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Introduction

These notes are the result of a reading course we did in Spring 2020, generously supervised
by Professor Barry Mazur. During the first month, we read about the general theory of
abelian varieties from Mumford’s book [8]. That material is not present in these notes.
Instead, these notes are about what we read in March, April, and May 2020 about group
schemes, especially finite flat group schemes over an affine base. We started by reading
the expository notes of Voight [17] and Tate’s article [13] in the Cornell–Silverman–Stevens
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volume on Fermat’s last theorem. Then, we read three foundational papers in the field:
Oort–Tate’s classification of group schemes of prime order over certain bases [14], Fontaine’s
bound [4] on the ramification of an extension formed by adjoining points of a finite flat
group scheme (which he used to prove his theorem on nonexistence of abelian varieties of Z,
generalizing an earlier result of Tate), and Tate’s paper [12] on p-divisible groups, which A.
Abbes told us is the paper that gave birth to p-adic Hodge theory. Towards the end of the
process of writing these notes, we came across J. Stix’s useful notes [11], from which many of
our explanations beyond the original source material are taken, especially for the exposition
on p-divisible groups.

Our goal for these notes is not to repeat the arguments in the standard literature on this
topic, although we do a lot of that. Instead, the goal is to explain in detail some of the most
important arguments, filling in missing steps which were not originally obvious to us.

1. Generalities

1.1. Yoneda lemma for group objects. At some point, we only had an ad-hoc way to
prove this for group schemes, but actually it is an easy exercise that holds in general for
group objects in an arbitrary category.

Lemma 1.1. Let C be a small category with finite products and a final object Z, and GrpC
the category of group objects in C. Then for all X ∈ GrpC, the functor of points

hX : C → Set,

namely
A 7→ HomC(A,X)

factors through the forgetful functor Grp→ Set. The resulting functor

Y : GrpC → Func(Cop,Grp)

given by X 7→ hX is fully faithful.

Proof. The group structure on HomC(A,X) is given by the identity element A → Z
ε→ X,

composition law a ◦ b = m ◦ (a× b), and inverse a−1 = i ◦ a. For any morphism d : A→ B,
the induced morphism

hX(d) : HomC(B,X)→ HomC(A,X)

given by precomposition by d is a group homomorphism (an easy consequence of the universal
property of X × X). Combined with the fact that hX is already a functor to Set, this
shows that it can be considered as a functor to Grp instead (one which composes with
the forgetful functor to Set to give the original hX). If f : X → X ′ is a group object
morphism, then Y (f) : hX → hX′ is given on objects by postcomposition by f . That map
f ◦ − : hX(A) → hX′(A) is a group homomorphism because f is a group object morphism,
and by the usual arguments it is clear that Y (f) is a natural transformation of contravariant
functors from C to Grp and that Y is indeed a functor.

It remains to show that Y is fully faithful. The fact that Y is faithful is immediate
from the ordinary Yoneda lemma. In particular, if F,G are in the image of Y so that
F = hX and G = hX′ , and τ : F → G is a natural transformation, then for all A ∈ C,
the group homomorphism τA : HomC(A,X) → HomC(A,X

′) is given as a map of sets by
postcomposition by τX(id), and this is the unique way of writing it in the form f ◦ − for
some fixed morphism f : X → X ′ (this is the Yoneda lemma). To show that Y is full, we
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just need to show that τX(id) : X → X ′ is a homomorphism of group objects (a priori it is
just a morphism in C), so that τA is indeed induced by a morphism in GrpC. To do that,
we need to use the fact that τ is a natural transformation between F and G, not only as
functors to Set but also Grp. In other words, the diagram

hX×X hX

hX′×X′ hX′

m◦−

τ×τ τ

m′◦−

in the category Func(C, Set) commutes. The vertical natural transformation τ × τ : hX×X →
hX′×X′ is defined using the natural isomorphism hX×X ∼= hX × hX (the universal property
of the product). By the ordinary Yoneda lemma, this diagram is obtained by applying the
Yoneda embedding to the diagram

X ×X X

X ′ ×X ′ X ′

m

τX(id)×τX(id) τX(id)

m′

which also commutes (by the Yoneda lemma). This proves that τX(id) is a group object
homomorphism, as desired. �

One special case of Lemma 1.1 is

Corollary 1.2. If two functors Cop → Grp in the image of Y are naturally isomorphic,
then they are represented by group objects in C which are isomorphic as group objects. In
particular, a group object in C is determined up to isomorphism (as a group object) by its
functor of points.

Remark 1.3. Moreover, it is easy to directly recover the group object structure of the group
object corresponding to such a representable functor, if we know X as an object in C and
hX as a functor to Grp.

(1) To recover m : X → X → X, consider it as an element of the group hX(X ×X). By
the definition of the group structure of hX(X ×X) we state earlier in this proof, m
can be recovered as the product in that group of the two canonical projections onto
each copy of X.

(2) To recover i : X → X, consider it as an element of the group hX(X). It can be
recovered by taking the inverse of the identity morphism X → X in that group.

(3) To recover ε : Z → X, consider it as an element of the group hX(Z), where we know
it is the identity element.

This principle also leads to an improvement to Lemma 1.1,

Lemma 1.4. Let F ∈ Func(Cop,Grp) such that Forget ◦ F ∈ Func(Cop, Set) is representable
by X ∈ C. Then there is a unique group object structure on X such that F = Y (X).

Proof. The uniqueness part is taken care of by Lemma 1.1 at least up to isomorphism, and
by Remark 1.3 in terms of equality. It just remains to show that the construction of the
group object morphisms in the remark provide a bona fide group object structure on X, and



4 GROUP SCHEMES

that the functor to Grp induced by that group object agrees with F . For the second one, we
need to check that for a, b ∈ HomC(A,X), we have

a · b = (π1 · π2) ◦ (a× b)
where π1, π2 are the projections X ×X → X. This amounts to the fact that precomposition
by a× b is a group homomorphism

HomC(X ×X,X)→ HomC(A,X),

which is true because of the functoriality of hX : Cop → Grp. Indeed, the fact that this is a
group homomorphism applied to the two morphisms π1, π2 ∈ HomC(X ×X,X) shows that

(π1 · π2) · (a× b) = (π1 · (a× b)) · (π2 · (a× b)) = a · b.
The first one (checking that the structure given in Remark 1.3 yields a bona fide group

scheme structure on X) amounts to the commutativity of some collection of diagrams, which
are mapped under the Yoneda embedding to diagrams in the category Func(Cop, Set) whose
commutativity amounts to the fact that F ∈ Func(Cop,Grp). �

This provides a convenient way of constructing group schemes: by first constructing the
scheme, and then assigning in a functorial way the group structure on the S-points of the
scheme for all schemes S.

This is indicative of a general principle of checking properties on points. For instance, we
have

Lemma 1.5. A group object (X,m, ε, i) ∈ C is commutative if and only if hX(A) is commu-
tative for all A ∈ C.
Proof. One direction is obvious: if X is commutative, then by definition of the group struc-
ture of hX(A), that is commutative also. On the other hand, hX(A) being commutative for
all A means that the diagram

hX×X hX

hX×X hX

m◦−

i◦−

m◦−

in Func(Cop, Set) is commutative, where the left vertical morphism is given by identifying
hX×X ∼= hX × hX and applying i ◦ − to each factor. This diagram is induced under the
Yoneda embedding by

X ×X X

X ×X X

m

i×i i

m

which is commutative as a result. But the commutativity of this diagram is equivalent to X
being a commutative group object. �

So far, we have not used the Yoneda lemma in the form we proved in Lemma 1.1, only the
standard version for functors into Set. Still, Lemma 1.1 will be useful for us, for instance for
writing down isomorphisms between group schemes in terms of their functors of points. On
the other hand, Lemma 1.4 will be useful mostly for specifying group scheme structure on a
given scheme.
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1.2. Direct products, base change, and kernels. Suppose that fiber products exist in
C. Then the category GrpC has finite direct products. In particular, for two group objects
(X,m, ε, i) and (X ′,m′, ε′, i′), there is an obvious group scheme structure on X × X ′ =
X ×Z X ′. For instance, the multiplication morphism

(X ×X ′)× (X ×X ′)→ X ×X ′

is defined using the universal property of X ×X ′ by mapping into the X-ccordinate via the
composition

(X ×X ′)× (X ×X ′) πX×πX−→ X ×X m→ X

and similarly for the X ′-coordinate. The same type of analogy with products of actual
groups can be used to define the inverse and identity morphisms, and it is simple to check
that together they define a group object structure on X × X ′. Under this group object
structure, one can also check as usual that the morphisms X ×X ′ → X and X ×X ′ → X ′

are group object homomorphisms, and that X ×X ′ satisfies the universal property for the
direct product in the category of group objects in C. Also, the morphism m : X ×X → X
can be checked either by direct manipulation with morphisms or by looking at points and
applying Lemma 1.1 to be a homomorphism of group objects.

Now, let S be a scheme, and Sch/S the category of schemes over S. The category of group
objects in this category is the category of S-group schemes. In this setting, for any S-scheme
T and S-group scheme G, it is natural to consider the base change G×S T , which is at least
a T -scheme. Since T is the final object in Sch/T , for any T -scheme T ′, we have a natural
bijection of sets

hG×ST (T ′) ∼= hG(T ).

This means that hG×ST factors through the forgetful functor from Grp, and by Lemma 1.4,
this allows us to put a natural T -group scheme structure on G×S T .

Definition 1.6. The kernel of a morphism of group objects f : G → G′, if it exists, is
a morphism ϕ : H → G characterized by the following universal property: any morphism
X → G such that the composition X → G

f→ G′ equals X → Z
ε′→ G′ factors uniquely

through ϕ.

Kernels of maps of group schemes (and really of group objects in general) are easy to
write down. In particular, the universal property of the kernel is the same as the universal
property of the fiber product

G×G′ Z Z

G G′

ϕ ε′

f

So, we have

Lemma 1.7. If finite fiber products exist in C, then kernels of group-object morphisms exist.

When C = Sch/S, we have Z = S, and G×G′S is an S-group scheme, with ϕ : G×G′S → G
a morphism of S-schemes.

Lemma 1.8. ϕ : G×G′ S → G is a morphism of S-group schemes.
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Proof. ϕ induces a natural transformation of functors to the category of sets hG×G′S → hG.
By Lemma 1.1, it suffices, to check that this is also a natural transformation of functors to
the category of groups, i.e. that it gives group homomorphisms on points. This is easy to
check using the fact that

(G×G′ S)(T ) S(T )

G(T ) G′(T )

ϕ(T ) ε′(T )

f(T )

is a pullback square, and f(T ) is a group homomorphism (and as we have already used,
S(T ) is the set with one element where ε′(T ) maps that element to the identity in the group
G′(T )). �

Taking this analysis to its logical conclusion gives a convenient description of the kernel
as the group-theoretic kernel on points.

Lemma 1.9. For all S-schemes T , ϕ(T ) is injective, and embeds (G ×′G S)(T ) into G(T )
as the kernel of f(T ) : G(T )→ G′(T ).

Proof. Using the standard description of the fiber product of sets and the fact that, we have

(G×′G S)(T ) = {(a, b) ∈ G(T )× S(T ) : (f(T ))(a) = 1}

and ϕ is the canonical projection to G(T ), from which the lemma is clear. �

1.3. Cartier duality. Let R be a noetherian ring and G = SpecA be a commutative affine
R-group scheme, so that A is a commutative Hopf algebra over R. Assume further that G is
finite flat, i.e. that A is a finite flat R-module. Only remembering the R-module structure
of A, the additional Hopf algebra structure consists of

• The ring multiplication morphism A ⊗R A → A, only required to be an R-module
homomorphism.
• The R-algebra structure morphism R→ A, a ring homomorphism
• The comultiplication morphism A→ A⊗R A, an R-algebra homomorphism.
• The inverse morphism A→ A, an R-algebra homomorphism.
• The identity morphism A→ R, an R-algebra homomorphism.

The commutative Hopf algebra structure of A also enforces some properties on these mor-
phisms, of course. Taking the dual A∨ = HomModR(A,R), the five morphisms above dualize
to R-module homomorphisms.

Theorem 1.10. The five dual morphisms provide A∨ with the structure of a commutative
Hopf R-algebra.

Proof. The fact that A is finite and flat over R means it is locally free of finite rank1, so we
have an isomorphism

A∨p ⊗Rp A
∨
p
∼= (Ap ⊗Rp Ap)

∨

1This uses the fact that R is Noetherian: every finitely-generated module over a noetherian ring is
finitely-presented; finitely-presented and flat implies projective; and projective modules over local rings are
free.
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for all prime ideals p in R, given on pure tensors by taking f⊗g to the element of (Ap⊗RpAp)
∨

given on pure tensors by a ⊗ b 7→ f(a)g(b). Commuting the localization with the tensor
products and duals2, we get a local isomorphism for all primes, and thus the map

(A⊗R A)∨ → A∨ ⊗R A∨

given by the same formula as above is an isomorphism (it localizes to an isomorphism at
each prime). The comultiplication morphism A → A ⊗R A dualizes to an R-module homo-
morphism A∨⊗A∨ → A∨. The fact that A is a commutative Hopf algebra implies that this
homomorphism provides A∨ with the structure of a ring without unit. The counit morphism
A→ R dualizes to an R-module homomorphism R→ A∨. The fact that A is a Hopf algebra
implies that this is a ring homomorphism, and thus provides A∨ with R-algebra structure
(and also with a unit element in A∨). The axiom that guarantees this is the commutativity
of the diagram

SpecR× SpecR SpecR G

G×G

ε×ε

∼ ε

m

which dualizes (once in the sense of categories and once in the sense of taking the dual R-
modules) to a diagram which expresses precisely the fact thatR→ A∨ respects multiplication
under the ring structure on A∨ induced by comultiplication. This map also provides a unit
element in A∨ (the image of 1), so together we have shown that dualizing the comultiplication
and counit provides a unital R-algebra structure on A∨. In fact, one can check that this
algebra is also commutative, as a result of the assumption that G is commutative as a
group scheme (the point of this is that the map A∨ ⊗A∨ → A∨ ⊗A∨ that switches the two
coordinates is dual to the coordinate-switching morphism A⊗A→ A⊗A, which corresponds
via Spec to the switching morphism G×G→ G×G, so the commutativity of the diagram

G×G G

G×G

m

m

where the vertical map is the coordinate-switching morphism proves that A∨ is commutative
as a ring ).

The ring multiplication A ⊗R A → A dualizes to a candidate comultiplication morphism
A∨ → A∨ ⊗R A∨; the R-algebra structure morphism R → A dualizes to a candidate counit
morphism A∨ → R; and the coinverse morphism A → A dualizes to a candidate coinverse
morphism A∨ → A∨. One checks directly that these are all ring homomorphisms, and that
they provide bona fide commutative Hopf algebra structure on A∨. Note that the assumption
that G is commutative is needed here also, in order to establish the fact that the coinverse
morphism dualizes to a ring homomorphism (commutativity of G is equivalent to the coin-
verse morphism being a group homomorphism). The commutative Hopf algebra axioms are
obviously true, because the diagrams that express the fact that G is a commutative group
scheme dualize (first in the sense of diagrams involving A, then A∨ as before) to diagrams

2That localization commutes with tensor products is a general fact. It also commutes with taking the
dual, which is okay under our hypotheses because A is finitely-presented over R due to being finitely-generated
and the fact that R is assumed Noetherian.
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expressing what we need, which look exactly the same as the original ones for G except with
G replaced with A∨. For proving that the candidate morphisms are really ring homomor-
phisms, one example is given above already (the one that proves that the dual map R→ A∨

is a ring homomorphism). Here is another example: the candidate counit morphism A∨ → R
is a ring homomorphism because it sends the identity element ε ∈ A∨ to

(ε ◦ (R→ A))(1),

which is 1 because ε : A → R is a ring homomorphism and so is R → A; and because the
commutative diagram

G×G G SpecR

SpecR× SpecR

m

∼

proves the multiplicativity. The candidate coinverse morphism A∨ → A∨ is a ring homo-
morphism because it sends the identity ε ∈ A∨ to ε ◦ (A → A), which is again ε because ε
is the identity element when considered as a SpecR-point of G, and composition with the
inverse morphism takes the identity element to itself; the multiplicativity comes from the
commutativity of the diagram

G×G G

G×G G

i×i

m

i

m

(this is the second place where we use the fact that G is commutative; one way to see this
is equivalent to the commutativity of G is to use Lemma 1.5). Finally, the fact that the
candidate comultiplication morphism A∨ → A∨ ⊗A∨ is a ring homomorphism is due to the
fact that it takes the identity element ε to (ε◦(A⊗A→ A), which is ε⊗ε because A⊗A→ A
corresponds under Spec to the diagonal map G→ G×G. The multiplicativity comes from
the commutativity of the diagram

G×G (G×G)× (G×G)

G G×G

m

∆×∆

mG×G

∆

which is tautological. �

So now we have access to a new affine R-group scheme G∨ which as a scheme is SpecA∨,
where A∨ has the R-algebra structure described in Theorem 1.10 (the group object structure
is given by the three Hopf algebra structure morphisms also described in Theorem 1.10). This
group scheme G∨ is dual to G in the following sense:

Theorem 1.11 (Cartier duality). Let G = SpecA be a finite flat affine commutative group
scheme over a Noetherian ring R. The functors AlgR → Grp given by hG∨ and

HomAffGrpSchR
(G×R Spec−,Gm,R ×R Spec−)

are naturally isomorphic.
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Proof. The functor
HomAffGrpSchR

(G×R Spec−,Gm,R ×R Spec−)

takes an R-algebra S to the group
HomAffGrpSchR

(G×R SpecS,Gm,R ×R SpecS).

We haven’t justified that this really is a functor. First, the group structure on this hom set
is induced by the group structure on the G ×R SpecS-points of Gm,R ×R SpecS = Gm,S

(this equality is easily checked by the definition of the group-scheme structure of the base
change in the remarks at the beginning of Section 1.2). Indeed, multiplying two group-object
morphisms always results in a group-object morphism, since Gm,S is always commutative.
The functor is given on morphisms by taking a map of R-algebras S ′ → S to the group
homomorphism
HomGrpSchS(G×R SpecS,Gm,R ×R SpecS)→ HomGrpSchS′

(G×R SpecS ′,Gm,R ×R SpecS ′)

given by applying the functor − ×S SpecS ′. One needs to check that on these sets of
morphisms, −×S SpecS ′ indeed takes S-group scheme homs to S ′-group scheme homs and is
a group homomorphism (the rest of the statement that this is an actual functor is obvious).
Without loss of generality, we may assume R = S. One easy way to do both of these is
to look at points: By the Yoneda lemma, it suffices to show that f × SpecS ′ is a group
homomorphism on points, when f is, and that on points it takes pointwise products to
pointwise products. Both of these are obvious by the commutativity of the diagram

G(T ) Gm(T )

(G×S SpecS ′)(T ) Gm,S′(T )

f(T )

(f×S′)(T )

For all S ′-schemes T . At least now we have verified (more or less) that the objects in the
statement in the theorem are well-defined. It remains to show that for all R-algebras S, we
have a natural-in-S isomorphism

HomAlgR(A∨, S) ∼= HomHopfAlgS(S[T, T−1], A⊗R S).

First, we make the left hand side nicer by noticing that there is a natural isomorphism of
S-algebras

A∨ ⊗R S ∼= (A⊗ S)∨,

where the S-algebra structure of the right hand side comes from the natural finite flat S-Hopf
algebra structure on A ⊗ S (the dual on the left hand side is over R, and on the right it is
over S). We arrive at this isomorphism by starting with the natural extension-restriction
adjunction

(A⊗ S)∨ := HomModS(A⊗ S, S) ∼= HomModR(A, S),

then (abusing the Noetherian hypothesis on R once again to commute localizations with
homs and also see that A is locally free) observing that the natural map

HomModR(A,R)⊗R S → HomModR(A, S)

localizes at each prime p of R to an isomorphism and is therefore an isomorphism itself.
Then one checks directly that the resulting bijection

A∨ ⊗R S → (A⊗ S)∨,
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which we know is given by f ⊗ s 7→ [a ⊗ s′ 7→ ss′f(a)] is a homomorphism of not only
R-modules, but also S-algebras (using the definition of the algebra structure in terms of the
Hopf algebra structure of A). As a result of the fact that the tensor product over R is the
coproduct in the category of R-algebras, we have a natural isomorphism

HomAlgR(A∨ ⊗R S, S) ∼= HomAlgR(A∨, S)× HomAlgR(S, S),

and on the right hand side the homs which are furthermore S-algebra homomorphisms are
identified with those where the second coordinate is the identity morphism. Hence, we have
natural isomorphisms

HomAlgS((A⊗R S)∨, S) ∼= HomAlgS(A∨ ⊗R S, S) ∼= HomAlgR(A∨, S)

and therefore the statement we are looking for is equivalent to

HomAlgS((A⊗R S)∨, S) ∼= HomHopfAlgS(S[T, T−1], A⊗R S).

The key point is that the only Hopf algebra appearing here is A⊗RS, so we can assume that
S = R for now and think later about why the isomorphism is natural. The right hand side
is naturally identified with the set of units a ∈ A× such that the R-algebra homomorphism
R[T, T−1] → A given by T 7→ a is moreover a Hopf algebra morphism. This condition is
equivalent to the commutativity of the diagram

Gm ×Gm G×G

Gm G

and thus also to the commutativity of

R[T1, T
−1
1 , T2, T

−1
2 ] A⊗ A

R[T, T−1] A

T1 7→a⊗1,T2 7→1⊗a

T 7→a

T 7→T1T2 c

where c : A → A ⊗ A is the comultiplication morphism of A, which means that the right
hand side is identified (so far only as a set) with

{a ∈ A× : c(a) = a⊗ a}.
On the left hand side, the approach is to view HomAlgR(A∨, R) as a subset of HomModR(A∨, R) =
A∨∨, which is canonically identified with A. In particular, HomAlgR(A∨, R) is canonically
identified with the set of all a ∈ A such that the map A∨ → R given by f 7→ f(a) is a
ring homomorphism. So this means remembering what the ring structure on A∨ is from
Theorem 1.10. The multiplication is obtained by dualizing the comultiplication on A, which
means that for f, g ∈ A∨,

(f · g)(a) = (f ⊗ g)(c(a))

(f ⊗ g defined via the fact that ⊗R is the coproduct in AlgR). So f 7→ f(a) is multiplicative
if and only if

f(a)g(a) = (f ⊗ g)(c(a))

for all f, g ∈ A∨. Note that this is definitely true if c(a) = a ⊗ a. In fact, the converse
is also true, since f and g are allowed to range over all of A∨ and thus the f ⊗ g span all
of (A ⊗ A)∨; if c(a) 6= a ⊗ a, then there exist f, g ∈ A∨ such that (f ⊗ g)(c(a)) 6= a ⊗ a
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(this is the injectivity part of the statement that the evaluation map A ⊗ A → (A ⊗ A)∨∨

is bijective). It remains to check what f 7→ f(a) preserving the identity element means in
terms of a. From Theorem 1.10, we recall that the identity element in A∨ is the image of
1 under the morphism R → A∨ which is the dual of the counit map ε : A → R, i.e. the
identity element is precisely ε ∈ A∨. If a already satisfied c(a) = a⊗ a, the requirement that
ε(a) = 1 is equivalent to ai(a) = 1, because of the commutativity of

G G×G G×G

SpecR G

∆ id×i

m

ε

and the fact that ∆ : G → G × G is dual to the multiplication map A ⊗ A → A. Thus,
HomAlgR(A∨, R) is identified with the set of all a ∈ A× such that c(a) = a ⊗ a and ε(a) =
ai(a) = 1. In fact, by the commutativity of

G×R SpecR G×R G

G

∼

id×ε

,

if a ∈ A× such that c(a) = a ⊗ a, then aε(a) = a, and thus ε(a) = 1, which means that
HomAlgR(A∨, R) is identified with the same subset of A× as the right hand side of Cartier
duality is. The main content of the theorem is already proved, but it still remains to check
two things:

(1) These identifications are isomorphisms of groups.
(2) The resulting map produces a natural isomorphism of functors.

For (1), we need to show that the map HomAlgR(A∨, R)→ A given by eva 7→ a, and the map
evT : HomHopfAlgR(R[T, T−1], A)→ A are both multiplicative. For the first one, suppose that
a, b ∈ A× such that c(a) = a⊗ a and c(b) = b⊗ b. Then recall that the group structure on
HomHopfAlgR(R[T, T−1], A) comes from the group structure of G∨(R), i.e. eva · evb is given by
(eva ⊗ evb) ◦m∨. In particular, for f ∈ A∨,

(eva · evb)(f) = ((eva ⊗ evb))(f ◦m)

= (f ◦m)(a⊗ b)
= f(ab)

= evab(f)

where here m : A ⊗ A → A stands for the ring multiplication map. For the second one,
the idea is very similar. For a, b ∈ A and φ ∈ R[T, T−1], we have by definition of the group
structure on HomHopfAlgR(R[T, T−1], A) as a subgroup of Gm(G) that

(eva · evb)(f) = (eva ⊗ evb)(f(T1T2)) = f(ab) = evab(f)

which completes the verification of (1). By replacing R with S and A with A⊗RS everywhere
above, we therefore have isomorphisms of groups

HomAlgS((A⊗R S)∨, S) ∼= {a ∈ (A⊗ S)× : c(a) = a⊗ a} ∼= HomHopfAlgS(S[T, T−1], A⊗R S)

and to finish off (2) we just need to check that these isomorphisms are natural in S. But
this is obvious from the proofs, since the diagrams
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HomHopfAlgS(S[T, T−1], A⊗R S) A⊗ S

HomHopfAlgR(R[T, T ′], A) A

evT

evT

and

HomAlgS((A⊗R S)∨, S) A⊗ S

HomAlgR(A∨, R) A

evx 7→x

eva 7→a

commute (one can replace R with any S ′ with a ring map to S and A with A⊗R S ′). �

1.4. Commutative group schemes are killed by their order. Recall from classical
group theory that any finite group is killed by its order. Taking a finite flat S-group scheme
G of order n, one can ask whether the n-th power map

n : G
∆→ Gn m→ G

is the identity (i.e. factors through the unit map S → G). This is unknown in general, but
was settled by Deligne in the commutative case by exploiting Cartier duality to great effect.

Theorem 1.12 (Deligne). Let G be a finite flat commutative affine group scheme of order
n over a Noetherian ring R. Then G is killed by n.

Proof. Since a map is zero locally if and only if it is zero globally, we may localize and assume
that R is a Noetherian local ring. In particular, the localization of G at a prime p of R is just
the base change G×RSpecRp, which has a natural group scheme structure, induced from that
on G; and essentially by definition the m-th power map [m]p : G×R SpecRp → G×R SpecRp

is the one induced by [m].
Deligne’s trick is a familiar one: it is to consider the map G→ G induced by translating

by some R-point of G, and to show that this map is trivial once applied n = |G| times. The
key analogy is to the proof in finite group theory where you take the product of all elements
of G and use the fact that multiplying by an n-th power just permutes the factors. Since
the S-points of G don’t always have the same size, this will not work in our case. Instead,
we will consider the identity map G → G (dual to the identity A → A), and instead of
multiplying everything together, we will consider its norm as defined below. The key point
is that this norm doesn’t change when you postcompose by multiplication by any point of
G.

Now recall that G(R) is naturally a subset of HomModR(A,R) = A∨, which we have given
a ring structure in Theorem 1.10. And since (by the local assumption) A is free over R,
G(G) is naturally a subset of HomModR(A,A) = A∨ ⊗ A, which naturally has the structure
of a finite free A∨-algebra. So there is a map

N : A∨ ⊗ A→ A∨

given by taking x to the determinant of multiplication by x. This map clearly respects
multiplication (a general fact about the norm map for an arbitrary finite free algebra over
a ring). The central technical observation that must be made to justify Deligne’s argument
is that N takes G(G) to G(R). Luckily this is straightforward using the definition of the
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ring structure of A∨ from Theorem 1.10. An arbitrary element of HomModR(A,A) is given
by an R-linear combination of maps of the form a · f , where a ∈ A and f ∈ A∨. But
this follows from the characterization of G(S) as a subset of A∨ ⊗ S (apply the proof of
Theorem 1.11 to G∨), namely the set of all f ∈ (A∨ ⊗ S)× such that c(f) = f ⊗ f , where
c = cG∨×RSpecS : A∨⊗S → (A∨⊗S)⊗2 is the comultiplication for G∨×RS = (G×RS)∨. Since
N is multiplicative, it takes units to units. So we just need to check that for f ∈ G(G), we
have cG∨(N(f)) = N(f)⊗N(f). The fact that cG∨ : A∨ → A∨⊗A∨ is a ring homomorphism
and cG∨×RA is induced by cG∨ by tensoring up by A means that the diagram

A∨ ⊗ A (A∨ ⊗ A∨)⊗ A = (A∨ ⊗ A)⊗ (A∨ ⊗ A)

A∨ A∨ ⊗ A∨
N

cG∨⊗idA

N

cG∨

commutes (purely a fact about finite free algebras, where cG∨ could be replaced by an
arbitrary ring homomorphism), and thus

cG∨(N(f)) = N(cG∨(f)) = N(f ⊗ f) = N(f)⊗N(f).

Here the first equality comes from the commutativity of the diagram above, and the second
comes from the fact that f ∈ G(G). The last one we haven’t yet justified, but it can be
checked either directly or in a slightly more abstract but really equivalent way by using the
same fact from commutative algebra as above, applied to the diagram

A∨ ⊗ A (A∨ ⊗ A)⊗ (A∨ ⊗ A)

A∨ A∨ ⊗ A∨
N

idA∨⊗A⊗1A∨⊗A

N

idA∨⊗1A∨

(the upstairs horizontal map is equal to the induced map of the bottom one under tensoring
by A∨ ⊗ A via the isomorphism of the top-right corner with A∨ ⊗ A∨ ⊗ A), so that indeed

N(f ⊗ f) = N(f ⊗ 1)N(1⊗ f) = (N(f)⊗ 1)(1⊗N(f)) = N(f)⊗N(f)

as desired. So we have proved that the norm N : A∨⊗A→ A∨ induces a map of the subsets
N : G(G)→ G(R).

Let u ∈ G(R). It suffices to show that un is trivial in G(R), since the same statement
applied to G ×R SpecS shows that the n-th power map kills G(S) for all S and thus by
Yoneda kills G. Consider the morphism τ : A→ A given by translation by u. This is an iso-
morphism of R-algebras because (using the axioms of a group object) it has an inverse given
by translation by u. Postcomposition by τ provides an automorphism of HomModR(A,A),
which translates to an automorphism of A∨ ⊗ A which takes f ⊗ a to f ⊗ τ(a). The fact
that τ : A → A is an automorphism means that this implies N(x) = N(τ(x)) for all
x ∈ A∨ ⊗ A. But for x ∈ G(G), postcomposing by τ is the same thing as multiplication by
u ∈ G(R)→ G(G), and N : G(G)→ G(R) is a group homomorphism, so we have

N(x) = N(τ(x)) = N(u · x) = N(u)N(x) = unN(x).

So as long as x ∈ G(G) (such an x exists, since we can just take it to be the identity) we know
that N(x) is in G(R) and is therefore invertible, and thus un = 1 in G(R) as desired. �



14 GROUP SCHEMES

Remark 1.13. I don’t think it is necessary to actually prove that N restricts to a map
G(G) → G(R). As long as we know that the inclusions G(S) → A∨ ⊗ S preserve multipli-
cation (which we used anyway when we used the fact that N : G(G) → G(R) is a group
homomorphism), we can still take x = idG and justify the equality

N(x) = unN(x)

in the ring A∨, where we know that N(x) ∈ (A∨)× and therefore un is the identity element
of A∨, which we know (also from Theorem 1.10) is the identity element of G(R).

Remark 1.14. The affineness assumption that we have been making here is not very serious.
First, any finite scheme over an affine base is affine, since finite morphisms are affine. In
the context of arithmetic, it is almost always the case that the base is affine (e.g. the group
schemes we care about are the n-torsion points of an abelian variety over Zp). Even so, the
theorems of this section (Cartier duality, Deligne’s theorem) are still true without the affine
hypothesis, and the proofs are essentially unchanged – one simply does the same arguments
replacing A with the structure sheaf of G.

2. Examples

Example 2.1 (Gm). The multiplicative group Gm, which we already used in Theorem 1.11,
is an affine group scheme which can be defined via its functor of points

Gm,R(S) = S×

for any R-algebra S. This is clearly representable (as a functor to Grp) by R[T, T−1], so as
a scheme we have

Gm = Spec(R[T, T−1])

and one checks that the comultiplication is given by T 7→ T1T2, coinverse by T 7→ T−1, and
counit by T 7→ 1.

Example 2.2 (Ga). The additive group Ga is an affine group scheme which can be defined
via its functor of points

Ga,R(S) = (S,+)

for any R-algebra S. This is clearly representable (as a functor to Grp) by R[T ], so as a
scheme we have

Gm = Spec(R[T ])

and one checks that the comultiplication is given by T 7→ T1 + T2, coinverse by T 7→ −T ,
and counit by T 7→ 0.

Example 2.3 (Constant group scheme). For any finite group G and ring R, we define the
constant group scheme3 GR. As a scheme, GR is a disjoint union of copies of SpecR indexed
by the elements of G. The multiplication morphism on G is defined by applying the canonical
isomorphism (SpecR)× (SpecR)→ SpecR to get a map

(SpecR)g × (SpecR)h → (SpecR)gh

3Unless G is trivial, the functor of points of the constant group scheme is NOT the constant function
to G; this is an easy mistake to make because of the name and because it is true on connected schemes. In
fact, that constant functor is NOT representable, because it must take products to products.
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for all g, h ∈ G which patches together to give the desired map(⊔
g∈G

(SpecR)g

)
×

(⊔
h∈G

(SpecR)h

)
=
⊔
g,h∈G

(SpecR)g × (SpecR)h →
⊔
γ∈G

(SpecR)γ.

The inverse morphism is just the isomorphism given on the components by the identity map
(SpecR)g → (SpecR)g−1 and the identity morphism is the identity map SpecR→ (SpecR)e.
In terms of Hopf algebras,

GR = Spec
∏
G

R,

which we think of as being the ring of functions G→ R. The comultiplication sends a map
f : G → R to the map c(f) : G × G → R taking (g1, g2) to f(g1g2). In the language of the
product ring, this means the comultiplication

∏
g∈G

Rg →

(∏
g∈G

Rg

)⊗2

is given by 1g 7→
∑

h∈G 1h ⊗ 1h−1g, the coinverse by 1g 7→ 1g−1 , and the counit given by
killing all the coordinates other than the one corresponding to g = 1G. By Lemma 1.4, it
is automatic that these morphisms are compatible in the sense that they give a valid Hopf
algebra structure on

∏
GR.

Another convenient way of writing this is by thinking of the 1g’s as a system of orthogonal
idempotents for

∏
Rg, and writing the Hopf algebra as

R[{Xg}g∈G]/(X2
g −Xg, XgXh)g 6=h.

The functor of points of GR takes a scheme S to

Hom(S,tg∈G SpecR).

when S is connected, this is clearly isomorphic to G as a group. In general, one can think
of this as the set of locally constant functions S → G. If S is a disjoint union of connected
components, then GR(S) is the product, indexed over those components, of copies of G.

Note that in the case of constant group schemes, commutative or not, Theorem 1.12 is
obvious from the theorem for abstract groups.

Example 2.4 (Diagonal group schemes). Let R be a ring and Γ a finite abelian group. The
corresponding diagonal group scheme is defined as the Cartier dual of ΓR, i.e. with functor
of points

DΓ
R(S) = HomGrp(Γ, S×).

This is representable by Theorem 1.10 and Theorem 1.11, and is indeed the Cartier dual of
ΓR, because of the isomorphism of functors AlgR → Grp

HomGrp(Γ,−×) ∼= HomGrpSch−(Γ−,Gm,−).

The point of this isomorphism is that for any R-algebra S, the subset

HomGrpSchS(ΓS,Gm,S) ⊂ HomSchS(ΓS,Gm,S) = HomSchS(tG SpecS,Gm,S) =
∏
g∈G

S×
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is canonically identified with

{(sg)g∈G ∈
∏
g∈G

S× : sgh = sgsh}

(this follows from the definition of a group object morphism). Note that commutativity
of Γ is necessary in order to ensure commutativity of ΓR as a group scheme and justify
the use of Cartier duality Theorem 1.11 as well as the representability of the Cartier dual
Theorem 1.10. In terms of Hopf algebra, this provides us with the scheme structure

DΓ
R = Spec(R[Γ])

with comultiplication R[Γ]→ R[Γ]⊗R[Γ] given by

γ 7→ γ ⊗ γ

since the product of two points f1, f2 ∈ HomGrp(Γ, S×) is the composition

R[Γ]
c→ R[Γ× Γ] = R[Γ]⊗R[Γ]

f1×f2→ S

so the diagonal comultiplication indeed gets us the pointwise multiplication group structure
on HomGrp(Γ, S×). The coinverse R[Γ] → R[Γ] is just given by γ 7→ γ−1, and the counit
R[Γ]→ R sends γ 7→ 1. Another way to write this is as the Hopf algebra

R[{Xg}g∈G]/(XgXh −Xgh)g,h∈Γ.

with comultiplication Xg 7→ Xg ⊗Xg.

Example 2.5 (Roots of unity). Let R be a ring and n ≥ 1. Define µn,R to be the kernel
of [n] : Gm,R → Gm,R. From our definitions in Section 1.2, this means that µn,R(S) is the
group of n-th roots of unity in S, and in terms of Hopf algebras it is given by

R[X]/(Xn − 1)

with Hopf algebra structure induced from that of Gm,R (N.B. there is no need to include
X−1 once we have quotiented by Xn − 1).

Example 2.6. (αp) Let R be a ring of characteristic p. Then we can define a multiplicative
p-th power map [p]m : Ga,R via the Hopf algebra map R[T ] → R[T ] given by T 7→ T p.
In particular, for any R-algebra S, the kernel of the p-th power map S → S (an additive
group homomorphism) is a well-defined additive subgroup of S, and thus we have a well-
defined subgroup scheme αp,R of Ga,R given by the kernel. The corresponding Hopf algebra
is R[T ]/(T p). In particular, it is isomorphic as a scheme to µp,R, but they are not isomorphic
as group schemes (this we will see in the following subsection).

These examples are related to each other in various ways. For instance, from the definition
we already know that a constant group scheme is the Cartier dual of the corresponding
diagonalizable one. Specializing to a cyclic group of order n, there is another easy connection,
this time with the n-th roots of unity.

Lemma 2.7. Let R be a ring. Then D
Z/nZ
R

∼= µn,R as R-group schemes. In other words,
(Z/nZ)R and µn,R are Cartier duals.
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First proof. One way is to exhibit a natural isomorphism between the respective functors
of points (this suffices by Lemma 1.1 applied to the category of affine schemes). For an
R-algebra S, we have

D
Z/nZ
R (S) = Hom(Z/nZ, S×) ∼= {x ∈ S× : xn = 1} = µn,R(S)

where the isomorphism is given by a choice of where to send a generator of Z/nZ. We need
to check that this isomorphism is a natural isomorphism of functors, i.e. that for any map
of R-algebras S → S ′, the diagram

HomGrp(Z/nZ, S×) {x ∈ S× : xn = 1}

HomGrp(Z/nZ, S ′×) {x ∈ S ′× : xn = 1}

ev1

ev1

commutes. This is clear from the definitions of the vertical maps. �

Alternative proof. By Cartier duality, the S-points of the dual of µn,R are in bijection with
HomGrpSchS(µn,S,Gm,S)

which is the set of S-Hopf algebra homomorphisms from S[T, T−1] to S[T ]/(T n − 1). Such
a homomorphism is determined by a choice of polynomial p(T ) ∈ S[T ]/(T n − 1), subject to
the constraint that p(T1T2) = p(T1)p(T2) in S[T1, T2]/(T ni − 1). Note that this automatically
enforces the condition that p(T ) is invertible (as p(1) = 1), and thus we have no problems
defining the image of T−1. Such a p has a unique representative in S[T ] of the form

∑n−1
i=0 aiT

i.
The condition p(T1)p(T2) = p(T1T2) in S[T1, T2]/(T ni − 1) is equivalent to aiaj = 0 for i 6= j
and a2

i = ai, so the ai’s are a system of n orthogonal idempotents for S. From this one can
explicitly deduce that there is a natural isomorphism of functors with (Z/nZ)R. �

Under the hood, both proofs of Lemma 2.7 are making crucial use of the functorial iso-
morphism DG

R(S) = Hom(G,S×) (even the alternative proof, which omits some details at
the end which should work out essentially to this).

The dual group schemes GR and DG
R are both finite flat of order |G|. The group scheme

αp,R has order p, and µn,R has order n.
From the duality between (Z/nZ)R and µn,R, we can ask whether (Z/nZ)R is self-dual,

i.e. if (Z/nZ)R ∼= µn,R as R-group schemes. This is easy to answer when R is a field, but I
do not know the answer in general.

Lemma 2.8. Let k be a field with characteristic not dividing n. Then (Z/nZ)k is self-dual
if and only if k contains n distinct n-th roots of unity.

Proof. Suppose that k does not contain n distinct n-th roots of unity. Since Spec k is con-
nected, we know that |(Z/nZ)k(k)| = n, but |µn,k(k)| 6= n, and thus there cannot exist such
an isomorphism, even as schemes. On the other hand, if k does contain n distinct roots of
unity, then T n−1 splits into n distinct linear factors, and by the Chinese remainder theorem,
we have an isomorphism of R-algebras

k[X]/(T n − 1) ∼=
n∏
i=1

k[X]/(T − ζ in) ∼=
n∏
i=1

k

and it is easy to check directly that this isomorphism respects the Hopf algebra structures.
�
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Remark 2.9. Kevin Chang pointed out to us that Lemma 2.8 can generalize essentially in
its current form to the case where R is a general ring, by looking carefully at the functor of
points. But the assumption that the characteristic doesn’t divide n is still crucial, of course.
For example, if R = Z/4Z and n = 2, there is no isomorphism, even of schemes, between
µn and Z/nZ, since the second one has two connected components, and the first only has
one (e.g. by looking at idempotents in the corresponding Hopf algebras). Of course, in
Lemma 2.8, that assumption is unnecessary, since Xp − 1 = (X − 1)p over characteristic p,
so it holds vacuously given we want Xp − 1 to split completely.

Bringing the two finite flat group schemes DZ/pZ
R , (Z/pZ)R, µp,R into contact with αp,R

brings us into the territory of finite flat group schemes of order p.

2.1. Group schemes of prime order. Let p > 0 be a rational prime, and R a ring. We
have come up with four ways to construct a group scheme of order p over R:

(1) The constant group scheme (Z/pZ)R
(2) The diagonal group scheme DZ/pZ

R

(3) The roots of unity µp,R
(4) If R has characteristic p, αp,R.

Indeed, if we ask that our group scheme has order p, these are the only examples we can
extract from what we have constructed so far (note that they are all commutative). We
know (Lemma 2.7) that (2) and (3) are isomorphic and equal to the Cartier dual of (1). It
is possible that all of these are the same group scheme, i.e. that (Z/pZ)R is self-dual, which
we know is equivalent to R containing a primitive n-th root of unity when R is a field by
Lemma 2.8. What about (4)? First, we study the Cartier dual α∨p,R.

Lemma 2.10. Let R be an arbitrary ring of characteristic p. The finite flat group scheme
αp,R is self-dual.

Proof. This is the same method as the alternative proof to Lemma 2.7. By Cartier duality
Theorem 1.11, we have

HomGrpSchS
(αp,S,Gm,S) ∼= α∨p,R(S).

So we just need to examine the functor on the left. We have

HomGrpSchS
(αp,S,Gm,S) = HomHopfAlgS

(S[T, T−1], S[T ]/(T p)).

Such an algebra homomorphism is determined by the image of T , and the condition that
it respects the Hopf algebra structure is equivalent to φ(X + Y ) = φ(X)φ(Y ) where φ is
the image of T . Note that once φ satisfies this, it is automatically invertible in S[T ]/(T p)
[because we shall see explicitly that φ(0) must be 1] so the image of T−1 is well-defined. The
element φ ∈ S[T ]/(T p) has a canonical representative

φ =

p−1∑
i=0

aiT
i,

and the condition φ(X + Y ) = φ(X)φ(Y ), by looking at individual terms, forces a0 = 1,

ai =
ai1
i!
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for 1 ≤ i ≤ p−1, and ap1 = 0. Conversely, any such polynomial, which is really just exp(a1T )
for a choice of a1 ∈ S such that ap1 = 0, satisfies the desired property. As a result, we have
a natural isomorphism

HomGrpSchS
(αp,S,Gm,S)→ αp,R(S)

taking the morphism corresponding to the Hopf algebra morphism T 7→ exp(a1T ) to a1 ∈
αp,R(S). �

Does αp,R count for an additional order-p R-group scheme other than µp,R and its Cartier
dual (Z/pZ)R? By Lemma 2.8 this is certainly true if R is a field not containing a primitive
n-th root of unity. In fact, it is true for any field of characteristic p.

Lemma 2.11. Let k be a field of characteristic p. Then αp,k is not isomorphic to (Z/pZ)k
or to µp,k.

Proof. The key observation is that αp,k is not reduced, and therefore not étale. So both it
and its Cartier dual (since it is self-dual by Lemma 2.10) are not étale. On the other hand,
(Z/pZ) is as a scheme a union of finitely many copies of Spec k, and therefore is étale. So
since its Cartier dual is µp,k by Lemma 2.7, neither can be isomorphic to αp,k. �

Remark 2.12. The proof of Lemma 2.11 goes through without change over an arbitrary
ring.

The result of our work so far is the following:

Proposition 2.13. Let k be an algebraically closed field and p a rational prime. If k has
characteristic zero or positive characteristic not equal to p, then there is at least one finite
flat group scheme of order p over k, namely (Z/pZ)k, which we showed is isomorphic to µp,k
and D

Z/pZ
k . If k has characteristic p, then there are at least three, namely µp,k ∼= D

Z/pZ
k ,

(Z/pZ)k and αp,k.

Proof. The only thing we haven’t checked is that when k has characteristic p, µp,k is not
isomorphic to (Z/pZ)k. But this is obvious: the second guy is étale and the first guy is super
not reduced, because Xp − 1 = (X − 1)p in k[X]. �

It turns out that (for k an algebraically closed field), these are the only finite flat group
schemes of order p. But what about over an arbitrary ring? This was partially resolved by
Oort–Tate (following up on unpublished work of Artin–Mazur), and we will discuss their
result later. For now, we content ourselves with the description for p = 2.

Example 2.14 (Group schemes of order 2). Let G = Spec(A) be a finite free group scheme
of rank 2 over a Noetherian local ring R (e.g. the localization of a finite flat group scheme
over a Noetherian ring). We begin with some generalities that might more sensibly belong
in the section labelled “Generalities”, but we put here because of how closely the chain of
reasoning of the general classification matches this example. First, the composition

R→ A
ε→ R

is an R-algebra homomorphism, and is therefore the identity (N.B. this already tells us the
structure map R→ A is injective). So the exact sequence of R-modules

0→ I → A
ε→ R→ 0

splits, giving A ∼= R⊕ I as R-modules. Because of how the splitting was defined, this direct
sum is an internal direct sum using the structure map R→ A. Also, the fact that A is free
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and R is local means that by Nakayama’s lemma4, I is also a free R-module of rank 1. In
fact (though we won’t use this), I can be generated over R by ε(e1)e2− ε(e2)e1 where (e1, e2)
is any choice of basis for A as a rank-2 free R-module. This is because ε(e1), ε(e2) generate
all of R. This splitting also gets us a decomposition

A⊗ A = (R⊗R)⊕ (I ⊗R)⊕ (R⊗ I)⊕ (I ⊗ I) = R⊕ (I ⊗ 1)⊕ (1⊗ I)⊕ (I⊗)

where on the right we are talking about subsets of A⊗ A. The comultiplication map

m : A→ A⊗ A = R⊕ (I ⊗ 1)⊕ (1⊗ I)⊕ (I ⊗ I)

has nice properties due to the fact that (ε⊗ id) ◦m : A→ A is the identity map (since ε is
the coidentity morphism), so for any f ∈ I, the element

m(f)− 1⊗ f − f ⊗ 1

is in the kernels of ε⊗ id and id⊗ ε, and hence in I ⊗ A ∩ A⊗ I = I ⊗ I. But in this case,
the fact that I is free of rank one tells us even more, namely that

m(f) = 1⊗ f + f ⊗ 1 + bf ⊗ f
for some b ∈ R not depending on f . Since A = R⊗ I where R is included via the structure
map R → A, the comultiplication on A is determined by the constant b (in particular, the
comultiplication is R-linear and is the identity on R so we just need to define it on I). By
Yoneda, the counit and coinverse morphisms are determined by the comultiplication and
therefore by the choice of b. The only thing left is the ring structure of A. Since we have
written A = R ⊗ I and shown that I is free of rank 1 with some generator x ∈ I ⊂ A, the
ring structure on A depends only what the value of x2 is. Since ε(x) = 0, we know that
ε(x2) = 0 as well, and thus

x2 = ax

for some a ∈ R. So the Hopf algebra structure on A is completely determined by the two
constants a and b. But not every choice of a, b ∈ R results in a bona fide Hopf algebra
structure, which is the question we need to answer next. The ring multiplication being
defined by x2 = ax just means that as a ring, A = R[T ]/(T 2 − aT ) (the isomorphism
given by T 7→ x). So in reality, we just need to make sure that the comultiplication m :
R[T ]/(T 2 − aT ) → R[T1, T2]/(T 2

1 − aT1, T
2
2 − aT2) given by m(T ) = T2 + T2 + bT1T2 is a

well-defined ring homomorphism, and that on points it provides an actual group structure.
In order for m to be a well-defined ring map, we just need the image of T 2 and the image of
aT to coincide. The first is

T 2
1 + T 2

2 + b2T 2
1 T

2
2 + 2T1T2 + 2bT1T

2
2 + 2bT 2

1 T2

and the second is
aT1 + aT2 + abT1T2

so after applying the equivalence relation in the obvious way, their difference is

(ab+ 1)(ab+ 2)T1T2 ∈ R[T1, T2]/(T 2
1 − aT1, T

2
2 − aT2)

which is zero if and only if
(ab+ 1)(ab+ 2) = 0

4Since I is a direct summand of the free R-module A, it is projective. The relevant consequence of
Nakayama is that finitely-generated projective modules over a local ring are free.
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in R. Here is an interesting observation: if e1 = −ab− 1 and e2 = ab+ 2 then e1e2 = 0 and
e1 + e2 = 1 and therefore

e2
1 − e1 = −e1e2 = 0

and similarly for e2, which means e1, e2 is a system of orthogonal idempotents for R, and
thus

R = Re1 ×Re2, SpecR = Spec(Re1)
⊔

Spec(Re2).

Tate claims that this directly implies we can assume without loss of generality that either
ab = −1 or −2, but I don’t see it.

For an R-algebra S, the group of S-points of G is

G(S) = {x ∈ S : x2 = ax}
where the candidate group structure is

x · y := x+ y + bxy.

Note that this is automatically associative and has an identity element, namely 0 ∈ S, and
in particular the counit morphism ε : R[T ]/(T 2 − aT )→ R must be given by T 7→ 0. So by
the commutativity of the diagram

G G×G G×G G

SpecR

∆ id×i m

ε

we have
T + r + sT + bT (r + sT ) = 0

in R[T ]/(T 2−aT ), from which we may immediately conclude that r = 0 and (1+ab)s = −1,
and thus 1 + ab is a unit, and the identity (1 + ab)(2 + ab) = 0 is equivalent to ab = −2.
So we see that every finite flat group scheme of order 2 over R is of the form Ga,b for some
a, b ∈ R.

Now suppose that Ga,b
∼= Ga′,b′ . Then there is an isomorphism of R-algebras R[T ]/(T 2 −

aT ) → R[T ]/(T 2 − a′T ). If it is given by T 7→ r + sT with inverse T 7→ r′ + s′T , then
ss′ = 1 and r = −sr′. In other words, s must be a unit. In order for this map of rings to be
well-defined, we also need

(r + sT )2 − a(r + sT ) = 0

in R[T ]/(T 2 − a′T ), which is equivalent to r(r − a) = 0 and s(a′s + 2r − a) = 0. For this
isomorphism of R-algebras to be a Hopf algebra homomorphism, it is necessary and sufficient
to have

r + sT1 + sT2 + sb′T1T2 = 2r + sT1 + sT2 + b(r + sT1)(r + sT2)

in A′ ⊗ A′ = R[T1, T2]/(T 2
1 − a′T1, T

2
2 − a′T2). This is equivalent to r(br + 1) = 0, bsr = 0,

and s(bs − b′) = 0. So taken altogether, we see that T 7→ r + sT provides a well-defined
isomorphism of R-Hopf algebras if and only if s is a unit, and

r(r − a) = 0(2.15)
s(a′s+ 2r − a) = 0(2.16)

r(br + 1) = 0(2.17)
bsr = 0(2.18)

s(bs− b′) = 0.(2.19)
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Since s is a unit, the last one is equivalent to b′ = bs, so the fourth becomes br = 0, and the
third is r = 0, which simplifies everything to a = a′s and b′ = bs where s is a unit. So we
have observed that Ga,b

∼= Ga′,b′ if and only if there is some unit s ∈ R such that a′ = as−1

and b′ = bs. As Professor Mazur explained to us in his office a few weeks B.Z.5, this means
that as R changes, the range of isomorphism classes of Ga,b’s changes. When R is a field of
characteristic not equal to 2, there is only one possible Ga,b up to isomorphism (which might
as well be (Z/2Z)R). This doesn’t contradict Lemma 2.8, because any field of characteristic
not equal to 2 has a primitive 2-nd root of unity. When R is a field of characteristic 2, there
are exactly three up to isomorphism, namely G0,0, G0,1, G1,0 (which are α2, µ2, Z/2Z). When
R = Z2, we see that there are exactly two, namely

G−2,1 = µ2,Z2 , G1,−2 = (Z/2Z)Z2 .

It is easy to check these isomorphisms by looking at points, or directly using Hopf algebras.
But as you adjoin roots of 2 to Z2, you get more and more isomorphism classes of finite flat
Z2-group schemes of order 2. For example, consider the totally tamely ramified extension
Q2(21/e)/Q2 with valuation ring Z2[21/e]. Over this ring, there are e+ 1 isomorphism classes
of Ga,b’s. As might be guessed from the examples above, it is a general fact that Ga,b and
Gb,a are Cartier duals, which is easy to check using Cartier duality Theorem 1.11, or by using
the definition of the Cartier dual.

Remark 2.20. This example is the first time where we notice that the data of the order of
our group scheme and the characteristic of the (residue) ring (in particular whether they are
the same prime) are intimately related to the properties it exhibits. There are some very
basic reasons for this, as we will see later as we continue to develop the theory. This theme
continues to be present in the next example, where we will consider objects having to do
with p-power torsion over characteristic p.

Remark 2.21. The basic strategy of using the augmentation ideal to determine the Hopf
algebra structure is key in Oort-Tate’s classification of group schemes of order p, though that
result requires a few more technical observations to justify. In the example for p = 2, we were
helped by the fact that I has rank one and therefore the comultiplication and multiplication
have a very restricted form on I.

2.2. Elliptic curves. One main source of finite flat group schemes in arithmetic is as torsion
groups of abelian varieties. In fact, for any abelian scheme A of relative dimension d over a
Noetherian base S, then A[n] is a finite flat commutative S-scheme of constant fiber rank
n2d. According to a mathoverflow post of B. Conrad, even just this requires serious results
in algebraic geometry. When A is an elliptic curve E over a field k of characteristic p, this
means E[pr] is a group scheme of order p2r, and together they form a p-divisible group over k
of height 2. When k is algebraically closed, there are only two possibilities for this p-divisible
group, depending on whether E/k is supersingular (see [6, Theorem 2.9.3]). In this example,
we will focus instead on writing down what the group E[p] is as a group scheme, which of
course also only depends on whether E is supersingular.

First, E[p] cannot be étale, since it is killed by p and k has characteristic p (in particular,
using the theory of Frobeniuseries [1, éxposé VIIA and VIIB], [p] = V F cannot be an iso-
morphism, where F : G→ G(p) is the Frobenius and V : G(p) → G is the Verschiebung, so F
can’t be an isomorphism, and E[p] cannot be étale). Since k is perfect, E[p] = E[p]◦×E[p]ét

5B.Z.: Before Zoom

https://mathoverflow.net/questions/16121/example-of-connected-etale-sequence-for-group-schemes-over-a-henselian-field
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where E[p]◦ has order p or p2. If E is ordinary, then E[p](k) is nontrivial, and thus the
étale part is of order exactly p. By the classification of group schemes of order p over an
algebraically closed field, E[p]ét = (Z/pZ)k. And the fact that E is self-dual as an abelian
variety (plus the fact that taking kernels commutes with taking duals where the dual of the
kernel is in the sense of Cartier duality) means that E[p] is self-dual, and thus E[p]◦, which
is connected of order p and thus is either αp,k or µp,k, must be µp,k, and as a result

E[p] = µp,k × (Z/pZ)k.

When E is supersingular, we know that E[p](k) is trivial, and thus E[p] is a connected
k-group scheme of order p2. Again, it is self-dual, so it is a connected group scheme of order
p2 with connected dual, which is killed by p. By computing the Dieudonne module, we could
find there is only one such possible group scheme. It fits into an exact sequence

0→ αp,k → E[p]→ αp,k → 0,

which we could have noticed because αp,k is the only (connected, connected) simple group
scheme.

These results are already pretty interesting: The isomorphism class (and thus correspond-
ing Dieudonne module) of E[p] only depends on whether E is supersingular or ordinary.
Explicit computations, which we were encouraged to do by stackexchange answers of M.
Emerton, B. Conrad, and K. Buzzard, can still be done and are instructive. For instance,
consider the supersingular elliptic curve

E : x3 = y + y2

over an algebraically closed field of characteristic 2. In homogenous coordinates, this is the
curve in P2k given by

X3 = Y Z2 + Y 2Z.

From the convenient description of the chord-tangent process in characteristic 2 from Sil-
verman’s book, the 2-torsion points are precisely those [x : y : z] which are equal to their
negative, i.e.

[x : y : z] = [x : −y − z : z].

In particular, we must have z = 0, and therefore the only geometric point is the identity
[0 : 1 : 0] (after all, we did say it was supersingular...). To get an affine group scheme out
of E[2], we need to change coordinates to put [0 : 1 : 0] in an affine patch. So we take the
affine coordinates with the middle coordinate normalized to 1

x =
X

Y
, z =

Z

Y
,

in which the map P 7→ −P is

(x, z) 7→ [x : −1− z : z] =

(
x

−1− z
,

z

−1− z

)
(taking note that this doesn’t really act on this affine patch unless we remove the line z = 1,
but this is okay since we are only interested in what happens near [0 : 1 : 0]). As a result,
the 2-torsion is defined by (inside this affine part of E) of

x

−1− z
= x,

z

−1− z
= z,
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so as a finite flat affine k-scheme, we have

E[2] = Spec k[x, z]/(x3 − z2 − z, xz, z2)

= Spec k[x]/(x4).

This agrees with our general analysis: there is a single geometric point, but the non-reduced
structure makes it so that this still has order 4 as a finite flat k-group scheme. What is
the group structure? This is something we can read off the chord-tangent equations for the
elliptic curve group law (maybe being careful that we are in characteristic 2 but also not
worrying too much because we can trust the statements in Silverman). If one wants to write
down the group scheme structure of E[p] for general supersingular E over characteristic
p, then this type of approach is still possible (since one has general equations for what
supersingular elliptic curves look like), but it is probably more useful to just use Dieudonné
theory to look at it as a particular self-extension of αp.

2.3. Lubin-Tate formal groups. Let K be a finite extension of Qp. From the Lubin-
Tate explicit approach to local class field theory, we are familiar with the one-dimensional
formal group laws which we now recognize as being a group co-object structure on OK [[X]]
corresponding to a group object structure on SpfOK [[X]] (a group object in the category of
formal SpecOK-schemes). From Tate’s paper on p-divisible groups, we learned that there is
an equivalence of categories between the category of connected p-divisible groups over OK
and the category of p-divisible commutative formal groups over OK . So it makes sense to
ask:

Question 2.22. When is a given formal group over OK p-divisible? Can you tell just by
glancing at the defining power series?

It turns out that J. Lubin has answered this question for 1-dimensional formal groups in
a stackexchange post. The answer is that this kind of question is one of the things that
becomes clear once one wields the power of the Weierstrass preparation theorem. I wonder
whether one can iterate the Weierstrass preparation argument to prove a simple criterion in
n dimensions, but it seems a little bit more complicated. It is still unclear to me whether
the complications in n dimensions are superficial or make things significantly harder than in
1, since all my concrete experience is from Lubin–Tate theory.

Proposition 2.23. A 1-dimensional formal group law over OK is p-divisible if and only if
it does not reduce mod mK to X + Y .

Proof. Let F ∈ OK [[X, Y ]] be a formal group law. If F ≡ X + Y mod mK , then [p] :
OK [[X]]→ OK [[X]] sends X to f(X) ≡ 0 mod mK . This crucially uses the fact that the p
involved here is the same as the residue characteristic of K. In this case, [p] is clearly not an
isogeny, since if OK [[X]] was a direct sum of finitely many copies of the subring OK , then
we could tensor by the OK-module OK/mK = k to get

k[[X]] = k ⊕ · · · ⊕ k,
clearly a contradiction.

For the converse, let F be a formal group law whose reduction mod mK has more terms
than just X + Y . Then [p] : OK [[X]] → OK [[X]] takes X to f(X), where f ∈ OK [[X]] has
the important property that monomial terms has a unit (i.e. reducing to something nonzero
mod mK) coefficient.
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Lubin’s trick is as follows. [p] embeds OK [[X]] as the subring

OK [[f(X)]] ⊂ OK [[X]].

Renaming f(X) = T , this is the same as the embedding

OK [[T ]]→ OK [[T ]][[X]]/(f(X)− T ).

Since f has some coefficient which is a unit in OK , we know that f(X)− T ∈ OK [[T ]][[X]]
has some coefficient which is a unit in OK [[T ]]. That ring satisfies the conditions of the
Weierstrass preparation theorem, so by that theorem, we see that

f(X)− T = gu,

where g ∈ OK [[T ]][X] is a monic polynomial, and u ∈ OK [[T ]][[X]]×. As a result, we have a
further isomorphism

OK [[T ]]→ OK [[T ]][[X]]/(f(X)− T ) ∼= OK [[T ]][[X]]/(g),

where the composite map still sends T 7→ T . But since g is a polynomial, this is automatically
finite free. �

3. The category of affine group schemes

In this section, we develop properties about affine group schemes that let us treat them as
usual groups. In particular, we’ll see that the category of S-affine group schemes is abelian.

3.1. Sub-affine group schemes.

Definition 3.1. Let S be a ring and G = SpecA an S-affine group scheme. Then, a sub-
affine group scheme H = Spec(A/I) ⊂ G is simply a closed subscheme of G compatible
with the group operations on G (for instance, the multiplication A→ A⊗SA should descend
to A/I → A/I⊗S A/I via the canonical projection from A→ A/I). Such ideals I are called
Hopf ideals.

Remark 3.2. From the definition, it’s clear that I ⊂ A is a Hopf ideal iff µ(I) ⊂ ker(A⊗S
A→ A/I ⊗S A/I), ε(I) = 0, and ι(I) ⊂ I.

Remark 3.3. Every S-affine group scheme G has at least two sub-affine group schemes:
itself (corresponding to the zero Hopf ideal) and the zero group scheme over S (whose
corresponding Hopf ideal is the kernel of ε).

We can also take points of a sub-affine group scheme.

Remark 3.4. Let H = Spec(A/I) be a sub-affine group scheme of G = SpecA over S.
Then, if R is any S-algebra, the R-points of H are

H(R) = HomS-alg(A/I,R) = f ∈ G(R) : f |I = 0.

To illustrate this, consider the following example.

Example 3.5. As a concrete example, suppose S has characteristic p. Then, αpr,S(R) is
a subgroup of Ga,S(R), given by {x ∈ R+ : xp

r
= 0}. Indeed, by definition, αpr,S is the

sub-affine group scheme of Ga,S corresponding to the Hopf ideal generated by xpr ∈ S[t].
In fact, if S = k is moreover a field, then Ga,S is "simple," if the characteristic of k is 0,

and αp,S is "simple," if the characteristic is p. Here, simple means that there are no proper,
non-zero sub-affine group schemes.
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Indeed, first note that k[t] is a PID, so any ideal is of the form (f), where f =
∑n

i=0 aix
t.

Suppose f is not t. Then, one can show easily (by the definition of a Hopf ideal and using
the fact that the gcd of

(
i
j

)
over all 1 ≤ j ≤ i− 1 is equal to p if i is a power of char(k) and

char(k) is prime) that (f) is a Hopf ideal iff char(k) is prime and ai = 0 for i not a power of
this prime.

Then, it follows that if char k = 0, the only proper sub-affine group scheme of Ga,k has
corresponding Hopf ideal ker ε, which is the zero group scheme over k. If char(k) = p, then
similarly it follows that any proper sub-affine group scheme of αp,k is just the zero group
scheme over k.

3.2. Morphisms of affine group schemes.

Definition 3.6. A morphism Φ : G = Spec(B)→ H = Spec(A) of S-affine group schemes
is a morphism of schemes that is also compatible with the group operations. In the language
of S-algebras, it corresponds to a homomorphism φ : B → A satisfying µA ◦φ = (φ⊗φ)◦µB,
εA ◦ φ = εB, and ιA ◦ φ = φ ◦ ιB.

We will denote by Hom(G,H) the set of morphisms G → H and by AffGrpSchS the
category of S-affine group schemes.

We recall the following general categorical fact.

Lemma 3.7. Any functor between categories induces a functor on the corresponding cate-
gories of group objects.

Corollary 3.8. Let R be an S-algebra. Then, any morphism Φ : G→ H of S-affine group
schemes induces a group homomorphism ΦR : G(R) → H(R), given by pre-composition by
phi, where φ is the corresponding S-algebra homomorphism. Indeed, the previous lemma tells
us that G→ G(R) gives a functor AffGrpSchS → Ab.

Remark 3.9. Note that the category AffGrpSchS has a zero object. Indeed, for any G =
SpecA ∈ AffGrpSchS, the maps to and from the zero group scheme 0S are induced by
S-algebra maps S → A and A→ S (the structure map and counit).

We can define the product of S-affine group schemes in a straightforward way.

Definition 3.10. The product of S-affine group schemes G = SpecA and G′ = SpecA′

has underlying schematic structure given by the fiber product of schemes, and the comulti-
plication, counit, and antipode given by tensoring those of G and G′.

Remark 3.11. One can check that by endowing A⊗SA with the structure of a Hopf algebra
as above, the various Hopf algebra operations are not just S-algebra homomorphisms, but
actually S-Hopf algebra homomorphisms.

As a consequence, S-affine group schemes are in fact group objects in the category of
S-affine group schemes.

We can now endow Hom(G,H) with an additive structure.

Definition 3.12. Suppose G,H ∈ AffGrpSchS and Φ,Ψ ∈ Hom(G,H). Then, define the
sum of morphisms

Φ + Ψ : G→ G×S G→ H ×S H → H

as the composition of morphisms of S-affine group schemes.
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Moreover, Hom(G,H) has the structure of an abelian group, because the zero element is
given by the composition G→ 0S → H and inverses are given by pre-composition by iotaG.
Then, by functoriality, we get a group homomorphism Hom(G,H)→ Hom(G(R), H(R)) by
sending Φ to ΦR.

Example 3.13. An important application of this is the morphism [n] : G→ G, where G is
an S-affine group scheme and n is some integer. In particular, we define [n] ∈ Hom(G,G) to
be nidG. In particular, note that on the level of points, [n] is just multiplication by n.

Proposition 3.14. Let G,H,H ′ ∈ AffGrpSchS.

(1) If Φ,Ψ : G→ H are homomorphisms of S-affine group schemes so that ΦR = ΨR for
all S-algebras R.

(2) If H,H ′ are sub-affine group schemes of G so that H(R) and H ′(R) are the same as
subgroups of G(R), then H = H ′.

(3) Let G = SpecA and H = SpecB. Suppose Φ : G → H is a morphism of S-
schemes with corresponding S-algebra morphism B → A. Then, Φ is moreover a
morphism of S-affine group schemes iff the induced map ΦR : G(R) → H(R) is a
group homomorphism for any S-algebra R.

Proof. (1) follows by setting R to be the underlying ring of G; in particular, ΦO(G)(idO(G)) =
ΦO(G)(idO(G)) (as elements of H(O(G))) gives us exactly what we want.

For (2), let us first write H = Spec(A/I) and H ′ = Spec(A/I ′) with A = O(G). Now, by
our description of points on sub-affine group schemes, if R is any S-algebra, the R-points of
H are H(R) = HomS-alg(A/I,R) = f ∈ G(R) : f |I = 0 and H ′(R) = HomS-alg(A/I

′, R) =
f ∈ G(R) : f |I′ = 0. As such, f ∈ G(R) vanishes on I iff it vanishes on I ′. By picking R to
be A/I or A/I ′, the result follows.

Similarly, for (3), we’ll use this technique of taking points.
If we set R = A, since ΦA is a group homomorphism (which satisfies inversion), it follows

that φ ◦ ιG = ιH ◦ φ.
If we set R = S, since ΦS is a group homomorphism (which sends the identity to the

identity), it follows that φ ◦ εH = εG.
If we set R = A ⊗S A, the projection maps (of the fiber product to its components,

corresponding to the S-algebra case) p1, p2 : A → A ⊗S A, given by mapping a 7→ a ⊗ 1
and a 7→ 1 ⊗ a, respectively. As elements of G(A ⊗S A), j1 + j2 = µG. Since ΦA⊗SA is a
homomorphism of groups, it follows that µG ◦ φ = (φ ⊗ φ) ◦ µH , noting that ΦA⊗SA(j1) +
ΦA⊗SA(j2) (viewed inside H(A⊗S A)) is (φ⊗ φ) ◦ µH . �

3.3. Kernels. Earlier, in Section 1.2, we defined the kernel of a homomorphism of affine
group schemes functorially, namely as having points corresponding to the kernel of the group
homomorphism on points. Now, we’ll re-define the kernel in a more constructive manner by
explicitly specifying a Hopf ideal, and then show the equivalence later.

Lemma 3.15. Let A be an S-Hopf algebra with comultiplication µ, counit ε, and antipode
ι. Then,

(1) k ⊕ ker ε→ A, sending (a, b) 7→ a+ b is an isomorphism of S-modules.
(2) µ(a) ≡ −ε(a) + a⊗ 1 + 1⊗ a (mod ker ε⊗S ker ε)
(3) for any a ∈ ker ε, ι(a) ≡ −a (mod ker ε2)
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Corollary 3.16. Let Φ : G = SpecA → H = SpecB be a morphism of S-affine group
schemes with φ the corresponding S-Hopf algebra homomorphism from B → A. Then, the
ideal φ(ker εH)A is a Hopf ideal of A.

Proof. This is an easy check, using (2) and (3) from the previous lemma. �

Definition 3.17. With the same notation of the previous corollary, we define the kernel
of Φ, denoted by ker Φ, to be sub-affine group scheme of G corresponding to the Hopf ideal
φ(ker εH)A.

As a special case, later when we want to understand p-divisible group, we will want to
define the sub-affine group scheme associated to the n-torsion points.

Definition 3.18. We define G[n] to be the kernel of the map [n] : G → G. This is called
the sub-affine group scheme of n-torsion points of G.

Example 3.19. Earlier, we saw that Ga,k and αp,k were simple for fields k of characteristic
0 and p, respectively. As such, the n ≥ 1-torsion points of either of these is the trivial group
scheme.

Example 3.20. Consider the Hopf-algebra homomorphism k[t, t−1]→ k[t, t−1] sending f(t)
to f(tn), which on the level of group schemes is simply [n] : Gm,k → Gm,k. As such,
Gm,k[n] = µn,k.

Since we’ve introduced kernels, it’s natural to also discuss injections and images.

Definition 3.21. Let Φ be a map of S-affine group schemes H → G. Then, Φ is an
injection if it is a closed immersion. Moreover, the image of an injection is the sub-affine
group scheme of G defined by the Hopf ideal ker(O(G)→ O(H)).

For now, to avoid defining exactness in full generality (because the construction of the
cokernel is a little ugly), we’ll only define left exactness for now.

Definition 3.22. The sequence of maps 0 → H → G → F is called (left) exact if and
only if the first map is an injection and its image is equal to the kernel of the second map.

Lemma 3.23. Suppose A→ S is a ring map and that S is a finitely generated as a module
over A. Then, if the multiplication map S ⊗A S → S is an isomorphism, A → S is a
surjection.

Remark 3.24. Geometrically, this is just saying that finite monomorphisms are equivalent
to closed immersions.

Proof. Note that we have an exact sequence A → S → S/A → 0. Tensoring this by S over
A gives S → S ⊗A S → S ⊗A S/A→ 0, so S ⊗A S/A = 0. Then, we have S/A⊗A S/A = 0.
For the sake of contradiction, suppose S/A is nonzero. Then, since S is finite over A, by
taking a filtration, we have some K ⊂ S containing the image of A so that S/K = A/I
for some proper I. Then, S/K ⊗A S/K is nonzero, and there is a surjection S/A ⊗A S/A
onto S/K ⊗A S/K, so S/A ⊗A S/A is nonzero, which is a contradiction. Hence, the result
follows. �

Proposition 3.25. Suppose 0 → H → G → F be a sequence of maps of S-affine group
schemes. If it is left exact, then the induced sequence of R-points (where R is an S-algebra)
is also exact (as a sequence of abelian groups). Moreover, the converse holds if we assume
that O(H) is finite over O(G) (as modules).
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Proof. As an intermediate step (and also as a corollary), we will see that if we are given a
morphism of S-affine group schemes ι : H → G, then injectivity of ι implies triviality of
ker ι. Moreover, the converse holds if we assume O(H) is finite over O(G) (as modules).

First, let us prove the forward direction. Suppose 0 → H → G → F is left exact and let
the maps H → G and G → F be ι,Φ, respectively. On the level of Hopf algebras, we have
O(F )→ O(G)→ O(H). Let the first map be φ and the second map be p. Then, note that
O(H) is simply O(G)/I, where I = φ(ker εF )O(G). We can then view p as the canonical
projection.

We want to show that for any S-algebra R, the sequence (of abelian groups) 0 →
HomS−alg(O(G)/I,R) → HomS−alg(O(G), R) → HomS−alg(O(F ), R) is exact. The injectiv-
ity of the first map is obvious, so it remains to check injectivity at the third term. Suppose
f : O(G) → R is an S-algebra homomorphism. Then, we want to show that f factors
through O(G)/I iff f vanishes on I iff f ◦ φ is the zero element of F (R). Since the zero
element of F (R) is just the composition O(F )→ S → R and O(F ) ∼= R⊗ ker εF , it follows
that f ◦ φ is the zero element of F (R) iff f ◦ φ vanishes on ker εF . But the image of ker ε
generates I, so the result follows.

Now, suppose ι : H → G is an injection. Since the sequence 0→ ker ι→ H → G is exact,
what we’ve already proved tells us that taking R points will induce an exact sequence as well.
Since ι is injective, we have a surjection O(G)→ O(H), which implies that H(R) ⊂ G(R).
This implies ker ι(R) = 0 for every S-algebra R by our exact sequence. This implies (for
instance, by plugging in R = O(H)) that ker ι is the trivial S-affine group scheme.

We now prove the converse of this intermediate step. Assume O(H) is finite over O(G)
(as modules) and that ker ι is trivial. Then, we have the exact sequence 0 → 0 → H → G,
and we want to show that ι is an injection. By the forward direction of the proposition
we proved earlier, H(R) = HomS−alg(O(H), R) → HomS−alg(O(G), R) = G(R) is hence
injective as abelian groups. Now, let R = O(H) ⊗O (G)O(G) and consider the two maps
from O(H) to R (to the two coordinates). By pulling back to O(G), these become the same
map, so we conclude that they are the same by injectivity. As such, it follows that the
canonical multiplication map O(H) ⊗O (G)O(H) → O(H) is an isomorphism. Hence, by
the lemma above, it follows that O(H) is a quotient of O(G), so it follows that ι is indeed
an injection.

Finally, it remains to show the converse of the original proposition. Assume O(H) is finite
over O(G) (as modules) and that the induced sequence 0 → H(R) → G(R) → F (R) is left
exact for all S-algebras R. By what we just proved, ι is an injection. Also, by assumption,
the sequence 0 → im ι(R) → G(R) → F (R) is left exact for every R. Since the sequence
0 → ker Φ → G → F is exact, the forward direction of the proposition tells us that taking
R points will induce an exact sequence as well. Then, ker Φ(R) = im ι(R) for every R, so by
Proposition 3.14, the result follows. �

Corollary 3.26. Suppose G is an S-affine group scheme and n an integer. Then, G[n] ⊂ G
is the unique sub-affine group scheme of G so that for any S-algebra R, the R-points G[n](R)
are identified with the n-torsion points of G(R).

4. Finite flat group schemes

Definition 4.1. We say that an affine group scheme G = SpecA over R is finite flat if A
is finite flat as an R-module; that is, A is finitely generated and flat (equivalently, finitely
generated and projective). If SpecR is connected (such as when R is local), then if we take
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any maximal ideal m ⊂ R, we can define the rank of G (written |G|) to be the dimension
of A/mA as an R/m-vector space.

Definition 4.2. If A is a finite k-étale algebra (k is a field), then we say that G = SpecA
is finite étale.

Example 4.3. µn,R is a finite flat group scheme of order n.

Proposition 4.4. Suppose k is a field of characteristic 0. Then,
(1) every k-Hopf algebra is reduced.
(2) every finite flat k-group scheme is finite étale.

Proof. (ii) follows easily form (i) since k is perfect and finite étale k-algebras are reduced.
We can define a k-linear map A→ ker ε/(ker ε)2 by sending a to a− εa mod ker ε2. We can
then consider the composition D : A → A ⊗k A → A ⊗k ker ε/(ker ε)2, which we can check
is a derivation. For simplicity, assume the Hopf algebra is finite-dimensional over k. We
can then take a basis v1, . . . , vd of ker ε/(ker ε)2, and a dual basis e1, e2, . . . , ed. Now, we can
define Di to be D, post-composed with the map to A ⊗k k ∼= A, induced the second factor
by ei, which is also a derivation.

Now, it’s easy to check that for any nonnegative integers b1, . . . , bd that have the same
sum as that of another set of nonnegative integers ai, we have Da1

1 · · ·D
ad
d (vb11 · · · vb2d ) equal∏

ai! mod ker ε if ai = bi for every i, and 0 mod ker ε otherwise. Since geometrically reduced
(base-changing to the algebraic closure) implies reduced, it suffices to show the claim for k
algebraically closed.

We have a surjection from k[X1, . . . , Xd]/(X1, . . . , Xd)
n to A/ ker εn, sending Xi to vi. By

our calculation, it follows that this has no kernel, so dimension considerations force us to
have ker ε = ker ε2. Now, note that the projection π : A→ A/m ∼= k (for any maximal ideal
m) can be viewed as a k-point of G = SpecA. In particular, if we consider the composition
A→ A⊗kA→ A⊗kA/m ∼= A on the level of R-points (for any k-algebra R), it follows that
the induced map is just translation by π, which is hence an automorphism of A. Then, ker ε
corresponds to the 0 element and m corresponds to π in G(k), so it follows that m = m2. By
a standard Nakayama argument (noting that we can split up finite-dimensional k-algebras
as products of finite-dimensional local k-algebras), it follows that A is a product of fields
and is hence reduced. �

We now expand on our definition of exactness from earlier (in Definition 3.22). Though
this is still a little ad-hoc, it reflects the more general situation, which may be explained
later.

Definition 4.5. A morphism of affine group schemes G = SpecB → F = SpecA (A and
B can be affine group schemes over any base ring, but we’ll assume finite flat) is called
surjective if the corresponding ring morphism is faithfully flat.

Remark 4.6. Saying that SpecB → SpecA is surjective with A→ B a flat ring extension
is the same as saying that A→ B is faithfully flat; this makes the naming convention above
more reasonable.

To see why this is true (because this is a bit of a tangent, we’ve put this in a remark),
we’ll assume some equivalent definitions of faithfully flat (so this isn’t really self-contained).
First, assuming that A → B is faithfully flat, let p ∈ SpecA; we want to show that p is
in the image of the map on spectra. Since base change preserves faithful flatness, it follows
that we can assume A is an integral domain. Indeed, we have the Cartesian diagram
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SpecB/pB SpecA/p

SpecB SpecA

so that we have p in the image of the lower map iff the zero (prime) ideal is in the image
of the top map. We may likewise localize at the zero ideal and assume that A is actually a
field. Note that B is a faithfully flat A-algebra, and so it can’t be the the zero ring, which
means that it has some prime ideal. But then SpecA is just a single point and it’s clear then
that SpecB → SpecA is surjective. For the other direction, we note that one definition of
an R-module M being faithfully flat is that M 6= mM for any maximal ideal m. From the
proof of the going up and down theorems, an important step is showing that if we have a
ring map φ : A → B and p ∈ SpecA, then p is in the image of spectra iff φ−1 (φ(pB)) = p.
Then, for each p, we cannot have φ(p) generate all of B, so we’re done.

Remark 4.7. The reason why this is in some sense the “right” definition of surjective is
because the general construction of cokernels in the category of finite flat group schemes
involves fpqc sheaves (i.e. Grothendieck topologies who coverings are faithfully flat and
quasicompact morphisms); in particular, we want to consider exactness on the level of fpqc
sheaves and not Zariski sheaves, because the naive definition of the cokernel as a functor
(on the level of points) is not representable. However, representable fpqc presheaves in this
situation are actually fpqc sheaves (i.e. every covering is a universal effective epimorphism).

With this notion of surjectivity, we can define exact sequence as follows.

Definition 4.8. A sequence of finite flat affine group schemes 0 → H → G → F → 0 is
exact iff it is left exact and G→ F is surjective.

Lemma 4.9. If H = SpecC,G = SpecA,F = SpecB are all finite flat affine S-group
schemes and 0→ H → G→ F is left exact, then TFAE:

(1) #G = #H ·#F .
(2) G→ F is surjective.

Proof. Consider the Hopf ideal defining ker(G→ F ); we have I = (ker εB)A ⊂ A. We have
H ∼= SpecA/I. Now, consider the morphism

A⊗B A→ A⊗S A/I,

sending the pure tensor a⊗ a′ to aµ(a′) mod A⊗S I. By localizing everything at a maximal
ideal of S, the left hand side has rank #G2/#F and the right hand side has rank #G·#H. So
this shows that if the map is an isomorphism of S-modules, then #G = #H ·#F . Working
locally (localization at a maximal ideal) and assuming the ranks are the same, we easily get
a surjection (which must also be a bijection by basic linear algebra), so this shows the other
direction as well.

TODO: insert proof that G to F is surjective iff morphism is iso �

Although we could, in theory, continue in this fashion and not appeal to Grothendieck’s
construction of the cokernel (and in fact define the étale and connected components and
associated exact sequence), we’ll make it easier for ourselves by citing Grothendieck’s big
theorem here as a black box and come back to it later.
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Theorem 4.10. Let G be a finite flat S-affine group scheme and let H be a closed finite flat
sub-affine group scheme of G. Then, the quotient G/H exists as a finite flat group scheme
of order #G/#H.

4.1. Étale and connected components. We first discuss a useful criteria for étaleness of
finite flat group schemes.

Proposition 4.11. Let G = SpecA be an S-affine group scheme with augmentation ideal
I. Then, I/I2 ⊗S A ∼= ΩA/S and I/I2 ∼= ΩA/S ⊗A A/I.

Corollary 4.12. G is étale iff I = I2.

Proof. Since G is already flat over R, G is étale iff ΩA/S = 0. Then, the proposition allows
us to conclude. �

Proof of proposition. First, note that we have a diagram

G×S G G×S G

G

f

∆
(id,e)

Here, the top arrow f is simply (pr1,m) ◦ (id, i), which sends (g, h) to (g, gh−1). Note that
this top map is an isomorphism because we write down an inverse (just replace gh−1 with
h−1g). On the level of Hopf algebras, this is a bit more transparent for our purposes:

A⊗S A A⊗S A

A

Of course, the down arrow is just the standard multiplication map, the top arrow is the
isomorphism (dual to the map f from above), and the down-left arrow is the map sending
x⊗ y to x · ε(y).

Let J be the kernel of this down-left map. Then, by the isomorphism on the top map, we
get an isomorphism

ΩA/S
∼= J/J2.

It remains to relate J to I. We can decompose A⊗R A as A⊗R R ⊕ A⊗R I, so that the
right map has kernel A⊗R I. We then get an isomorphism between J and A⊗R I, and also
have J2 ∼= A⊗R I2 as a result. We then easily get that

ΩA/R
∼= A⊗R I/I2.

Tensoring this with A/I over A, we then get I/I2 again, and we’re done (noting that
A/I ∼= R). �

Corollary 4.13. Let SpecA be a finite flat group scheme over R with augmentation ideal
I. Then, I = I2 iff SpecA is étale.

Proof. This follows immediately, noting that unramified and flat is equivalent to étale. �

Corollary 4.14. Every finite flat constant group scheme is étale.
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Proof. If Γ is a finite group, we can write the associated group scheme as Spec
(⊕

i∈ΓRei
)
.

The augmentation ideal is just
⊕

i 6=idRei, so the result follows from the previous corollary.
�

Proposition 4.15. Let G = SpecA be a finite flat group scheme over R. Then G is étale
iff the image of the unit section is open.

Theorem 4.16. Let G = SpecA be a finite flat group scheme over R. Suppose the order of
G is invertible in R. Then, G is étale.

Corollary 4.17. A finite flat group scheme over a field of characteristic 0 is étale.

In particular, when thinking about group schemes of order p over Z`, the most interesting
case is when p = `, since otherwise all of these will be étale. As Professor Mazur explained to
us, this is why the work of Oort–Tate (which we explain in detail in Section 6) only considers
this case, and is a good further explanation of Remark 2.20.

4.1.1. The connected-étale sequence. In this section, we consider finite flat group schemes
over Henselian local rings. To that end, we fix R to be a Henselian local ring with residue
field k.

Proposition 4.18. Let G be a finite flat R-group scheme. Define G0 to be the clopen
subscheme of G corresponding to the connected component of G containing the unit section.
Then,

(1) G0 is the spectrum of a Henselian local R-algebra with residue field k and is a flat
closed normal subgroup scheme of G.

(2) Define Gét to be G/G0. Then, there is an exact sequence called the connected-étale
sequence 0 → G0 → G → Gét → 0 so that any G → H with H finite étale over R
factors through G→ Gét.

(3) G 7→ G0 and G 7→ Gét are exact in the category of finite flat R-group schemes.
(4) If R is a perfect field, then Gred → G → Gét is an isomorphism and the connected-

étale sequence splits.

Proposition 4.19. Let R be a perfect field of characteristic p 6= 0. Then, if G = SpecA
is a connected finite flat R-group scheme, then A ∼= R[x1, . . . , xn]/(xp

e1

1 , . . . , xp
en

n ) with the
n ≥ 1 and the ei ≥ 1. In particular, connected group schemes have p-power order.

5. Fontaine’s ramification bound

The purpose of this section is to prove Fontaine’s ramification bound, which is a key step
in the proof that there are no nontrivial abelian schemes over Z.

Definition 5.1. Let K be a valued field with valuation ring OK . Let X = SpecB be a finite
flat OK-scheme so that ΩB/OK is annihilated by some element of OK . Then, K(X(K)), the
field generated by K-points of X is defined as follows. First, note that BK = B ⊗OK K is
finite over K and ΩBK/K

∼= ΩB/OK ⊗OK K = 0, which implies that BK is a finite product of
finite separable extension of K. Take the compositum of all these finite separable extensions
in a common algebraic closure K, and we’ll denote this by K(X(K).

We also recall some facts about lower/upper ramification groups. In particular, suppose
we have a complete DVR of characteristic 0 and residue field of characteristic p and take
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L/K to be a finite extension. Let πK and πL be uniformizers of K and L so that OL is
generated over OK by πL.

Let vK be the normalized valuation on K and vL be the extended one (so that vL(πL) =
1/eL/K , where eL/K is the ramification index. We also define iL/K to be a function from
G = Gal(L/K) → Z, so that σ 7→ vL(σ(πL) − πL). We can also define φL/K : R≥0 → R≥0

so that i 7→
∑

σ∈G min(i, iL/K(σ)) and ψL/K to be the inverse of this function. We can then
define uL/K = φL/K ◦ iL/K . Let iL/K = sup iL/K(σ) and uL/K = supuL/K(σ), where in both
cases σ runs over all non-identity elements σ.

We then define G(i) = {σ ∈ G : iL/K(σ) ≥ i} and G(u) = {σ ∈ G : uL/K(σ) ≥ u}. We call
the former the lower ramification group and the latter the higher ramification group.
We note that these are not the typical conventions, but are the ones that follow Fontaine’s
treatment.

Fontaine’s theorem is then as follows:

Theorem 5.2. Suppose K is a local field of characteristic 0 and let e = vK(p), where vK is
a normalized valuation on K (which is a complete discrete valuation ring with residue field
of characteristic p). Also, suppose Γ is a finite flat commutative group scheme over OK that
is killed by pn.

Let L = K(Γ(K), which is the field generated by K-points, and G = Gal(L/K). Then,
G(u) = 1 for u > e(n + 1/(p − 1)) and v(DL/K) < e(n + 1/(p − 1)), where DL/K is the
different of L/K.

Before we get into proving Fontaine’s theorem, we first discuss the ramification of complete
intersections.

Definition 5.3. For a finite flat OK-algebra S, an ideal IofS is said to be a divided
power ideal if for all x ∈ I and n ∈ N, we have that xn/n! is also in I. Moreover, let
I [m] be the ideal of S that is generated by products xn1

1 /n1!, . . . , xnss /ns! with x1, . . . , xs ∈ I
and n1 + · · ·+ ns ≥ m. If, moreover, the intersection of all of the I [m] is 0, we say that I is
topologically nilpotent.

Proposition 5.4. Suppose A = OKJx1, . . . xnK/〈f1, . . . , fn〉. Also, suppose there is a nonzero
element a ∈ OK annihilating ΩA/OK so that ΩA/OK is a flat A/aA-module.

(1) If S is a finite flat OK-algebra and I is a topologically nilpotent divided power ideal,
then HomOK (A, S) = im(HomOK (A, S/aI → HomOK (A, S/I).

(2) If L = K(Y (K)) with Y = SpecA, then uL/K ≤ vK(a)+eK/(p−1), where eK = v(p).

Before we get to the proof of the proposition, consider the following lemma:

Lemma 5.5. (I [n])[2] ⊂ I [n+1].

Proof. Of course, it suffices to show that for any x ∈ I [n], we have x2/2 ∈ I [n+1]. We can
moreover take x to be a single term, i.e. of the form xa11 · · ·x

ak
k /(a1! · · · ak!) with x1, . . . , xk ∈

I, a1 + · · ·+ ak ≥ n. Then, we have

x2

2
=

x2a1
1 · · · x

2ak
k

2a1!2 · · · ak!2

=
x2a1

1 · · ·x
2ak
k

(2a1)! · · · (2ak)!

(
2a1 − 1

a1 − 1

)(
2a2

a2

)
· · ·
(

2ak
ak

)
,

which is clearly in I [2n] ⊂ I [n+1], as desired. �
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We now return to the proof of (i) of the proposition above:

Proof of (i) of proposition. Note that A is local and let m be its maximal ideal. Also ΩA/OK
is a finitely generated flat module over a local, Noetherian ring, so it follows that it is free
over A/aA. Let ∂fi/∂xj = apij with pij ∈ A. Note that adxi can be expressed as linear
combinations of the dfis, so it follows that corresponding matrix will give an inverse of the
matrix (pij), so that (pij) itself is an invertible matrix. The goal is to suppose we have some
OK-homomorphism φ : A → S/aI and find a lift from A → S that is unique. To do this,
we’ll work inductively, and lift a map A → S/aI [n] to A → S/aI [n+1]. In particular, take
elements v1, . . . , vm ∈ S so that applying fi to the tuple (v1, . . . , vm) is in aI [n]. We want
to find εi ∈ I [n] so that the fi(v1 + ε1, . . . , vm + εm) lands in aI [n+1]. We want this choice
of tuple to also be unique modulo I [n+1]. To work this out, we use the Taylor expansion, as
well as the fact that I is a topologically nilpotent divided power ideal to handle convergence
issues:

fi(v1 + ε1, . . . , vm + εm) = fi(v1, . . . , vm) +
m∑
j=1

∂fi
∂xj

(v1, . . . , vm)εj

+
∑
|r|≥2

∂rfi
∂xr

(v1, . . . , vm)

∏
k ε

rk
k

r!
.

Suppose we write ∂fi/∂xj = ap̃ij + qij, where we lift pij to OKJx1, . . . xnK and let qij ∈
〈f1, . . . , fn〉. By abuse of notation, we’ll just write pij for the lifts. Plugging in (v1, . . . , vm),
multiplying by εj, and using the lemma above gives that ∂fi/∂xj(v1, . . . , vm)εj is equiva-
lent to apij(v1, . . . , vm) modulo aI [n+1]. The same idea shows that the higher older partial
derivatives land in aI [n+1]. It then follows that the Taylor expansion from earlier becomes:

fi(v1 + ε1, . . . , vm + εm) ≡ fi(v1, . . . , vm) + a
∑
j

pij(v1, . . . , vm)εj (mod aI [n+1]).

Noting that (pij(v1, . . . , vm)) ∈ GLm(S), it follows that we can find unique εi so that
fi(v1 + ε1, . . . , vm + εm) ∈ aI [n+1]; we can ensure that the εi will live in I [n] because the
fi(v1, . . . , vm) ∈ aI [n] ⊂ I [n]. �

Fontaine’s proof of (ii) requires another quick fact that is closely related to Krasner’s
lemma.

Lemma 5.6 (Converse to Krasner’s lemma). Let K be a finite extension of Qp as earlier
and E/K be finite Galois. Let v(·) be the extended valuation on K to E and define mt

E =
{x ∈ OE : v(x) ≥ t}. Then,

(1) If t > uL/K (defined earlier), then every OK-algebra homomorphism OL → OE/mt
E

lifts to an OK-algebra homomorphism OL → OE.
(2) Conversely, if there is some t > 0 so that any OK-algebra homomorphism OL →
OE/mt

E lifts to an OK-algebra homomorphism OL → OE for every finite Galois
extension E/K, then t must be bigger than uL/K − 1/eL/K.

Proof. We start with the "forward" direction of the lemma. Let πL be a uniformizer of
L and p(x) be the minimal polynomial, living in OK [x]. Since OL = OK [πL], any OK-
homomorphism OL → OE/mt

E is determined by where πL is sent. Let α be the image of πL,
and note that we must have v(p(α)) ≥ t > uL/K .
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Consider v uniquely extended to the compositum of L and E. Also, let c be an argument
of the maximum of v(α− gπL), where g ranges over every element of the finite Galois group
G = Gal(L/K). Obviously, we have v(α − gπL) = min(v(α − cπL), v(c(πL − c−1gπL)) =
iL/K(c−1g) for any g ∈ Gal(L/K). Now, by the definition of φL/K from earlier and noting
that p(α) =

∏
(α− gπL), it follows that v(p(α)) = φL/K(maxg∈G v(α− gπL)).

Since v(p(α)) ≥ t > uL/K and φL/K is monotonically increasing, we have that v(α−cπL) =
maxg∈G v(α − gπL) > iL/K . Then, by Krasner’s lemma, it follows that cπL ∈ K(α) ⊂ E,
which lets us lift to OL → OE, as desired.

For the converse, it suffices to consider the case t = uL/K−1/eL/K and obtain a contradic-
tion; in particular, we need to find an un-liftable map. Let K ′/K the maximal unramified
subextension of L/K. Base change of an unramified extension is still unramified, so we can
write K ′ ⊗K E =

∏
iEi, where Ei are finite separable extensions of E. We can, of course,

replace E with Ei to get a lift to an O′K-homomorphism from OL to mathcalOEi/m
t
Ei

with
uL/K = uL/K′ and eL/K = eL/K′ , which means that we can reduce to the case where L/K is
totally ramified. We can moreover split into two cases, one where L/K is tamely ramified
and the other where L/K is wildly ramified.

First, suppose L/K is tamely ramified, which tells us that if v(gπL − πL) > 1/eL/K , then
g = 1 (the identity element of Gal(L/K)). As a result, it follows that iL/K = 1/eL/K
(essentially by definition) and hence uL/K = 1. Then, we have t = 1 − 1/eL/K . Note that
there is an OK-homomorphism OL → OE/πtKOE, given by sending πL to πE (uniformizers
of L,E, respectively), since v(

∏
(πE − gπL)) = [L : K]/eL/K = 1. This does not have any

lift OL → OE, at least for any E/K a totally ramified extension of degree eL/K − 1 because
we claim there are no OK-homomorphisms OL → OE. But this just follows from the fact
that we cannot send πL to anything in OE because of the restriction on degree.

Now, for the case where L/K is wildly ramified, by definition, we have for g not the
identity, that iL/K ≥ 1/eL/K , so that t ≥ 1. We can say even more because p|[L : K] = eL/K ,
namely that t > 1, since uL/K ≥ 1 + p/eL/K and hence t ≥ 1 + (p − 1)/eL/K . Note that
t ∈ (1/eL/K)Z, so we can write eL/Kt = eL/Kr + s, with 0 ≤ s < eL/K , where r, s are whole
numbers. Let f ∈ OK [x] be the minimal polynomial of πL and let g(x) = f(x)−πrKxs, which
is clearly monic. By Eisenstein’s criterion (and noting that f is Eisenstein because it is the
minimal polynomial of πL and L/K is totally ramified), it follows that g(x) is also Eisenstein
if s > 0 or s = 0, r ≥ 2. Now, let α be a root of g(x) and set E = K(α). It follows that E
is totally ramified. We can then define an OK-homomorphism OL → OE/mt

E sending πL to
α, since v(f(α)) = v(πrKα

s) = eL/Kr + s = t, as desired.
To complete the proof, we need to show that there is no lift OL → OE. If there is,

by taking fraction fields, we see that L ⊂ E. Since L,E have the same degree over K,
they must be the same. Then, v(gπL − α) ∈ (1/eL/K)Z for each g. We also know that
v(
∏

(gπL − α)) = t from our earlier computation, which means that eL/Kφ−1
L/K(t) ∈ Z. Also,

the slope of φL/K at iL/K , say s, is the size of G(iL/K), which means that (by definition)
eL/Kφ

−1
L/K(t) = eL/KiL/K − 1/s ∈ Z, so s = 1. But that is a contradiction because L/K is

wildly ramified and the result follows. �

With this lemma, we can now complete the proof of the earlier proposition.

Proof of (ii) of proposition. Recall we wanted to show that uL/K ≤ v(a) + eK/(p − 1). At
the very least, for the case where L/K is tame (by definition), we have uL/K ≤ 1 ≤ v(a) ≤
v(a) + eK/(p− 1). So we can assume that L/K is wild.



GROUP SCHEMES 37

For t > v(a)+eK/(p−1) and a finite Galois extension E/K, we claim that any OK-algebra
homomorphism OL → OE/mt

E lifts to OL → OE.
To see this, note that by definition of L, Y (OL) gives us all the points of Y , and we

moreover have |Y (OE)| ≤ |Y (OL|, with equality iff we can find a morphism from OY → OE.
So it suffices to show that we have equality, given the assumptions of our claim. Indeed,
by an easy computation of the valuation of a factorial, we know that m

t−v(a)
E is a divided

power ideal (since t − v(a) > eK/(p − 1)), which is also clearly topologically nilpotent. In
addition, we have mt

E = am
t−v(a)
E . Now, given a map OL → OE/mt

E, we can post-compose
the projection to OE/mt−v(a)

E . The kernel of this composition is just mt−v(a)
L and is similarly

a divided power ideal that is topologically nilpotent.
For convenience, we will write Hom for the remainder of the proof to refer to homo-

morphisms over OK . Now, the first part of the proposition tells us that Hom(A,OE) =

im(Hom(A,OE/amt−v(a)
E ) → Hom(A,OE/mt−v(a)

E ), along with a similar statement if we re-
place E with L. Take our morphism OL → OE/mt

E, pre-compose it with an element of
Y (OL) to get an element of Hom(A,OE/mt

E). Again, note that mt
E = am

t−v(a)
E , and using

the equation from (i) tells us that we can post-compose with the projection and hence get
an element of Y (OE). Moreover, it is easy to see that this map from Y (OL) → Y (OE) is
injective using the definition of L (it’s just the field generated by the points of A). As a
result, it follows immediately from the work earlier that our claim holds.

Now, to complete the proof, recall that we are in the situation where L/K is wild. For
iL/K(g) ∈ (1/eL/K)Z for g not the identity and by properties of higher ramification groups,
we know that |G(i)| is divisible by p. Then, by definition of uL/K , it follows that eL/KuL/K
is an integer divisible by p. Also, note that v(a) + eK/(p − 1) ≥ uL/K − 1/eL/K , using the
previous lemma and the claim, so we have

(p− 1)eL/KuL/K ≤ (p− 1)eL/Kv(a) + eL/KeK + p− 1

Note that p|eL/K , so actually we end up getting

(p− 1)eL/KuL/K ≤ (p− 1)eL/Kv(a) + eL/KeK .

Then, rearranging the inequality gives us exactly what we need and the result follows. �

Finally, we can prove Fontaine’s ramification bound using this proposition.

Proof of theorem. The fact about differents is a general fact that follows after we prove
that uL/K ≤ eK(n + 1/(p − 1)). Indeed, note that, by definition, we have v(DL/K) =
v(
∏

g 6=1(gπL − πL)). Then, by definition of uL/K , we have the following computation:

uL/K =
∑
g

min(iL/K , iL/K(g))

= iL/K +
∑
g 6=1

iL/K(g)

= iL/K + v(
∏
g 6=1

(gπL − πL))

= iL/K + v(DL/K ,

from which it follows that v(DL/K) < eK(n+ 1/(p− 1)), since iL/K > 0.
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Write Γ = SpecA. We first proceed in the case where ΩA/OK is free over A/pnA. Now, note
that K is perfect, so by Proposition 4.18, we have ΓK ∼= Γét

K × Γ0
K . Using Proposition 4.19,

it follows that A =
∏

iAi with each Ai ∼= OKiJx1, . . . , xlK/(fi1, . . . , fil), with the Ki/K
unramified (by our assumption). As a result, we can finish by (ii) of our proposition.

To reduce to this case, we require the following theorem by Raynaud and embed Γ into
an abelian scheme X over OK (note that OK is a local ring). Recalling the construction of
L and also noting that Γ(K) ↪→ X[pn](K), showing the result for the X[pn] is sufficient. By
the results of Section 4, we have an exact sequence 0 → X[pn] → X → X → 0, with the
third map being the multiplication-by-pn map. Then, we see that ΩX[pn]/OK is the cokernel
of the multiplication-by-pn map on ΩX/OK , and is hence a locally free OK/pnOK-module,
since ΩX/OK is a locally free OK-module. The result follows. �

Theorem 5.7. Let G be a finite flat commutative S-group scheme with S a local ring. Then,
we can find a closed S-immersion G ↪→ A, where A is an abelian S-scheme.

Example 5.8. As a silly example (working in the setup of the Fontaine’s ramification
bound), consider the case where K = Qp and Γ is the roots of pn unity (i.e. SpecA =
SpecZp[X]/(Xpn − 1)). Then, we have A⊗K ∼= Qp ×Qp(ζp)× · · · ×Qp(ζpn), so it follows
that L is just Qp(ζpn). By an explicit computation (using Herbrand’s theorem), it follows
that uL/K = n and iL/K = 1/(p− 1). The ramification bound is not tight, but predicts that
uL/K ≤ n+ 1/(p− 1), which is very good for large p.

6. Group schemes of prime order

One of the first things Professor Mazur told us to look at was the classification of group
schemes of order p over an algebraically closed field. We learned about this from the classic
paper of Oort and Tate [14], which goes on to provide a classification over pretty general
complete local rings of residue characteristic p. This generalizes the example for p = 2 we did
in Section 2. In this section we will explain the key arguments of both of those classifications
of Oort-Tate, following their paper closely.

One of the main outcomes of this classification is the following theorem, originally due to
Artin and Mazur:

Theorem 6.1. The only group schemes of order p over Z are µp,Z and (Z/pZ)Z.

We won’t get quite this far, but we will get very close: the main ingredient in Oort–Tate’s
proof really is the classification over Zp, which we will do in full detail.

6.1. Over an algebraically closed field. Let k be an algebraically closed field. The
statement of the classification of group schemes of order p over k is that Proposition 2.13
accounts for all of them.

Lemma 6.2. Let k be an algebraically closed field and p a rational prime. Every k-group
scheme of order p is either étale or connected.

Proof. The crux of the proof is the fact that quotients exist and their orders are what you
expect (the technicalities of which we have already discussed). In particular, for any subgroup
scheme H ⊂ G, Grothendieck established the existence of a scheme G/H with the property
that

|G| = |H||G/H|.



GROUP SCHEMES 39

Applying this to H = G◦, we see that the order of G◦ is either 1 or p. If it is p, since k
is a field, using the theory of finite-dimensional vector spaces it follows that G = G◦ and
thus G is connected. If |G◦| = 1, then G◦ = Spec k and thus (by the étale-connected exact
sequence maybe, where we can even use G = G◦ ×Gét to avoid thinking since k is perfect)
G is étale. �

Remark 6.3. It might seem like one shouldn’t need Grothendieck’s machinery to establish
something like this, since one is really only using the fact that the order of G◦ divides the
order of G. But as S. Marks pointed out to us, this is unlikely – even in the classical
group-theoretic setting, one needs to think very directly about the coset space to show this
divisibility.

As we know, the étale k-group schemes are easy to think about. Since k is algebraically
closed, Gal(k̄/k) is trivial, and thus the category of étale k-group schemes of order p is
equivalent to the category of groups of order p (in particular an étale k-group scheme is
determined by its k-points). So we have proved:

Lemma 6.4. If k is algebraically closed, the only étale group scheme of order p is (Z/pZ)k.

Note that this group scheme is commutative, and its Hopf algebra can be generated as
a k-algebra by a single element (recall that this Hopf algebra is as a ring the k-algebra of
functions on Z/pZ, so it can be generated by any function taking on different values at
each point because of the general theory of polynomial interpolation; such a function exists
because k is algebraically closed and therefore infinite). Now for the connected case, which
requires a little more care.

Lemma 6.5. Let k be an algebraically closed field, and G a connected k-group scheme of
order p. Then k has characteristic p and G = µp,k or αp,k.

Proof. The basic idea is to separate the cases based on whether the Cartier dual G∨ is étale
(in the case of µp,k) or connected (in the case of αp,k). And the way to understand what G∨
is is to show that its Hopf algebra A∨ is generated over k by a single element d, which is
an arbitrary choice of derivation on A. Once we have shown this, the abstract properties of
G (e.g. the fact that it is connected and of order p, and that G′ is of order p and therefore
either étale or connected by Lemma 6.2) will allow us to deduce the desired fact about G.
The main idea of the proof is in the second step, so we do it first

Step 2: In step 1, we will show that A∨ = k[d] for some d ∈ A∨ with the property that

cA∨(d) = d⊗ 1 + 1⊗ d

and d ∈ IG∨ , the augmentation ideal of A∨. Since G∨ has order p, by Lemma 6.2, we know
that it is either étale or connected. If it is étale, then by Lemma 6.4, we have G∨ = (Z/pZ)k,
and so by Lemma 2.7, G = µp,k. And since G is assumed connected, it follows that k
has characteristic p, since otherwise G ∼= (Z/pZ)k, which is étale and not connected (see
Lemma 2.8). The only remaining case is that G∨ is connected. In that case, A∨ is a local
k-algebra, and it is also Artinian since it is finite over k. So by the standard fact from
commutative algebra (see A-M), the augmentation ideal IG∨ is nilpotent, and therefore d
itself is nilpotent. If n is the least positive integer such that dn = 0, then k[d] = k[X]/(Xn)
has rank n over k; this means that n = p. In particular, continuing to use the very convenient
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fact that k is a field6,

0 = cA∨(dp)

= cA∨(d)p

= (1⊗ d+ d⊗ 1)p

=

p∑
i=0

(
p

i

)
di ⊗ dp−i

=

p−1∑
i=1

(
p

i

)
di ⊗ dp−i

implies that k has characteristic p. So we have

A∨ = k[X]/Xp

with Hopf algebra structure given by X 7→ 1⊗X +X ⊗ 1, in other words

G∨ ∼= αp,k

(by Lemma 1.4 the comultiplication is enough to deduce this). By Lemma 2.10, this implies
that G ∼= αp,k as desired.

Step 1 : We just need to justify the technical lemma we used in step 2, namely that A∨ is
generated over k by a single element d in the augmentation ideal of A∨ with the property
that

cA∨(d) = 1⊗ d+ d⊗ 1.

We expect such an element to exist from the examples, I suppose. In fact, the claim is that
we may choose d to be any k-derivation on A (and the fact that derivations exist on A and
can be interpreted as elements of A∨ is what makes going between A and A∨ useful despite
the symmetry of the situation). Such a derivation exists because the universal property of
ΩA/k and Proposition 4.11, which together say that

Derk(A, k) ∼= HomModA(ΩA/k, k) ∼= HomModA(A⊗k I/I2, k) ∼= HomModk(I/I
2, k).

Since G is connected, A is a local ring, and since it is a finite k-algebra, it is in fact a local
Artinian k-algebra, and its maximal ideal (and thus any proper ideal) is therefore nilpotent.
In particular, the augmentation ideal I, which is a nonzero proper ideal (and in fact has rank
p − 1 over k as we saw in Section 2), is nilpotent and therefore has I2 ( I. It follows that
I/I2 6= 0, and thus (by the analysis above), there exists a nonzero k-derivation d : A → k.
In this entire discussion, k is being interpreted as an A-module via the counit morphism
ε : A → k (so in particular what we have said so far actually makes sense). We need to
establish the following three facts:

(1) That d ∈ A∨ is in the augmentation ideal of A∨, i.e. that d is in the kernel of the
dual of the structure morphism k → A.

(2) That cA∨(d) = 1⊗ d+ d⊗ 1.
(3) That A∨ = k[d].

6So that in particular 1, . . . , dp−1 form a basis for A∨ and {di ⊗ dj : 1 ≤ i, j ≤ p − 1} is a basis for
A∨ ⊗A∨
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To prove (1), just recall from Theorem 1.10 that εA∨(d) = d ◦ (k → A) = 0, since d is a
k-derivation and therefore sends k ⊂ A to zero. For (2), the point is that cA∨ is the dual of
the multiplication map A⊗A→ A, so it takes d ∈ A∨ to the element of (A⊗A)∨ given on
pure tensors by a⊗ b 7→ d(ab). Since d is a derivation, this is in fact

a⊗ b 7→ adb+ bda,

which as an element of (A ⊗ A)∨ = A∨ ⊗ A∨ is 1 ⊗ d + d ⊗ 1. (3) follows from (2), in the
following sense: cA∨(d) = 1⊗ d+ d⊗ 1 ∈ k[d]⊗ k[d], and therefore k[d] ⊂ A∨ is an inclusion
of bialgebras. This is not obviously good enough to deduce that k[d] is a Hopf subalgebra
(for example, the nonnegative integers contain the identity and are closed under addition
in the group Z but are not closed under taking additive inverses). Luckily, there is a trick.
Taking duals, the induced map

A→ (k[d])∨

is a surjective map of bialgebras. Since A has the further structure of a Hopf algebra, one
checks that this induces a Hopf algebra structure on (k[d])∨ (e.g. by checking that the kernel
of such a map is a Hopf ideal; the verification is analogous to the fact that the kernel of
a multiplicative map from a group to a monoid respects taking inverses)7. So we see that
(k[d])∨ is a closed subgroup scheme of A. But G has order p over k, so by Grothendieck’s
quotient construction, (k[d])∨ is either k∨ = k or all of A. Of course, d is not in k since it is
in the augmentation ideal of A∨, so dimk k[d] > 1, and thus k[d] = A, as desired. �

As usual we see that the case where k has characteristic p is very distinguished when
talking about groups of order p. Collecting all the lemmas in this section and separating
based on the characteristic of k rather than the étaleness or connectedness, we have the
following result.

Theorem 6.6. Let k be an algebraically closed field, and p a rational prime. If k has
characteristic not equal to p, then there is only one isomorphism class of group schemes over
k of order p, e.g. the class of (Z/pZ)k. If k has characteristic p, then there exactly three
isomorphism classes of k-group schemes of order p, namely (Z/pZ)k, µp,k, αp,k.

Note that we have already argued that the three group schemes in the characteristic p
case of Theorem 6.6 are nonisomorphic in Proposition 2.13. Also, as a consequence of this
classification, we have

Corollary 6.7. Let k be an algebraically closed field and p a rational prime. Then all finite
flat k-group schemes of order p are commutative and killed by p. Also, their corresponding
Hopf algebras can be generated by a single element over k.

Proof. This is just a reminder that the commutativity plus the fact they have order p implies
they have order p (this is a theorem of Deligne which we proved using Cartier duality in
Section 2). �

7It’s kind of funny how taking the dual situation makes things easier: a monoid inside a group is
not necessarily a group, but a monoid admitting a surjective morphism from a group gets a natural group
structure. In any event, the reason for taking the dual when making this argument is because of the difference
between these two situations.
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6.2. General classification. Let R be a Noetherian local ring. It turns out that part of
Corollary 6.7 is still valid in this context, because one can pass to that situation.

Theorem 6.8. Any R-group scheme of order p is commutative.

Proof. First, since R is local Noetherian, we can continue to treat “finite flat” as “free of rank
p over R”. The basic idea, of course, is to pass to the residue field and apply Theorem 6.6.
But this doesn’t actually work because R doesn’t necessarily have algebraically closed residue
field. So one needs to invoke a theorem from commutative algebra, due to Nagata: R injects
into its strict henselianization Rsh, which is a strict henselian ring (the important thing is
that it has algebraically closed residue field). For example, if R = Zp, we have an injection
from R to the valuation ring of the maximal unramified extension of Qp, which we know
has residue field Fp. In this kind of setting (i.e. where R is the valuation ring of some finite
extension of Qp) we know exactly what to embed R into. So while citing Nagata’s result
gives us a more general theorem, it is not necessary for the cases we probably care the most
about anyway.

Recall from Section 1.2 that the comultiplication morphism for the order-p Rsh-group
scheme G ×R SpecRsh is by definition the one induced by A → A ⊗ A via tensoring up by
Rsh, using the isomorphism

(A⊗R A)⊗R Rsh ∼= (A⊗R Rsh)⊗Rsh (A⊗R Rsh).

Moreover, the fact that A (and thus A⊗ A as well) is flat means that the natural maps

A→ A⊗R Rsh

and
A⊗ A→ (A⊗R A)⊗R Rsh

are injective (since R→ Rsh is injective). In particular, if we can show that the diagram

A⊗Rsh A⊗ A⊗Rsh

A⊗ A⊗Rsh

commutes, then we are done because (since the comultiplication on the base change is the
one induced from the original one by base change, and one checks the same is true of
the coordinate-switching map) the diagram we are interested in (the one expressing the
cocommutativity of A) is just the restriction of this one to A and A⊗A. So this shows that
it suffices to consider the case where k = R/mR is algebraically closed. N.B.: this reduction
also uses the fact that G×R SpecRsh has the same order over Rsh as G does over R, but this
is a basic fact from algebra.

Now, using the reduction map R→ k, we can take the reduction mod m of G, i.e.

G̃ := G×R Spec k.

Since k is algebraically closed, and G̃ is a group scheme of order p, now we can invoke
Theorem 6.6 to see that G̃ is commutative. And therefore so is its Cartier dual, which has
Hopf algebra

(A⊗ k)∨ ∼= A∨ ⊗ k
(this is an isomorphism of k-vector spaces and of noncommutative rings; we did this kind of
observation in the proof of Theorem 1.11). So we have a natural Hopf algebra structure on
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A∨ ⊗ k, even though we don’t know A∨ is commutative yet. In particular, A∨ is a possibly
non-commutative ring, and it is our job to deduce that it is commutative form the fact that
A∨⊗k (sounds like a job for Nakayama) is commutative. Once A∨ is commutative as a ring,
we know immediately that G is commutative as a group scheme and we are done.

Since the reduction map R→ k is surjective, and A∨ is free and therefore flat, the natural
map

A∨ → A∨ ⊗R k = (A⊗ k)∨

is surjective. By Corollary 6.7, (A ⊗ k)∨ is generated as a k-algebra by a single element,
so by this surjectivity, there is some f ∈ A∨ such that f̃ ∈ (A ⊗ k)∨ = A∨ ⊗ k generates
it as a k-algebra. In particular, the R-submodule R[f ] of A∨ reduces mod m to all of
A∨/mA∨ = A∨⊗k, so by Nakayama, R[f ] = A∨, which means that A∨ is in fact commutative
as a ring, as desired. �

Remark 6.9. Since this is clearly local on the base, Theorem 6.8 and its proof generalize
directly to group schemes of order p over an arbitrary locally Noetherian base scheme. The
classification we are about to do over certain kinds of rings holds without change over schemes
defined over a certain fixed ring (see Assumption 6.11), but the proof is the same. So we
talk only about affine bases, keeping in mind that the global arguments from Oort–Tate
are identical (you just replace the R-modules with OS-modules and invertible modules with
sheaves).

By Theorem 1.12, we now have

Corollary 6.10. Let R be a locally Noetherian ring of residue characteristic p. Then any
R-group scheme of order p is (commutative and) killed by p.

The point of this is that now we can view the Hopf algebra of a finite R-group scheme G
as a R[F×p ]-module. In particular, the fact that p kills G means that n ∈ F×p acts on A by
[n] : A → A. This is very useful, because R[F×p ]-modules are easy to control, due to some
formal facts which look quite similar to the whole story on Gauss/Jacobi sums. In order for
the mechanism to work, we need to make

Assumption 6.11. Assume that R is a Λp-algebra, where

Λp = Z

[
χ(Fp),

1

p(p− 1)

]
∩ Zp.

Here χ : F×p → Z×p denotes the Teichmüller character (except we don’t make an exception
when p = 2), extended by 0 to 0 ∈ Fp. We demand that Λp contains (p− 1)−1 in order for
the mechanism (explained soon) to work, and the extra 1/p is sneaked in (which also forces
us to intersect with Zp since we don’t want p to be invertible in the final product) in order
for us to have

Λp ∩ pZp = pΛp.

Assumption 6.11 is not so serious: for example, Λp is a subring of Zp so when R is the
valuation ring of a finite extension of Qp (the main culprit in situations we care about in
arithmetic anyway), this is okay.

Remark 6.12. When p = 2, as we saw in Section 2, things are pretty simple. Part of the
reason for this is that Assumption 6.11 becomes vacuous: χ(F2) is already contained in Z,
and 2 is not invertible in Z2, so Λ2 = Z.
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The crucial formal mechanism takes the form of the following system of orthogonal idem-
potents in R[F×p ].

Lemma 6.13. Consider the elements

ei =
1

p− 1

∑
m∈F×p

χ−i(m)[m] ∈ Λp[F
×
p ]

considered as elements of R[F×p ] via Assumption 6.11, defined for i ∈ Z/(p − 1)Z, since
χ(F×p ) consists of the (p− 1)-th roots of unity in Zp. The elements {ei : 1 ≤ i ≤ p− 1} are
a system of orthogonal idemptotents in R[F×p ] with the property that

∑
ei = 1.

Proof. There are three properties we must check:

(1) e2
i = ei

(2) eiej = 0 for i 6= j
(3)

∑
ei = 1.

For (1), we compute

e2
i =

1

(p− 1)2

∑
m∈F×p

χ−i(m)[m]

2

=
1

(p− 1)2

∑
m,n∈F×p

χ−i(n)χ−i(m)[m][n]

=
1

(p− 1)2

∑
m,n∈F×p

χ−i(nm)[nm]

=
1

(p− 1)2

∑
n,a∈F×p

χ−i(a)[a]

=
|F×p |

(p− 1)2

∑
a∈F×p

χ−i(a)[a]

= ei.

For (2), we assume without loss of generality that i < j, and compute

eiej =
1

(p− 1)2

∑
m,n∈F×p

χ−i(n)χ−j(m)[m][n]

=
1

(p− 1)2

∑
m,n∈F×p

χ−i(nm)χi−j(m)[mn]

=
1

(p− 1)2

∑
m∈F×p

χi−j(m)
∑
n∈F×p

χ−i(mn)[mn]

= 0
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because the sum on the inside does not depend on m, and the sum of a nontrivial character
on F×p is zero. For (3), we compute

p−1∑
i=1

ei =
1

p− 1

p−1∑
i=1

∑
m∈F×p

χ−i(m)[m]

=
1

p− 1

∑
m∈F×p

(
p−1∑
i=1

χi(m)

)
[m]

= 1

since the sum on the inside is equal to p−1 when m = 1 and 0 otherwise (e.g. by considering
it as a character sum on the pontryagin dual of F×p ). �

Remark 6.14. When p = 2, this formal mechanism degenerates completely to a single
idempotent, namely 1. So these shenanigans were not necessary in Section 2, where the
following analysis of the augmentation ideal boils down to the fact that it has rank 1 to
begin with.

The point of this mechanism is to decompose the augmentation ideal IG as a direct sum
of rank-1 things (of which the p = 2 case from Section 2 is a trivial example), which are
simultaneous eigenspaces of the commuting operators [m] for m ∈ F×p . The multiplicative
characters F×p → Z×p are precisely the powers of χ : F×p → Z×p , so if such an eigenspace
decomposition exists where the eigenvalues are in Zp, we expect the systems of eigenvalues
to be given by powers of χ. The ei is just an averaging operator that is supposed to project
A onto the simultaneous eigenspace whose system of eigenvalues is given by χi (at least it is
clear that it acts by the identity on χi-simultaneous eigenvalues). The two lemmas explain
how to deduce that this is actually case. The main input is really Lemma 6.13.

Lemma 6.15. Let Ii = eiI ⊂ A. Then I =
⊕p−1

i=1 Ii.

Proof. First, we must show that Ii = eiI ⊂ I. Since I is an ideal in A, it suffices to show
that [m] sends I to I for all m ∈ F×p . The general case follows from the m = 2 by induction,
which is true because of the commutativity of the diagram

G G×G G

SpecR

m ∆

εε

Also, the sum
∑p−1

i=1 Ii is direct, because one can recover the Ii-component of an element
of this sum by applying ei (this uses Lemma 6.13), and (also from Lemma 6.13), any a ∈ I
is in

∑
Ii since

a =

(
p−1∑
i=1

ei

)
a.

So we have established both inclusions and the directness of the sum, as desired.
�



46 GROUP SCHEMES

Lemma 6.16. IiIj ⊂ Ii+j for all i, j ∈ Z/(p− 1)Z, and

Ii = {f ∈ A : [m]f = χi(m)f for all m ∈ Fp}

Proof. First, it is clear that the first assertion follows from the second, since

[m](fg) = ([m]f)([m]g)

(no diagram chasing necessary – this is just the fact that [m] is a ring homomorphism
A → A). To prove the second assertion, note first that one inclusion is obvious: for any
f ∈ A,

eif =
1

p− 1

∑
n∈F×p

χ−i(n)([n]f)

has the property that

[m]eif =
1

p− 1

∑
n∈F×p

χ−i(nm−1)([n]f) = χi(m)eif

for allm ∈ F×p . And if f ∈ I (which implies eif ∈ I by Lemma 6.15), then [0]eif = ε(eif) = 0

(since [0] : A
ε→ R → A is the definition). In fact, the converse is also clear: if [0]f = 0,

then f ∈ I (again this is the definition of [0] and the augmentation ideal). The condition at
m = 0 is really just expressing the fact that we are in the augmentation ideal – if we want to
look at a simultaneous eigenspace decomposition of A then we can do it if we forget m = 0.

So at least we have the inclusion Ii ⊂ {f ∈ A : [m]f = χi(m)f for all m ∈ Fp}. The
opposite inclusion comes from the fact that I =

⊕
Ii from Lemma 6.15, because now each

f ∈ I can be expressed as a sum

f =

p−1∑
i=1

fi

where [m]fi = χi(m)f for all m ∈ F×p . So again by Lemma 6.15,

[m]f =

p−1∑
j=1

χj(m)fj

is equal to χi(m)f =
∑p−1

j=1 χ
i(m)fj if and only if

χj(m)fj = χi(m)fj

for each 1 ≤ j ≤ p− 1. Since the χi(m) are powers of a primitive (p− 1)-th root of unity in
Qp, they are all distinct, which means that this implies fj = 0 for all j 6= i, and so we have
the opposite inclusion. �

Remark 6.17. In these proofs and the ones to come, we say a lot of words about why one
can assume that R is local. In real life, R is probably the valuation ring of a finite extension
of Qp, especially since we won’t talk about Oort–Tate’s extension for global fields. So if this
is the only case we care about, these proofs become somewhat shorter.

Proposition 6.18. Each Ii is invertible (locally free of rank 1) as an R-module, and I t1 = It
for 1 ≤ t ≤ p− 1.
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Proof. Recall from Section 2 that I is locally free of rank p− 1, and that the same argument
(using Lemma 6.15 and the fact from Nakayama that a finitely-generated projective module
over a local ring is free) shows that the Ii’s are locally free of rank ri such that

p−1∑
i=1

ri = p− 1.

Notice that we can assume that R is local: just localize everything at a prime ideal of R, and
use the fact that the augmentation ideal is compatible with localization, because localization
is exact and the coidentity morphism is compatible with base change (in fact the definition
of the coidentity morphism is the one that comes from base change so this is a tautology).
The fact that the Ii’s are compatible with base change is immediate from this because of
how they are defined via the action of Λp[F

×
p ]. Even for the second part of the statement we

are allowed to assume that R is local, because base change preserves products of submodules
and because if the induced map I t1 ⊗ Rp → It ⊗ Rp is surjective for all p then the original
inclusion I t1 → It must have been surjective to begin with as well.

Now that R is local, the Ii are free of rank ri. But we aren’t done with the base-changing
just yet. In fact, the augmentation ideal is compatible with arbitrary base-change, because
of the splitting of the exact sequence

0→ I → A→ R→ 0.

So by the same arguments as above, to show that Ii has rank 1, we can assume that R is an
algebraically closed field by base changing to the algebraic closure of the residue field. For
the part about I t1 = It, again since multiplication of submodules is preserved by arbitrary
base change, if we want to assume that R = k it suffices to show that

I t1 ⊗ k = It ⊗ k =⇒ I t1 = It,

where k = R/mR is the residue field of R. First of all, by linear algebra (dimension con-
siderations), equality of the base changes to k at least implies it for k. So we just need to
show

I t1 ⊗ k = It ⊗ k =⇒ I t1 = It.

But this is just Nakayama’s lemma.
Now we have reduced to the case where R is an algebraically closed field k = k. But in

this setting, we know that there are only three possibilities, according to Theorem 6.6. So we
just need to check that this result holds for G = (Z/pZ)k if k has characteristic not equal to
p, and for αp,k, µp,k if k has characteristic p. The property that all of these have in common
is that there exists an f1 ∈ I1 such that f i 6= 0 for all 1 ≤ i ≤ p − 1. Then by dimension
considerations and Lemma 6.16, I1, . . . , Ip−1 all have rank at least 1, and since

∑
ri = p− 1,

it implies they have rank exactly one. And since k is a field, the fact that f t 6= 0 would imply
also by dimension consderations that I t1 = It. In the case of G = (Z/pZ)k, A is the algebra
of k-valued functions on Z/pZ, and the F×p -action is given by [m]f(n) = f(nm). So χ itself
(treated as a function from Fp to k via Assumption 6.11) is in I1 (e.g. by Lemma 6.16). And
the powers of χ are nonzero functions on Z/pZ, so this is okay.

Next we do αp,k. Its Hopf algebra is A = k[T ]/T p, with comultiplication T 7→ 1⊗T +T⊗1
(see Section 2). The multiplication-by-m is induced by the one on Ga,k, i.e.

[m]T = mT.
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Again, the fact that k has characteristic p means that m = χ(m) in k, since they are
congruent8 modulo p in R by the definition of χ. So by Lemma 6.16, T ∈ I1. By definition
of A, the first p − 1 powers of T are nonzero (though the p-th one is), so this case is also
okay.

The final case µp,k is similar to αp,k but is more important because a detailed understanding
of this example is necessary to prove the full classification. We have A = k[T ]/(T p− 1), and
[m] defined by

[m]T = Tm

since it is induced by the group structure on Gm,p. The counit A → R is given by T 7→ 1,
so the augmentation ideal is

I = (T − 1) · A.
Moreover,

[m](T − 1) = Tm − 1 = (T − 1)(1 + · · ·+ Tm−1) ≡ m(T − 1) mod (T − 1)2.

Again, because of Assumption 6.11, we have m = χ(m) in k, and therefore

e1(T − 1) =
1

p− 1

p−1∑
m=1

χ(m)−1[m](T − 1)

≡ 1

p− 1

p−1∑
m=1

χ(m)−1χ(m)(T − 1) mod (T − 1)2

≡ T − 1 mod (T − 1)2

is in I1 and is nonzero due to being congruent to T − 1 mod (T − 1)2. We have A =
k[T − 1]/(T − 1)p since k has characteristic p, so we can deduce that e1(T − 1)t 6= 0 for
t = 1, . . . , p− 1 (but no further) and thus the proposition is proved. �

The three examples which are the basis for the proof of Proposition 6.18 are independently
interesting on their own as examples of this formal mechanism. The computations are still
essentially valid over the more general R (though we probably still want Assumption 6.11).

Example 6.19 (Decomposition of the augmentation ideal for αp). Let R be a ring of charac-
teristic p satisfying Assumption 6.11, and consider αp,R = SpecR[T ]/T p. The augmentation
ideal is the kernel of ε : T 7→ 0, and is therefore generated as an ideal by T . The resulting
decomposition

I =

p−1⊕
i=1

R · T i

coincides with the decomposition into Ii’s, as one can check by explicit computation using
the definition of ei or by checking that these are the appropriate eigenspaces.

The importance of this decomposition of the augmentation ideal is that it allows us to
encode the scheme structure of G with very little data:

8In in order to conclude that m and χ(m) differ by a multiple of p in R, we need to use the part of
Assumption 6.11 that tells us pZp ∩Λp = pΛp. This subtle part of the assumption is crucial here, and in the
future as we continue to look at things mod p.
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Lemma 6.20. Let G be a group scheme of order p over R, and define the decomposition
IG =

⊕
Ii as above. Let Sym•I1 be the symmetric algebra over R, defined by

Sym•I1 =
∞⊕
i=0

SymiI1.

The natural map I1 → A induces a surjective ring homomorphism ϕ : Sym•I1 → A with
kernel equal to ideal generated by (a− 1)SympI1, where

a ∈ HomModR(SympI1, I1)

is the map induced by the ring multiplication of A.

Proof. First, as indicated in the notation of [14], the fact that we are talking about Sym• is
artificial: the projection

I⊗i → SymiI

is (by Proposition 6.18) locally the isomorphism of free rank-1 Rp-modules

Ri
p → SymiRp

(in particular in a free Rp-module of finite rank, pure tensors are clearly invariant under
permutations). So the map I⊗i → SymiI itself is an isomorphism. Similarly, for 1 ≤ t ≤ p−1,
the multiplication map

I⊗t1 → I t1

is, by Proposition 6.18, a map of locally free rank-1 R-modules, and it is equal to the
restriction of the multiplication map A⊗A→ A. So for any prime p, it localizes to the the
restriction9 to I1,p ⊗ I1,p of the multiplication map Ap ⊗ Ap → Ap. But by Proposition 6.18,
this localization is a map of free R-modules of rank 1, and we can choose identifications
of I1,p with R such that it is the multiplication isomorphism R ⊗ R → R. So (only for
1 ≤ t ≤ p− 1) the map

I⊗t1 → I t = It

is an isomorphism. The induced map

ϕ : Sym•I1 = R⊕
∞⊕
t=1

I⊗t1 → A = R⊕
p−1⊕
t=1

I t1

(here we have used Proposition 6.18 and Lemma 6.15) is given by this isomorphism I⊗t1 → I t1
for 1 ≤ t ≤ p− 1 (and we see in particular that ϕ is surjective). By Lemma 6.16, ϕ is equal
to the direct sum of the identity map R 7→ R and the multiplication maps

ϕt :
⊕
i≥1

i≡t (mod p−1)

I⊗i1 → I t1.

The fact that a ∈ HomModR(I⊗p1 , I1) in the first place also comes from Lemma 6.16. The
elements of (a − 1)I⊗p1 are in the codomain of ϕ1 and clearly map to zero under ϕ1 (and
therefore ϕ), since a : I⊗p1 → Ip1 ⊂ I1 is the definition of ϕ1|I⊗p1

. So the ideal generated by
(a− 1)I⊗p1 is contained in the kernel of ϕ. To check the reverse inclusion, it suffices to check

9We have no problems thinking about restrictions here, since A and I1 are flat (since I1 is invertible).
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that kerϕt is contained in this ideal for all 1 ≤ t ≤ p− 1. For now, let t = 1. For k ≥ 1, we
have ϕ1|I⊗(1+k(p−1))

1
= a ◦ σ1 ◦ · · · ◦ σk−1, where

σn : I
⊗(1+(n+1)(p−1))
1 → I

⊗(1+n(p−1))
1

is defined on pure tensors by the identity on the first n(p− 1) coordinates and by a on the
next p. In other words, σn = I⊗n(p−1) ⊗ a. So taking the decomposition of an element of
kerϕ1,

z = x+
N∑
k=1

yk ∈ kerϕ1

where x ∈ I1 and yk ∈ I⊗(1+k(p−1))
1 . That ϕ1(z) = 0 is then equivalent to

x = −
N∑
k=1

a ◦ σ1 ◦ · · · ◦ σk−1yk,

i.e.

z =
N∑
k=1

yk − a ◦ σ1 ◦ · · · ◦ σk−1yk.

So it suffices to show that y − a ◦ σ1 ◦ · · · ◦ σk−1y is in the ideal generated by (a− 1)I⊗p, for
any y ∈ I(1+k(p−1))

1 . That is because

y − aσ1 · · ·σk−1y =

(
k−2∑
i=0

σk−i · · ·σk−1y − σk−i−1 · · ·σk−1y

)
+ σ1 · · ·σk−1y − aσ1 · · · σk−1y.

The last term is a bona fide element of (a − 1)I⊗p1 . By looking at pure tensors and the
definition of the σi’s, we also see that the term

σk−i · · ·σk−1y − σk−i−1 · · ·σk−1y ∈ I⊗(k−i−1)(p−1)
1 (a− 1)I⊗p1 ,

which proves the desired inclusion

kerϕ1 ⊂ (Sym•I1) · (a− 1)I⊗p1 .

But since ϕt = I
⊗(t−1)
1 ⊗ ϕ1, the fact that I1 is flat (and thus its tensor powers are all flat)

means that
kerϕt = I

⊗(t−1)
1 ⊗ kerϕ1

so we are done. �

Remark 6.21. Notice that it isn’t necessary for many applications to think as carefully as
we just did: instead of explicitly writing own the kernel of ϕ, we could have just argued that
it doesn’t depend on anything other than I1 and α.

Corollary 6.22. The ring structure of A (and thus the structure of G as an affine R-scheme)
is completely determined by the following two pieces of information:

(1) The invertible R-modules I1.
(2) The morphism a : I⊗p1 → I1.

Applying Corollary 6.22 to both G and G∨, we see that we actually need fewer pieces of
information to determine both G and G∨ as R-schemes. That is because of
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Lemma 6.23. Let I(G) denote the augmentation ideal of A, and Ii(G) denote the invertible
R-submodule Ii of A. Then I(G)∨ ∼= I(G∨) and Ii(G)∨ ∼= Ii(G

∨) in the category of R-
modules.

Proof. For the first part, recall from Section 2 that the exact sequence

0→ I → A
ε→ R→ 0

is split via the structure morphism R→ A, so we can define another split exact sequence

0→ R→ A→ I → 0.

The fact that this sequence is split means that applying the contravariant functor (·)∨ pre-
serves exactness, and thus

0→ I∨ → A∨ → R→ 0

is exact. The map A∨ → R dual to the structure morphism R→ A is the counit morphism
for A∨, as described in Theorem 1.10, so this shows we have the desired natural isomorphism

I∨ → IG∨ .

From Lemma 6.15, this means we have an isomorphism

ϕ :

p−1⊕
i=1

Ii(G)∨ →
p−1⊕
i=1

Ii(G
∨),

and we just need to show that ϕ takes Ii(G)∨ to Ii(G∨). Here Ii(G)∨ is included in I(G)∨ as
the set of linear functionals which are zero outside of Ii. By Lemma 6.16, this means that

Ii(G)∨ = {f ∈ I(G)∨ : [m]∨Gf = χi(m)f for all m ∈ F×p },

and thus (also by Lemma 6.16) it suffices to show that the diagram

I(G)∨ I(G∨)

I(G)∨ I(G∨)

[m]∨G

ϕ

[m]G∨

ϕ

commutes for all m ∈ F×p . The point is that (from the definition) ϕ is given by taking a
functional on I(G) and extending it by zero to all of A. So it really suffices to show that the
maps [m]∨G, [m]G∨ : A∨ → A∨ coincide. But this is a fact of life: it follows from the definition
of [m] and the group object morphisms attached to G∨ (see Theorem 1.10). �

Corollary 6.24. The schemes G and G∨ are uniquely determined by the following informa-
tion:

(1) The invertible R-module I1(G)
(2) The map aG : I⊗p1 → I1

(2) The map aG∨ : (I∨1 )⊗p → I∨1 .

This information doesn’t tell us about the group scheme structure of G until we get our
hands on the Cartier morphism G×G∨ → Gm,R. That morphism factors through µp,R due
to Corollary 6.10. So we need to understand in more detail the decomposition Lemma 6.15
and Proposition 6.18 in the example of µp,R.
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Let Iµp be the augmentation ideal of µp,R. Since R[T ] = R[T − 1], and the counit map is
ε : T 7→ 1, we see that

Iµp = (T − 1) · A

as in the proof of Proposition 6.18. In particular, there is a direct sum decomposition

Iµp = (T − 1) ·R⊕ · · · ⊕ (T − 1)p−1 ·R.

This is to be expected, since we have a unit-section-respecting isomorphism of schemes
αp ∼= µp. But the hope is that the eigenspace decomposition of the augmentation ideals will
be able to distinguish them as group schemes, which is indeed what we saw in the proof
of Proposition 6.18: this decomposition of I is not actually the eigenspace decomposition.
To construct explicitly the decomposition, we cannot rigorously just take ei(T − 1) and use
Nakayama’s lemma to deduce that it generates all of eiIµp : this is only valid when R is
assumed to be a local ring. Instead, the decomposition above only guarantees that eiI is
generated over R by the powers of ei(T−1). But we can explicitly check that this is enough10

by explicitly computing11 for i = 1, . . . , p− 1,

yi := ei(T − 1)

=
1

p− 1

∑
m∈F×p

χ−i(m)[m](T − 1)

=
1

p− 1

∑
m∈F×p

χ−i(m)(Tm − 1)

=
1

p− 1

∑
m∈F×p

χ−i(m)Tm −
∑
m∈F×p

χ−i(m)

=
1

p− 1

∑
m∈F×p

χ−i(m)Tm − δi,p−1(p− 1).

The standard trick is that one may recover the quantity Tm − 1 as a linear combination of
these yi’s, and one can check that

Tm − 1 =

p−1∑
i=1

χ−1(m)yi.

From the identity Tm − 1 = (T − 1)(1 + · · ·+ Tm−1), we know that the elements {Tm − 1 :
m = 1, . . . , p − 1} span all of Iµp = (T − 1)A, and therefore we have checked explicitly
that the yi = ei(T − 1) span all of I. So by Lemma 6.13, they in fact form a basis, and
Iµp,i = R · ei(T − 1). So for the special case of µp under Assumption 6.11, the simultaneous
eigenspaces Ii are not just locally free, but free over R of rank 1.

10This is what Oort-Tate does, at least. I would be curious to know if there is a way to prove this by pure
thought, but I doubt it because in general these things aren’t necessarily free over R despite being invertible.

11N.B.: our convention differs from Oort–Tate here by a factor of p− 1. It doesn’t matter because p− 1
is supposed to be invertible in R.
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Also, by the second part of Proposition 6.18, we have R · e1(T − 1)t = It = R · et(T − 1),
so in fact12

wt :=
yt1
yt
∈ R×

for all t = 1, . . . , p − 1. In fact, this quantity wt is still defined for larger t, since yt and It
only depend on the value of t mod p− 1 and thus yt1 is an R-multiple of yt (though it won’t
be a unit for t ≥ p). Most importantly, we have

yp1 = wpy1.

The constants wp live in Λp, and can be computed explicitly in terms of Jacobi sums (this
is what is done in [14, p. 10-11]). So we have shown

Lemma 6.25. Aµp,R = R[y1], where y1 ∈ Aµp,R satisfies yp1 = wpy1.

The key point is that the information in Corollary 6.24 also determines the Cartier mor-
phism G×G∨ → µp,R:

Proposition 6.26. Let
ϕ : R[y1]→ A⊗ A∨

be the ring map corresponding to the Cartier duality morphism G × G∨ → µp,R, using
Corollary 6.10 and Lemma 6.25. Also, let a : I⊗p1 → I1 and a′ : I∨⊗p1 → I∨1 be the maps from
Corollary 6.24. Then I1 ⊗ I∨1 ⊂ A ⊗ A∨ is a rank-1 free R-module generated by ϕ(y1), and
the map

a⊗ a′ : (I1 ⊗ I∨1 )⊗p → I1 ⊗ I∨1
is given by

(a⊗ a′)((ϕy1)⊗p) = wp · ϕ(y1)

(this determines the map a⊗a′ since (ϕy1)⊗p generates the rank-1 free R-module (I1⊗I∨1 )⊗p)

Proof. First, we show that ϕy1 actually lands in I1 ⊗ I∨1 . By Lemma 6.15, we have

A⊗ A∨ =
⊕

0≤i,j≤p−1

Ii ⊗ I∨j ,

where we go by the convention I0 = R. By Lemma 6.16 and Lemma 6.23, Ii ⊗ I∨j is the
χi⊗ χj-simultaneous eigenspace of the action of F×p ×F×p on A⊗A∨ (in particular, it is the
set of x ∈ A⊗A∨ such that ([m]⊗ [n])x = χi(m)χj(n)x for all m,n ∈ F×p ). So we just need
to check that

([m]⊗ [n])ϕ(y1) = χ(m)χ(n)ϕ(y1).

This is true because the Cartier duality morphism G × G∨ → µp,R is a pairing of group
objects (clear from the construction of this morphism on points via Theorem 1.11), and so
the diagram

G×G∨ µp

G×G∨ µp

[m]G×[n]G∨ [mn]µp

12N.B.: Because our convention for the normalization of yi differs from that of Oort–Tate, our values of
wt are different as well.
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commutes. As a result,
([m]⊗ [n])ϕ(y1) = ϕ([mn]y1) = χ(mn)ϕ(y1),

as desired, since y1 ∈ I1,µp to begin with. The fact that I1⊗I∨1 is generated by ϕ(y) is because
of the fact that the Cartier pairing is nondegenerate (see Theorem 1.11): since Cartier duality
is compatible with base change, it suffices (by the same local to global argument we have
already used in this section) to show this in the case where R is a local ring, and (also by
compatibility with base change and Nakayama’s lemma) in fact we may assume that R = k is
a field, and thus I1⊗ I∨1 is a k-vector space of rank 1. It is therefore reduced to showing that
ϕ(y1) 6= 0, which is true because the Cartier duality morphism is nondegenerate (if ϕ(y1) = 0
then the morphism G×G∨ → µp would factor through the identity map Spec k → µp which
means that the isomorphism G(S) → HomGrpSch/k(G

∨ × S, µp,S) implies G(S) is trivial for
all k-algebras S; so G cannot have order p > 1).

The second part of the statement, that
(a⊗ a′)(ϕ(y1)⊗p) = wpϕ(y1),

is because by Lemma 6.25,
wpϕ(y1) = ϕ(yp1) = ϕ(y1)p = (a⊗ a′)(ϕ(y1)⊗p)

by definition of a and a′ as the multiplication maps I⊗p1 → I1 and I∨⊗p1 → I∨1 . �

So the key insight is that the maps a and a′ give a lot of information about the Cartier
duality morphism, and it turns out that this is enough to determine G as a group scheme.

Let {G} be the set of isomorphism classes of R-group schemes of order p, and {(L, a, b)} the
set of isomorphism classes of triples consisting of an invertible R-module L, and R-module
maps a : L⊗p → L, b : (L∨)⊗p → L∨, with the property that there exists a generator x of
L ⊗ L∨ = R such that (a ⊗ b)x⊗p = wpx. Two triples (L, a, b) and (L, a′, b′) are considered
isomorphic if there is an isomorphism between L and L′ that takes a to a′ and b to b′. The
theory developed so far gives us a map

F : {G} → {(L, a, b)}
taking G to (I1, a, a

′).

Theorem 6.27. F is injective.

Proof. This comes down to showing that (I1, a, a
′) determines the isomorphism class of G as

an R-group scheme (i.e. given a triple (I1, a, a
′) coming from G we can reconstruct G up to

isomorphism). We know (Corollary 6.24) that this data determines G and G∨ as schemes.
The key point is that once we know the morphism G×G∨ → µp,R, we also know the group
structure on G. This is because of the fact that this morphism provides the isomorphisms
of groups from Theorem 1.11, namely

G(S)→ HomGrpSchR(G∨ ×R S, µp,S)

and in particular knowing the morphism G×G∨ → µp,R gives you an inclusion of groups
G(S)→ HomSchR(G∨ ×R S, µp,S)

so it tells you what the functor G : SchR → Grp is, which determines G up to isomorphism by
Lemma 1.4. So it suffices to determine the Cartier morphism from (I1, a, a

′), which is where
Proposition 6.26 comes in. That morphism is determined by ϕ(y1), which by Proposition 6.26
is a generator of I1⊗ I∨1 ⊂ A⊗A∨ with the property that (a⊗ a′)(ϕ(y1)⊗p) = wpϕ(y1). The
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information we have already means that we know I1, I
∨
1 , A,A

∨, a, a′, a ⊗ a′, y1, and wp. We
are looking for a generator x of the free rank-1 R-module I1 ⊗ I∨1 with the property that
(a⊗a′)(x⊗p) = wpx. We have shown that ϕ(y1) is one such a generator. All other generators
are of the form u · ϕ(y1) for some u ∈ R×, but if this was also true for u · ϕ(y1), we would
have

(a⊗ a′)(upϕ(y1)⊗p) = uϕ(y1),

which means u must be a (p− 1)-th root of unity. In other words, the data (L, a, b) at least
determines ϕ(y1) up to a (p − 1)-th root of unity. It turns out that this determines G up
to isomorphism, because if u is a (p − 1)-th root of unity there is an isomorphism of group
schemes

G×G∨ → G×G∨

given by the identity on G∨, and for G, the ring map A → A given by multiplication by u
on I1, such that we know the composition

G×G∨ → G×G∨ → µp.

So the information we are given is enough to determine some nondegenerate pairingG×G∨ →
µp, which (by the above argument) is good enough to determine G up to isomorphism as a
group scheme. �

Oort–Tate also showed that F is surjective, by exhibiting the preimages explicitly.
The easiest example to think about is the one where all invertible R-modules are free of

rank 1. For example R could be a local ring. The most important example to us is R = Zp
or the valuation ring of a finite extension of Qp. In this case, there is only one possibility for
the R-module L up to isomorphism, namely R, and a and b are just elements of End(R) = R
with the property that ab = wp. The element wp is determined up to a unit via the choice
of generator of L, and changing this generator by a unit u means multiplying a by up−1 and
b by u1−p. So in the end we get something which is very similar to what we saw when p = 2
in Section 2: the isomorphisms of Zp-group schemes of order p come as Ga,b’s, where ab = p
(since vp(wp) = p, as shown in [14]). Since the notion of equivalence is a little bit more
coarse than when p = 2, we get more group schemes than we did over Z2, where there were
only 2. In particular,

[Z×p : (Z×p )p−1] = p− 1

(see [7, §II.3]) so up to isomorphism there are 2(p−1) group schemes of order p over Zp (the
factor of 2 comes from whether vp(a) = 1 and vp(b) = 0 or vice versa).

7. p-divisible groups

This section is about what we read in Tate’s famous paper p-divisible groups. Let A be an
abelian variety over a local field K of residue characteristic p. The Néron–Ogg–Shavarevich
criterion (proved by Serre–Tate [10]) says that if ` 6= p, A has good reduction at p if and only
if the `-adic Tate module of A is unramified as a representation of Gal(K/K). But when
` = p, the situation is more complicated. The problem is that one cannot simply look at the
geometric points of A[p∞], because the group schemes A[pn] are no longer guaranteed to be
étale. For example, if A is a supersingular elliptic curve, then when you base change to the
residue field Fp the p-adic Tate module will be trivial. This is not a proof of anything, but
maybe suggests that rather than simply looking at geometric points, one gains information
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in the ` = p case by thinking of A[p∞] as a p-divisible group, namely the inductive system
of commutative group schemes

A[p]→ A[p2]→ · · · → A[pn]→ · · · ,
and by getting a p-adic Galois representation out of that instead. Assume that A has good
reduction, so we can assume that A is an abelian scheme over OK . Recall from Section 2
that A[p∞] is a p-divisible group of height 2d over SpecOK , where d is the relative dimension
of A over SpecOK . This means that A[pi] is a finite flat commutative OK-group scheme of
order pih = p2id included in A[pi+1] as the kernel of pi (see Section 1.2). That is really the
most relevant example of a p-divisible group. Here is another:

Example 7.1. Let G = µp∞ , that is the inductive system

µp → µp2 → · · · .
This is a p-divisible group of height 1.

For a p-divisible group G/OK given by the inductive system

G1 → G2 → · · · → Gi → · · · ,
we can also produce the projective system that is used in the definition of the Tate module,
using the multiplication-by-p maps

Gi+1 → Gi.

Taking the Cartier dual, we get another inductive system

G∨1 → G∨2 → · · · → G∨i → · · · ,
which one checks is also a p-divisible group of the same height h. In Section 2, we saw that
µ∨n
∼= Z/nZ, so we have

Example 7.2. The p-divisible group G = µp∞ of height 1 is dual to G∨ = Qp/Zp =
lim−→Z/pnZ, also of height 1.

Since the functor taking a finite flat OK-group scheme to its étale or connected part is
exact, there is a well-defined notion of the étale and connected parts of a p-divisible group.
The connected part appears to be less familiar: only the information in the étale part is
captured by the p-adic Tate module, since it is obtained by taking K-points in each Gi.
Understanding the connected part is where the theory of formal groups comes in. The
corresponding formal group is how one writes down the “points” of a p-divisible group, and
is how one defines the tangent space. The Hodge–Tate decomposition, which is the main
goal of this section of these notes, shows that the extra information of the connected part
(namely the tangent and cotangent spaces) determines a decomposition of the rational p-
adic Tate module (which we mentioned comes from the étale part of G) as a p-adic Galois
representation.

7.1. Formal groups and connected p-divisible groups. The category of connected
simply-connected n-dimensional Lie groups is nice because it is equivalent to the category
of n-dimensional Lie algebras. Unfortunately, in the residue characteristic p setting, the Lie
algebra does not contain enough information. Serre and Tate proved that what does contain
enough information is the formal group corresponding to G (here G is a connected p-divisible
group). Unlike the Lie algebra functor, the most straightforward thing is to construct the
connected p-divisible group from the formal group. Given a group scheme on its own, it’s
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natural to take a formal completion at the origin, but this is an inductive limit of group
schemes, so one needs to check a bit more in order to see that you can actually recover a
formal group from a p-divisible group.

Definition 7.3. Let An = OK [[X1, . . . , Xn]]. A n-dimensional formal group over OK (i.e.
over SpfOK) is a ring homomorphism

ψ : An → An⊗̂OKAn = OKJX1, . . . , Xn, Y1, . . . , YnK
satisfying the conditions for a commutative co-group object. In other words, it is the data
of a group object in the category of formal SpfOK-schemes where the underlying formal
scheme is SpfAn with ideal of definition Jn = (X1, . . . , Xn), i.e. the Jn-adic topology.
Such a formal group is p-divisible if the associated p-th power map

[p] : An → An

makes An into a free module of finite rank over itself13. That rank is a power of p, and the
h such that the rank is ph is called the height of ψ.

The only part of the definition we haven’t justified is why the rank is a power of p. The
most canonical way of going about this requires some more theory (see [5, §28.2]). At least I
do not know how to go about it in general without some Cartier–Dieudonné theory, though
in the 1-dimensional case it is much easier.

A p-divisible formal group G = (An, ψ) yields a bona fide connected p-divisible group G
via

Gi = ker[p]i,

the scheme-theoretic zero locus of [p]i, which here stands for the map of formal schemes
corresponding to the one An → An mentioned above. More concretely,

Gi = ker[p]i = Spec(An/[p]
i(Jn)An).

This forms a p-divisible group of height h, where h is the same as the height of the p-
divisible formal group G . In particular, An/[p](Jn)An is finite flat over OK with rank ph,
and An/[p]

i(Jn)An is finite flat of rank pih. The reason Gi is connected is simply because
An, and therefore An/[p]

i(Jn)An, is a local ring.
So we have defined a functor F

{p−divisible formal groups over OK of height h} → {p−divisible OK−groups of height h}
given by

G 7→ G = {Gi}.
What about going the other way? In principle, one should be able to recover G by literally
taking the direct limit of group schemes

lim−→Gi.

Example 7.4. Consider the p-divisible group G = Gm[p∞]. We have
Gi = µpi .

The corresponding p-divisible formal group is Gm, which is the 1-dimensional formal group
law given by ψ(X) = X + Y +XY . The p-th power map is

OKJXK→ OKJXK

13In other words, [p] is an isogeny of formal groups
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X 7→ (1 +X)p − 1

which means that from G = Gm, applying the functor F indeed yields

Gi = SpecOKJXK/((1 +X)p
i − 1) ∼= SpecOK [X]/((1 +X)p

i − 1) ∼= µpi ,

i.e. F (Gm) = Gm[p∞], where the Gm on the left is talking about the 1-dimensional p-
divisible formal OK-group, and the Gm on the right is talking about the abelian scheme.
Note, too, that

lim←−OK [X]/((1 +X)p
i − 1) ∼= lim←−OK [X]/(Xpi) ∼= OKJXK,

with compatibility of group laws.

Serre and Tate showed that these observations hold true in general, i.e. that F is an
equivalence of categories. First, the shallower part is

Proposition 7.5. The functor F is fully faithful.

Proof. Recall that An is a local ring with maximal ideal mA = mKAn + Jn. The point is
really the same as in the end of Example 7.4, but one must prove it in general. The rings
that G = F (G ) is made up of are the rings

A (i)
n = An/([p]

i(Jn)An).

The claim is that by taking the inverse limit of these as i→∞, one recovers An. If we can
show this, the “full” part of the statement is also obvious, because a morphism of p-divisible
groups is defined to respect the maps in the inverse system and therefore induces a map of
formal groups (assuming we have proved the claim). But since An is mA -adically complete,
it suffices to show that the mA -adic topology is equivalent to the topology given by the
fundamental system of neighborhoods [p]i(J)An + mj

KAn, ranging over all i, j ≥ 1. Once
we have that, we are done because

An
∼= lim←−

(i,j)∈N×N
An/([p]

i(Jn)An + mj
KAn) ∼= lim←−

(i,j)∈N×N
A (i)
n /mj

KA (i)
n
∼= lim←−

i∈N
A (i)
n .

The last step is justified by the fact that A (i)
n is a finite free local OK-algebra and OK is

mK-adically complete.
First, the ideal [p]i(Jn)An + mj

KAn is mA -adically open, because

An/([p]
i(Jn)An + mj

KAn) ∼= A (i)
n /mj

KA (i)
n

is a finite k-algebra (k = OK/mK) and is therefore Artinian, which means that the sequence
of ideals mk

A + ([p]i(Jn)An + mj
KAn) must stabilize at [p]i(Jn)An + mj

KAn for sufficiently
large k.

The last thing we need to check is that the [p]i(Jn)An + mj
KAn go to zero as i, j → ∞,

i.e. that for any k ∈ N, there exists an i, j such that

[p]i(Jn)An + mj
KAn ⊂ mk

A .

That one is because [p](Xi) ≡ pXi mod deg 2, so since Jn = (X1, . . . , Xn), we have

[p](Jn) ⊂ pJn + J 2
n ⊂ (mKAn + Jn)Jn ⊂ mA .

Applying [p] again i− 1 more times, we see by induction that

[p]i(Jn) ⊂ (mKAn + Jn)[p]i−1Jn ⊂ (mKAn + Jn)iJn ⊂ mi
A ,
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which shows that
[p]k(Jn)An + mk

KAn ⊂ mk
A ,

as desired. �

The harder part is in showing that the construction lim←−A
(i) actually does result in some

An for the rings A(i) coming from an arbitrary p-divisible group G, i.e.

Proposition 7.6. The functor F is essentially surjective.

Proof. Let G = {Gi} be a connected p-divisible OK-group of height h, where Gi = Spec(Ai),
Ai a finite free local OK-algebra of rank pih. The claim is that

A = lim←−Ai

is actually isomorphic to some An = OKJX1, . . . , XnK. That n is called the dimension of
G, and is an intrinsic property of G. Using the same kind of compatibility argument as
in the proof of Proposition 7.5, this claim suffices to prove the desired result, because the
group scheme structure on the Gi’s immediately provides a corresponding formal group law
structure for An, and thus a G such that G ∼= F (G ). Since F preserves the two notions of
height, it will be immediate that G and G have the same height h.

Also, the ring A is already guaranteed to be a flat OK-algebra, because the Ai are free
and Ai+1 → Ai is assumed to be surjective (so in fact as an OK-module, A is a countable
direct product of copies of OK).

The main detail not explained by Tate [12, Proposition 1] is why one can now replace
OK with its residue field. The reason for this is essentially the usual Nakayama’s lemma
argument, but some care must be taken because of the direct limits involved. Suppose we
have constructed a continuous homomorphism

f : OKJX1, . . . , XnK→ lim←−Ai = A

such that the reduction modulo mK

f : kJX1, . . . , XnK→ A /mKA

is an isomorphism. Composing with the projection πi : A → Ai and using the fact that

A /mKA = lim←−Ai/mKAi,

we know that πi ◦ f : An → Ai is a continuous homomorphism with the property that

πi ◦ f : kJX1, . . . , XnK→ Ai/mKAi

is surjective. Since Ai is a finitely generated module over the local ring OK , Nakayama’s
lemma applies, and we at least get that πi ◦ f is surjective for all i ∈ N. This does not a
priori imply that f is even surjective: think of the example Z ⊂ Zp. In this case though, it
is enough, because of the fact that in the short exact sequence of projective systems

0→ (I + ker(f ◦ πi))/I → An/I
πi◦f mod I−→ Ai/(πi ◦ f)(I)Ai → 0

(where i varies over the index category N, and I varies over e.g. the fundamental system
of neighborhoods [p]a(Jn)An + mb

KAn as (a, b) varies over the index category N2) all three
things satisfy the Mittag-Leffler condition (clear from the definition: everything you would
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ideally want to be surjective is surjective); so taking the inverse limit preserves this short
exact sequence, and in particular we see that the induced map

lim←−
i,I

An/I
πi◦f→ lim←−

i,I

Ai/(πi ◦ f)(I)Ai,

i.e.
f : An → A ,

is surjective (these are the same arguments as in Proposition 7.5). To check that f is injective,
the trick is to apply Nakayama’s lemma again, this time using the fact that An is a local
ring. By the hypothesis that f is an isomorphism, and the fact that A is flat over OK ,

0 = ker(f) = ker(f)/mK ker(f),

where the right hand side we can think about as an An-module. Nakayama’s lemma, applied
now in two different ways, shows that f is indeed an isomorphism. So now we just need to
produce a continuous map f : An → A that reduces mod mK to an isomorphism, and in
fact just the isomorphism

f : kJX1, . . . , XnK→ A /mKA

is enough, because any such continuous isomorphism may be lifted to OK . Now that we can
replace OK with k, the theory of the Frobenius and Verschiebung is accessible. Already, the
fact that F i ◦ V i = [p]i means that we may consider the closed subscheme

Hi := kerF i ⊂ Gi.

In fact, any Gi is contained in some Hj, because of the fact that Gi is connected and finite
and k has characteristic p (those group schemes are well-understood, and must be of the
form Spec k[X1, . . . , XN ]/(Xpri

i ); so there exists a j such that F j kills all of Gi). As a result,
we can rewrite A = lim←−Ai as lim←−Bi, where the Bi are the rings representing Hi = kerF i.
The Hi’s are also connected, with maximal augmentation ideals Ii ⊂ Bi. Take the cotangent
spaces

Wi = Ii/I
2
i ,

finite-dimensional vector spaces over k. In fact, they all have the same dimension, which
will be n (the same n the defines the proposed An). That is because H1 is defined as the
kernel of F : Hi → H

(p)
i , so the kernel of Ii → I1 is generated by the p-th powers of the

elements of I1, and is therefore contained in I2
i ; it induces an isomorphism of k-vector spaces

Ii/I
2
i → I1/I

2
1 .

We may choose x1, . . . , xn ∈ lim←−i Ii such that their projection to Ii form a basis for the
k-vector space Ii/I2

i . Now define the map

f : kJX1, . . . , XnK→ A = lim←−Bi

via Xi 7→ xi. We need to show that this is an isomorphism. At the very least, it is surjective,
because x1, . . . , xn form a basis for Ii/I2

i , so together with their powers and k, they generate
(in the ring sense) all of Bi for all i. It remains to show that f is injective. The kernel of
πi ◦ f contains Xpi , since Bi is the kernel of F i, so it induces surjective maps

πi ◦ f : k[X1, . . . , Xn]/(Xpi

1 , . . . , X
pi

n )→ Bi.
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The left hand side has dimension pin over k, so it suffices to show the same is true of Bi.
When i = 1 at least, this is fine, because H1 is, by the classification of connected group
schemes over k, with the additional restriction of being killed by F , of the form

H1 = Spec(k[X1, . . . , Xn]/(Xp
1 , . . . , X

p
n)).

Importantly this n must be the same as n the dimension of G, which is why the dimensions
match. To complete the proof for all i, one uses the fact that F : Hi → H

(p)
i−1 is surjective,

and the sequence
0→ H1 → Hi

F→ H
(p)
i−1 → 0

exact, so that
|Hi| = |H1||H(p)

i−1| = |H1||Hi−1| = |H1|i

by induction. So Bi has the right dimension over k, and f projects down to an isomorphism

k[X1, . . . , Xn]/(Xpi

1 , . . . , X
pi

n )→ Bi

for all i. Taking the inverse limit over all i yields the desired isomorphism. �

Armed with this equivalence of categories, we may define n = dimG = dimG◦ the dimen-
sion of the p-divisible group G.

Lemma 7.7. dimG + dimG∨ = h, where h is the height of G (also equal to the height of
G∨ since Cartier duality preserves orders).

Proof. None of these quantities are affected by change of base, so we may replace OK with
its residue field. There is an exact sequence

0→ kerF → ker[p]→ kerV → 0.

The guy in the middle by definition has order ph. And kerF , as we saw in Proposition 7.6,
has order pdimG. Since V is defined dually to F , we have | kerV | = pdimG∨ , and thus

pdimG+dimG∨ = ph,

as desired. �

7.2. The Hodge–Tate decomposition. In this section, we prove a fundamental theorem
about p-divisible groups, namely the Hodge-Tate decomposition for Tate modules. This
includes better understanding, for a given p-adic field K with absolute Galois group ΓK , the
p-adic ΓK-representations on the rational Tate module of a p-divisible group. To get to the
point quickly, we blackbox some facts from Tate-Sen theory (about the Galois cohomology
of the Tate twists of the completed algebraic closure CK).

First, we need to explain all the words from the previous paragraph.

Definition 7.8. Let K be an extension of Qp with nonarchimedean valuation v. Then, we
say it is p-adic if it the valuation is discrete and complete with perfect residue field. We also
denote by CK the completed algebraic closure of K, by which we mean the p-adic completion
of the algebraic closure of K.

Remark 7.9. Note that CK is not discretely valued.14

14It is, however, one of the easiest examples of a characteristic 0 perfectoid field.
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The action of the absolute Galois group ΓK on K (uniquely) extends to a continuous
action on CK and one can also check easily that CK is algebraically closed–we do not have
to take another algebraic closure. We next recall the definition of the Tate twist.

Definition 7.10. The nth Tate twist of a ΓK-equivariant Zp-module M , denoted by M(n),
is defined as M ⊗ Tp(µp∞)⊗n for n ≥ 0 and HomΓK (Tp(µp∞)⊗−n,M) otherwise.

Remark 7.11. Every p-divisible group G over K gives rise to a p-adic ΓK-representation
Vp(G), defined as tensoring Tp(G) up by Qp. We call this the rational Tate module of G.
More generally, another class of p-adic ΓK-representations is given by the rational l-adic
cohomology (with l = p) of a K-variety, denoted by Hn(XK ,Qp).15

The main blackboxed tool we will use is the following fact by Tate and Sen:

Theorem 7.12. H i(ΓK ,CK(n)) is naturally isomorphic to K if i = 0, 1 and n = 0 and
isomorphic to 0 otherwise. Here, CK(n) is the nth Tate twist of CK.

We also state without proof a lemma of Serre and Tate.

Lemma 7.13. Let V be a p-adic ΓK-representation. Then, there is a natural ΓK-equivariant,
CK-linear, and injective map⊕

n∈Z

(V ⊗Qp CK(−n))ΓK ⊗K CK(n)→ V ⊗Qp CK .

Definition 7.14. In the setting of the lemma above, we say that V is Hodge-Tate if the
map above is moreover surjective.

We will later describe the Tate module of a p-divisible group through the Hodge-Tate
decomposition; on the left hand side, we have the object Hom(Tp(G),CK) and on the right,
the tangent and cotangent spaces with values in CK . More generally, we have the following
definition.

Definition 7.15. Let G be a p-divisible group over OK of dimension d. Then, recall that
µ(G) is the unique p-divisible formal group law over OK so that µ(G)[p∞] ∼= G◦. Let I be
the augmentation ideal of µ(G). Then, for any OK-module M , we denote by tG(M) the
tangent space of G with values in M , which we define as HomOK−mod(I/I2,M). Similarly,
we define the cotangent space of G taking values in M as t∗G(M) = I/I2 ⊗OK M .

Remark 7.16. One can check that in this setting, we can define a logarithm map

logG : G(OL)→ tG(L),

so that for any f and x (with lift y to I), we have logG(f)(x) = limn→∞
pnf(y)
pn

. We record
some important properties that we will use in the proof of the Hodge-Tate decomposition
theorem:

(1) logG is a (group) homomorphism.
(2) ker logG is G(OL)tors (the torsion subgroup).
(3) logG induces an isomorphism between G(OL)⊗Zp Qp and tG(L).

15Note that this is not the étale cohomology with coefficients in Qp; this notation is a little misleading
because Qp is neither an étale nor an l-adic sheaf (with l = p), but rather tensoring up the l-adic cohomology
groups of XK (by taking an inverse limit over the cohomology groups with coefficients in Z/piZ) by Qp as
we did in the construction of the rational Tate module.
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Lemma 7.17. Let G be a p-divisible group over OK with components Gv. Then, we have
Gv(K) ∼= Gv(CK) ∼= Gv(OCK ).

Proof. The second isomorphism follows immediately from the valuative criterion. The first
isomorphism follows from the fact that CK is algberaically closed and because the generic
fiber is étale. �

Lemma 7.18. Let G be a p-divisible group over OK. Then,
⋂∞
n=1 p

nG◦(OK) = 0.

Proof. This follows from consider the valuation filtrations of G◦(OL) (by identifying it with
the OK-continuous maps from OKJx1, . . . , xdK to OL)–an analogue of the higher ramification
groups. One can show that pnG◦(OK) is contained in the nv(πK)th filtration, and then note
that the intersection over all such filtrations is trivial. �

Lemma 7.19. Let G be a p-divisible group over OK. Then, ΓK-fixed points of G(OCK ) is
precisely G(OK). Similarly, we have tG(CK)ΓK = tG(K).

Proof. This follows from the observation that ΓK-invariant elements of CK and OCK are K
and OK , respectively. �

Earlier, we talked about Tate modules for p-divisible groups over a field, but here we are
working over OK . In our setting, we define the Tate module and Tate comodule by simply
base-changing to the field.

Definition 7.20. If G is a p-divisible group over OK , we define the Tate module of G as the
Tate module of G ×OK K. As a reminder, this is simply the inverse limit of Gv(K), where
the Gv are the components of G. Similarly, we define the Tate comodule Φp(G) as the direct
limit of the Gv(K).

Proposition 7.21. Let G be a p-divisible group over OK. Then, we have ΓK-equivariant
isomorphisms Tp(G) ∼= HomZp(Tp(G

∨),Zp(1)) and Φp(G) ∼= HomZp(Tp(G
∨), µp∞(K)).

Proof. We first remark that Tp(µp∞) = Zp(1) and that Φ(µp∞) = µp∞(K). By Cartier
duality, we have the following natural isomorphisms:

Gv(K) ∼= (G∨v )∨(K)

∼= HomK-grp hom((G∨v )K , (µpv)K)

∼= Hom(G∨v (K), µpv(K)).

Now we just use this identification on the component level of our p-divisible group G, com-
muting the inverse limits properly and using the previous paragraph to conclude that

Tp(G) ∼= HomZp(Tp(G
∨),Zp(1)).

We can do the same for the Tate comodule, noting now that the direct limit will become an
inverse limit in the first component, so that we get

Φ(µp∞) = µp∞(K),

as desired. �

We will now prove the existence of a big commutative diagram comparing two exact se-
quences that will play a crucial role in proving that decomposition theorem; this is essentially
the key step to establishing a relationship between the Tate module and the (co)tangent
space. And once the commutative diagram is established, we will take ΓK-invariants, apply
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our blackboxed knowledge of Tate-Sen theory, and use a bit of linear algebra to obtain the
main result of this section.

Proposition 7.22. Let G be a p-divisible group over OK. Then, we have the following
commutative diagram, where the two rows are exact, and α and dα are injective and ΓK-
equivariant. Also, the leftmost vertical map is an isomorphism.

0 Φp(G) G(OCK ) tG(CK) 0

0 HomZp(Tp(G
∨), µp∞(K)) HomZp(Tp(G

∨), 1 + mCK ) HomZp(Tp(G
∨),CK) 0

α

logG

dα

Proof. First, let us check that the top sequence is actually exact. Using Remark 7.16, it’s
easy to see that G(OCK ) is p-divisible and that logG is surjective. We also have that (again
using Remark 7.16)

Φp(G) = lim−→
v

Gv(K)

∼= lim−→
v

Gv(OCK )

= lim−→
v

lim←−
n

Gv(OCK/m
n) ∼= G(OCK )tors
∼= ker logG,

from which the result follows.
For the specific case whereG = µp∞ and taking Homs over Zp, we get the bottom row of our

commutative diagram–exactness follows from the fact that Tp(G∨) is a free Zp-module. The
leftmost vertical map is the map from Proposition 7.21, from which we get the isomorphism.

Now, note that we can identify any element of Tp(G∨) as a morphism of p-divisible groups
G ×OK OCK → (µp∞)OK , using Lemma 7.17. Then, we can define the maps α and dα as
follows.

Taking a test element x ∈ Tp(G
∨), let α(g)(x) be x′(g), where x′ is identified with a

morphism G(OCK ) → µp∞(OCK ) and noting that µp∞(OCK ) ∼= 1 + mCK . Similarly, we
define dα (this time, we use the fact that tµ∞p (CK) ∼= CK .

Using the snake lemma, it is easy to see that we have Zp-linear isomorphisms between
kerα and ker(dα) and also between cokerα and coker(dα). So we just need to show that dα
is injective (and then the injectivity of α will follow). First, we observe that tG(CK) and
HomZp(Tp(G

∨),CK) are Qp-linear, which means that the Zp-linear map dα can be upgraded
to be Qp-linear. It then follows that the two kernels and the two cokernels are Qp-vector
spaces.

Next, restricting to G(OK), we will show that α is injective. If not, we can find a non-zero
element x ∈ kerα. Since the kernel is a vector space, it is, in particular, torsion-free, and
hence x lives in G◦(OK). We can define a “restricted” version of α above by replacing G with
G◦, and noting that we have a surjective map on the level of Tate modules of the duals (and
hence an injective map on the level of duals), we get the following commutative diagram,
where the top and bottom arrows are injective.
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G◦(OCK ) G(OCK )

HomZp(Tp((G
◦)∨), 1 + mCK ) HomZp(Tp(G

∨), 1 + mCK )

α◦ α

By Lemma 7.19, it’s easy to see that ker(α◦) and ker(α◦) ∩ G◦(OK) are Qp-vector spaces,
from which it follows that we find xn ∈ ker(α◦) ∩ G◦(OK) with pnxn = x. So this means
that x = 0 by Lemma 7.18, which is a contradiction.

Using this, we show that dα is injective, which will complete the proof. We can decompose
dα as the composition

tG(K)⊗K CK → HomZp(Tp(G
∨),CK)ΓK ⊗K CK → HomBZp(Tp(G

∨),CK).

Noting that Tp(G∨) is free over BZp, we can write the third term as HomBZp(Tp(G
∨), K)⊗K

CK , so the injectivity of the second arrow follows by flatness (these are just vector spaces).
For the first map, by the same reason, it suffices to check that tG(K)→ HomZp(Tp(G

∨), K)
is injective.

Note that by Remark 7.16, it suffices to just show injectivity for logG(G(OK)). Like before,
pick some x ∈ G(OK) with logG(x) ∈ ker(dα), and note that because kerα and ker(dα) are
the same, we can find x′ ∈ kerα so that x − x′ ∈ G(OCK )tors (using Remark 7.16), which
means that we can find some m with pmx ∈ kerα∩G(OK). But we showed earlier that α is
injective on G(OK), so it follows that pnx = 0 and hence h is torsion. But that means that
logG(h) = 0, as desired. �

Proposition 7.23. In the setup of the previous proposition, let us restrict α and dα to the
ΓK-invariants. Then, they are both bijective maps.

Proof. First, we have the following commutative diagram.

0 G(OCK ) HomZp(Tp(G
∨), 1 + mCK ) cokerα 0

0 tG(CK) HomZp(Tp(G
∨),CK) coker(dα) 0

logG

α

dα

Next, we will take ΓK-invariants (we write α and dα by a bit of abuse of notation–we only
care about the ΓK-equivariant things now).

0 G(OK) HomZp[ΓK ](Tp(G
∨), 1 + mCK ) (cokerα)ΓK

0 tG(K) HomZp[ΓK ](Tp(G
∨),CK) (coker(dα))ΓK

logG

α

dα

The rightmost map, (restricted) α, and (restricted) dα are all injective, so it suffices to check
surjectivity of the last two (for the rest of this argument, we write α and dα to refer to
the restricted versinos). Actually, we get an injective map cokerα → coker(dα) (using the
exactness at the middle), so we just need to show that coker(dα) = 0 (to show that both α
and dα are 0).

Let V = HomZp(Tp(G),CK) and define V ′ similarly but for G∨. If h, d are the height and
dimension of G and d∨ the dimension of G∨, it follows that V, V ′ are h-dimensionalCK-vector
spaces. Also, using the exact sequences above, we know that dimK(V ′ΓK ) ≥ dimK(tG(K)) =
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d (and surjectivity holds if this is an equality). We’ll show soon that the reverse inequality
is true as well.

By symmetry, we get dimK(V ΓK ) + dimK(V ′ΓK ) ≥ d + d∨ = h by Lemma 7.7. Also, the
first part of Proposition 7.21 tells us that we have a perfect pairing Tp(G)×Tp(G∨)→ Zp(1),
which extends (by tensoring with CK) to a ΓK-equivariant perfect pairing V ×V ′ → CK(−1)
(the perfectness is because of the freeness of the Tate module). Now, note that the image
of V ΓK × V ′ΓK is 0 because of Tate-Sen theory (Lemma 7.13), which means that V ΓK , V ′ΓK

are orthogonal, and hence dimK(V ΓK ) + dimK(V ′ΓK ) ≤ h, since h is also the dimension of
V over CK . So then we have equality and hence surjectivity of dα, as desired. �

We now come to the main theorem of this section: the Hodge-Tate decomposition.

Theorem 7.24. Let G be a p-divisible group over OK. Then, there is a ΓK-equivariant
CK-linear isomorphism

Hom(Tp(G),CK) ∼= tG∨(CK)⊕ t∗G(CK)(−1).

Proof. Using the previous proposition, we have isomorphisms

tG(CK) ∼= HomZp(Tp(G
∨),CK)ΓK ⊗K CK

and
tG∨(CK) ∼= HomZp(Tp(G),CK)ΓK ⊗K CK .

Using the perfect pairing described in the proof of the previous proposition, we get an exact
sequence 0 → tG∨(CK) → HomZp(Tp(G),CK) → t∗G(CK)(−1) → 0, noting that t∗G(CK) is
the dual of tG(CK).

Now, an easy computation of the first Ext group (corresponding to applying the left
exact ΓK-invariant functor) to the pair t∗G(CK)(−1) and tG∨(CK) and Tate-Sen theory
(Lemma 7.13), it follows that the sequence above splits. We actually get a unique splitting by
noting that (in similar vein to the Ext computation) HomCK [ΓK ](t

∗
G(CK)(−1), tG∨(CK)) ∼=

H0(ΓK ,CK(1))⊕(dimCK
tG(CK))(dimCK

tG∨ (CK)) = 0 by Tate-Sen theory again. So the result
follows. �

As promised from earlier, we can conclude that the rational Tate module Vp(G) is a
Hodge-Tate p-adic ΓK-representation.

Theorem 7.25. Let G be a p-divisible group over OK. Then, Vp(G) is a Hodge-Tate p-adic
ΓK-representation.

Proof. The Hodge-Tate decomposition implies that Vp(G)⊗Qp CK
∼= t∗G∨(CK)⊕ tG(CK)(1)

(by taking CK-duals). Then, the result follows by Tate-Sen theory again, because we get
ΓK-invariants of Vp(G) ⊗Qp CK(−n) is 0 for n ≥ 2, tG(CK) for n = 1 and t∗G∨(CK) for
n = 0. �

Finally, we end with a quick discussion about the complex variant of the Hodge-Tate
decomposition, which holds for compact Kahler manifolds; we aim to give some motivation
about why the Hodge-Tate decomposition in our situation is really an analogue of the classical
statement. First, we state the Hodge decomposition (and provide no explanation of the
technical details or definitions).
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Theorem 7.26. Let X be a compact Kahler manifold. Then, for every k, we have an
isomorphism

Hk
sing(X,C) ∼=

⊕
i+j=k

H i(X,Ωj).

Here, the left hand side is singular cohomology and the right hand side is sheaf cohomology
of the sheaf of holomorphic differentials.

We can recast this in more algebro-geometric terms using GAGA, and something rather
amazing pops out.

Corollary 7.27. Let X/C be a smooth projective integral variety. Then, using the fact that
Xan is a compact Kahler manifold and the GAGA principle, we obtain

Hk
sing(X

an) ∼=
⊕
i+j=k

H i(X,Ωj
X/C).

Remark 7.28. This is an incredible result because we are unexpectedly able to relate the
singular cohomology of the analytification of X and the sheaf cohomology of (algebraic)
differentials–over C, there are numerous cohomology theories when working in algebraic
geometry, and there is no particular reason to expect that these two are related in such a
simple, elegant way.

We’ll now rewrite the Hodge-Tate decomposition theorem from earlier in a similar form,
motivated by the fact that l-adic cohomology is an excellent analogue of singular cohomology
for algebraic geometry.

Theorem 7.29. Let A be an abelian variety over K with good reduction16. Then, there is a
natural ΓK-equivariant isomorphism

H i
ét(AK ,Qp)⊗Qp CK

∼=
⊕
i+j=n

H i(A,Ωj
A/K)⊗K CK(−j).

Sketch. There are canonical identifications H0(A,Ω1
A/K) ∼= t∗A[p∞](K) and H1(A,OA) ∼=

tA∨[p∞](K). Also, there is a canonical isomorphism between the 1st l-adic cohomology
group (with l = p) of AK and HomZp(Tp(A[p∞]),Zp)⊗Zp Qp. Finally, we have H i(A,Ωj) ∼=∧iH1(A,OA)⊗

∧j H0(A,Ω1) and Hn
ét(AK ,Qp) ∼=

∧nH1
ét(AK ,Qp). The result then follows

from the variant of the Hodge-Tate decomposition we proved earlier. �

Remark 7.30. The key point here in the proof above is that we really only need to un-
derstand the 1-dimensional situation to extend our results to abelian varieties of arbitrary
dimension–the higher cohomology groups are nice enough that we can express them very
simply in terms of lower degree cohomology groups.

Remark 7.31. Theorem 7.29 is a special case of the more general Hodge–Tate decomposi-
tion, which is the same statement extended to all proper smooth K-schemes. It was proved
by Faltings [2, 3] using the language of almost mathematics (see also Tsuji’s independent
work [15, 16]). More recently, Scholze [9] extended Faltings’ generalization even further to
rigid analytic varieties using his newly developed theory of perfectoid spaces.

16The point here is that we can find an abelian scheme A/OK so that AK is A.
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