PRIME NUMBER THEOREMS FOR POLYNOMIALS FROM HOMOGENEOUS
 DYNAMICS
 Joint work with Giorgos Kotsovolis

Katharine Woo

Princeton University
JMM 2024

Table of Contents

1 The Bateman-Horn conjecture

2 The determinant polynomial

3 The Linnik Problem
$4 F(a, b, c, d, e, f)=a b c-a f^{2}-b e^{2}-c d^{2}+2 d e f$

Motivating question

Given an irreducible polynomial $f(x) \in \mathbb{Z}[x]$, is $f(n)$ prime for infinitely many integers n ?

Motivating question

Given an irreducible polynomial $f(x) \in \mathbb{Z}[x]$, is $f(n)$ prime for infinitely many integers n ?

Bunyakovsky's CONJECTURE

If $f(x) \in \mathbb{Z}[x]$ is a monic irreducible polynomial, then $f(n)$ is prime for infinitely many positive integers n.

The Bateman-Horn conjecture

A QUANTITATIVE CONJECTURE

Let $f(x)$ be a nonconstant irreducible monic polynomial. Then as $N \rightarrow \infty$:

$$
\#\{n \in[1, N]: f(n) \text { is prime }\} \sim \mathfrak{S} \cdot \int_{0}^{N} \frac{d x}{\log ^{+}(f(x))}
$$

where we write

$$
\log ^{+}(y)= \begin{cases}\max (2, \log (y)), & y>0 \\ \infty, & y \leq 0\end{cases}
$$

and we define

$$
\mathfrak{S}:=\prod_{p}\left(\frac{1-p^{-1} \#\left\{x \in \mathbb{F}_{p}: f(x) \equiv 0 \bmod p\right\}}{(1-1 / p)}\right)
$$

The multivariate Bateman-Horn conjecture

CONJECTURE

Let $F(\mathbf{x})$ be a nonconstant irreducible polynomial over \mathbb{Q} in n variables. Then as $T \rightarrow \infty$,

$$
\#\left\{\mathbf{x} \in \mathbb{Z}^{n}:\|\mathbf{x}\|_{\infty} \leq T, F(\mathbf{x}) \text { is prime }\right\} \sim \mathfrak{S} \cdot \int_{\|\mathbf{x}\|_{\infty} \leq T} \frac{d \mathbf{x}}{\log ^{+}(F(\mathbf{x}))}
$$

where the singular series \mathfrak{S} is defined as a product of local densities:

$$
\mathfrak{S}=\prod_{p}\left(\frac{1-p^{-n} \#\left\{\mathbf{x} \in \mathbb{F}_{p}^{n}: F(\mathbf{x}) \equiv 0 \quad \bmod p\right\}}{(1-1 / p)}\right)
$$

History: the circle method

Let $F(\mathbf{x})$ be an irreducible polynomial in n variables of degree d. Then we have that

$$
\begin{aligned}
& \#\left\{\mathbf{x} \in \mathbb{Z}^{n}:\|x\|_{\infty} \leq T, F(\mathbf{x}) \text { is prime }\right\} \\
&=\int_{0}^{1}\left(\sum_{\substack{\mathbf{x} \in \mathbb{Z}^{n} \\
\|\mathbf{x}\|_{\infty} \leq T}} e(F(\mathbf{x}) \alpha)\right)\left(\sum_{\substack{p \leq c_{F} T^{d} \\
\text { prime }}} e(-p \alpha)\right) d \alpha .
\end{aligned}
$$

History: the circle method

Let $F(\mathbf{x})$ be an irreducible polynomial in n variables of degree d. Then we have that

$$
\begin{aligned}
& \#\left\{\mathbf{x} \in \mathbb{Z}^{n}:\|x\|_{\infty} \leq T, F(\mathbf{x}) \text { is prime }\right\} \\
&=\int_{0}^{1}\left(\sum_{\substack{\mathbf{x} \in \mathbb{Z}^{n} \\
\|\mathbf{x}\|_{\infty} \leq T}} e(F(\mathbf{x}) \alpha)\right)\left(\sum_{\substack{p \leq c_{F} T^{d} \\
\text { prime }}} e(-p \alpha)\right) d \alpha .
\end{aligned}
$$

If n is sufficiently large in terms of d, then by evaluating this integral you can achieve a prime number theorem.

History: the circle method

Let $F(\mathbf{x})$ be an irreducible polynomial in n variables of degree d. Then we have that

$$
\begin{aligned}
& \#\left\{\mathbf{x} \in \mathbb{Z}^{n}:\|x\|_{\infty} \leq T, F(\mathbf{x}) \text { is prime }\right\} \\
&=\int_{0}^{1}\left(\sum_{\substack{\mathbf{x} \in \mathbb{Z}^{n} \\
\|\mathbf{x}\|_{\infty} \leq T}} e(F(\mathbf{x}) \alpha)\right)\left(\sum_{\substack{p \leq c_{F} T^{d} \\
\text { prime }}} e(-p \alpha)\right) d \alpha .
\end{aligned}
$$

If n is sufficiently large in terms of d, then by evaluating this integral you can achieve a prime number theorem.

■ (Destagnol-Sofos, 2019): $n>(d-1) 2^{d-1}$

History: the circle method

Let $F(\mathbf{x})$ be an irreducible polynomial in n variables of degree d. Then we have that

$$
\begin{aligned}
& \#\left\{\mathbf{x} \in \mathbb{Z}^{n}:\|x\|_{\infty} \leq T, F(\mathbf{x}) \text { is prime }\right\} \\
&=\int_{0}^{1}\left(\sum_{\substack{\mathbf{x} \in \mathbb{Z}^{n} \\
\|\mathbf{x}\|_{\infty} \leq T}} e(F(\mathbf{x}) \alpha)\right)\left(\sum_{\substack{p \leq c_{F} T^{d} \\
\text { prime }}} e(-p \alpha)\right) d \alpha .
\end{aligned}
$$

If n is sufficiently large in terms of d, then by evaluating this integral you can achieve a prime number theorem.

■ (Destagnol-Sofos, 2019): $n>(d-1) 2^{d-1}$

- (Brüdern-Wooley, 2022): $n>\lceil d \log (d)\rceil+5$ for F diagonal

History: the circle method

Number of variables	Structure
$(d-1) 2^{d-1}$	any polynomial
$d \log (d)$	diagonal, homogeneous

History: NORM FORMS

Let K / \mathbb{Q} be a degree d extension. Then if the ring of integers

$$
\mathcal{O}_{K}=\mathbb{Z}\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right]
$$

the polynomial

$$
N_{K / \mathbb{Q}}(\mathbf{x}):=N_{K / \mathbb{Q}}\left(x_{1} \alpha_{1}+x_{2} \alpha_{2}+\ldots+x_{d} \alpha_{d}\right)
$$

is an irreducible homogeneous form of degree d in d variables.

History: norm forms

Let K / \mathbb{Q} be a degree d extension. Then if the ring of integers

$$
\mathcal{O}_{K}=\mathbb{Z}\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right]
$$

the polynomial

$$
N_{K / \mathbb{Q}}(\mathbf{x}):=N_{K / \mathbb{Q}}\left(x_{1} \alpha_{1}+x_{2} \alpha_{2}+\ldots+x_{d} \alpha_{d}\right)
$$

is an irreducible homogeneous form of degree d in d variables.

PRIME CORRESPONDENCE

$N_{K / \mathbb{Q}}(\mathbf{x})$ is prime $\Longleftrightarrow \mathfrak{p} \subset \mathcal{O}_{K}$ is a prime ideal.

History: norm forms

The norm form

$$
N_{K / \mathbb{Q}}(\mathbf{x}):=N_{K / \mathbb{Q}}\left(x_{1} \alpha_{1}+x_{2} \alpha_{2}+\ldots+x_{d} \alpha_{2}\right)
$$

is an irreducible homogeneous form of degree d in d variables.

Prime correspondence

$N_{K / \mathbb{Q}}(\mathbf{x})$ is prime $\Longleftrightarrow \mathfrak{p} \subset \mathcal{O}_{K}$ is a prime ideal.

LANDAU'S PRIME IDEAL THEOREM

The number of prime ideals \mathfrak{p} of \mathcal{O}_{K} is asymptotic to

$$
\#\left\{\mathfrak{p} \subset \mathcal{O}_{K}: N(\mathfrak{p}) \leq X\right\} \sim \int_{0}^{X} \frac{1}{\log ^{+}(x)} d x
$$

History: NORM FORMS

Number of variables	Structure
$(d-1) 2^{d-1}$	any polynomial
$d \log (d)$	diagonal, homogeneous
d	norm form of a degree d extension

History: incomplete norm forms

Let $N_{K / \mathbb{Q}}(\mathbf{x})$ be a norm form for a degree d extension. Then an incomplete norm form is the polynomial

$$
N_{K / \mathbb{Q}}\left(x_{1}, x_{2}, \ldots, x_{n}, 0, \ldots 0\right)
$$

History: incomplete norm forms

Let $N_{K / \mathbb{Q}}(\mathbf{x})$ be a norm form for a degree d extension. Then an incomplete norm form is the polynomial

$$
N_{K / \mathbb{Q}}\left(x_{1}, x_{2}, \ldots, x_{n}, 0, \ldots 0\right) .
$$

This will be a degree d polynomial in n variables.

History: incomplete norm forms

Let $N_{K / \mathbb{Q}}(\mathbf{x})$ be a norm form for a degree d extension. Then an incomplete norm form is the polynomial

$$
N_{K / \mathbb{Q}}\left(x_{1}, x_{2}, \ldots, x_{n}, 0, \ldots 0\right)
$$

This will be a degree d polynomial in n variables.

- (Heath-Brown, 2001): $x^{3}+2 y^{3}$

History: incomplete norm forms

Let $N_{K / \mathbb{Q}}(\mathbf{x})$ be a norm form for a degree d extension. Then an incomplete norm form is the polynomial

$$
N_{K / \mathbb{Q}}\left(x_{1}, x_{2}, \ldots, x_{n}, 0, \ldots 0\right)
$$

This will be a degree d polynomial in n variables.

- (Heath-Brown, 2001): $x^{3}+2 y^{3}$
- (Heath-Brown-Moroz, 2004): $a x^{3}+b y^{3}$ irreducible

History: incomplete norm forms

Let $N_{K / \mathbb{Q}}(\mathbf{x})$ be a norm form for a degree d extension. Then an incomplete norm form is the polynomial

$$
N_{K / \mathbb{Q}}\left(x_{1}, x_{2}, \ldots, x_{n}, 0, \ldots 0\right)
$$

This will be a degree d polynomial in n variables.

- (Heath-Brown, 2001): $x^{3}+2 y^{3}$

■ (Heath-Brown-Moroz, 2004): $a x^{3}+b y^{3}$ irreducible

- (Maynard, 2020): $n \geq 15 d / 22$

History: incomplete norm forms

Let $N_{K / \mathbb{Q}}(\mathbf{x})$ be a norm form for a degree d extension. Then an incomplete norm form is the polynomial

$$
N_{K / \mathbb{Q}}\left(x_{1}, x_{2}, \ldots, x_{n}, 0, \ldots 0\right) .
$$

This will be a degree d polynomial in n variables.

- (Heath-Brown, 2001): $x^{3}+2 y^{3}$
- (Heath-Brown-Moroz, 2004): $a x^{3}+b y^{3}$ irreducible
- (Maynard, 2020): $n \geq 15 d / 22$

Another important result:

- (Friedlander-Iwaniec, 1998): $x^{2}+y^{4}$

History: incomplete norm forms

Number of variables	Structure
$(d-1) 2^{d-1}$	any polynomial
$d \log (d)$	diagonal, homogeneous
d	norm form of a degree d extension
$15 d / 22$	incomplete norm form of degree d

Table of Contents

1 The Bateman-Horn conjecture

2 The Determinant polynomial

3 The Linnik Problem
$4 F(a, b, c, d, e, f)=a b c-a f^{2}-b e^{2}-c d^{2}+2 d e f$

The determinant polynomial

Consider the determinant on the space of $n \times n$ matrices:

$$
\operatorname{det}\left(x_{11}, \ldots, x_{n n}\right)
$$

This will be a nondiagonal homogeneous irreducible polynomial of degree n in n^{2} variables.

The determinant polynomial

Consider the determinant on the space of $n \times n$ matrices:

$$
\operatorname{det}\left(x_{11}, \ldots, x_{n n}\right)
$$

This will be a nondiagonal homogeneous irreducible polynomial of degree n in n^{2} variables.

```
Theorem 2.1 (Kotsovolis-W., '23)
```

Define the following prime counting function:

$$
\pi_{\operatorname{det}}(T):=\#\left\{A \in M a t_{n}(\mathbb{Z}):\|A\|_{\infty} \leq T, \operatorname{det}(A) \text { is prime }\right\} .
$$

The determinant polynomial

Consider the determinant on the space of $n \times n$ matrices:

$$
\operatorname{det}\left(x_{11}, \ldots, x_{n n}\right)
$$

This will be a nondiagonal homogeneous irreducible polynomial of degree n in n^{2} variables.

Theorem 2.1 (Kotsovolis-W., '23)

Define the following prime counting function:

$$
\pi_{\operatorname{det}}(T):=\#\left\{A \in M a t_{n}(\mathbb{Z}):\|A\|_{\infty} \leq T, \operatorname{det}(A) \text { is prime }\right\} .
$$

As $T \rightarrow \infty$, we have that

$$
\pi_{\operatorname{det}}(T)=(1+o(1)) \cdot \prod_{j=2}^{n} \zeta(j)^{-1} \int_{\|X\| \leq T} \frac{1}{\log ^{+}(\operatorname{det}(X))} d X
$$

where $d X$ is the Euclidean measure on $\operatorname{Mat}_{n}(\mathbb{R}) \cong \mathbb{R}^{n^{2}}$.

COMPARISON WITH PREVIOUS POLYNOMIALS

Number of variables	Structure
$(d-1) 2^{d-1}$	any polynomial
$d \log (d)$	diagonal, homogeneous
d	norm form of a degree d extension
$15 d / 22$	incomplete norm form of degree d

For $d \geq 4$, the determinant polynomial is beyond the circle method.

Comparison with previous polynomials

Number of variables	Structure	Irreducibility
$(d-1) 2^{d-1}$	any polynomial	any
$d \log (d)$	diagonal	$\overline{\mathbb{Q}}$
d	norm form	split over $\overline{\mathbb{Q}}$
$15 d / 22$	incomplete norm form	split over $\overline{\mathbb{Q}}$
d^{2}	determinant	$\overline{\mathbb{Q}}$

The determinant on symmetric matrices

Consider the determinant on the space of symmetric $n \times n$ matrices:

$$
\operatorname{det}\left(x_{11}, x_{12}, \ldots, x_{1 n}, x_{22}, \ldots, x_{n n}\right)
$$

This will be a nondiagonal homogeneous irreducible polynomial of degree n in $n(n+1) / 2$ variables.

The determinant on symmetric matrices

Consider the determinant on the space of symmetric $n \times n$ matrices:

$$
\operatorname{det}\left(x_{11}, x_{12}, \ldots, x_{1 n}, x_{22}, \ldots, x_{n n}\right)
$$

This will be a nondiagonal homogeneous irreducible polynomial of degree n in $n(n+1) / 2$ variables.

Theorem 2.2 (Kotsovolis-W., '23)

Let $n \geq 3$. Define the following prime counting function:

$$
\pi_{S y m}(T):=\#\left\{A \in \operatorname{Mat}_{n}(\mathbb{Z}):\|A\|_{\infty} \leq T, A^{T}=A, \operatorname{det}(A) \text { is prime }\right\} .
$$

The determinant on symmetric matrices

Consider the determinant on the space of symmetric $n \times n$ matrices:

$$
\operatorname{det}\left(x_{11}, x_{12}, \ldots, x_{1 n}, x_{22}, \ldots, x_{n n}\right)
$$

This will be a nondiagonal homogeneous irreducible polynomial of degree n in $n(n+1) / 2$ variables.

Theorem 2.2 (Kotsovolis-W., '23)

Let $n \geq 3$. Define the following prime counting function:

$$
\pi_{S y m}(T):=\#\left\{A \in \operatorname{Mat}_{n}(\mathbb{Z}):\|A\|_{\infty} \leq T, A^{T}=A, \operatorname{det}(A) \text { is prime }\right\} .
$$

As $T \rightarrow \infty$, we have that

$$
\pi_{S y m}(T)=(1+o(1)) \cdot \prod_{\substack{3 \leq j \leq n \\ j \text { odd }}} \zeta(j)^{-1} \cdot \int_{\substack{\|X\| \leq T \\ X^{T}=X}} \frac{1}{\log ^{+}(\operatorname{det}(X))} d X .
$$

Here $d X$ is the Euclidean measure on $\operatorname{Sym}_{n}(\mathbb{R}) \cong \mathbb{R}^{n(n+1) / 2}$.

Comparison with previous polynomials

Number of variables	Structure
$(d-1) 2^{d-1}$	any polynomial
$d \log (d)$	diagonal, homogeneous
d	norm form of a degree d extension
$15 d / 22$	incomplete norm form of degree d

For $d \geq 3$, the determinant polynomial on symmetric matrices is beyond the circle method.

Comparison with previous polynomials

Number of variables	Structure	Irreducibility
$(d-1) 2^{d-1}$	any polynomial	any
$d \log (d)$	diagonal	$\overline{\mathbb{Q}}$
d	norm form	split over $\overline{\mathbb{Q}}$
$15 d / 22$	incomplete norm form	split over $\overline{\mathbb{Q}}$
d^{2}	determinant	$\overline{\mathbb{Q}}$
$d(d+1) / 2$	det on symmetric	$\overline{\mathbb{Q}}$

Table of Contents

1 The Bateman-Horn conjecture

2 The determinant polynomial

3 The Linnik Problem

4 . $F(a, b, c, d, e, f)=a b c-a f^{2}-b e^{2}-c d^{2}+2 d e f$

The determinant polynomial

Let $V=\mathrm{Mat}_{n}$ and $G=\mathrm{SL}_{n}$. Then $G \times G$ acts on V via

$$
(g, h) \cdot X=g^{-1} X h
$$

The determinant polynomial

Let $V=\mathrm{Mat}_{n}$ and $G=\mathrm{SL}_{n}$. Then $G \times G$ acts on V via

$$
(g, h) \cdot X=g^{-1} X h
$$

The determinant polynomial on V is invariant under this action.

The determinant polynomial

Let $V=\operatorname{Mat}_{n}$ and $G=\mathrm{SL}_{n}$. Then $G \times G$ acts on V via

$$
(g, h) \cdot X=g^{-1} X h
$$

The determinant polynomial on V is invariant under this action. Write the variety

$$
V_{m}(\mathbb{R})=\left\{X \in \operatorname{Mat}_{n}(\mathbb{R}): \operatorname{det}(X)=m\right\}
$$

The determinant polynomial

Let $V=\operatorname{Mat}_{n}$ and $G=\mathrm{SL}_{n}$. Then $G \times G$ acts on V via

$$
(g, h) \cdot X=g^{-1} X h
$$

The determinant polynomial on V is invariant under this action. Write the variety

$$
\begin{aligned}
& V_{m}(\mathbb{R})=\left\{X \in \operatorname{Mat}_{n}(\mathbb{R}): \operatorname{det}(X)=m\right\} \\
& \quad V_{m}(\mathbb{R})=m^{1 / n} V_{1}(\mathbb{R})
\end{aligned}
$$

The determinant polynomial

Let $V=\operatorname{Mat}_{n}$ and $G=\mathrm{SL}_{n}$. Then $G \times G$ acts on V via

$$
(g, h) \cdot X=g^{-1} X h
$$

The determinant polynomial on V is invariant under this action. Write the variety

$$
\begin{aligned}
& \quad V_{m}(\mathbb{R})=\left\{X \in \operatorname{Mat}_{n}(\mathbb{R}): \operatorname{det}(X)=m\right\} \\
& -V_{m}(\mathbb{R})=m^{1 / n} V_{1}(\mathbb{R}) \\
& -V_{1}(\mathbb{R})=\mathrm{SL}_{n}(\mathbb{R})=(G \times G) I_{n}
\end{aligned}
$$

The determinant polynomial

Let $V=\operatorname{Mat}_{n}$ and $G=\mathrm{SL}_{n}$. Then $G \times G$ acts on V via

$$
(g, h) \cdot X=g^{-1} X h
$$

The determinant polynomial on V is invariant under this action. Write the variety

$$
V_{m}(\mathbb{R})=\left\{X \in \operatorname{Mat}_{n}(\mathbb{R}): \operatorname{det}(X)=m\right\}
$$

- $V_{m}(\mathbb{R})=m^{1 / n} V_{1}(\mathbb{R})$
- $V_{1}(\mathbb{R})=\mathrm{SL}_{n}(\mathbb{R})=(G \times G) I_{n}$.
- $V_{1}(\mathbb{R}) \cong(G \times G) / H \cong \mathrm{SL}_{n}(\mathbb{R})$ where

$$
H=\operatorname{stab}\left(I_{n}\right)=\left\{\left(g^{-1}, g\right) \in G \times G\right\} .
$$

The determinant polynomial

Let $V=\operatorname{Mat}_{n}$ and $G=\mathrm{SL}_{n}$. Then $G \times G$ acts on V via

$$
(g, h) \cdot X=g^{-1} X h
$$

The determinant polynomial on V is invariant under this action. Write the variety

$$
\begin{aligned}
& \quad V_{m}(\mathbb{R})=\left\{X \in \operatorname{Mat}_{n}(\mathbb{R}): \operatorname{det}(X)=m\right\} \\
& -V_{m}(\mathbb{R})=m^{1 / n} V_{1}(\mathbb{R}) \\
& V_{1}(\mathbb{R})=\operatorname{SL}_{n}(\mathbb{R})=(G \times G) I_{n} \\
& \\
& \quad V_{1}(\mathbb{R}) \cong(G \times G) / H \cong \operatorname{SL}_{n}(\mathbb{R}) \text { where } \\
& H=\operatorname{stab}\left(I_{n}\right)=\left\{\left(g^{-1}, g\right) \in G \times G\right\}
\end{aligned}
$$

A fact about the stabilizer

$\mathrm{SL}_{n}(\mathbb{R})$ is connected, simply connected, semisimple, and has no compact factors.

The Linnik problem

Key ingredient

For the determinant polynomial, we can count the number of integer points on the level sets V_{m}.

The Linnik problem

Let $\Omega \subset \mathrm{SL}_{n}(\mathbb{R})$ be a "nice" compact subset. Define the cone of height T as the set:

$$
[0, T] \Omega=\{t \omega: t \in[0, T], \omega \in \Omega\}
$$

The Linnik problem

Let $\Omega \subset \mathrm{SL}_{n}(\mathbb{R})$ be a "nice" compact subset. Define the cone of height T as the set:

$$
[0, T] \Omega=\{t \omega: t \in[0, T], \omega \in \Omega\}
$$

Then, as $m \rightarrow \infty$:

$$
\# V_{m}(\mathbb{Z}) \cap m^{1 / n} \Omega \sim \prod_{j=2}^{n} \zeta(j)^{-1} \mathfrak{S}_{n}(m) \mu(\Omega)
$$

where $\mathfrak{S}_{n}(m)$ is a singular series depending on m and μ is the measure on $\mathrm{SL}_{n}(\mathbb{R})$ induced by the Euclidean measure on $\operatorname{Mat}_{n}(\mathbb{R})$.

The Linnik problem

Let $\Omega \subset \mathrm{SL}_{n}(\mathbb{R})$ be a "nice" compact subset. Define the cone of height T as the set:

$$
[0, T] \Omega=\{t \omega: t \in[0, T], \omega \in \Omega\}
$$

Then, as $m \rightarrow \infty$:

$$
\# V_{m}(\mathbb{Z}) \cap m^{1 / n} \Omega \sim \prod_{j=2}^{n} \zeta(j)^{-1} \mathfrak{S}_{n}(m) \mu(\Omega)
$$

where $\mathfrak{S}_{n}(m)$ is a singular series depending on m and μ is the measure on $\mathrm{SL}_{n}(\mathbb{R})$ induced by the Euclidean measure on $\operatorname{Mat}_{n}(\mathbb{R})$.

- (Linnik-Skubenko, 1962): ergodic method

■ (Sarnak, 1990): Hecke orbits

Vertical versus horizontal statistics

	Set up	Limit		
Vertical statistics	$\# V_{m}(\mathbb{Z}) \cap m^{1 / n} \Omega$	$m \rightarrow \infty$		
Horizontal statistics	$\# V_{m}(\mathbb{Z}) \cap\{\\|X\\| \leq T\}$	$T \rightarrow \infty$		

VERTICAL VERSUS HORIZONTAL STATISTICS

	Set up	Limit		
Vertical statistics	$\# V_{m}(\mathbb{Z}) \cap m^{1 / n} \Omega$	$m \rightarrow \infty$		
Horizontal statistics	$\# V_{m}(\mathbb{Z}) \cap\{\\|X\\| \leq T\}$	$T \rightarrow \infty$		

(Duke-Rudnick-Sarnak, 1993): As $T \rightarrow \infty$,

$$
\# V_{m}(\mathbb{Z}) \cap\{\|X\| \leq T\} \sim \prod_{j=2}^{n} \zeta(j)^{-1} C_{n, m} T^{n^{2}-n}
$$

where

$$
C_{n, m}=\frac{\pi^{n^{2} / 2} m^{-n+1}}{\Gamma\left(\left(n^{2}-n+2\right) / 2\right) \Gamma(n / 2)} \mathfrak{S}_{n}(m)
$$

Vertical versus horizontal statistics

	Set up	Limit		
Vertical statistics	$\# V_{m}(\mathbb{Z}) \cap m^{1 / n} \Omega$	$m \rightarrow \infty$		
Horizontal statistics	$\# V_{m}(\mathbb{Z}) \cap\{\\|X\\| \leq T\}$	$T \rightarrow \infty$		

The determinant on symmetric matrices

Let $V=\operatorname{Sym}_{n}=\left\{X \in \operatorname{Mat}_{n}: X^{T}=X\right\}$ and $G=\mathrm{SL}_{n}$. Then G acts on V via

$$
g \cdot X=g^{T} X g
$$

The determinant polynomial on V is invariant under this action.

The determinant on symmetric matrices

Let $V=\operatorname{Sym}_{n}=\left\{X \in \operatorname{Mat}_{n}: X^{T}=X\right\}$ and $G=\mathrm{SL}_{n}$. Then G acts on V via

$$
g \cdot X=g^{T} X g
$$

The determinant polynomial on V is invariant under this action.Write the variety

$$
V_{m}(\mathbb{R})=\left\{X \in \operatorname{Sym}_{n}(\mathbb{R}): \operatorname{det}(X)=m\right\}
$$

The determinant on symmetric matrices

Let $V=\operatorname{Sym}_{n}=\left\{X \in \operatorname{Mat}_{n}: X^{T}=X\right\}$ and $G=\mathrm{SL}_{n}$. Then G acts on V via

$$
g \cdot X=g^{T} X g
$$

The determinant polynomial on V is invariant under this action.Write the variety

$$
V_{m}(\mathbb{R})=\left\{X \in \operatorname{Sym}_{n}(\mathbb{R}): \operatorname{det}(X)=m\right\}
$$

- $V_{m}(\mathbb{R})=m^{1 / n} V_{1}(\mathbb{R})$

The determinant on symmetric matrices

Let $V=\operatorname{Sym}_{n}=\left\{X \in \operatorname{Mat}_{n}: X^{T}=X\right\}$ and $G=\mathrm{SL}_{n}$. Then G acts on V via

$$
g \cdot X=g^{T} X g
$$

The determinant polynomial on V is invariant under this action.Write the variety

$$
V_{m}(\mathbb{R})=\left\{X \in \operatorname{Sym}_{n}(\mathbb{R}): \operatorname{det}(X)=m\right\}
$$

- $V_{m}(\mathbb{R})=m^{1 / n} V_{1}(\mathbb{R})$
- $V_{1}(\mathbb{R})=\cup_{p+q=n} G I_{p, q}$ where $I_{p, q}=\operatorname{diag}\left(I_{p},-I_{q}\right)$.

The determinant on symmetric matrices

Let $V=\operatorname{Sym}_{n}=\left\{X \in \operatorname{Mat}_{n}: X^{T}=X\right\}$ and $G=\mathrm{SL}_{n}$. Then G acts on V via

$$
g \cdot X=g^{T} X g
$$

The determinant polynomial on V is invariant under this action.Write the variety

$$
V_{m}(\mathbb{R})=\left\{X \in \operatorname{Sym}_{n}(\mathbb{R}): \operatorname{det}(X)=m\right\}
$$

- $V_{m}(\mathbb{R})=m^{1 / n} V_{1}(\mathbb{R})$
- $V_{1}(\mathbb{R})=\cup_{p+q=n} G I_{p, q}$ where $I_{p, q}=\operatorname{diag}\left(I_{p},-I_{q}\right)$. We call these orbits $\mathcal{O}_{p, q}$.

The determinant on symmetric matrices

Let $V=\operatorname{Sym}_{n}=\left\{X \in \operatorname{Mat}_{n}: X^{T}=X\right\}$ and $G=\mathrm{SL}_{n}$. Then G acts on V via

$$
g \cdot X=g^{T} X g
$$

The determinant polynomial on V is invariant under this action.Write the variety

$$
V_{m}(\mathbb{R})=\left\{X \in \operatorname{Sym}_{n}(\mathbb{R}): \operatorname{det}(X)=m\right\}
$$

- $V_{m}(\mathbb{R})=m^{1 / n} V_{1}(\mathbb{R})$
- $V_{1}(\mathbb{R})=\cup_{p+q=n} G I_{p, q}$ where $I_{p, q}=\operatorname{diag}\left(I_{p},-I_{q}\right)$. We call these orbits $\mathcal{O}_{p, q}$.
- $\mathcal{O}_{p, q} \cong G / \operatorname{stab}\left(I_{p, q}\right)$, where $\operatorname{stab}\left(I_{p, q}\right) \cong \mathrm{SO}(p, q)$.

The determinant on symmetric matrices

Let $V=\operatorname{Sym}_{n}=\left\{X \in \operatorname{Mat}_{n}: X^{T}=X\right\}$ and $G=\mathrm{SL}_{n}$. Then G acts on V via

$$
g \cdot X=g^{T} X g
$$

The determinant polynomial on V is invariant under this action.Write the variety

$$
V_{m}(\mathbb{R})=\left\{X \in \operatorname{Sym}_{n}(\mathbb{R}): \operatorname{det}(X)=m\right\}
$$

- $V_{m}(\mathbb{R})=m^{1 / n} V_{1}(\mathbb{R})$
- $V_{1}(\mathbb{R})=\cup_{p+q=n} G I_{p, q}$ where $I_{p, q}=\operatorname{diag}\left(I_{p},-I_{q}\right)$. We call these orbits $\mathcal{O}_{p, q}$.
- $\mathcal{O}_{p, q} \cong G / \operatorname{stab}\left(I_{p, q}\right)$, where $\operatorname{stab}\left(I_{p, q}\right) \cong \mathrm{SO}(p, q)$.

CONDITION ON THE STABILIZER

If $p, q \neq 0$ then $\mathrm{SO}(p, q)$ has no compact factors, but $\mathrm{SO}(n, 0)$ is compact!

THE LINNIK PROBLEM (INDEFINITE ORBITS)

Theorem 3.1 (Oh, 2004)
Let $n \geq 3, p, q \neq 0$, and $\Omega \subset S L_{n}(\mathbb{R}) \cap \mathcal{O}_{p, q}(\mathbb{R})$ be a "nice" compact subset. As $m \rightarrow \infty$,

$$
\# V_{m}(\mathbb{Z}) \cap m^{1 / n} \Omega \sim \int_{m^{1 / n} \Omega \times \prod_{p} V_{m}\left(\mathbb{Z}_{p}\right)} \delta(x) d \mu_{m}(x)
$$

where $\delta: V_{m}(\mathbb{A}) \rightarrow \mathbb{R}$ is constant on the adelic orbits $\mathcal{O}(\mathbb{A})$ and

$$
\delta(x)= \begin{cases}2, & \mathcal{O}(\mathbb{A}) \text { contains a } \mathbb{Q} \text {-point } \\ 0, & \text { otherwise }\end{cases}
$$

Here, μ_{m} is the Tamagawa measure on $V_{m}(\mathbb{A})$.

THE LINNIK PROBLEM (INDEFINITE ORBITS)

Theorem 3.1 (Oh, 2004)

Let $n \geq 3, p, q \neq 0$, and $\Omega \subset S L_{n}(\mathbb{R}) \cap \mathcal{O}_{p, q}(\mathbb{R})$ be a "nice" compact subset. As $m \rightarrow \infty$,

$$
\# V_{m}(\mathbb{Z}) \cap m^{1 / n} \Omega \sim \int_{m^{1 / n} \Omega \times \prod_{p} V_{m}\left(\mathbb{Z}_{p}\right)} \delta(x) d \mu_{m}(x)
$$

where $\delta: V_{m}(\mathbb{A}) \rightarrow \mathbb{R}$ is constant on the adelic orbits $\mathcal{O}(\mathbb{A})$ and

$$
\delta(x)= \begin{cases}2, & \mathcal{O}(\mathbb{A}) \text { contains a } \mathbb{Q} \text {-point }, \\ 0, & \text { otherwise }\end{cases}
$$

Here, μ_{m} is the Tamagawa measure on $V_{m}(\mathbb{A})$.
Key ingredient
Ratner's Theorem!

The Linnik problem (positive-Definite orbits)

```
Theorem 3.2
(Einsiedler-Margulis-Mohammadi-Venkatesh, 2020)
```

Suppose $\left\{Q_{i}\right\}_{i=1}^{\infty}$ varies through any sequence of pairwise inequivalent, integral, positive definite quadratic forms. Then the genus of Q_{i}, considered as a subset of $P G L_{n}(\mathbb{Z}) \backslash P G L_{n}(\mathbb{R}) / P O_{n}(\mathbb{R})$, equidistributes as $i \rightarrow \infty$.

The Linnik problem (positive-definite orbits)

```
Theorem 3.2
(Einsiedler-Margulis-Mohammadi-Venkatesh, 2020)
```

Suppose $\left\{Q_{i}\right\}_{i=1}^{\infty}$ varies through any sequence of pairwise inequivalent, integral, positive definite quadratic forms. Then the genus of Q_{i}, considered as a subset of $P G L_{n}(\mathbb{Z}) \backslash P G L_{n}(\mathbb{R}) / P O_{n}(\mathbb{R})$, equidistributes as $i \rightarrow \infty$.

As a consequence, if $\Omega \subset \mathcal{O}_{n, 0}$, we have that as $m \rightarrow \infty$,

$$
\# V_{m}(\mathbb{Z}) \cap m^{1 / n} \Omega \sim h_{n}(m) \mu(\Omega)
$$

where μ is the lift of the Haar measure and $h_{n}(m)$ is the class number of $\mathrm{SL}_{n}(\mathbb{Z})$-conjugacy orbits of integral positive definite symmetric matrices of determinant m.

The Linnik problem (positive-definite orbits)

```
Theorem 3.2
(Einsiedler-Margulis-Mohammadi-Venkatesh, 2020)
```

Suppose $\left\{Q_{i}\right\}_{i=1}^{\infty}$ varies through any sequence of pairwise inequivalent, integral, positive definite quadratic forms. Then the genus of Q_{i}, considered as a subset of $P G L_{n}(\mathbb{Z}) \backslash P G L_{n}(\mathbb{R}) / P O_{n}(\mathbb{R})$, equidistributes as $i \rightarrow \infty$.

As a consequence, if $\Omega \subset \mathcal{O}_{n, 0}$, we have that as $m \rightarrow \infty$,

$$
\# V_{m}(\mathbb{Z}) \cap m^{1 / n} \Omega \sim h_{n}(m) \mu(\Omega)
$$

where μ is the lift of the Haar measure and $h_{n}(m)$ is the class number of $\mathrm{SL}_{n}(\mathbb{Z})$-conjugacy orbits of integral positive definite symmetric matrices of determinant m.

Key ingredient

Theory of automorphic forms!

UPSHOT

LINNIK PROBLEM

We have asymptotic formulas for $\Omega \subset \mathcal{O}_{p, q}$

$$
\# V_{m}(\mathbb{Z}) \cap m^{1 / n} \Omega
$$

as $m \rightarrow \infty$.

UPSHOT

LINNIK PROBLEM

We have asymptotic formulas for $\Omega \subset \mathcal{O}_{p, q}$

$$
\# V_{m}(\mathbb{Z}) \cap m^{1 / n} \Omega
$$

as $m \rightarrow \infty$.

Still To Be done

We want our formulas in terms of more familiar objects, i.e. in the same form as with the determinant polynomial.

Table of Contents

1 The Bateman-Horn conjecture

2 The determinant polynomial

3 The Linnik Problem
$4 F(a, b, c, d, e, f)=a b c-a f^{2}-b e^{2}-c d^{2}+2 d e f$

Specialization

From now on, we look at the determinant of symmetric 3×3 matrices:

$$
F(a, b, c, d, e, f)=a b c-a f^{2}-b e^{2}-c d^{2}+2 d e f
$$

Specialization

From now on, we look at the determinant of symmetric 3×3 matrices:

$$
F(a, b, c, d, e, f)=a b c-a f^{2}-b e^{2}-c d^{2}+2 d e f
$$

This polynomial is a cubic in 6 variables.

Indefinite orbits

Oh's Theorem

$$
\# V_{m}(\mathbb{Z}) \cap m^{1 / 3} \Omega \sim \int_{m^{1 / 3} \Omega \times \prod_{p} V_{m}\left(\mathbb{Z}_{p}\right)} \delta(x) d \mu_{m}(x)
$$

What is happening with $\delta(x)$?

Indefinite orbits

Oh's Theorem

$$
\# V_{m}(\mathbb{Z}) \cap m^{1 / 3} \Omega \sim \int_{m^{1 / 3} \Omega \times \prod_{p} V_{m}\left(\mathbb{Z}_{p}\right)} \delta(x) d \mu_{m}(x)
$$

What is happening with $\delta(x)$?

$$
\delta(x) \neq 0 \Longleftrightarrow \prod_{p} c_{p}\left(x_{p}\right)=1
$$

where $c_{p}\left(x_{p}\right)$ are the Hasse-Minkowski invariants after viewing x_{p} as a p-adic quadratic form.

Indefinite orbits

Let \mathcal{G}_{p} denote a $\mathrm{SL}_{3}\left(\mathbb{Z}_{p}\right)$ orbit of $V_{m}\left(\mathbb{Z}_{p}\right)$. If m is prime, then

$$
\begin{aligned}
\# V_{m}(\mathbb{Z}) \cap m^{1 / 3} \Omega \sim & 2 m \prod_{p \neq m} \mu_{m, p}\left(V_{m}\left(\mathbb{Z}_{p}\right)\right) \\
& \times \sum_{\substack{\mathcal{G}_{2}, \mathcal{G}_{m} \\
c_{2}\left(\mathcal{G}_{2}\right) c_{m}\left(\mathcal{G}_{m}\right)=c_{\infty}(\Omega)}} \mu_{m, 2}\left(\mathcal{G}_{2}\right) \mu_{m, m}\left(\mathcal{G}_{m}\right) .
\end{aligned}
$$

Here $\mu_{m, p}$ is the p-adic part of the Tamagawa measure μ_{m} on $V_{m}(\mathbb{A})$.

Indefinite orbits

Let \mathcal{G}_{p} denote a $\mathrm{SL}_{3}\left(\mathbb{Z}_{p}\right)$ orbit of $V_{m}\left(\mathbb{Z}_{p}\right)$. If m is prime, then

$$
\begin{aligned}
\# V_{m}(\mathbb{Z}) \cap m^{1 / 3} \Omega \sim & 2 m \prod_{p \neq m} \mu_{m, p}\left(V_{m}\left(\mathbb{Z}_{p}\right)\right) \\
& \times \sum_{\substack{\mathcal{G}_{2}, \mathcal{G}_{m} \\
c_{2}\left(\mathcal{G}_{2}\right) c_{m}\left(\mathcal{G}_{m}\right)=c_{\infty}(\Omega)}} \mu_{m, 2}\left(\mathcal{G}_{2}\right) \mu_{m, m}\left(\mathcal{G}_{m}\right) .
\end{aligned}
$$

Here $\mu_{m, p}$ is the p-adic part of the Tamagawa measure μ_{m} on $V_{m}(\mathbb{A})$.

SiEgEL MASSES

$$
\mu_{m, p}\left(\mathcal{G}_{p}\left(\mathbb{Z}_{p}\right)\right)=\lim _{k \rightarrow \infty} \frac{\# \mathcal{G}_{p}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)}{p^{5 k}}
$$

Indefinite orbits

Let \mathcal{G}_{p} denote a $\mathrm{SL}_{3}\left(\mathbb{Z}_{p}\right)$ orbit of $V_{m}\left(\mathbb{Z}_{p}\right)$. If m is prime, then

$$
\begin{aligned}
\# V_{m}(\mathbb{Z}) \cap m^{1 / 3} \Omega \sim & 2 m \prod_{p \neq m} \mu_{m, p}\left(V_{m}\left(\mathbb{Z}_{p}\right)\right) \\
& \times \sum_{\substack{\mathcal{G}_{2}, \mathcal{G}_{m} \\
c_{2}\left(\mathcal{G}_{2}\right) c_{m}\left(\mathcal{G}_{m}\right)=c_{\infty}(\Omega)}} \mu_{m, 2}\left(\mathcal{G}_{2}\right) \mu_{m, m}\left(\mathcal{G}_{m}\right) .
\end{aligned}
$$

Here $\mu_{m, p}$ is the p-adic part of the Tamagawa measure μ_{m} on $V_{m}(\mathbb{A})$.

Siegel masses

$$
\mu_{m, p}\left(\mathcal{G}_{p}\left(\mathbb{Z}_{p}\right)\right)=\lim _{k \rightarrow \infty} \frac{\# \mathcal{G}_{p}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)}{p^{5 k}}
$$

These p-adic densities appear in the Siegel mass formula!

Indefinite orbits

OH's TheOREM

$$
\# V_{m}(\mathbb{Z}) \cap m^{1 / 3} \Omega \sim \int_{m^{1 / 3} \Omega \times \prod_{p} V_{m}\left(\mathbb{Z}_{p}\right)} \delta(x) d \mu_{m}(x)
$$

Indefinite orbits

Oh's Theorem

$$
\# V_{m}(\mathbb{Z}) \cap m^{1 / 3} \Omega \sim \int_{m^{1 / 3} \Omega \times \prod_{p} V_{m}\left(\mathbb{Z}_{p}\right)} \delta(x) d \mu_{m}(x)
$$

$$
\downarrow
$$

Siegel mass formula
\downarrow

Indefinite orbits

Oh's Theorem

$$
\# V_{m}(\mathbb{Z}) \cap m^{1 / 3} \Omega \sim \int_{m^{1 / 3} \Omega \times \Pi_{p} V_{m}\left(\mathbb{Z}_{p}\right)} \delta(x) d \mu_{m}(x)
$$

$$
\downarrow
$$

Siegel mass formula
\downarrow
LEMMA 1

$$
\begin{aligned}
& \text { Let } \Omega \subset \mathcal{O}_{p, q} \text { for }(p, q)=(1,2) . \text { Then as } p \rightarrow \infty \\
& \# V_{p}(\mathbb{Z}) \cap p^{1 / 3} \Omega \sim p \cdot \zeta(3)^{-1} \mu_{\infty}(\Omega) .
\end{aligned}
$$

Indefinite orbits

OH's TheOREM

$$
\# V_{m}(\mathbb{Z}) \cap m^{1 / 3} \Omega \sim \int_{m^{1 / 3} \Omega \times \prod_{p} V_{m}\left(\mathbb{Z}_{p}\right)} \delta(x) d \mu_{m}(x)
$$

Siegel mass formula

LEMMA 1

$$
\begin{aligned}
& \text { Let } \Omega \subset \mathcal{O}_{p, q} \text { for }(p, q)=(1,2) . \text { Then as } p \rightarrow \infty \\
& \# V_{p}(\mathbb{Z}) \cap p^{1 / 3} \Omega \sim p \cdot \zeta(3)^{-1} \mu_{\infty}(\Omega) .
\end{aligned}
$$

If $(p, q)=(2,1)$, then $V_{p}(\mathbb{Z}) \cap p^{1 / 3} \Omega=\emptyset$.

Positive definite orbit

Consequence of EMMV

As $m \rightarrow \infty$,

$$
\# V_{m}(\mathbb{Z}) \cap m^{1 / 3} \Omega \sim h_{3}(m) \mu(\Omega)
$$

where μ is the lift of the Haar measure and $h_{3}(m)$ is the class number of $\mathrm{SL}_{3}(\mathbb{Z})$-conjugacy orbits of integral positive definite symmetric matrices of determinant m.

Positive definite orbit

Consequence of EMMV

As $m \rightarrow \infty$,

$$
\# V_{m}(\mathbb{Z}) \cap m^{1 / 3} \Omega \sim h_{3}(m) \mu(\Omega)
$$

where μ is the lift of the Haar measure and $h_{3}(m)$ is the class number of $\mathrm{SL}_{3}(\mathbb{Z})$-conjugacy orbits of integral positive definite symmetric matrices of determinant m.

CLASS Numbers

Lemma 2 (Kitaoka, 1973)

As $p \rightarrow \infty$,

$$
h_{3}(p) \sim p \cdot \pi^{-3} \zeta(2) \Gamma(1 / 2) \Gamma(3 / 2)
$$

Relating the measures

LEMMA 3

$$
\mu(\Omega)=\pi^{3} \zeta(2)^{-1} \zeta(3)^{-1} \Gamma(1 / 2)^{-1} \Gamma(3 / 2)^{-1} \mu_{\infty}(\Omega) .
$$

Relating the measures

LEMMA 3

$$
\mu(\Omega)=\pi^{3} \zeta(2)^{-1} \zeta(3)^{-1} \Gamma(1 / 2)^{-1} \Gamma(3 / 2)^{-1} \mu_{\infty}(\Omega)
$$

Proof idea

Due to uniqueness of the Tamagawa measure on this space, μ must be a scalar of μ_{∞}.

Relating the measures

LEMMA 3

$$
\mu(\Omega)=\pi^{3} \zeta(2)^{-1} \zeta(3)^{-1} \Gamma(1 / 2)^{-1} \Gamma(3 / 2)^{-1} \mu_{\infty}(\Omega)
$$

Proof idea

Due to uniqueness of the Tamagawa measure on this space, μ must be a scalar of μ_{∞}.

- μ is normalized so that $\mu\left(\mathrm{SL}_{3}(\mathbb{Z}) \backslash \mathrm{SL}_{3}(\mathbb{R})\right)=1$

Relating the measures

LEMMA 3

$$
\mu(\Omega)=\pi^{3} \zeta(2)^{-1} \zeta(3)^{-1} \Gamma(1 / 2)^{-1} \Gamma(3 / 2)^{-1} \mu_{\infty}(\Omega)
$$

Proof idea

Due to uniqueness of the Tamagawa measure on this space, μ must be a scalar of μ_{∞}.

- μ is normalized so that $\mu\left(\mathrm{SL}_{3}(\mathbb{Z}) \backslash \mathrm{SL}_{3}(\mathbb{R})\right)=1$
- $\mu_{\infty}\left(\mathrm{SL}_{3}(\mathbb{Z}) \backslash \mathrm{SL}_{3}(\mathbb{R})\right)=\zeta(2) \zeta(3)$.

Relating the measures

LEMMA 3

$$
\mu(\Omega)=\pi^{3} \zeta(2)^{-1} \zeta(3)^{-1} \Gamma(1 / 2)^{-1} \Gamma(3 / 2)^{-1} \mu_{\infty}(\Omega)
$$

Proof idea

Due to uniqueness of the Tamagawa measure on this space, μ must be a scalar of μ_{∞}.

- μ is normalized so that $\mu\left(\mathrm{SL}_{3}(\mathbb{Z}) \backslash \mathrm{SL}_{3}(\mathbb{R})\right)=1$
- $\mu_{\infty}\left(\mathrm{SL}_{3}(\mathbb{Z}) \backslash \mathrm{SL}_{3}(\mathbb{R})\right)=\zeta(2) \zeta(3)$.
- The factor of $\pi^{3} \Gamma(1 / 2)^{-1} \Gamma(3 / 2)^{-1}$ comes from the fact we are actually working on $\mathrm{SL}_{3}(\mathbb{R}) / \mathrm{SO}_{3}(\mathbb{R})$.

The Linnik Problem

Lemma 4 (Kitaoka, 1973)

As $p \rightarrow \infty$,

$$
h_{3}(p) \sim p \cdot \pi^{-3} \zeta(2) \Gamma(1 / 2) \Gamma(3 / 2)
$$

LEMMA 5

$$
\mu(\Omega)=\pi^{3} \zeta(2)^{-1} \zeta(3)^{-1} \Gamma(1 / 2)^{-1} \Gamma(3 / 2)^{-1} \mu_{\infty}(\Omega)
$$

Together, we get that as $p \rightarrow \infty$,

$$
\# V_{p}(\mathbb{Z}) \cap p^{1 / 3} \Omega \sim p \cdot \zeta(3)^{-1} \mu_{\infty}(\Omega)
$$

The Linnik Problem

Lemma 4 (Kitaoka, 1973)

As $p \rightarrow \infty$,

$$
h_{3}(p) \sim p \cdot \pi^{-3} \zeta(2) \Gamma(1 / 2) \Gamma(3 / 2)
$$

LEMMA 5

$$
\mu(\Omega)=\pi^{3} \zeta(2)^{-1} \zeta(3)^{-1} \Gamma(1 / 2)^{-1} \Gamma(3 / 2)^{-1} \mu_{\infty}(\Omega)
$$

Together, we get that as $p \rightarrow \infty$,

$$
\# V_{p}(\mathbb{Z}) \cap p^{1 / 3} \Omega \sim p \cdot \zeta(3)^{-1} \mu_{\infty}(\Omega)
$$

This formula holds on both $\mathcal{O}_{3,0}, \mathcal{O}_{1,2}$.

Summing over primes

Define the counting function:

$$
\pi(T \Omega)=\#\left\{A \in \operatorname{Sym}_{3}(\mathbb{Z}) \cap T \Omega: \operatorname{det}(A) \text { is prime }\right\}
$$

Summing over Primes

Define the counting function:

$$
\pi(T \Omega)=\#\left\{A \in \operatorname{Sym}_{3}(\mathbb{Z}) \cap T \Omega: \operatorname{det}(A) \text { is prime }\right\}
$$

Then we can sum over all primes up to T^{3} :

$$
\begin{aligned}
\pi(T \Omega) & =\sum_{p \leq T^{3}} \#\left\{A \in \operatorname{Sym}_{3}(\mathbb{Z}) \cap T \Omega: \operatorname{det}(A)=p\right\} \\
& =\sum_{p \leq T^{3}} \# V_{p}(\mathbb{Z}) \cap p^{1 / 3} \Omega
\end{aligned}
$$

Summing over Primes

Define the counting function:

$$
\pi(T \Omega)=\#\left\{A \in \operatorname{Sym}_{3}(\mathbb{Z}) \cap T \Omega: \operatorname{det}(A) \text { is prime }\right\}
$$

Then we can sum over all primes up to T^{3} :

$$
\begin{aligned}
\pi(T \Omega) & =\sum_{p \leq T^{3}} \#\left\{A \in \operatorname{Sym}_{3}(\mathbb{Z}) \cap T \Omega: \operatorname{det}(A)=p\right\} \\
& =\sum_{p \leq T^{3}} \# V_{p}(\mathbb{Z}) \cap p^{1 / 3} \Omega
\end{aligned}
$$

We apply our solution to Linnik's problem:

$$
\begin{aligned}
\pi(T \Omega) & =\left(1+o_{\Omega}(1)\right) \mu_{\infty}(\Omega) \sum_{p \leq T^{3}} \zeta(3)^{-1} p \\
& =\left(1+o_{\Omega}(1)\right) \zeta(3)^{-1} \mu_{\infty}(\Omega) \frac{T^{6}}{6 \log (T)}
\end{aligned}
$$

PRIME COUNTING ON CONES

$$
\begin{aligned}
& \text { LEMMA } 6 \\
& \text { For } \Omega \subset \mathcal{O}_{3,0} \text { or } \mathcal{O}_{1,2} \\
& \qquad \pi(T \Omega)=\left(1+o_{\Omega}(1)\right) \zeta(3)^{-1} \int_{T \Omega} \frac{1}{\log ^{+}(\operatorname{det}(X))} d X \\
& \text { If } \Omega \subset \mathcal{O}_{2,1} \text { or } \mathcal{O}_{0,3} \text {, then } \pi(T \Omega)=0
\end{aligned}
$$

Cones to boxes

Idea: approximate the box with cones!

Figure: Approximating $[0, T]^{2}$ with cones from $x y=1$ Image created by Giorgos Kotsovolis

ϵ-CUTTING

DEFINITION 1

An ϵ-cutting of \mathcal{R}_{0} is a finite set of disjoint "nice" connected compact subsets of $V_{1}(\mathbb{R})$, denoted as

$$
\mathcal{C}_{\epsilon}=\left\{\Omega_{i}\right\}_{i=1}^{N(\epsilon)},
$$

such that

$$
\mathcal{R}_{0}=\mathcal{E} \bigcup_{\Omega \in \mathcal{C}_{\epsilon}}[0,1 / h t(\Omega)] \Omega,
$$

where the exceptional set satisfies that $|\mathcal{E}| \leq \epsilon$.
Here, $\operatorname{ht}(\Omega)=\sup _{A \in \Omega}\|A\|$.

ϵ-CUTTING

Fix $\epsilon>0$. If \mathcal{C}_{ϵ} is an ϵ-cutting of $\operatorname{Sym}_{3}(\mathbb{R}) \cap\{\|A\| \leq 1\}$, then

$$
\operatorname{Sym}_{3}(\mathbb{R}) \cap\{\|A\| \leq T\}=T \mathcal{E} \cup_{\Omega \in \mathcal{C}_{\epsilon}} T / \operatorname{ht}(\Omega) \Omega
$$

$$
\text { and }|T \mathcal{E}| \leq \epsilon T^{6}
$$

ϵ-CUTTING

Fix $\epsilon>0$. If \mathcal{C}_{ϵ} is an ϵ-cutting of $\operatorname{Sym}_{3}(\mathbb{R}) \cap\{\|A\| \leq 1\}$, then

$$
\operatorname{Sym}_{3}(\mathbb{R}) \cap\{\|A\| \leq T\}=T \mathcal{E} \cup_{\Omega \in \mathcal{C}_{\epsilon}} T / \operatorname{ht}(\Omega) \Omega
$$

and $|T \mathcal{E}| \leq \epsilon T^{6}$. So, we can count the primes in the box as:

$$
\begin{aligned}
& \#\left\{A \in \operatorname{Sym}_{3}(\mathbb{Z}):\|A\| \leq T, \operatorname{det}(A) \text { is prime }\right\} \\
= & \#\left\{A \in \operatorname{Sym}_{3}(\mathbb{Z}) \cap T \mathcal{E}: \operatorname{det}(A) \text { is prime }\right\}+\sum_{\Omega \in \mathcal{C}_{\epsilon}} \pi(T / \operatorname{ht}(\Omega) \Omega) .
\end{aligned}
$$

ϵ-CUTTING

Fix $\epsilon>0$. If \mathcal{C}_{ϵ} is an ϵ-cutting of $\operatorname{Sym}_{3}(\mathbb{R}) \cap\{\|A\| \leq 1\}$, then

$$
\operatorname{Sym}_{3}(\mathbb{R}) \cap\{\|A\| \leq T\}=T \mathcal{E} \cup_{\Omega \in \mathcal{C}_{\epsilon}} T / \operatorname{ht}(\Omega) \Omega
$$

and $|T \mathcal{E}| \leq \epsilon T^{6}$. So, we can count the primes in the box as:

$$
\begin{aligned}
& \#\left\{A \in \operatorname{Sym}_{3}(\mathbb{Z}):\|A\| \leq T, \operatorname{det}(A) \text { is prime }\right\} \\
= & \#\left\{A \in \operatorname{Sym}_{3}(\mathbb{Z}) \cap T \mathcal{E}: \operatorname{det}(A) \text { is prime }\right\}+\sum_{\Omega \in \mathcal{C}_{\epsilon}} \pi(T / \operatorname{ht}(\Omega) \Omega) .
\end{aligned}
$$

COUNTING PRIMES ON CONES

$$
\sum_{\Omega \in \mathcal{C}_{\epsilon}} \pi(T / \mathrm{ht} \Omega \Omega)=\left(1+o_{\epsilon}(1)\right) \zeta(3)^{-1} \int_{\cup T / \mathrm{ht}(\Omega) \Omega} \frac{1}{\log ^{+}(\operatorname{det}(X))} d X
$$

UPPER-BOUNDING THE EXCEPTIONAL SET

Proposition 4.1

Let \mathcal{R} be a convex region in $[0, T]^{n}$ and $F(\mathbf{x})$ a polynomial in n variables. Then there is a constant $c_{F}>0$ such that

$$
\#\{\mathbf{x} \in \mathcal{R}(\mathbb{Z}): F(\mathbf{x}) \in \mathscr{P}\} \leq c_{F}\left(\frac{|\mathcal{R}|}{\log (T)}+T^{n-1 / 2}\right)
$$

UPPER-BOUNDING THE EXCEPTIONAL SET

Proposition 4.1

Let \mathcal{R} be a convex region in $[0, T]^{n}$ and $F(\mathbf{x})$ a polynomial in n variables. Then there is a constant $c_{F}>0$ such that

$$
\#\{\mathbf{x} \in \mathcal{R}(\mathbb{Z}): F(\mathbf{x}) \in \mathscr{P}\} \leq c_{F}\left(\frac{|\mathcal{R}|}{\log (T)}+T^{n-1 / 2}\right)
$$

- Upper bound holds for any polynomial F

UPPER-BOUNDING THE EXCEPTIONAL SET

Proposition 4.1

Let \mathcal{R} be a convex region in $[0, T]^{n}$ and $F(\mathbf{x})$ a polynomial in n variables. Then there is a constant $c_{F}>0$ such that

$$
\#\{\mathbf{x} \in \mathcal{R}(\mathbb{Z}): F(\mathbf{x}) \in \mathscr{P}\} \leq c_{F}\left(\frac{|\mathcal{R}|}{\log (T)}+T^{n-1 / 2}\right)
$$

- Upper bound holds for any polynomial F
- c_{F} is independent of \mathcal{R}

UPPER-BOUNDING THE EXCEPTIONAL SET

Proposition 4.1

Let \mathcal{R} be a convex region in $[0, T]^{n}$ and $F(\mathbf{x})$ a polynomial in n variables. Then there is a constant $c_{F}>0$ such that

$$
\#\{\mathbf{x} \in \mathcal{R}(\mathbb{Z}): F(\mathbf{x}) \in \mathscr{P}\} \leq c_{F}\left(\frac{|\mathcal{R}|}{\log (T)}+T^{n-1 / 2}\right)
$$

- Upper bound holds for any polynomial F
- c_{F} is independent of \mathcal{R}
- Comes from an upper bound sieve + a level of distribution result

UPPER-BOUNDING THE EXCEPTIONAL SET

Applying the Proposition, we have
LEMMA 7

$$
\#\left\{A \in \operatorname{Sym}_{3}(\mathbb{Z}) \cap T \mathcal{E}: \operatorname{det}(A) \text { is prime }\right\} \leq c_{\operatorname{det}} \frac{\epsilon T^{6}}{\log (T)}+T^{11 / 2}
$$

UPPER-BOUNDING THE EXCEPTIONAL SET

Applying the Proposition, we have
LEMMA 7

$$
\#\left\{A \in \operatorname{Sym}_{3}(\mathbb{Z}) \cap T \mathcal{E}: \operatorname{det}(A) \text { is prime }\right\} \leq c_{\operatorname{det}} \frac{\epsilon T^{6}}{\log (T)}+T^{11 / 2}
$$

So, we get that for any $\epsilon>0$,

$$
\begin{aligned}
& \#\left\{A \in \operatorname{Sym}_{3}(\mathbb{Z}):\|A\| \leq T, \operatorname{det}(A) \text { is prime }\right\} \\
& =\left(1+o_{\epsilon}(1)\right) \zeta(3)^{-1} \int_{\|X\| \leq T} \frac{1}{\log ^{+}(\operatorname{det}(X))} d X+O\left(\frac{\epsilon T^{6}}{\log (T)}\right)
\end{aligned}
$$

PRIME NUMBER THEOREM FOR F

Taking $\epsilon \rightarrow 0$, we get
Theorem
$\#\left\{A \in \operatorname{Sym}_{3}(\mathbb{Z}):\|A\| \leq T, \operatorname{det}(A)\right.$ is prime $\}$

$$
=(1+o(1)) \zeta(3)^{-1} \int_{\|X\| \leq T} \frac{1}{\log ^{+}(\operatorname{det}(X))} d X
$$

The End

Thank you!

