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Motivating question

Given an irreducible polynomial f(x) ∈ Z[x], is f(n) prime for
infinitely many integers n?

Bunyakovsky’s conjecture

If f(x) ∈ Z[x] is a monic irreducible polynomial, then f(n) is
prime for infinitely many positive integers n.
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The Bateman-Horn conjecture

A quantitative conjecture

Let f(x) be a nonconstant irreducible monic polynomial. Then
as N → ∞ :

#{n ∈ [1, N ] : f(n) is prime} ∼ S ·
∫ N

0

dx

log+(f(x))
,

where we write

log+(y) =

{
max(2, log(y)), y > 0

∞, y ≤ 0,

and we define

S :=
∏
p

(
1− p−1#{x ∈ Fp : f(x) ≡ 0 mod p}

(1− 1/p)

)
.
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The multivariate Bateman-Horn conjecture

Conjecture

Let F (x) be a nonconstant irreducible polynomial over Q in n
variables. Then as T → ∞,

#{x ∈ Zn : ∥x∥∞ ≤ T, F (x) is prime} ∼ S·
∫
∥x∥∞≤T

dx

log+(F (x))
,

where the singular series S is defined as a product of local
densities:

S =
∏
p

(
1− p−n#{x ∈ Fn

p : F (x) ≡ 0 mod p}
(1− 1/p)

)
.
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History: the circle method

Let F (x) be an irreducible polynomial in n variables of degree
d. Then we have that

#{x ∈ Zn : ∥x∥∞ ≤ T, F (x) is prime}

=

∫ 1

0

( ∑
x∈Zn

∥x∥∞≤T

e(F (x)α)
)( ∑

p≤cFT d

prime

e(−pα)
)
dα.

If n is sufficiently large in terms of d, then by evaluating this
integral you can achieve a prime number theorem.

(Destagnol-Sofos, 2019): n > (d− 1)2d−1

(Brüdern-Wooley, 2022): n > ⌈d log(d)⌉+ 5 for F diagonal
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History: the circle method

Number of variables Structure

(d− 1)2d−1 any polynomial

d log(d) diagonal, homogeneous
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History: norm forms

Let K/Q be a degree d extension. Then if the ring of integers

OK = Z[α1, α2, ..., αd],

the polynomial

NK/Q(x) := NK/Q(x1α1 + x2α2 + ...+ xdαd)

is an irreducible homogeneous form of degree d in d variables.

Prime correspondence

NK/Q(x) is prime ⇐⇒ p ⊂ OK is a prime ideal.
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History: norm forms

The norm form

NK/Q(x) := NK/Q(x1α1 + x2α2 + ...+ xdα2)

is an irreducible homogeneous form of degree d in d variables.

Prime correspondence

NK/Q(x) is prime ⇐⇒ p ⊂ OK is a prime ideal.

Landau’s prime ideal theorem

The number of prime ideals p of OK is asymptotic to

#{p ⊂ OK : N(p) ≤ X} ∼
∫ X

0

1

log+(x)
dx.
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History: norm forms

Number of variables Structure

(d− 1)2d−1 any polynomial

d log(d) diagonal, homogeneous

d norm form of a degree d extension
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History: incomplete norm forms

Let NK/Q(x) be a norm form for a degree d extension. Then an
incomplete norm form is the polynomial

NK/Q(x1, x2, ..., xn, 0, ...0).

This will be a degree d polynomial in n variables.

(Heath-Brown, 2001): x3 + 2y3

(Heath-Brown-Moroz, 2004): ax3 + by3 irreducible

(Maynard, 2020): n ≥ 15d/22

Another important result:

(Friedlander-Iwaniec, 1998): x2 + y4
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History: incomplete norm forms

Number of variables Structure

(d− 1)2d−1 any polynomial

d log(d) diagonal, homogeneous

d norm form of a degree d extension

15d/22 incomplete norm form of degree d
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The determinant polynomial

Consider the determinant on the space of n× n matrices:

det(x11, ..., xnn).

This will be a nondiagonal homogeneous irreducible polynomial
of degree n in n2 variables.

Theorem 2.1 (Kotsovolis-W., ’23)

Define the following prime counting function:

πdet(T ) := #{A ∈ Matn(Z) : ∥A∥∞ ≤ T, det(A) is prime}.

As T → ∞, we have that

πdet(T ) = (1 + o(1)) ·
n∏

j=2

ζ(j)−1

∫
∥X∥≤T

1

log+(det(X))
dX,

where dX is the Euclidean measure on Matn(R) ∼= Rn2
.
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Comparison with previous polynomials

Number of variables Structure

(d− 1)2d−1 any polynomial

d log(d) diagonal, homogeneous

d norm form of a degree d extension

15d/22 incomplete norm form of degree d

For d ≥ 4, the determinant polynomial is beyond the circle
method.
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Comparison with previous polynomials

Number of variables Structure Irreducibility
(d− 1)2d−1 any polynomial any

d log(d) diagonal Q
d norm form split over Q

15d/22 incomplete norm form split over Q
d2 determinant Q
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The determinant on symmetric matrices

Consider the determinant on the space of symmetric n× n
matrices:

det(x11, x12, ..., x1n, x22, ..., xnn).

This will be a nondiagonal homogeneous irreducible polynomial
of degree n in n(n+ 1)/2 variables.

Theorem 2.2 (Kotsovolis-W., ’23)

Let n ≥ 3. Define the following prime counting function:

πSym(T ) := #{A ∈ Matn(Z) : ∥A∥∞ ≤ T,AT = A,det(A) is prime}.

As T → ∞, we have that

πSym(T ) = (1 + o(1)) ·
∏

3≤j≤n
j odd

ζ(j)−1 ·
∫
∥X∥≤T

XT=X

1

log+(det(X))
dX.

Here dX is the Euclidean measure on Symn(R) ∼= Rn(n+1)/2.
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Comparison with previous polynomials

Number of variables Structure

(d− 1)2d−1 any polynomial

d log(d) diagonal, homogeneous

d norm form of a degree d extension

15d/22 incomplete norm form of degree d

For d ≥ 3, the determinant polynomial on symmetric matrices
is beyond the circle method.
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Comparison with previous polynomials

Number of variables Structure Irreducibility
(d− 1)2d−1 any polynomial any

d log(d) diagonal Q
d norm form split over Q

15d/22 incomplete norm form split over Q
d2 determinant Q

d(d+ 1)/2 det on symmetric Q
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The determinant polynomial

Let V = Matn and G = SLn. Then G×G acts on V via

(g, h) ·X = g−1Xh.

The determinant polynomial on V is invariant under this action.
Write the variety

Vm(R) = {X ∈ Matn(R) : det(X) = m}.

Vm(R) = m1/nV1(R)
V1(R) = SLn(R) = (G×G)In.

V1(R) ∼= (G×G)/H ∼= SLn(R) where
H = stab(In) = {(g−1, g) ∈ G×G}.

A fact about the stabilizer

SLn(R) is connected, simply connected, semisimple, and has no
compact factors.
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The Linnik problem

Key ingredient

For the determinant polynomial, we can count the number of
integer points on the level sets Vm.
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The Linnik problem

Let Ω ⊂ SLn(R) be a “nice” compact subset. Define the cone
of height T as the set:

[0, T ]Ω = {tω : t ∈ [0, T ], ω ∈ Ω}.

Then, as m → ∞:

#Vm(Z) ∩m1/nΩ ∼
n∏

j=2

ζ(j)−1Sn(m)µ(Ω),

where Sn(m) is a singular series depending on m and µ is the
measure on SLn(R) induced by the Euclidean measure on
Matn(R).

(Linnik-Skubenko, 1962): ergodic method

(Sarnak, 1990): Hecke orbits
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Vertical versus horizontal statistics

Set up Limit

Vertical statistics #Vm(Z) ∩m1/nΩ m → ∞
Horizontal statistics #Vm(Z) ∩ {∥X∥ ≤ T} T → ∞

(Duke-Rudnick-Sarnak, 1993): As T → ∞,

#Vm(Z) ∩ {∥X∥ ≤ T} ∼
n∏

j=2

ζ(j)−1Cn,mTn2−n

where

Cn,m =
πn2/2m−n+1

Γ((n2 − n+ 2)/2)Γ(n/2)
Sn(m).
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The determinant on symmetric matrices

Let V = Symn = {X ∈ Matn : XT = X} and G = SLn. Then G
acts on V via

g ·X = gTXg.

The determinant polynomial on V is invariant under this
action.

Write the variety

Vm(R) = {X ∈ Symn(R) : det(X) = m}.

Vm(R) = m1/nV1(R)
V1(R) = ∪p+q=nGIp,q where Ip,q = diag(Ip,−Iq).We call
these orbits Op,q.

Op,q
∼= G/stab(Ip,q), where stab(Ip,q) ∼= SO(p, q).

Condition on the stabilizer

If p, q ̸= 0 then SO(p, q) has no compact factors, but SO(n, 0) is
compact!
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compact!
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The Linnik problem (indefinite orbits)

Theorem 3.1 (Oh, 2004)

Let n ≥ 3, p, q ̸= 0, and Ω ⊂ SLn(R) ∩ Op,q(R) be a “nice”
compact subset. As m → ∞,

#Vm(Z) ∩m1/nΩ ∼
∫
m1/nΩ×

∏
p Vm(Zp)

δ(x)dµm(x)

where δ : Vm(A) → R is constant on the adelic orbits O(A) and

δ(x) =

{
2, O(A) contains a Q-point,

0, otherwise.

Here, µm is the Tamagawa measure on Vm(A).

Key ingredient

Ratner’s Theorem!
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The Linnik problem (positive-definite orbits)

Theorem 3.2
(Einsiedler-Margulis-Mohammadi-Venkatesh, 2020)

Suppose {Qi}∞i=1 varies through any sequence of pairwise
inequivalent, integral, positive definite quadratic forms. Then
the genus of Qi, considered as a subset of
PGLn(Z)\PGLn(R)/POn(R), equidistributes as i → ∞.

As a consequence, if Ω ⊂ On,0, we have that as m → ∞,

#Vm(Z) ∩m1/nΩ ∼ hn(m)µ(Ω),

where µ is the lift of the Haar measure and hn(m) is the class
number of SLn(Z)-conjugacy orbits of integral positive definite
symmetric matrices of determinant m.

Key ingredient

Theory of automorphic forms!
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Upshot

Linnik problem

We have asymptotic formulas for Ω ⊂ Op,q

#Vm(Z) ∩m1/nΩ

as m → ∞.

Still to be done

We want our formulas in terms of more familiar objects, i.e. in
the same form as with the determinant polynomial.
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Specialization

From now on, we look at the determinant of symmetric 3× 3
matrices:

F (a, b, c, d, e, f) = abc− af2 − be2 − cd2 + 2def.

This polynomial is a cubic in 6 variables.
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Indefinite orbits

Oh’s Theorem

#Vm(Z) ∩m1/3Ω ∼
∫
m1/3Ω×

∏
p Vm(Zp)

δ(x)dµm(x)

What is happening with δ(x)?

δ(x) ̸= 0 ⇐⇒
∏
p

cp(xp) = 1,

where cp(xp) are the Hasse-Minkowski invariants after viewing
xp as a p-adic quadratic form.
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Indefinite orbits

Let Gp denote a SL3(Zp) orbit of Vm(Zp). If m is prime, then

#Vm(Z) ∩m1/3Ω ∼ 2m
∏
p ̸=m

µm,p(Vm(Zp))

×
∑
G2,Gm

c2(G2)cm(Gm)=c∞(Ω)

µm,2(G2)µm,m(Gm).

Here µm,p is the p-adic part of the Tamagawa measure µm on
Vm(A).

Siegel masses

µm,p(Gp(Zp)) = lim
k→∞

#Gp(Z/pkZ)
p5k

.

These p-adic densities appear in the Siegel mass formula!
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Indefinite orbits

Oh’s Theorem

#Vm(Z) ∩m1/3Ω ∼
∫
m1/3Ω×

∏
p Vm(Zp)

δ(x)dµm(x)

Siegel mass formula

Lemma 1

Let Ω ⊂ Op,q for (p, q) = (1, 2). Then as p → ∞
#Vp(Z) ∩ p1/3Ω ∼ p · ζ(3)−1µ∞(Ω).

If (p, q) = (2, 1), then Vp(Z) ∩ p1/3Ω = ∅.
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Positive definite orbit

Consequence of EMMV

As m → ∞,

#Vm(Z) ∩m1/3Ω ∼ h3(m)µ(Ω),

where µ is the lift of the Haar measure and h3(m) is the class
number of SL3(Z)-conjugacy orbits of integral positive definite
symmetric matrices of determinant m.
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Class numbers

Siegel mass formula

Lemma 2 (Kitaoka, 1973)

As p → ∞,
h3(p) ∼ p · π−3ζ(2)Γ(1/2)Γ(3/2)
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Relating the measures

Lemma 3

µ(Ω) = π3ζ(2)−1ζ(3)−1Γ(1/2)−1Γ(3/2)−1µ∞(Ω).

Proof idea

Due to uniqueness of the Tamagawa measure on this space, µ
must be a scalar of µ∞.

µ is normalized so that µ(SL3(Z)\SL3(R)) = 1

µ∞(SL3(Z)\SL3(R)) = ζ(2)ζ(3).

The factor of π3Γ(1/2)−1Γ(3/2)−1 comes from the fact we
are actually working on SL3(R)/SO3(R).
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The Linnik Problem

Lemma 4 (Kitaoka, 1973)

As p → ∞,
h3(p) ∼ p · π−3ζ(2)Γ(1/2)Γ(3/2)

Lemma 5

µ(Ω) = π3ζ(2)−1ζ(3)−1Γ(1/2)−1Γ(3/2)−1µ∞(Ω).

Together, we get that as p → ∞,

#Vp(Z) ∩ p1/3Ω ∼ p · ζ(3)−1µ∞(Ω).

This formula holds on both O3,0,O1,2.
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Summing over primes

Define the counting function:

π(TΩ) = #{A ∈ Sym3(Z) ∩ TΩ : det(A) is prime}.

Then we can sum over all primes up to T 3 :

π(TΩ) =
∑
p≤T 3

#{A ∈ Sym3(Z) ∩ TΩ : det(A) = p}

=
∑
p≤T 3

#Vp(Z) ∩ p1/3Ω.

We apply our solution to Linnik’s problem:

π(TΩ) = (1 + oΩ(1))µ∞(Ω)
∑
p≤T 3

ζ(3)−1p

= (1 + oΩ(1))ζ(3)
−1µ∞(Ω)

T 6

6 log(T )
.
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Prime counting on cones

Lemma 6

For Ω ⊂ O3,0 or O1,2,

π(TΩ) = (1 + oΩ(1))ζ(3)
−1

∫
TΩ

1

log+(det(X))
dX.

If Ω ⊂ O2,1 or O0,3, then π(TΩ) = 0.
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Cones to boxes

Idea: approximate the box with cones!

Figure: Approximating [0, T ]2 with cones from xy = 1

Image created by Giorgos Kotsovolis
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ϵ-cutting

Definition 1

An ϵ-cutting of R0 is a finite set of disjoint “nice” connected
compact subsets of V1(R), denoted as

Cϵ = {Ωi}N(ϵ)
i=1 ,

such that
R0 = E

⋃
Ω∈Cϵ

[0, 1/ht(Ω)]Ω,

where the exceptional set satisfies that |E| ≤ ϵ.

Here, ht(Ω) = supA∈Ω ∥A∥.
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ϵ-cutting

Fix ϵ > 0. If Cϵ is an ϵ-cutting of Sym3(R) ∩ {∥A∥ ≤ 1}, then

Sym3(R) ∩ {∥A∥ ≤ T} = TE ∪Ω∈Cϵ T/ht(Ω)Ω,

and |TE| ≤ ϵT 6.

So, we can count the primes in the box as:

#{A ∈ Sym3(Z) : ∥A∥ ≤ T, det(A) is prime}

= #{A ∈ Sym3(Z)∩TE : det(A) is prime}+
∑
Ω∈Cϵ

π(T/ht(Ω)Ω).

Counting primes on cones

∑
Ω∈Cϵ

π(T/htΩΩ) = (1+ oϵ(1))ζ(3)
−1

∫
∪T/ht(Ω)Ω

1

log+(det(X))
dX.
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Upper-bounding the exceptional set

Proposition 4.1

Let R be a convex region in [0, T ]n and F (x) a polynomial in n
variables. Then there is a constant cF > 0 such that

#{x ∈ R(Z) : F (x) ∈ P} ≤ cF

(
|R|

log(T )
+ Tn−1/2

)
.

Upper bound holds for any polynomial F

cF is independent of R
Comes from an upper bound sieve + a level of distribution
result
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Upper-bounding the exceptional set

Applying the Proposition, we have

Lemma 7

#{A ∈ Sym3(Z) ∩ TE : det(A) is prime} ≤ cdet
ϵT 6

log(T )
+ T 11/2.

So, we get that for any ϵ > 0,

#{A ∈ Sym3(Z) : ∥A∥ ≤ T, det(A) is prime}

= (1 + oϵ(1))ζ(3)
−1

∫
∥X∥≤T

1

log+(det(X))
dX +O(

ϵT 6

log(T )
).
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= (1 + oϵ(1))ζ(3)
−1

∫
∥X∥≤T

1

log+(det(X))
dX +O(

ϵT 6

log(T )
).
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Prime number theorem for F

Taking ϵ → 0, we get

Theorem

#{A ∈ Sym3(Z) : ∥A∥ ≤ T, det(A) is prime}

= (1 + o(1))ζ(3)−1

∫
∥X∥≤T

1

log+(det(X))
dX.
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The End

Thank you!
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