) is discrete in W .

The idea is that if B is a bounded set in W and L(x) ∈ B, then all the ∣σi(x)∣’s are
bounded, so σ(x) is in some bounded subset of Rr1 ×Cr2 , which we already know has
finite intersection with σ(OK), so x can take on only finitely many values [alternatively,
x satisfies an integral polynomial with coefficients in a bounded range]. It follows that
the image of L is discrete in W and that, since {0} is bounded, the kernel of L is finite.
In fact, it consists of the group of roots of unity in OK . This is because every element of
the kernel has finite order so it is a root of unity.

It now remains to check that the image of L has full rank in W .

Example 18.1

Let K = Q(
√
d) be a real quadratic field, so that r1 = 2 and r2 = 0. The roots of

unity in K are just ±1. The two real embeddings σ1, σ2 take
√
d→ ±

√
d. Take

Bα,λ = {(x1, x2) ∈ R2 ∶ ∣x1∣ ≤ λ, ∣x2∣ ≤ α/λ}

and note that µ(Bα,λ) = α. Take α so that Minkowski’s theorem applies to Bα,λ and
σ(OK). For all λ, there is a nonzero xλ ∈ Bα,λ ∩ σ(OK). There exist finitely many
possible ideals (xλ) because

1 ≤ ∣N(xλ)∣ ≤ ∣σ1(λ)σ2(λ)∣ = α.

Despite generating only finitely many ideals, this process generates infinitely many
xλ’s. This is because we can keep making the rectangles thin enough to not contain
any of the previous ±xλ’s (NB the second coordinate of xλ must be nonzero since xλ
is nonzero).

It follows that there are infinitely many xλ’s whose ratio is not ±1, hence L(O×K)
has rank at least 1. But r1 + r2 − 1 = 1 so we have shown it is a lattice as desired.

General Proof. It suffices to show that for any nonzero linear map f ∶ W → R we can
find an x ∈ O×K such that f(L(x)) ≠ 0. Let r = r1 + r2 − 1.

For α,λ1, . . . , λr ∈ R+ let λr+1 ∈ R+ be such that

r1

∏
i=1
λi

r1+r2
∏

i=r1+1
λ2i = α

and Bα,λ be defined in the way analogous to in the example, i.e.

Bα,λ ∶= {(y1, . . . , yr1 , z1, . . . , zr2) ∈ Rr1 ×Cr2 ∶ ∣yi∣ ≤ λi, ∣zj ∣ ≤ λj+r1}.
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Taking α to be big enough that Minkowski’s theorem holds, we know that there exists a
nonzero xλ ∈ Bα,λ∩σ(OK). There are only finitely many ideals (xλ), because ∣N(xλ)∣ ≤ α
for all choices of λ. The point of all this is that we want to find infinitely many
f(L(xλ))’s which lie in disjoint intervals. Once we have that, we have infinitely many
xλ’s with different images under f ○ L, which generate only finitely many ideals. So
there are two distinct xλ’s which differ multiplicatively by a unit u. Hence f(L(u)) =
f(L(xλ1)) − f(L(xλ2)) ≠ 0 as desired.

In particular, we already saw that

1 ≤ ∣NK/Q(xλ)∣ =∏ ∣σi(xλ)∣ ≤ α

by definition of xλ. Furthermore, for any i we may check that ∣σi(xλ)∣ ≥ λi
α . In the end,

we have the bounds
λi
α

≤ ∣σi(xλ)∣ ≤ λi

and thus
0 ≤ logλi − log ∣σi(xλ)∣ ≤ logα.

Let f(y) be given by ∑ri=1 ciyi for a given (y1, . . . , yr+1) ∈W (summing over only r of the
coordinates because the projection of W onto the first r coordinates is an isomorphism
by its definition). Then

f(L(xλ)) =
r

∑
i=1
ci log ∣σi(xλ)∣

so from the previous inequality we obtain

∣f(L(xλ)) −
r

∑
i=1
ci logλi∣ ≤

r

∑
i=1

∣ci∣ logα.

Constructing the appropriate λ’s is done in the following way. Take β to be a positive
constant strictly larger than ∑ ∣ci∣ logα. For a given h ∈ N, select the λi’s so that

∑ri=1 ci logλi = 2βh (here it’s crucial that at least one of the ci’s is nonzero, i.e. that f is
nonzero; this also uses the fact that this only sums to r instead of r + 1, so that the λi’s
may all be as large as we want independently of α). Then

∣f(L(xλ)) − 2βh∣ < β,

i.e.
(2h − 1)β < f(L(xλ)) < (2h + 1)β.

This guarantees an infinite set (one for each value of h) of xλ’s for which f(L(xλ)) are
all distinct, which by the previous discussion proves the existence of a unit u ∈ O×K such
that f(L(u)) ≠ 0. This holds for any nonzero linear functional f on W , which means
that L(O×K) must be a lattice (of full rank) in W .
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The Unit theorem tells you the rank of the unit group, but it’s generally a tricky problem
to actually compute a basis for it. Even if you find a subgroup of the unit group with
the correct rank, it’s completely unclear how to check that you have all of them.

§19.1 The Unit Group of a Cyclotomic Field

Example 19.1

In the case K = Q(ζp) where p is an odd prime, there are no real embeddings, so the
rank of O×K is r1 + r2 − 1 = p−3

2 . We have units ui ∶= (ζip − 1)/(ζp − 1) = 1 + ⋯ + ζi−1p .
Moreover,

ui(−ζp−ip ) = ζ
p−i
p − 1

ζp − 1
= up−i

so ui and up−i are related by a torsion element (the root of unity −ζp−ip ). It turns
out (though we won’t prove it) that there is a basis of O×K/(O×K)tors given by

u2, . . . , u(p−1)/2

§19.2 Pell’s Equation

Let d ∈ N be squarefree, and consider the real quadratic field K = Q(
√
d). The units in

OK are the a+b
√
d ∈ OK such that a2−db2 = ±1. The roots of unity in K are just ±1. The

unit theorem (from the fact that there are 2 real embeddings) says that O×K = Z ×Z/2Z.
In particular, there exists a fundamental unit u ∈ O×K such that u generates O×K/{±1},
i.e. every unit is ±1 times a (possibly negative) power of u.

The solutions to Pell’s equation are not exactly the units in K. If d ≡ 1 (mod 4), then
some units might have half-integer coefficients.

If d is not 1 mod 4, then we just look for the smallest solution to a2 − db2 = ±1 to
find the fundamental unit. What do we mean by “smallest” in this case? The answer is
simple: observe that in this case (d > 0), raising a + b

√
d ≠ 1 to a positive power strictly

increases the real coordinate. Hence, a unit that generates the free part of the unit group
(a fundamental unit) is a nontrivial one whose real coordinate is minimal. It’s a finite
computation to compute the smallest integer a ∈ Z such that a2−db2 = ±1 has any integer
solutions not given by (a, b) = (1,0).

Example 19.2

Let d = 7. Then the fundamental unit of Q(
√
d) is w = 8 + 3

√
7.

If d is 1 mod 4 then by the description of OQ(
√
d) from Proposition 1.8, we are finding

integers A,B of the same parity for which A2 − dB2 = ±4.

Example 19.3

Let d = 5. The fundamental unit of Q(
√
d) is then given by 2w = 1 +

√
5.

In general one sees that w3 has integer coefficients (c.f. homework 5), so in Example 19.3,
Z[

√
d]× is generated by w3 (because its index divides three and it is a proper subgroup).
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This gives what is so-far an ad-hoc method of finding the solutions to Pell’s Equation:
you find the smallest solution, and the theory of the unit group tells you the other ones
are all (up to a root of unity) a power of that solution.

§19.3 Factorization of Primes in Extensions

Let L/K be an extension of number fields. If p ⊆ OK is a prime, then p ⋅OL factors
uniquely into primes in L. In fact, the primes qi in the factorization of p in OL lie over p
in the sense that qi ∩OK = p (this is because the intersection is prime and p is maximal).
Recall that this situation is analogous to that of a covering map of topological spaces: we
have a map from the primes of OL to those of OK which takes a prime to its intersection
with OK . The fibers are just the primes that something factors into, and ramification
corresponds to a prime appearing more than once in the factorization.

Definition 19.4. A prime p ⊆ OK is called ramified in L if ei > 1 for some i.

There’s one more important invariant corresponding to a prime lying over another one.

Definition 19.5. Let q be a prime in OL lying over p. The inertial degree of q over p
is

f(q∣p) = [OL/q ∶ OK/p].

It will turn out that ∑q∣p e(q∣p)f(q∣p) = [L ∶ K]. Here, q∣p is convenient notation for
“a prime q ⊆ OL lying over a prime p ⊆ OK”. Indeed, such pairs have the property that
q∣p ⋅OL.

Here are some remarks, only the second of which we will justify in this class.

• Consider OL ⊗ OK over OK . In some way, this allows us to take apart all the
multiple points of the covering map, making sure that every prime splits completely.

• It will turn out that only finitely many primes are ramified.

• If L/K is Galois and abelian, it’s a famous theorem from number theory that all
the ei’s and fi’s are 1 (the prime splits completely) for a proportion of primes
equal to 1/[L ∶K] (to define this rigorously one uses the Dirichlet density).
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§20.1 The Chinese Remainder Theorem and its Consequences

Lemma 20.1 (Sunzi’s “Chinese Remainder” Theorem)

Let a ⊆ OL be an ideal which factors as ∏ qeii . Then

OL/a ≅∏OL/qeii .

Proof. We have projections OL/a → OL/qeii by the factorization (the ideals qeii divide
and thus contain a). We can put these together to get a map of finite sets

OL/a→∏OL/peii

By the multiplicativity of the norm, these have the same size and it suffices to show
that the map is injective. In a Dedekind domain, we know that if ideals a,b are coprime
(according to their factorization) then they are comaximal, since the ideal they generate
must contain, and thus divide both of them. It’s a fact from algebra that this means
that a ∩ b = ab. We can apply this fact to powers of different primes qeii . In particular, it
means that

a =⋂ qeii .

The kernel of our candidate isomorphism is the intersection of all the kernels of the
projections modulo a which is then zero. This proves injectivity, so we have the desired
isomorphism (since it is a map of finite sets).

The Chinese Remainder Theorem is the basis for some intermediate results which will
prove useful in the discussion to come.

Lemma 20.2

Let k be a field and
0→ V1 → V → V2 → 0

be an exact sequence of k-vector spaces commuting with linear maps φi ∶ Vi → Vi and
φ ∶ V → V . Then the trace of φ as a map on V is the sum of the traces of φ1 and φ2.

Proof. By linear algebra, V is isomorphic the direct sum V1 ⊕ V2, and the commutativity
of the diagram means that the map φ ∶ V → V is equal to φ1 on the first coordinate and
φ2 on the second coordinate. In other words, as a matrix it has two blocks along the
diagonal which are φ1 and φ2. So its trace is indeed the sum of the traces.

Lemma 20.3

If q ⊆ OL is a prime, with
qe ⊇ p ⋅OL.

Then for all α ∈ OL,
TrFp(α∣OL/qe) = eTrFp(α∣OL/q).
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Proof. First of all, we have an isomorphism of OL/p-vector spaces pi/pi+1 ≅ OL/p. This
isomorphism commutes with multiplication by any element, so in particular,

TrFp(α∣OL/p) = TrFp(α∣pi/pi+1)

for any i. Note that we have an exact sequence of OL/p-vector spaces

0→ pi−1/pi → OL/pi → OL/pi−1 → 0

with commuting maps all given by multiplication by α. Using this process and inducting,
we get that

TrFp(α∣OL/pe) =
e

∑
i=1

TrFp(α∣pi−1/pi) = eTrFp(α∣OL/p)

as desired.

Lemma 20.4

Let α ∈ OL. Then in Fp,

TrFp(α∣OL/(p)) =∑ ep TrFp(α∣OL/p).

Proof. The result is immediate via Sunzi’s theorem and the previous two results.

§20.2 Ramification via the Different Ideal

We want to show that finitely many primes of K ramify in L. It’s enough to show this
for K = Q because p ramifies in L implies p ∩ Z does (p ∩ Z is the unique prime in Z
which p lies over).

Now we have reduced to the case K = Q, the important fact that we will use is that
OL has a Z-basis (NB: this is not true in general; here we are using the fact that Z is
a PID). Our goal will be to show that the ramification data of the extension L/Q is
contained in an ideal called the different.

Definition 20.5. The different is the ideal in OL given by DL = (O∨L)−1.

Theorem 20.6

Let DL have prime factorization ∏pmp . Then for any p ∈ Z prime, if we have the
factorization p ⋅OL =∏p p

ep , then mp ≥ ep − 1. If p does not divide ep then we have
mp = ep − 1.

Proof. The result we want is equivalent to

DL ⊆ p ⋅OL∏
p∣p

p−1 =∏pep−1

where, for each p such that p does not divide ep, multiplying the right hand side by p
causes the containment to no longer hold.

Multiplying by O∨L, we obtain this is equivalent to

∏
p∣p

p ⊆ p ⋅O∨L,
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where for any p such that p does not divide ep we want to get that removing p from the
LHS makes the equation false. For any ideal I in OL, having I ⊆ p ⋅O∨L is equivalent to
TrL/Q(I) ⊆ p ⋅Z [check this from the definition of the dual module].

If α ∈ L, then the trace of α is the trace of the multiplication map by α on L. Since
OL is a free Z-module, we can write this as the trace of matrix given by the action of α
on an arbitrary Z-basis for OL. Reducing this mod p, if α ∈ OL,

TrL/Q(α) = TrOL/Z(α) ≡ TrFp(α∣OL/(p)) =∑
p∣p
ep TrFp(α∣OL/p) mod p.

where the last equality is by Lemma 20.4 (notice that there is a reduction modulo p
happening in the middle). Setting I =∏p, we have α ∈ I Ô⇒ α ∈ p for all p∣p. So the
multiplication map by α has trace zero on each quotient, which means TrL/Q(α) ∈ pZ.
Thus, we have the desired inclusion of the product of these primes into p times the dual
module. This proves the desired inequality mp ≥ ep − 1. Now it suffices to show that
equality holds unless p∣ep.

Fix q∣p such that p does not divide eq. It suffices to show that ∏p≠q p is not contained
in p ⋅O∨K . In other words, it suffices to find an α ∈∏p≠q p whose trace is nonzero mod p.
But by the Chinese Remainder Theorem, we may select α /∈ q and to be any prescribed
value α̃ modulo q. In particular, again via Lemma 20.4,

TrL/Q(α) ≡∑
p∣p
ep TrFp(α∣OL/p) mod p.

But for all p ≠ q, we have α ∈ p, so all of those traces vanish in Fp. By assumption, eq
does not vanish in Fp. So we are left with

TrL/Q(α) = eq TrFp(α̃∣OL/q).

But (OL/q)/Fp is an extension of finite fields, so its trace down to Fp is not identically
zero (the proof of this is postponed until next class when we will know slightly more
about finite fields; see Corollary 21.4). In particular, we can select α so that α̃ has
nonzero trace, and this guarantees that α has nonzero trace mod p, as desired.

Corollary 20.7

a prime p in Z ramifies in L if and only if there exists a prime on top of it dividing
the different.

Corollary 20.8

Only finitely many primes in K ramify in L.

Proof. If (p) ⊆ Z ramifies in L, then there must exists a prime in L sitting on top of it
dividing the different ideal. But the different only has finitely many divisors, and each
prime in L lies over a unique prime in Q, so there are only finitely ramified primes in
Q. But if a prime in K ramifies, then so does its intersection with Z. And only finitely
many primes in K lie over the same one in Q. So, we can conclude that only finitely
many ideals in K ramify.
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§21.1 More facts about ramification

Recall that we have an inertial degree fp = [OL/p ∶ Fp].

Corollary 21.1

[L ∶ Q] =∑
p∣p
epfp.

Proof. By the Chinese Remainder Theorem,

dimFp OL/p =∑
p

dimOL/pep =∑ epfp

where the last equality is because we saw that

0→ ps−1/ps → OL/ps → OL/ps−1 → 0

is an exact sequence and by induction the dimension of OL/ps over OL/p is s. Hence the
dimension over Fp of OL/pe is e[OL/p ∶ Fp] = efp.

Example 21.2

Let L = Q(ζp), and suppose we want to find the ramified primes in L. We know that

OL = Z[ζp] = Z[X]/(f(X))

where f(X) = (Xp − 1)/(X − 1). Let ` be a rational prime. Then

OL/` = F`[X]/f(X)

and if f factors as a product of powers ei of irreducible fi’s in F` then `⋅OL =∏(`, f i),
and

OL/` =∏O/p
ei
i .

` being unramified is equivalent to OL/` being a product of fields and thus to f
being separable mod `. To check this, we just need to ensure that it shares no roots
with its derivative. In particular,

f(x)(x − 1) = xp − 1

so
f ′(x)(x − 1) + f(x) = pxp−1.

If we plug in a root of f for x, we get that the derivative is indeed nonzero if ` is not
equal to p. So the only ramified prime is p. It factors as

∏(1 − ζip)

which means that (p) is just (1 − ζp)p−1. By our characterization of the different,
this means the different of the cyclotomic field is (1 − ζp)p−2.
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Recall that when L = Q(ζp) we saw that dL = pp−2. So we might expect the discriminant
to have something to do with ramification (in fact it’s common to skip the discussion on
the different ideal entirely; discriminants tend to be somewhat easier to compute).

§21.2 Finite fields

First we need some finite fields review. Let q = pr, and define Fq to be the subset of Fp

consisting of elements fixed by x↦ xq.

Proposition 21.3 (Finite fields review)

Some facts about finite fields.

(i) Fq is a subfield of Fp of degree r over Fp.

(ii) If q1 = pr1 then Fq1 ⊇ Fq iff r∣r1.

(iii) The union of the Fq’s is Fp.

(iv) The Fq1/Fq is a Galois extension with Galois group generated by the Frobenius
automorphism x↦ xq.

Proof. Since iterates of x ↦ xp preserve addition, Fq is clearly a subring of Fp. It is a
field because it is finite (a polynomial has finitely many roots; recall that finite integral
domains are fields).

The backwards direction of (ii) is because Xpr1 is X raised to the pr power r′/r
times (so the inclusion can be checked directly). The opposite direction is for reasons of
dimension: if Fq1 ⊇ Fq we must have [Fq ∶ Q]∣[Fq1 ∶ Q], i.e. r∣r1.

For (iii) Let x be a nonzero element of Fp. Then Fp(x) is a finite extension of Fp

(because Fp is algebraic over Fp by definition of the algebraic closure), so x is in one
of the Fq’s (in particular, all finite fields are embedded in Fp as one of the Fq’s since
splitting fields are unique).

For (iv), since [Fq1 ∶ Fq] = r1/r, it suffices to show that the Frobenius automorphism
has order r1/r in Aut(Fq1/Fq). Suppose that the order of the Frobenius automorphism
was s < r1/r. Then we would have

xp
rs = x

for all x ∈ Fpr1 , in other words we would have Fpr1 ⊆ Fprs which is impossible because of
their dimensions (as rs < r1). This shows that the Frobenius automorphism is indeed
a generator of the automorphism group, which thus has the maximal possible size
r1/r = [Fq1 ∶ Fq], so indeed the extension is Galois.

Corollary 21.4

The trace map TrL/K ∶ L→K of an extension of finite fields is nonzero.

Proof. Since L/K is Galois, all the embeddings of L into K are automorphisms of L/K
(there are exactly [L ∶K] = ∣Gal(L/K)∣ such automorphisms so all the embeddings are
accounted for).

Note that Corollary 21.4 fills in the missing step in Theorem 20.6
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§21.3 Ramification and the Discriminant

Proposition 21.5

N(DL) = ∣dL∣.

Proof. We use a lemma

Lemma 21.6

Let I ⊆ J be fractional ideals of L. Then

∣J/I ∣ = N(I)/N(J).

Proof. Choose f ∈ OL so that fJ ⊆ OL. Then the index we want is the same as ∣fJ/fI ∣.
Then we have

∣OL/fI ∣ = ∣OL/fJ ∣ ⋅ ∣fJ/fI ∣

from which the result follows.

As a result of Lemma 21.6, we may compute

N(DL) = [D−1L ∶ OL] = [O∨L ∶ OL] = dL

where the second equality is due to Lemma 21.6 (∣D−1L /OK ∣ = 1/N(D−1L ) = N(DL)), the
next is by the definition of the different, and the last is by Lemma 7.3.

Corollary 21.7

p ramifies in L if and only if p∣dK .

Proof. p ramifies in L if and only if mp ≥ 1 for some p∣p. Since the ideal norm is
multiplicative, this is equivalent to p dividing the norm of the different.

Corollary 21.8

If L ≠ Q, then some rational prime ramifies in L.
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The splitting of primes in the case where L/K is Galois is much more restrictive.

§22.1 Prime Decomposition in Galois Extensions

Proposition 22.1

Suppose L/K is Galois, and G its Galois group. Then G acts transitively on the
primes in OL lying over a fixed prime p ⊆ OK .

Proof. Let σ ∈ G. Since σ respects polynomials, the image of any element of OL is in
OL. Factoring p in OL, we have

p ⋅OL =∏ qeii

and so
p ⋅OL = σ(p ⋅OL) =∏σ(qi)ei .

So the action of G takes primes lying over p to primes lying over p. It remains to show
transitivity.

Let α ∈ q1 but not in the other primes lying over p. Such an element is guaranteed to
exist by Sunzi’s theorem. We have

∏
σ

σ(α) ∈ OK ∩ q1 = p ⊆ qi

[it is in OK because it is the norm of α ∈ OL. It is in q1 because α is one of the terms].
So some σ takes α to qi. It suffices to show that actually σ takes q1 to qi. Since σ(α) ∈ qi,
it isn’t in qj for any j ≠ i (or else σ−1(σ(α)) = α would be in two different primes). So
actually σ(q1) = qi, and since i was arbitrary this means the action is transitive (the
choice of q1 was also arbitrary and taken without loss of generality).

Corollary 22.2

If L/K is Galois, then for any prime p ⊆ OK , the factorization

p ⋅OL =∏ qeii

with inertial degrees fi has the property that all the fi’s are equal, as are all the ei’s.

Proof. Since the Galois group acts transitively on the primes lying over p, we can apply
σ to the prime factorization of p to get that ei = ej . Moreover, the map σ ∶ OL → OL
gives an isomorphism OL/qi → OL/qj so the inertial degrees are also all the same.

“ The Minkowski bound is definitely written in God’s book. Maybe he improved it, but
it’s definitely in his book.”

“The splitting of primes in Galois extensions is kind of like grilled cheese, but the
Minkowski bound is like much more refined cuisine, such as Bouillabaise”
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§22.2 Decomposition and Inertia Groups

Proposition 22.3

Let L/K be a Galois extension, and qi lying over a prime p. Then

• OL/qi is a Galois extension of OK/p.

• Gq = {σ ∈ Gal(L/K) ∶ σ(q) = q} maps surjectively onto Gal(OL/q/OK/p) via
the canonical map θ.

• Iq ∶= ker θ has order e.

Proof. Let K ′ = LGq be the fixed field under the action of Gq. Let p′ = q ∩OK′ . Then
p′ ⋅OL has q as a prime factor. Since Gq = Gal(L/K ′) permutes the prime factors of
p′ ⋅OL transitively but also sends q to itself, we know that in fact q is the only prime
lying over p′.

p′ ⋅OL = qe
′
.

The inertial degree f ′ is at most f , since

OK/p ⊆ OK′/p′ ⊆ OL/q.

We also know e′ ≤ e by the fact that p ⊆ p′ as well. In fact, equality holds:

∣Gal(L/K)∣ = [L ∶K] = efg

so ∣Gq∣ = ef (for example by the orbit-stabilizer theorem: Gq is the stabilizer of q, which
has orbit of size g). But Gq is the Galois group of L/K ′ so its size is also equal to
e′f ′ = [L ∶K ′]. Hence, e′ = e and f ′ = f . In particular, prime decomposition of p between
K and K ′ is trivial (all the ramification degrees and inertial degrees will be 1). So we
can assume that K =K ′ (in particular proving the statement when K =K ′ implies the
general statement because of what we have just shown).

Let x ∈ OL/q be a primitive element for it over OK/p. Let P ∈ OK[X] be the minimal
polynomial of X. Then

P ∣ ∏
σ∈Gq

(X − σ(x))

We can take the reduction mod p, P (X) ∈ OK/p. Any root of P in OL is of the form
σ(x), so any root of P in OL/q is of the form σ(x) = θ(σ)(x).

Let Q ∈ OK/p[X] be an irreducible factor of P such that Q(x) = 0. The distict roots
of Q all have the form θ(σ)(x). Hence

∣imθ∣ ≥ degQ ≥ f.

But f was already an upper bound on the size of the image of θ, so the extension of
residue fields is Galois (because this produces the maximaul number f of automorphisms)
and θ is surjective. Its image has size f , and ∣Gq∣ = ef so the kernel has order e as
desired.

Corollary 22.4

∣Gq∣ = ef .
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If e = 1, then
Gq → Gal(κ(q)/κ(p))

is an isomorphism where the group on the right is generated by the Frobenius element
Frobq ∶ x↦ x∣κ((p))∣. If p =∏ qi, we know (writing qj = σ(qi))

Gqi = σGqjσ
−1

so if G is Abelian then the Frobenius element depends only on p. Moreover, the Frobenius
element (a.k.a. “Artin symbol”) corresponding to a prime p downstairs is well-defined up
to a conjugacy, so it defines a conjugacy class of the Galois group. This allows us to state
[but not prove in Math 129] an important result from the theory of prime decomposition
in Galois extensions of number fields:

Theorem 22.5 (Chebotarev Density Theorem)

Let L/K be a Galois extension of number fields and C a conjugacy class in Gal(L/K).
Then the set of unramified primes p in OK such that Frobp = C has density
∣C∣/∣Gal(L/K)∣ in the set of all primes of OK .

The statement is easiest to prove where the word “density” replaced with “Dirichlet
density”, but it is still true of the natural density. With C replaced with {1}, the
Chebotarev density theorem implies that the set of primes which split completely has
density 1/∣Gal(L/K)∣ (in particular there are infinitely many).
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Last time, we had L/K a Galois extension of number fields and p an unramified prime in K
(recall all but finitely many have this property). When q∣p, we defined the decomposition
group

Dq ∶= {σ ∈ G ∶ σ(q) = q} ⊆ G

and we showed that the projection Dq → Gal(κ(q)/κ(p)) is surjective with kernal of size
equal to the ramification index. When p is unramified, this is therefore an isomorphism
of finite groups. Since κ(q)/κ(p) is an extension of finite fields, its Galois group is
cyclic and generated by the Frobenius automorphism x ↦ x∣κ(p)∣ = xN(p). It follows
that the decomposition group is cyclic and generated by a distinguished element Frobq

corresponding to that particular generator.

§23.1 The Frobenius element and quadratic reciprocity

Example 23.1

Let L = Q(ζ`) where ` is a rational prime. Then the Frobenius element only depends
on p since the Galois group is Abelian. Moreover, the generator of Gal(κ(q)/κ(p))
is given by raising x to the p-th power. So Gal(L/Q) has a generator Frobp which
descends to the p-th power map on Fp[ζ`]. So, it must be equal to

Frobp(ζ`) = ζp` .

Let K ⊆ K1 ⊆ L be number fields where L/K is Galois, q∣p1∣p primes of L,K1,K, p
unramified in L. Let H = Gal(L/K1) ⊆ G = Gal(L/K).

By the theory, we have Frobenius elements FrobHq ,Frobq in the decomposition groups
Gq and Hq. Recall that

Frobq(x) ≡ xN(p) mod q

and
FrobHq (x) ≡ xN(p1) mod q

so mod q, one is a power of the other (in fact the Frobenius on the smaller extension is
the restriction of the one on the big extension since it is unique). In particular, if p and
p1 are the same then the Frobenius elements have the same action on κ(q).

Let L again be the cyclotomic field Q(ζ`) where ` is an odd prime Since Gal(L/Q) is
the unit group of Z/`, it is cyclic of order ` − 1, and thus has a unique subgroup of index
two. So, there is a unique surjective group homomorphism, the Legendre symbol

( ⋅
`
) ∶ Gal(L/Q)→ {±1}.

The famous result about the Legendre symbol is that it should depend in a simple way
on the residue of the input mod `. This is characterized by Gauss’s quadratic reciprocity
law.
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Theorem 23.2

If p, ` are odd primes, then

(p
`
)( `

p
) = (−1)

p−1
2

`−1
2 .

Moreover, (2
`
) = (−1)(`2−1)/8 and (−1

`
) = (−1)(`−1)/2.

Proof. This proof relies on the existence of Frobenius elements, but we’ll do the easier
parts first.

(−1
`
) = 1 if and only if −1 is a square in (Z/`)∗. But (Z/`)∗ is cyclic of even order, so

there is a generator σ of even order ` − 1. As a result, we know that σ(`−1)/2 is −1 (as
it is not 1 but squares to 1), so it is a perfect square, which means it must be an even
power of the generator. Hence, (` − 1)/2 is even so ` is 1 mod 4.

Let H be the kernel of the Legendre symbol.

Lemma 23.3

For p ≠ `, p a possibly even prime, Frobp ∈ H if and only if p splits completely in
K = Q(ζ`)H = Q(

√
±`).

Proof. Let p1 ⊆ OK be a prime factor of p. Frobp lives in Gal(L/K) and generates the
decomposition subgroup Gq ≅ Gal(κ(q)/κ(p)). In fact, Frobp ∈H if and only if

Frobp ∈H ∩Gq =Hq ≅ Gal(κ(q)/κ(p1)).

Since the Frobenius generates the bigger decomposition group, it must generate the
subgroup Hq if it is in it, so this is equivalent to κ(p1) = κ(p).

Moreover, κ(p1) = κ(p) is equivalent to f(p1∣p) = 1. But the extension is Galois, so
this is equivalent to the inertial degree of any prime in OK over p being 1, and since p is
unramified, this is equivalent to p splitting completely.

We know that Frobp = [p] ∈ (Z/`)∗. p splitting in K is equivalent to (p/`) = 1 by the
lemma. We also know that p splits in K if and only if OK/p ⋅OK is an integral domain.
And OK/p ⋅OK = Fp[X]/(minimal poly. of α) where α is the generator of OK . This is
equivalent to ±` being a quadratic residue mod p [important exercise: show that this is

still true even when ±` is 1 mod 4], i.e. (±`p ) = 1. So,

(p
`
)(±`

p
) = 1.

Since ±` = (−1)(`−1)/2` and because of the law for (−1/p), this is the same as the desired
reciprocity law.

Finally, we want to compute (2/`). From the same arguments as before, (2/p) = 1 if

and only if 2 splits in K. This is equivalent to X2 −X + 1−(±`)
4 being reducible mod 2.

This is equivalent to (1 − (±`))/4 being even, i.e. ` being ±1 mod 8.

This allows you to compute Legendre symbols with great ease and satisfaction.
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Example 23.4

We can compute

( 34

101
) = ( 2

101
)( 17

101
) = −(101

17
) = −( −1

101
) = −1.

Proposition 23.5

An odd prime p is a sum of two squares if and only if p ≡ 1 mod 4.

Proof. If p is 1 mod 4 then −1 is a square mod p and p splits in OK . So

p ⋅OK = p1p2

and since the class group of K = Q(i) is trivial, we know these ideals are principal
with norms multiplying to p2, which means we have x, y ∈ Z such that x2 + y2 = p as
desired.
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§24 May 1, 2019

Today is the last class. We will introduce a new topic as an advertisement for the full
power of algebraic number theory to extend many of our results which hold for a finite
extension K/Q to an arbitrary extension of number fields. This is reminiscent of a quote
from Star Wars Episode VI: Return of the Jedi:

• “Now witness the firepower of this fully armed and operational battle station” –
Emperor Palpatine

(the quote is suggested by me and not Professor Kisin). The power we speak of is provided
by the theory of local fields.

§24.1 Valuation Theory

Let K be a number field and p ⊆ OK be a prime. One useful object is the localization of
OK at p, which yields a simpler object called a discrete valuation ring and allows us to
get rid of the information that has to do with the primes not equal to p.

Definition 24.1. The localization of OK at p is

OK,p ∶= {ab−1 ∶ a ∈ OK , b ∈ OK , b /∈ p}.

From a prime p we also get the p-adic valuation, which is given by the following.

Definition 24.2. The p-adic valuation is the map vp ∶K → Z ∪ {∞} given by vp(x) =
max{i ∶ x ∈ pi}.

Associated with any valuation on a field, we have a valuation ring, which in this case is

O(v) ∶= {x ∈K ∶ v(x) ≥ 0},

which in turns contains the “unique maximal ideal”

m(v) ∶= {x ∈K ∶ v(x) > 0}.

Proposition 24.3 (i) The localization of OK at p is the same as the valuation ring
of K under vp.

(ii) This is a local ring with unique maximal ideal m(v).

(iii) This is a discrete valuation ring. In particular, there is a uniformizing parameter
π ∈ OK,p such that every ideal of OK,p is generated by some power of π.

Proof. By unique factorization, p − p2 is nonempty, so there exists a π ∈ OK with vp(π).
For any ab−1 ∈ OK,p we have

vp(ab−1) = vp(a) + vp(b−1)

but b /∈ p so the second term is zero which means that we have the inclusion

OK,p ⊆ O(v).
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On the other hand, if x ∈ O(v), then since x ∈ K we know x = ab−1 for some a, b ∈ OK .
Its valuation is nonnegative by the definition of the valuation ring, so vp(a) ≥ vp(b).
Multiplying both numerator and denominator by π−vp(b), we get

x = (a ⋅ π−vp(b)) (b ⋅ π−vp(b))
−1
.

The problem is now that the numerator and denominator might not be in OK (their
p-adic valuations are nonnegative but the valuations at some other prime might be
negative). To deal with this, we just multiply both sides by elements of the appropriate
sets pmi − pm+1i , and we have the opposite inclusion. Hence, we may use OK,p and O(v) to
mean the same object.

Let x ∈ O(v) be nonzero and let i = vp(x), so that xπ−i has valuation zero and is
therefore a unit in in O(v). Therefore, every element of O(v) can be written (uniquely

since i determines its valuation) in the form u ⋅ πi where u is a unit.
If I is an ideal in O(v), then we can let i be the minimum of the valuations amongst

elements of I. Choose x ∈ I such that vp(x) = i. Then every element of I is a constant
multiplicative factor away from x, where this factor has nonnegative valuation. This is
equivalent to saying that I is principally generated by x, so we are done.

To take a completion of the ring of integers, one way to do it is using the algebraic
definition of the completion:

Definition 24.4. The completion of the local ring O(v) is

Ô(v) ∶= lim
←
O(v)/mi

(v).

The “inverse limit” here is the subset of ∏m(v) consisting of all sequences (x0, . . .) such
that xi always maps to xi−1 via the canonical projection. Another canonical example of
this is the inverse limit of F [x]/xi, which is the ring of formal power series over F .

The valuation we wrote down is a nonarchimedean valuation, meaning it satisfies the
following formal properties.

Definition 24.5. The map v ∶ K → Z ∪ {∞} is a nonarchimedean valuation if it
satisfies

• v(x) =∞ if and only if x = 0.

• v(xy) = v(x) + v(y)

• v(x + y) ≥ min(v(x), v(y))

From such a valuation, we can obtain an absolute value on K.

Definition 24.6. A nonarchimedian valuation v on K induces a nonarchimedean
absolute value ∣ ⋅ ∣v given by ∣x∣v = q−v(x) for some fixed real constant q > 1.

By the properties of a nonarchimedean valuation, a nonarchimedean absolute value
gives a metric on K, with respect to which we might take a completion as a metric space.
In particular, we denote this completion by Kv, which is endowed with the structure of a
complete topological field. It’s also true that Kv is not only the field of fractions of Ô(v),

but it is generated as a ring by Ô(v) and 1/π.
Let L/K be an extension of number fields, and q∣p a prime upstairs lying over a prime

downstairs. A useful operation is to take completions with respect to these two primes,
and consider the extension of rings

ÔL,q/ÔK,p.
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Suppose p factors in L as
p ⋅OL =∏ qeii .

We may consider the inverse limit

(ÔL)p ∶= lim
←
OL,p/piOL,p

= lim
←
OL,p/∏ q

iej
j

=∏ lim
←
OL,p/(qejj )i

which is indeed just the product of the completions of OL at each qj . Since (OL)p is a
finitely-generated OK,p-module and the bottom one is a DVR and thus a PID, in fact we
have a finitely-generated free OK,p. The same is true of their completions. Hence, Lq/Kp

is a finite extension of complete fields.

Proposition 24.7

If L/K is Galois, then
Gq ≅ Gal(Lq/Kp).

Proof. If σ ∈ G, then it extends to the completion if and only if it is continuous with
respect to the q-adic metric. This is equivalent to sending q to itself, so indeed a σ
extends to the completion if and only if it is in the decomposition group. This means we
have a well-defined injection

Gq → Gal(Lq/Kp)

given by taking the extension of the automorphism. Since these are finite sets, it now
suffices to show that [Lq ∶Kp] = eqfq. For this you just show it for the rank of the ring
of integers (in particular the ring of integers of Kp is a PID so the upstairs ring is a
finitely-generated free module over that ring).
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