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MOTIVATING QUESTION
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MOTIVATING QUESTION

Given an irreducible polynomial f(x) € Z[z], is f(n) prime for
infinitely many integers n?

BUNYAKOVSKY’S CONJECTURE

If f(z) € Z[z] is a monic irreducible polynomial, then f(n) is
prime for infinitely many positive integers n.
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THE BATEMAN-HORN CONJECTURE

A QUANTITATIVE CONJECTURE

Let f(z) be a nonconstant irreducible monic polynomial. Then
as N — o0

#{n € [1,N] : f(n) is prime} ~ 6/ m,

where we write

max(2,log(y)), y>0
log™ (y) = {OO =0

and we define

. 1—p'#{z €F,: f(z) =0 mod p}
6'_H< (1-1/p) )
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THE MULTIVARIATE BATEMAN-HORN CONJECTURE

CONJECTURE

Let F(x) be a nonconstant irreducible polynomial over Q in n
variables. Then as T — oo,

dx
H#{x € Z" : ||X]|oo < T, F(x) is prime ~6~/ —
{ H HOO ( ) } HxHoogT 10g+(F(X))

where the singular series & is defined as a product of local
densities:

l—-p"#{x€Fy:F(x)=0 mod p}
6:1;[( aA-1/p) )
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HISTORY: THE CIRCLE METHOD

Let F'(x) be an irreducible polynomial in n variables of degree
d. Then we have that

#{x € Z": ||z]lo < T, F(x) is prime}

_/1< Z e(F(x)a))( Z e(—pa))da.

0 xezr p<epT?
lIx[lec <T prime
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HISTORY: THE CIRCLE METHOD

Let F'(x) be an irreducible polynomial in n variables of degree
d. Then we have that

#{x € Z": ||z]lo < T, F(x) is prime}

_/1< Z e(F(x)a))( Z e(—pa))da.

0 xezr p<epT?
lIx[lec <T prime

If n is sufficiently large in terms of d, then by evaluating this
integral you can achieve a prime number theorem.

m (Destagnol-Sofos, 2019): n > (d — 1)2¢~!
m (Briidern-Wooley, 2022): n > [dlog(d)]| + 5 for F' diagonal
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HISTORY: THE CIRCLE METHOD

Number of variables Structure
(d—1)27-1 any polynomial
dlog(d) diagonal, homogeneous
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HISTORY: NORM FORMS

Let K/Q be a degree d extension. Then if the ring of integers
Ok = Zlai, aa, ..., aq),
the polynomial
NK/Q(X) = NK/Q(:L’loq + xoag + ... + T40)

is an irreducible homogeneous form of degree d in d variables.
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Ng/g(x) is prime <= p C Ok is a prime ideal.
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HISTORY: NORM FORMS

The norm form
NK/Q(X) = NK/Q(J?qu —+ xoag + ... + xdag)

is an irreducible homogeneous form of degree d in d variables.

PRIME CORRESPONDENCE

Ng (%) is prime <= p C Ok is a prime ideal.

LANDAU’S PRIME IDEAL THEOREM

The number of prime ideals p of O is asymptotic to

X
#{pc(?K:N(p)SX}~/O mdx
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HISTORY: NORM FORMS

Number of variables Structure
(d—1)29-1 any polynomial
dlog(d) diagonal, homogeneous
d norm form of a degree d extension
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HISTORY: INCOMPLETE NORM FORMS

Let Ng/g(x) be a norm form for a degree d extension. Then an
incomplete norm form is the polynomial

NK/Q(xl,xg, ...,xn,O, O)
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HISTORY: INCOMPLETE NORM FORMS

Let Ng/g(x) be a norm form for a degree d extension. Then an
incomplete norm form is the polynomial

NK/Q(xl,xg, ...,xn,O, O)

This will be a degree d polynomial in n variables.
m (Heath-Brown, 2001): 23 + 23
m (Heath-Brown-Moroz, 2004): ax® + by? irreducible
m (Maynard, 2020): n > 15d/22
Another important result:
m (Friedlander-Iwaniec, 1998): x2 + y*
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HISTORY: INCOMPLETE NORM FORMS

Number of variables Structure
(d—1)271 any polynomial
dlog(d) diagonal, homogeneous
d norm form of a degree d extension
15d/22 incomplete norm form of degree d
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THE DETERMINANT POLYNOMIAL

Consider the determinant on the space of n X n matrices:
det(x11, ...y Tnn)-

This will be a nondiagonal homogeneous irreducible polynomial
of degree n in n? variables.
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THE DETERMINANT POLYNOMIAL

Consider the determinant on the space of n X n matrices:
det(x11, ...y Tnn)-

This will be a nondiagonal homogeneous irreducible polynomial
of degree n in n? variables.

THEOREM 2.1 (KoTsovoLis-W., ’23)

Define the following prime counting function:
Taet(T') := #{A € Mat,(Z) : || Allco < T, det(A) is prime}.

AsT — oo, we have that

maedT) = (14 o(1))- [T <) [ L_x,
j=2

IX|I<T log™ (det(X))

where dX is the Fuclidean measure on Mat,(R) = R"".
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COMPARISON WITH PREVIOUS POLYNOMIALS

Number of variables Structure
(d—1)27-1 any polynomial
dlog(d) diaconal- iotogeteons
d nerm—tormof-a-degree-d-extension
15d/22 ineomplete-normform-of-degree-d

For d > 4, the determinant polynomial is beyond the circle
method.
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COMPARISON WITH PREVIOUS POLYNOMIALS

Number of variables Structure Irreducibility
(d—1)27-1 any polynomial any
dlog(d) diagonal Q
d norm form split over Q
15d/22 incomplete norm form split over Q
d? determinant Q
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THE DETERMINANT ON SYMMETRIC MATRICES

Consider the determinant on the space of symmetric n X n
matrices:
det(211, 212, -, T1n, T22, s Tnn)-

This will be a nondiagonal homogeneous irreducible polynomial
of degree n in n(n + 1)/2 variables.
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THE DETERMINANT ON SYMMETRIC MATRICES

Consider the determinant on the space of symmetric n X n
matrices:

det(ajlla L12; o5 Tlny L22y -ovy xnn)

This will be a nondiagonal homogeneous irreducible polynomial
of degree n in n(n + 1)/2 variables.

THEOREM 2.2 (KoTsovoLis-W., ’23)

Let n > 3. Define the following prime counting function:

Tsym(T) := #{A € Mat,(Z) : | Allc < T, AT = A,det(A) is prime}.
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THE DETERMINANT ON SYMMETRIC MATRICES

Consider the determinant on the space of symmetric n X n
matrices:

det(ajlla L12; o5 Tlny L22y -ovy xnn)

This will be a nondiagonal homogeneous irreducible polynomial
of degree n in n(n + 1)/2 variables.

THEOREM 2.2 (KoTsovoris-W., ’23)

Let n > 3. Define the following prime counting function:
Tsym(T) := #{A € Mat,(Z) : | Allc < T, AT = A,det(A) is prime}.

As T — oo, we have that

1
moym(T) = (1+0(1)- [ <G / ———————dX.
3<j§dn XX\|<T log™ (det(X))
J o

Here dX is the Euclidean measure on Sym,, (R) = R™n+1)/2,
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COMPARISON WITH PREVIOUS POLYNOMIALS

Number of variables Structure
(d—1)271 any polynomial
dlog(d) diagonal-homogeneous
d norm-form-of-a—degree-d-extension
15d/22 ineompletenorm-{orm-of-degree-d

For d > 3, the determinant polynomial on symmetric matrices
is beyond the circle method.
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COMPARISON WITH PREVIOUS POLYNOMIALS

Number of variables Structure Irreducibility
(d—1)27-1 any polynomial any
dlog(d) diagonal Q
d norm form split over Q
15d/22 incomplete norm form split over Q
d? determinant Q
d(d+1)/2 det on symmetric Q
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THE DETERMINANT POLYNOMIAL

Let V = Mat,, and G = SL,,. Then G x G acts on V via
(9,h)- X =g~ ' Xh.

The determinant polynomial on V is invariant under this action.
Write the variety

Vi (R) = {X € Mat,(R) : det(X) = m}.
m V,,(R) = m'/"Vi(R)
m Vi(R) = SLn(R) = (G x G)I,,

m Vi(R) = (G x G)/H = SL,(R) where
H =stab(I,) = {(¢7%,9) € G x G}.

A FACT ABOUT THE STABILIZER

SL,(R) is connected, simply connected, semisimple, and has no
compact factors.
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THE LINNIK PROBLEM

KEY INGREDIENT

For the determinant polynomial, we can count the number of
integer points on the level sets V,,.
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THE LINNIK PROBLEM

Let Q C SL,(R) be a “nice” compact subset. Define the cone
of height T as the set:

[0,T]Q = {tw : t € [0,T],w € Q.
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THE LINNIK PROBLEM

Let Q C SL,(R) be a “nice” compact subset. Define the cone
of height T as the set:

0,7 ={tw:t € [0,T],w € Q}.
Then, as m — oo:
#Vm(Z) nm' "~ [ CG) ™ Sn(m)u(€),
j=2

where &,,(m) is a singular series depending on m and p is the
measure on SL,(R) induced by the Euclidean measure on
Mat,, (R).
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THE LINNIK PROBLEM

Let Q C SL,(R) be a “nice” compact subset. Define the cone
of height T as the set:

0,7 ={tw:t € [0,T],w € Q}.
Then, as m — oo:
#Vm(Z) nm' "~ [ CG) ™ Sn(m)u(€),
j=2

where &,,(m) is a singular series depending on m and p is the
measure on SL,(R) induced by the Euclidean measure on
Mat,, (R).

m (Linnik-Skubenko, 1962): ergodic method
m (Sarnak, 1990): Hecke orbits
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VERTICAL VERSUS HORIZONTAL STATISTICS

Set up Limit
Vertical statistics #Vi (Z) N m/nQ m — o0
Horizontal statistics | #Viu(Z)N{||X|| <T} | T — o
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VERTICAL VERSUS HORIZONTAL STATISTICS

Set up Limit
Vertical statistics #Vi (Z) N m/nQ m — o0
Horizontal statistics | #Viu(Z)N{||X|| <T} | T — o

(Duke-Rudnick-Sarnak, 1993): As T' — oo,

#V(2) N {1 X]| < T} ~ [T CG) T ComT™ "

=2

where

7Tn2/2m—n+1

Crm = T((n? —n+2)/2)L(n/2)

Sp(m).
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VERTICAL VERSUS HORIZONTAL STATISTICS

Set up Limit
Vertical statistics #Vn(Z) N mt/Q m — 00
Horizontal statistics | #Vin(Z) N{||X|| <T} | T — o0
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THE DETERMINANT ON SYMMETRIC MATRICES

Let V = Sym, = {X € Mat,, : X7 = X} and G = SL,,. Then G
acts on V via
g-X=¢g"Xy.

The determinant polynomial on V' is invariant under this
action.
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THE DETERMINANT ON SYMMETRIC MATRICES

Let V = Sym, = {X € Mat,, : X7 = X} and G = SL,,. Then G
acts on V via
g-X=¢g"Xy.

The determinant polynomial on V' is invariant under this
action.Write the variety

Vin(R) = {X € Sym,,(R) : det(X) = m}.
m V. (R) = m'/"Vi(R)

m Vi(R) = Uptq=nGIp 4 where I, , = diag(I,, —1;).We call
these orbits O, 4.

m O, = G/stab(l, ), where stab(I,,) = SO(p, q).

CONDITION ON THE STABILIZER

If p, g # 0 then SO(p, ¢) has no compact factors, but SO(n,0) is
compact!
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THE LINNIK PROBLEM (INDEFINITE ORBITS)

THEOREM 3.1 (OH, 2004)

Letn >3, p,q#0, and Q C SL,(R) N Op 4(R) be a “nice”
compact subset. As m — oo,

WV (Z) A A/ ~ / 5(2)djiyn ()
m/mQXT], Vin (Zp)

where ¢ : Vi (A) — R is constant on the adelic orbits O(A) and

) = {2, O(A) contains a Q-point,

0, otherwise.

Here, (i, is the Tamagawa measure on Vi, (A).
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THE LINNIK PROBLEM (INDEFINITE ORBITS)

THEOREM 3.1 (OH, 2004)

Letn >3, p,q#0, and Q C SL,(R) N Op 4(R) be a “nice”
compact subset. As m — oo,

WV (Z) A A/ ~ / 5(2)djiyn ()
m/mQXT], Vin (Zp)

where ¢ : Vi (A) — R is constant on the adelic orbits O(A) and

0, otherwise.

) = {2, O(A) contains a Q-point,

Here, (i, is the Tamagawa measure on Vi, (A).

KEY INGREDIENT

Ratner’s Theorem!
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THE LINNIK PROBLEM (POSITIVE—DEFINITE ORBITS)

THEOREM 3.2
(EINSIEDLER-MARGULIS-MOHAMMADI- VENKATESH, 2020)

Suppose {Q;}52, varies through any sequence of pairwise
inequivalent, integral, positive definite quadratic forms. Then
the genus of QQ;, considered as a subset of

PGL,(Z)\PGL,(R)/PO,(R), equidistributes as i — oo.
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where p is the lift of the Haar measure and h,(m) is the class
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THE LINNIK PROBLEM (POSITIVE—DEFINITE ORBITS)

THEOREM 3.2
(EINSIEDLER-MARGULIS-MOHAMMADI- VENKATESH, 2020)

Suppose {Q;}52, varies through any sequence of pairwise
inequivalent, integral, positive definite quadratic forms. Then
the genus of QQ;, considered as a subset of
PGL,(Z)\PGL,(R)/PO,(R), equidistributes as i — oo.

As a consequence, if QO C O, o, we have that as m — oo,
#Vm(z) N ml/nQ ~ hn(m)ﬂ(g)v

where p is the lift of the Haar measure and h,(m) is the class
number of SL,,(Z)-conjugacy orbits of integral positive definite
symmetric matrices of determinant m.

KEY INGREDIENT

Theory of automorphic forms!
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UPSHOT

LINNIK PROBLEM

We have asymptotic formulas for Q C O, ,

#Vim (Z) N M0

as m — OQ.
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LINNIK PROBLEM

We have asymptotic formulas for Q C O, ,

#Vim (Z) N M0

as m — OQ.

STILL TO BE DONE

We want our formulas in terms of more familiar objects, i.e. in
the same form as with the determinant polynomial.
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SPECIALIZATION

From now on, we look at the determinant of symmetric 3 x 3
matrices:

F(a,b,c,d,e, f) = abc — af? — be? — cd® + 2def.
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SPECIALIZATION

From now on, we look at the determinant of symmetric 3 x 3
matrices:

F(a,b,c,d,e, f) = abc — af? — be? — cd® + 2def.

This polynomial is a cubic in 6 variables.
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INDEFINITE ORBITS

OH’S THEOREM

#Vin (Z) N mM3Q ~ / 8(x)dpn ()
m1/3QxT], Vin(Zp)

What is happening with §(z)?
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INDEFINITE ORBITS

OH’S THEOREM

#Vin (Z) N mM3Q ~ / 8(x)dpn ()
m1/3QxT], Vin(Zp)

What is happening with §(z)?

5(z) #0 = [[eplzp) =1,

where ¢,(x,) are the Hasse-Minkowski invariants after viewing
xp as a p-adic quadratic form.
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INDEFINITE ORBITS

Let G, denote a SL3(Z,,) orbit of V;,(Z,). If m is prime, then

#Vm(Z) N m!3Q ~ 2m H timp (Vi (Zp))
pFm

X Z ,um,z(gQ)Mm,m(gm)-

g2,g'm
c2 (g2)cm (gm):COO (Q)

Here piy,p is the p-adic part of the Tamagawa measure fi,, on
Vin(A).
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INDEFINITE ORBITS

Let G, denote a SL3(Z,,) orbit of V;,(Z,). If m is prime, then

#Vm(Z) N m!3Q ~ 2m H timp (Vi (Zp))
pFm
X Z Mm,z(QQ)Mm,m(gm)-

g2,g'm
c2 (g2)cm (gm):COO (Q)

Here piy,p is the p-adic part of the Tamagawa measure fi,, on
Vin(A).

SIEGEL MASSES

Z/p*Z
tim,p(Gp(Zp)) = klglolo %‘

These p-adic densities appear in the Siegel mass formula!

33 /47
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INDEFINITE ORBITS

OH’s THEOREM

LV (Z) N m30 ~ / 5(2)djion ()
ml/3QXT], Vin (Zy)

{
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INDEFINITE ORBITS

OH’s THEOREM

LV (Z) N m30 ~ / 5(2)djion ()
ml/3QXT], Vin (Zy)

{

Siegel mass formula

{

LEMMA 1

Let Q C O, 4 for (p,q) = (1,2). Then as p — oo
#Vo(2) Np°Q ~ p - ((3) ™ oo ().

If (p,q) = (2,1), then V,(Z) N p/3Q = 0.
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POSITIVE DEFINITE ORBIT

CONSEQUENCE OF EMMV

As m — oo,
#Vn(Z) NmPQ ~ hy(m)p(2),

where p is the lift of the Haar measure and hs(m) is the class
number of SL3(Z)-conjugacy orbits of integral positive definite
symmetric matrices of determinant m.

35 /47



POSITIVE DEFINITE ORBIT

CONSEQUENCE OF EMMV

As m — oo,
#Vn(Z) NmPQ ~ hy(m)p(2),

where p is the lift of the Haar measure and hs(m) is the class
number of SL3(Z)-conjugacy orbits of integral positive definite
symmetric matrices of determinant m.

35 /47



CLASS NUMBERS

Siegel mass formula

LEMMA 2 (KI1TAOKA, 1973)

As p — o0,
ha(p) ~ p-m¢(2)T(1/2)1(3/2)
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RELATING THE MEASURES

LEMMA 3

u(Q) = 73¢(2)71¢(3)TIT(1/2) 71T (3/2) T oo ().

37 /47



RELATING THE MEASURES

LEMMA 3

u(Q) = 73¢(2)71¢(3)TIT(1/2) 71T (3/2) T oo ().

PROOF IDEA

Due to uniqueness of the Tamagawa measure on this space,
must be a scalar of pio.

37 /47



RELATING THE MEASURES

LEMMA 3

u(Q) = 73¢(2)71¢(3)TIT(1/2) 71T (3/2) T oo ().

PROOF IDEA

Due to uniqueness of the Tamagawa measure on this space,
must be a scalar of pio.

m 4 is normalized so that u(SL3(Z)\SL3(R)) =1

37 /47



RELATING THE MEASURES

LEMMA 3

u(Q) = 73¢(2)71¢(3)TIT(1/2) 71T (3/2) T oo ().

PROOF IDEA

Due to uniqueness of the Tamagawa measure on this space,
must be a scalar of pio.

m 4 is normalized so that u(SL3(Z)\SL3(R)) =1
m /100 (SL3(Z)\SL3(R)) = ¢(2)¢(3).

37 /47



RELATING THE MEASURES

LEMMA 3

u(Q) = 73¢(2)71¢(3)TIT(1/2) 71T (3/2) T oo ().

PROOF IDEA

Due to uniqueness of the Tamagawa measure on this space,
must be a scalar of pio.

m 4 is normalized so that u(SL3(Z)\SL3(R)) =1

m /100 (SL3(Z)\SL3(R)) = ¢(2)¢(3).

m The factor of 73T'(1/2)71'(3/2)~! comes from the fact we
are actually working on SL3(R)/SO3(R).
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THE LINNIK PROBLEM

LEMMA 4 (KITAOKA, 1973)

As p — o0,
ha(p) ~ p- 7 2¢(2)T(1/2)L(3/2)

LEMMA 5

u(Q) = 2¢(2)71¢(3)TIT(1/2) 7T (3/2) T oo ().
Together, we get that as p — oo,

#Vo(Z) N p' P2~ p - C(3) oo ().
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THE LINNIK PROBLEM

LEMMA 4 (KITAOKA, 1973)

As p — o0,
ha(p) ~ p -7 3¢(2)T(1/2)1(3/2)

LEMMA 5

p(€) = 7°¢(2)71¢C(3)TIT(L/2)TIT(3/2) T oo ().
Together, we get that as p — oo,

#Vo(Z) N p' P2~ p - C(3) oo ().

This formula holds on both O3, 01 2.
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SUMMING OVER PRIMES

Define the counting function:

m(TQ) = #{A € Symy3(Z) N TQ : det(A) is prime}.
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SUMMING OVER PRIMES

Define the counting function:
m(TQ) = #{A € Symy3(Z) N TQ : det(A) is prime}.
Then we can sum over all primes up to 7% :

m(TQ) = Y #{A € Symy(Z) N TQ : det(A) = p}
p<T3

=D #W(@np'e

p<T3

We apply our solution to Linnik’s problem:

T(TQ) = (1 +0a(1))ues(2) Y ¢(3)7'p

p<T3

6
= (14 00(1)¢(3) oo (Q)

6log(T)’
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PRIME COUNTING ON CONES

LEMMA 6

For Q C 03’0 or 0172,

m(TQ) = (14 0a(1))¢(3) ™ /TQ mdx

If Q C Oz or O3, then ©(T) = 0.
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CONES TO BOXES

Idea: approximate the box with cones!

FIGURE: Approximating [0, T]? with cones from zy = 1

Image created by Giorgos Kotsovolis
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e-CUTTING

DEFINITION 1

An e-cutting of Ry is a finite set of disjoint “nice” connected
compact subsets of V;(R), denoted as

such that

Ro =€ | J [0,1/ht(Q))02

QeCe

where the exceptional set satisfies that |£| < e.

Here, ht(§2) = sup ocq || A]|-
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e-CUTTING

Fix € > 0. If C is an e-cutting of Symg(R) N {||A|| < 1}, then
Syms(R) N {||A]| LT} = TE Ugee, T/ht(2)2,

and |TE| < €TC.
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Syms(R) N {||A]| < T} = TE Uqee, T/ht(2)€2,
and |TE| < €TP. So, we can count the primes in the box as:

#{A € Sym3(Z) : ||A|| < T,det(A) is prime}

= #{A € Sym3(Z)NTE : det(A) is prime}+ Z (T'/ht(Q)Q).
QeC.

COUNTING PRIMES ON CONES

_ . 1 1
%;j(T/th)—(H (1))¢(3) /U oo AR
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UPPER-BOUNDING THE EXCEPTIONAL SET

PROPOSITION 4.1

Let R be a convex region in [0, T|" and F(x) a polynomial in n
variables. Then there is a constant cp > 0 such that

#{x € R(Z): F(x) € #} <cp <10|§|T) + T”1/2> :

44 /47



UPPER-BOUNDING THE EXCEPTIONAL SET

PROPOSITION 4.1

Let R be a convex region in [0, T|" and F(x) a polynomial in n
variables. Then there is a constant cp > 0 such that

#{x € R(Z): F(x) € #} <cp <10|§|T) + T”1/2> :

m Upper bound holds for any polynomial F

44 /47



UPPER-BOUNDING THE EXCEPTIONAL SET

PROPOSITION 4.1

Let R be a convex region in [0, T|" and F(x) a polynomial in n
variables. Then there is a constant cp > 0 such that

#{x € R(Z): F(x) € #} <cp <10|§|T) + T”1/2> :

m Upper bound holds for any polynomial F

m cy is independent of R

44 /47



UPPER-BOUNDING THE EXCEPTIONAL SET

PROPOSITION 4.1

Let R be a convex region in [0, T|" and F(x) a polynomial in n
variables. Then there is a constant cp > 0 such that

#{x € R(Z): F(x) € #} <cp <10|§|T) + T”1/2> :

m Upper bound holds for any polynomial F
m cy is independent of R

m Comes from an upper bound sieve 4+ a level of distribution
result
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UPPER-BOUNDING THE EXCEPTIONAL SET

Applying the Proposition, we have

LEMMA 7

1o P

€Tt
: ) ' <
#{A € Symz(Z)NTE : det(A) is prime} < cget Tog (1)
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UPPER-BOUNDING THE EXCEPTIONAL SET

Applying the Proposition, we have

LEMMA 7

€T" 1
- det(A) is prime) < cau S 4 TV,
#{A € Symz(Z)NTE : det(A) is prime} < cget Tog(T) +7T

So, we get that for any ¢ > 0,
#{A € Sym3(Z) : ||Al| < T,det(A) is prime}

i 1 €T’
=ra®™ [ ey
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PRIME NUMBER THEOREM FOR F

Taking € — 0, we get

THEOREM

#{A € Sym3(Z) : ||Al| < T,det(A) is prime}
1

= ro®™ [
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Thank you!
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