PRIME NUMBER THEOREMS FOR POLYNOMIALS FROM HOMOGENEOUS DYNAMICS JOINT WORK WITH GIORGOS KOTSOVOLIS

Katharine Woo

Princeton University

 $\rm JMM\ 2024$

イロト (日) (日) (日) (日) (日) (日)

1/47

1 The Bateman-Horn Conjecture

2 The determinant polynomial

3 The Linnik Problem

4 $F(a, b, c, d, e, f) = abc - af^2 - be^2 - cd^2 + 2def$

4 ロ ト 4 回 ト 4 三 ト 4 三 ト 4 三 ク Q ()
2 / 47

Given an irreducible polynomial $f(x) \in \mathbb{Z}[x]$, is f(n) prime for infinitely many integers n?

Given an irreducible polynomial $f(x) \in \mathbb{Z}[x]$, is f(n) prime for infinitely many integers n?

BUNYAKOVSKY'S CONJECTURE

If $f(x) \in \mathbb{Z}[x]$ is a monic irreducible polynomial, then f(n) is prime for infinitely many positive integers n.

THE BATEMAN-HORN CONJECTURE

A quantitative conjecture

Let f(x) be a nonconstant irreducible monic polynomial. Then as $N \to \infty$:

$$#\{n \in [1, N] : f(n) \text{ is prime}\} \sim \mathfrak{S} \cdot \int_0^N \frac{dx}{\log^+(f(x))},$$

where we write

$$\log^+(y) = \begin{cases} \max(2, \log(y)), & y > 0\\ \infty, & y \le 0, \end{cases}$$

and we define

$$\mathfrak{S} := \prod_p \left(\frac{1 - p^{-1} \# \{ x \in \mathbb{F}_p : f(x) \equiv 0 \mod p \}}{(1 - 1/p)} \right).$$

4 / 47

Conjecture

Let $F(\mathbf{x})$ be a nonconstant irreducible polynomial over \mathbb{Q} in n variables. Then as $T \to \infty$,

$$\#\{\mathbf{x}\in\mathbb{Z}^n: \|\mathbf{x}\|_{\infty}\leq T, F(\mathbf{x}) \text{ is prime}\}\sim\mathfrak{S}\cdot\int_{\|\mathbf{x}\|_{\infty}\leq T}\frac{d\mathbf{x}}{\log^+(F(\mathbf{x}))},$$

where the singular series \mathfrak{S} is defined as a product of local densities:

$$\mathfrak{S} = \prod_{p} \left(\frac{1 - p^{-n} \# \{ \mathbf{x} \in \mathbb{F}_p^n : F(\mathbf{x}) \equiv 0 \mod p \}}{(1 - 1/p)} \right)$$

4 ロ ト 4 回 ト 4 三 ト 4 三 ト 2 の Q ペ
5 / 47

$$\begin{aligned} \#\{\mathbf{x} \in \mathbb{Z}^n : \|x\|_{\infty} &\leq T, F(\mathbf{x}) \text{ is prime}\} \\ &= \int_0^1 \Big(\sum_{\substack{\mathbf{x} \in \mathbb{Z}^n \\ \|\mathbf{x}\|_{\infty} \leq T}} e(F(\mathbf{x})\alpha)\Big) \Big(\sum_{\substack{p \leq c_F T^d \\ \text{prime}}} e(-p\alpha)\Big) d\alpha. \end{aligned}$$

$$\begin{aligned} \#\{\mathbf{x} \in \mathbb{Z}^n : \|x\|_{\infty} &\leq T, F(\mathbf{x}) \text{ is prime}\} \\ &= \int_0^1 \Big(\sum_{\substack{\mathbf{x} \in \mathbb{Z}^n \\ \|\mathbf{x}\|_{\infty} \leq T}} e(F(\mathbf{x})\alpha)\Big) \Big(\sum_{\substack{p \leq c_F T^d \\ \text{prime}}} e(-p\alpha)\Big) d\alpha. \end{aligned}$$

If n is sufficiently large in terms of d, then by evaluating this integral you can achieve a prime number theorem.

$$\# \{ \mathbf{x} \in \mathbb{Z}^n : \| x \|_{\infty} \leq T, F(\mathbf{x}) \text{ is prime} \}$$

= $\int_0^1 \Big(\sum_{\substack{\mathbf{x} \in \mathbb{Z}^n \\ \| \mathbf{x} \|_{\infty} \leq T}} e(F(\mathbf{x})\alpha) \Big) \Big(\sum_{\substack{p \leq c_F T^d \\ \text{prime}}} e(-p\alpha) \Big) d\alpha.$

If n is sufficiently large in terms of d, then by evaluating this integral you can achieve a prime number theorem.

• (Destagnol-Sofos, 2019): $n > (d-1)2^{d-1}$

$$\# \{ \mathbf{x} \in \mathbb{Z}^n : \| x \|_{\infty} \leq T, F(\mathbf{x}) \text{ is prime} \}$$

$$= \int_0^1 \Big(\sum_{\substack{\mathbf{x} \in \mathbb{Z}^n \\ \| \mathbf{x} \|_{\infty} \leq T}} e(F(\mathbf{x})\alpha) \Big) \Big(\sum_{\substack{p \leq c_F T^d \\ prime}} e(-p\alpha) \Big) d\alpha.$$

If n is sufficiently large in terms of d, then by evaluating this integral you can achieve a prime number theorem.

- (Destagnol-Sofos, 2019): $n > (d-1)2^{d-1}$
- (Brüdern-Wooley, 2022): $n > \lfloor d \log(d) \rfloor + 5$ for F diagonal

Number of variables	Structure
$(d-1)2^{d-1}$	any polynomial
$d\log(d)$	diagonal, homogeneous

Let K/\mathbb{Q} be a degree d extension. Then if the ring of integers

$$\mathcal{O}_K = \mathbb{Z}[\alpha_1, \alpha_2, ..., \alpha_d],$$

the polynomial

$$N_{K/\mathbb{Q}}(\mathbf{x}) := N_{K/\mathbb{Q}}(x_1\alpha_1 + x_2\alpha_2 + \dots + x_d\alpha_d)$$

is an irreducible homogeneous form of degree d in d variables.

Let K/\mathbb{Q} be a degree d extension. Then if the ring of integers

$$\mathcal{O}_K = \mathbb{Z}[\alpha_1, \alpha_2, ..., \alpha_d],$$

the polynomial

$$N_{K/\mathbb{Q}}(\mathbf{x}) := N_{K/\mathbb{Q}}(x_1\alpha_1 + x_2\alpha_2 + \dots + x_d\alpha_d)$$

is an irreducible homogeneous form of degree d in d variables.

PRIME CORRESPONDENCE

 $N_{K/\mathbb{Q}}(\mathbf{x})$ is prime $\iff \mathfrak{p} \subset \mathcal{O}_K$ is a prime ideal.

The norm form

$$N_{K/\mathbb{Q}}(\mathbf{x}) := N_{K/\mathbb{Q}}(x_1\alpha_1 + x_2\alpha_2 + \dots + x_d\alpha_2)$$

is an irreducible homogeneous form of degree d in d variables.

PRIME CORRESPONDENCE

 $N_{K/\mathbb{Q}}(\mathbf{x})$ is prime $\iff \mathfrak{p} \subset \mathcal{O}_K$ is a prime ideal.

LANDAU'S PRIME IDEAL THEOREM

The number of prime ideals \mathfrak{p} of \mathcal{O}_K is asymptotic to

$$\#\{\mathfrak{p}\subset\mathcal{O}_K:N(\mathfrak{p})\leq X\}\sim\int_0^X\frac{1}{\log^+(x)}dx.$$

Number of variables	Structure	
$(d-1)2^{d-1}$	any polynomial	
$d\log(d)$	diagonal, homogeneous	
d	norm form of a degree d extension	

 $N_{K/\mathbb{Q}}(x_1, x_2, ..., x_n, 0, ...0).$

$$N_{K/\mathbb{Q}}(x_1, x_2, ..., x_n, 0, ...0).$$

This will be a degree d polynomial in n variables.

$$N_{K/\mathbb{Q}}(x_1, x_2, ..., x_n, 0, ...0).$$

This will be a degree d polynomial in n variables.

• (Heath-Brown, 2001): $x^3 + 2y^3$

$$N_{K/\mathbb{Q}}(x_1, x_2, ..., x_n, 0, ...0).$$

This will be a degree d polynomial in n variables.

- (Heath-Brown, 2001): $x^3 + 2y^3$
- (Heath-Brown-Moroz, 2004): $ax^3 + by^3$ irreducible

$$N_{K/\mathbb{Q}}(x_1, x_2, ..., x_n, 0, ...0).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

11/47

This will be a degree d polynomial in n variables.

- (Heath-Brown, 2001): $x^3 + 2y^3$
- (Heath-Brown-Moroz, 2004): $ax^3 + by^3$ irreducible
- \blacksquare (Maynard, 2020): $n \geq 15d/22$

$$N_{K/\mathbb{Q}}(x_1, x_2, ..., x_n, 0, ...0).$$

(ロ) (四) (三) (三) (三) (0)(0)

11/47

This will be a degree d polynomial in n variables.

- (Heath-Brown, 2001): $x^3 + 2y^3$
- (Heath-Brown-Moroz, 2004): $ax^3 + by^3$ irreducible
- \blacksquare (Maynard, 2020): $n \geq 15d/22$

Another important result:

• (Friedlander-Iwaniec, 1998): $x^2 + y^4$

Number of variables	Structure	
$(d-1)2^{d-1}$	any polynomial	
$d\log(d)$	diagonal, homogeneous	
d	norm form of a degree d extension	
15d/22	incomplete norm form of degree d	

1 THE BATEMAN-HORN CONJECTURE

2 The determinant polynomial

3 The Linnik Problem

4
$$F(a, b, c, d, e, f) = abc - af^2 - be^2 - cd^2 + 2def$$

4 ロ ト 4 回 ト 4 三 ト 4 三 ト 4 三 り へ ()
13 / 47

Consider the determinant on the space of $n \times n$ matrices:

 $\det(x_{11}, ..., x_{nn}).$

This will be a nondiagonal homogeneous irreducible polynomial of degree n in n^2 variables.

Consider the determinant on the space of $n \times n$ matrices:

 $\det(x_{11}, ..., x_{nn}).$

This will be a nondiagonal homogeneous irreducible polynomial of degree n in n^2 variables.

THEOREM 2.1 (KOTSOVOLIS-W., '23)

Define the following prime counting function:

 $\pi_{\det}(T) := \# \{ A \in Mat_n(\mathbb{Z}) : \|A\|_{\infty} \le T, \det(A) \text{ is prime} \}.$

Consider the determinant on the space of $n \times n$ matrices:

 $\det(x_{11}, ..., x_{nn}).$

This will be a nondiagonal homogeneous irreducible polynomial of degree n in n^2 variables.

THEOREM 2.1 (KOTSOVOLIS-W., '23)

Define the following prime counting function:

 $\pi_{\det}(T) := \# \{ A \in Mat_n(\mathbb{Z}) : \|A\|_{\infty} \le T, \det(A) \text{ is prime} \}.$

As $T \to \infty$, we have that

$$\pi_{\det}(T) = (1 + o(1)) \cdot \prod_{j=2}^{n} \zeta(j)^{-1} \int_{\|X\| \le T} \frac{1}{\log^+(\det(X))} dX,$$

where dX is the Euclidean measure on $Mat_n(\mathbb{R}) \cong \mathbb{R}^{n^2}$.

Number of variables	Structure	
$(d-1)2^{d-1}$	any polynomial	
$d\log(d)$	diagonal, homogeneous	
d	norm form of a degree d extension	
15d/22	incomplete norm form of degree d	

For $d \ge 4$, the determinant polynomial is beyond the circle method.

Number of variables	Structure	Irreducibility
$(d-1)2^{d-1}$	any polynomial	any
$d\log(d)$	diagonal	$\overline{\mathbb{Q}}$
d	norm form	split over $\overline{\mathbb{Q}}$
15d/22	incomplete norm form	split over $\overline{\mathbb{Q}}$
d^2	determinant	$\overline{\mathbb{Q}}$

The determinant on symmetric matrices

Consider the determinant on the space of symmetric $n\times n$ matrices:

```
\det(x_{11}, x_{12}, ..., x_{1n}, x_{22}, ..., x_{nn}).
```

This will be a nondiagonal homogeneous irreducible polynomial of degree n in n(n+1)/2 variables.

The determinant on symmetric matrices

Consider the determinant on the space of symmetric $n\times n$ matrices:

```
\det(x_{11}, x_{12}, ..., x_{1n}, x_{22}, ..., x_{nn}).
```

This will be a nondiagonal homogeneous irreducible polynomial of degree n in n(n+1)/2 variables.

THEOREM 2.2 (KOTSOVOLIS-W., '23)

Let $n \geq 3$. Define the following prime counting function:

 $\pi_{Sym}(T) := \#\{A \in Mat_n(\mathbb{Z}) : \|A\|_{\infty} \le T, A^T = A, \det(A) \text{ is prime}\}.$

The determinant on symmetric matrices

Consider the determinant on the space of symmetric $n\times n$ matrices:

$$\det(x_{11}, x_{12}, ..., x_{1n}, x_{22}, ..., x_{nn}).$$

This will be a nondiagonal homogeneous irreducible polynomial of degree n in n(n+1)/2 variables.

THEOREM 2.2 (KOTSOVOLIS-W., '23)

Let $n \geq 3$. Define the following prime counting function:

$$\pi_{Sym}(T) := \#\{A \in Mat_n(\mathbb{Z}) : \|A\|_{\infty} \le T, A^T = A, \det(A) \text{ is prime}\}.$$

As $T \to \infty$, we have that

$$\pi_{Sym}(T) = (1 + o(1)) \cdot \prod_{\substack{3 \le j \le n \\ j \text{ odd}}} \zeta(j)^{-1} \cdot \int_{\substack{\|X\| \le T \\ X^T = X}} \frac{1}{\log^+(\det(X))} dX.$$

Here dX is the Euclidean measure on $Sym_n(\mathbb{R}) \cong \mathbb{R}^{n(n+1)/2}$.

Number of variables	Structure	
$(d-1)2^{d-1}$	any polynomial	
$d\log(d)$	diagonal, homogeneous	
d	norm form of a degree d extension	
15d/22	incomplete norm form of degree d	

For $d \geq 3$, the determinant polynomial on symmetric matrices is beyond the circle method.

Number of variables	Structure	Irreducibility
$(d-1)2^{d-1}$	any polynomial	any
$d\log(d)$	diagonal	$\overline{\mathbb{Q}}$
d	norm form	split over $\overline{\mathbb{Q}}$
15d/22	incomplete norm form	split over $\overline{\mathbb{Q}}$
d^2	determinant	$\overline{\mathbb{Q}}$
d(d+1)/2	det on symmetric	$\overline{\mathbb{Q}}$

1 THE BATEMAN-HORN CONJECTURE

2 The determinant polynomial

3 The Linnik Problem

4
$$F(a, b, c, d, e, f) = abc - af^2 - be^2 - cd^2 + 2def$$

4 ロ ト 4 回 ト 4 三 ト 4 三 ト モ の Q ()
20 / 47

THE DETERMINANT POLYNOMIAL

Let $V = Mat_n$ and $G = SL_n$. Then $G \times G$ acts on V via

$$(g,h) \cdot X = g^{-1}Xh.$$

Let $V = Mat_n$ and $G = SL_n$. Then $G \times G$ acts on V via

$$(g,h) \cdot X = g^{-1}Xh.$$

The determinant polynomial on V is invariant under this action.
Let $V = Mat_n$ and $G = SL_n$. Then $G \times G$ acts on V via

$$(g,h) \cdot X = g^{-1}Xh.$$

$$V_m(\mathbb{R}) = \{ X \in \operatorname{Mat}_n(\mathbb{R}) : \det(X) = m \}.$$

Let $V = Mat_n$ and $G = SL_n$. Then $G \times G$ acts on V via

$$(g,h) \cdot X = g^{-1}Xh.$$

The determinant polynomial on V is invariant under this action. Write the variety

イロト イヨト イヨト ・ヨー りへの

21/47

$$V_m(\mathbb{R}) = \{ X \in \operatorname{Mat}_n(\mathbb{R}) : \det(X) = m \}.$$

• $V_m(\mathbb{R}) = m^{1/n} V_1(\mathbb{R})$

Let $V = Mat_n$ and $G = SL_n$. Then $G \times G$ acts on V via

$$(g,h) \cdot X = g^{-1}Xh.$$

The determinant polynomial on V is invariant under this action. Write the variety

イロト イヨト イヨト ・ヨー りへの

21/47

$$V_m(\mathbb{R}) = \{ X \in \operatorname{Mat}_n(\mathbb{R}) : \det(X) = m \}.$$

$$V_m(\mathbb{R}) = m^{1/n} V_1(\mathbb{R})$$

$$V_1(\mathbb{R}) = \operatorname{SL}_n(\mathbb{R}) = (G \times G) I_n.$$

Let $V = Mat_n$ and $G = SL_n$. Then $G \times G$ acts on V via

$$(g,h) \cdot X = g^{-1}Xh.$$

The determinant polynomial on V is invariant under this action. Write the variety

イロト (日) (日) (日) (日) (日) (日)

21/47

$$V_m(\mathbb{R}) = \{X \in \operatorname{Mat}_n(\mathbb{R}) : \det(X) = m\}.$$

$$V_m(\mathbb{R}) = m^{1/n} V_1(\mathbb{R})$$

$$V_1(\mathbb{R}) = \operatorname{SL}_n(\mathbb{R}) = (G \times G) I_n.$$

$$V_1(\mathbb{R}) \cong (G \times G) / H \cong \operatorname{SL}_n(\mathbb{R}) \text{ where}$$

$$H = \operatorname{stab}(I_n) = \{(g^{-1}, g) \in G \times G\}.$$

Let $V = Mat_n$ and $G = SL_n$. Then $G \times G$ acts on V via

$$(g,h) \cdot X = g^{-1}Xh.$$

The determinant polynomial on V is invariant under this action. Write the variety

$$V_m(\mathbb{R}) = \{X \in \operatorname{Mat}_n(\mathbb{R}) : \det(X) = m\}.$$

$$V_m(\mathbb{R}) = m^{1/n} V_1(\mathbb{R})$$

$$V_1(\mathbb{R}) = \operatorname{SL}_n(\mathbb{R}) = (G \times G) I_n.$$

$$V_1(\mathbb{R}) \cong (G \times G) / H \cong \operatorname{SL}_n(\mathbb{R}) \text{ where } H = \operatorname{stab}(I_n) = \{(g^{-1}, g) \in G \times G\}.$$

A FACT ABOUT THE STABILIZER

 $SL_n(\mathbb{R})$ is connected, simply connected, semisimple, and has no compact factors.

Key ingredient

For the determinant polynomial, we can count the number of integer points on the level sets V_m .

The Linnik problem

Let $\Omega \subset SL_n(\mathbb{R})$ be a "nice" compact subset. Define the **cone** of height T as the set:

$$[0,T]\Omega = \{t\omega : t \in [0,T], \omega \in \Omega\}.$$

THE LINNIK PROBLEM

Let $\Omega \subset SL_n(\mathbb{R})$ be a "nice" compact subset. Define the **cone** of height T as the set:

$$[0,T]\Omega = \{t\omega : t \in [0,T], \omega \in \Omega\}.$$

Then, as $m \to \infty$:

$$#V_m(\mathbb{Z}) \cap m^{1/n}\Omega \sim \prod_{j=2}^n \zeta(j)^{-1}\mathfrak{S}_n(m)\mu(\Omega),$$

where $\mathfrak{S}_n(m)$ is a singular series depending on m and μ is the measure on $\mathrm{SL}_n(\mathbb{R})$ induced by the Euclidean measure on $\mathrm{Mat}_n(\mathbb{R})$.

イロト イヨト イヨト イヨト ヨー のへの

THE LINNIK PROBLEM

Let $\Omega \subset SL_n(\mathbb{R})$ be a "nice" compact subset. Define the **cone** of height *T* as the set:

$$[0,T]\Omega = \{t\omega : t \in [0,T], \omega \in \Omega\}.$$

Then, as $m \to \infty$:

$$#V_m(\mathbb{Z}) \cap m^{1/n}\Omega \sim \prod_{j=2}^n \zeta(j)^{-1}\mathfrak{S}_n(m)\mu(\Omega),$$

where $\mathfrak{S}_n(m)$ is a singular series depending on m and μ is the measure on $\mathrm{SL}_n(\mathbb{R})$ induced by the Euclidean measure on $\mathrm{Mat}_n(\mathbb{R})$.

- (Linnik-Skubenko, 1962): ergodic method
- (Sarnak, 1990): Hecke orbits

	Set up	Limit
Vertical statistics	$\#V_m(\mathbb{Z})\cap m^{1/n}\Omega$	$m ightarrow \infty$
Horizontal statistics	$\#V_m(\mathbb{Z}) \cap \{\ X\ \le T\}$	$T \to \infty$

	Set up	Limit
Vertical statistics	$\#V_m(\mathbb{Z})\cap m^{1/n}\Omega$	$m \to \infty$
Horizontal statistics	$\#V_m(\mathbb{Z}) \cap \{\ X\ \le T\}$	$T \to \infty$

(Duke-Rudnick-Sarnak, 1993): As $T \to \infty$,

$$\#V_m(\mathbb{Z}) \cap \{\|X\| \le T\} \sim \prod_{j=2}^n \zeta(j)^{-1} C_{n,m} T^{n^2 - n}$$

where

$$C_{n,m} = \frac{\pi^{n^2/2} m^{-n+1}}{\Gamma((n^2 - n + 2)/2)\Gamma(n/2)} \mathfrak{S}_n(m).$$

<ロ > < 合 > < 言 > < 言 > こ う < で 24 / 47

	Set up	Limit
Vertical statistics	$\#V_m(\mathbb{Z})\cap m^{1/n}\Omega$	$m \to \infty$
Horizontal statistics	$\#V_m(\mathbb{Z}) \cap \{\ X\ \le T\}$	$T \to \infty$

Let $V = \text{Sym}_n = \{X \in \text{Mat}_n : X^T = X\}$ and $G = \text{SL}_n$. Then G acts on V via

$$g \cdot X = g^T X g.$$

The determinant polynomial on ${\cal V}$ is invariant under this action.

Let $V = \text{Sym}_n = \{X \in \text{Mat}_n : X^T = X\}$ and $G = \text{SL}_n$. Then G acts on V via

$$g \cdot X = g^T X g.$$

$$V_m(\mathbb{R}) = \{ X \in \operatorname{Sym}_n(\mathbb{R}) : \det(X) = m \}.$$

Let $V = \text{Sym}_n = \{X \in \text{Mat}_n : X^T = X\}$ and $G = \text{SL}_n$. Then G acts on V via

$$g \cdot X = g^T X g.$$

$$V_m(\mathbb{R}) = \{X \in \operatorname{Sym}_n(\mathbb{R}) : \det(X) = m\}.$$

• $V_m(\mathbb{R}) = m^{1/n} V_1(\mathbb{R})$

Let $V = \text{Sym}_n = \{X \in \text{Mat}_n : X^T = X\}$ and $G = \text{SL}_n$. Then G acts on V via

$$g \cdot X = g^T X g.$$

イロト 不同 と 不良 と 不良 と 一直

26/47

$$V_m(\mathbb{R}) = \{X \in \operatorname{Sym}_n(\mathbb{R}) : \det(X) = m\}.$$

$$= V_m(\mathbb{R}) = m^{1/n} V_1(\mathbb{R})$$

$$= V_1(\mathbb{R}) = \cup_{p+q=n} GI_{p,q} \text{ where } I_{p,q} = \operatorname{diag}(I_p, -I_q).$$

Let $V = \text{Sym}_n = \{X \in \text{Mat}_n : X^T = X\}$ and $G = \text{SL}_n$. Then G acts on V via

$$g \cdot X = g^T X g.$$

The determinant polynomial on V is invariant under this action. Write the variety

$$V_m(\mathbb{R}) = \{ X \in \operatorname{Sym}_n(\mathbb{R}) : \det(X) = m \}.$$

$$\bullet V_m(\mathbb{R}) = m^{1/n} V_1(\mathbb{R})$$

• $V_1(\mathbb{R}) = \bigcup_{p+q=n} GI_{p,q}$ where $I_{p,q} = \text{diag}(I_p, -I_q)$. We call these orbits $\mathcal{O}_{p,q}$.

Let $V = \text{Sym}_n = \{X \in \text{Mat}_n : X^T = X\}$ and $G = \text{SL}_n$. Then G acts on V via

$$g \cdot X = g^T X g.$$

$$V_m(\mathbb{R}) = \{ X \in \operatorname{Sym}_n(\mathbb{R}) : \det(X) = m \}.$$

•
$$V_m(\mathbb{R}) = m^{1/n} V_1(\mathbb{R})$$

- $V_1(\mathbb{R}) = \bigcup_{p+q=n} GI_{p,q}$ where $I_{p,q} = \text{diag}(I_p, -I_q)$. We call these orbits $\mathcal{O}_{p,q}$.
- $\mathcal{O}_{p,q} \cong G/\mathrm{stab}(I_{p,q})$, where $\mathrm{stab}(I_{p,q}) \cong \mathrm{SO}(p,q)$.

Let $V = \text{Sym}_n = \{X \in \text{Mat}_n : X^T = X\}$ and $G = \text{SL}_n$. Then G acts on V via

$$g \cdot X = g^T X g.$$

The determinant polynomial on V is invariant under this action. Write the variety

$$V_m(\mathbb{R}) = \{ X \in \operatorname{Sym}_n(\mathbb{R}) : \det(X) = m \}.$$

•
$$V_m(\mathbb{R}) = m^{1/n} V_1(\mathbb{R})$$

- $V_1(\mathbb{R}) = \bigcup_{p+q=n} GI_{p,q}$ where $I_{p,q} = \text{diag}(I_p, -I_q)$. We call these orbits $\mathcal{O}_{p,q}$.
- $\mathcal{O}_{p,q} \cong G/\mathrm{stab}(I_{p,q})$, where $\mathrm{stab}(I_{p,q}) \cong \mathrm{SO}(p,q)$.

CONDITION ON THE STABILIZER

If $p, q \neq 0$ then SO(p, q) has no compact factors, but SO(n, 0) is compact!

THE LINNIK PROBLEM (INDEFINITE ORBITS)

THEOREM 3.1 (OH, 2004)

Let $n \geq 3$, $p, q \neq 0$, and $\Omega \subset SL_n(\mathbb{R}) \cap \mathcal{O}_{p,q}(\mathbb{R})$ be a "nice" compact subset. As $m \to \infty$,

$$\#V_m(\mathbb{Z}) \cap m^{1/n} \Omega \sim \int_{m^{1/n} \Omega \times \prod_p V_m(\mathbb{Z}_p)} \delta(x) d\mu_m(x)$$

where $\delta: V_m(\mathbb{A}) \to \mathbb{R}$ is constant on the adelic orbits $\mathcal{O}(\mathbb{A})$ and

$$\delta(x) = \begin{cases} 2, & \mathcal{O}(\mathbb{A}) \text{ contains a } \mathbb{Q}\text{-point,} \\ 0, & otherwise. \end{cases}$$

Here, μ_m is the Tamagawa measure on $V_m(\mathbb{A})$.

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 つへで 27 / 47

THE LINNIK PROBLEM (INDEFINITE ORBITS)

THEOREM 3.1 (OH, 2004)

Let $n \geq 3$, $p, q \neq 0$, and $\Omega \subset SL_n(\mathbb{R}) \cap \mathcal{O}_{p,q}(\mathbb{R})$ be a "nice" compact subset. As $m \to \infty$,

$$\#V_m(\mathbb{Z}) \cap m^{1/n}\Omega \sim \int_{m^{1/n}\Omega \times \prod_p V_m(\mathbb{Z}_p)} \delta(x) d\mu_m(x)$$

where $\delta: V_m(\mathbb{A}) \to \mathbb{R}$ is constant on the adelic orbits $\mathcal{O}(\mathbb{A})$ and

$$\delta(x) = \begin{cases} 2, & \mathcal{O}(\mathbb{A}) \text{ contains a } \mathbb{Q}\text{-point,} \\ 0, & otherwise. \end{cases}$$

Here, μ_m is the Tamagawa measure on $V_m(\mathbb{A})$.

Key ingredient

Ratner's Theorem!

Carler a

THE LINNIK PROBLEM (POSITIVE-DEFINITE ORBITS)

Theorem 3.2

(Einsiedler-Margulis-Mohammadi-Venkatesh, 2020)

Suppose $\{Q_i\}_{i=1}^{\infty}$ varies through any sequence of pairwise inequivalent, integral, positive definite quadratic forms. Then the genus of Q_i , considered as a subset of $PGL_n(\mathbb{Z}) \setminus PGL_n(\mathbb{R}) / PO_n(\mathbb{R})$, equidistributes as $i \to \infty$.

THE LINNIK PROBLEM (POSITIVE-DEFINITE ORBITS)

Theorem 3.2

(Einsiedler-Margulis-Mohammadi-Venkatesh, 2020)

Suppose $\{Q_i\}_{i=1}^{\infty}$ varies through any sequence of pairwise inequivalent, integral, positive definite quadratic forms. Then the genus of Q_i , considered as a subset of $PGL_n(\mathbb{Z}) \setminus PGL_n(\mathbb{R}) / PO_n(\mathbb{R})$, equidistributes as $i \to \infty$.

As a consequence, if $\Omega \subset \mathcal{O}_{n,0}$, we have that as $m \to \infty$,

$$#V_m(\mathbb{Z}) \cap m^{1/n}\Omega \sim h_n(m)\mu(\Omega),$$

where μ is the lift of the Haar measure and $h_n(m)$ is the class number of $SL_n(\mathbb{Z})$ -conjugacy orbits of integral positive definite symmetric matrices of determinant m.

THE LINNIK PROBLEM (POSITIVE-DEFINITE ORBITS)

Theorem 3.2

(Einsiedler-Margulis-Mohammadi-Venkatesh, 2020)

Suppose $\{Q_i\}_{i=1}^{\infty}$ varies through any sequence of pairwise inequivalent, integral, positive definite quadratic forms. Then the genus of Q_i , considered as a subset of $PGL_n(\mathbb{Z}) \setminus PGL_n(\mathbb{R}) / PO_n(\mathbb{R})$, equidistributes as $i \to \infty$.

As a consequence, if $\Omega \subset \mathcal{O}_{n,0}$, we have that as $m \to \infty$,

$$#V_m(\mathbb{Z}) \cap m^{1/n}\Omega \sim h_n(m)\mu(\Omega),$$

where μ is the lift of the Haar measure and $h_n(m)$ is the class number of $SL_n(\mathbb{Z})$ -conjugacy orbits of integral positive definite symmetric matrices of determinant m.

Key ingredient

Theory of automorphic forms!

LINNIK PROBLEM

We have asymptotic formulas for $\Omega \subset \mathcal{O}_{p,q}$

$\#V_m(\mathbb{Z}) \cap m^{1/n}\Omega$

as $m \to \infty$.

4 ロ ト 4 部 ト 4 注 ト 4 注 ト 注 の Q ペ
29 / 47

LINNIK PROBLEM

We have asymptotic formulas for $\Omega \subset \mathcal{O}_{p,q}$

$\#V_m(\mathbb{Z}) \cap m^{1/n}\Omega$

as $m \to \infty$.

STILL TO BE DONE

We want our formulas in terms of more familiar objects, i.e. in the same form as with the determinant polynomial.

1 The Bateman-Horn Conjecture

2 The determinant polynomial

3 The Linnik Problem

4
$$F(a, b, c, d, e, f) = abc - af^2 - be^2 - cd^2 + 2def$$

4 ロ ト 4 回 ト 4 三 ト 4 三 ト 1 つ 9 0 0 30 / 47 From now on, we look at the determinant of symmetric 3×3 matrices:

$$F(a, b, c, d, e, f) = abc - af^2 - be^2 - cd^2 + 2def.$$

From now on, we look at the determinant of symmetric 3×3 matrices:

$$F(a, b, c, d, e, f) = abc - af^2 - be^2 - cd^2 + 2def.$$

This polynomial is a **cubic in 6 variables**.

OH'S THEOREM

$$\#V_m(\mathbb{Z}) \cap m^{1/3}\Omega \sim \int_{m^{1/3}\Omega \times \prod_p V_m(\mathbb{Z}_p)} \delta(x) d\mu_m(x)$$

What is happening with $\delta(x)$?

<ロト < 部ト < 言ト < 言ト 32 / 47

OH'S THEOREM

$$\#V_m(\mathbb{Z}) \cap m^{1/3}\Omega \sim \int_{m^{1/3}\Omega \times \prod_p V_m(\mathbb{Z}_p)} \delta(x) d\mu_m(x)$$

What is happening with $\delta(x)$?

$$\delta(x) \neq 0 \iff \prod_p c_p(x_p) = 1,$$

where $c_p(x_p)$ are the Hasse-Minkowski invariants after viewing x_p as a *p*-adic quadratic form.

Let \mathcal{G}_p denote a $\mathrm{SL}_3(\mathbb{Z}_p)$ orbit of $V_m(\mathbb{Z}_p)$. If m is prime, then

$$#V_m(\mathbb{Z}) \cap m^{1/3}\Omega \sim 2m \prod_{p \neq m} \mu_{m,p}(V_m(\mathbb{Z}_p)) \\ \times \sum_{\substack{\mathcal{G}_2, \mathcal{G}_m \\ c_2(\mathcal{G}_2)c_m(\mathcal{G}_m) = c_\infty(\Omega)}} \mu_{m,2}(\mathcal{G}_2)\mu_{m,m}(\mathcal{G}_m).$$

Here $\mu_{m,p}$ is the *p*-adic part of the Tamagawa measure μ_m on $V_m(\mathbb{A})$.

Let \mathcal{G}_p denote a $\mathrm{SL}_3(\mathbb{Z}_p)$ orbit of $V_m(\mathbb{Z}_p)$. If m is prime, then

$$#V_m(\mathbb{Z}) \cap m^{1/3}\Omega \sim 2m \prod_{p \neq m} \mu_{m,p}(V_m(\mathbb{Z}_p)) \\ \times \sum_{\substack{\mathcal{G}_2, \mathcal{G}_m \\ c_2(\mathcal{G}_2)c_m(\mathcal{G}_m) = c_\infty(\Omega)}} \mu_{m,2}(\mathcal{G}_2)\mu_{m,m}(\mathcal{G}_m).$$

Here $\mu_{m,p}$ is the *p*-adic part of the Tamagawa measure μ_m on $V_m(\mathbb{A})$.

SIEGEL MASSES

$$\mu_{m,p}(\mathcal{G}_p(\mathbb{Z}_p)) = \lim_{k \to \infty} \frac{\#\mathcal{G}_p(\mathbb{Z}/p^k\mathbb{Z})}{p^{5k}}.$$

Let \mathcal{G}_p denote a $\mathrm{SL}_3(\mathbb{Z}_p)$ orbit of $V_m(\mathbb{Z}_p)$. If m is prime, then

$$#V_m(\mathbb{Z}) \cap m^{1/3}\Omega \sim 2m \prod_{p \neq m} \mu_{m,p}(V_m(\mathbb{Z}_p)) \\ \times \sum_{\substack{\mathcal{G}_2, \mathcal{G}_m \\ c_2(\mathcal{G}_2)c_m(\mathcal{G}_m) = c_\infty(\Omega)}} \mu_{m,2}(\mathcal{G}_2)\mu_{m,m}(\mathcal{G}_m).$$

Here $\mu_{m,p}$ is the *p*-adic part of the Tamagawa measure μ_m on $V_m(\mathbb{A})$.

SIEGEL MASSES

$$\mu_{m,p}(\mathcal{G}_p(\mathbb{Z}_p)) = \lim_{k \to \infty} \frac{\#\mathcal{G}_p(\mathbb{Z}/p^k\mathbb{Z})}{p^{5k}}.$$

These *p*-adic densities appear in the Siegel mass formula!

イロト スポト スヨト スヨト 三日

OH'S THEOREM

$$\#V_m(\mathbb{Z}) \cap m^{1/3}\Omega \sim \int_{m^{1/3}\Omega \times \prod_p V_m(\mathbb{Z}_p)} \delta(x) d\mu_m(x)$$

<ロト < 部ト < 言ト < 言ト 言 の < () 34 / 47

Oh'S THEOREM

$$\#V_m(\mathbb{Z}) \cap m^{1/3}\Omega \sim \int_{m^{1/3}\Omega \times \prod_p V_m(\mathbb{Z}_p)} \delta(x) d\mu_m(x)$$

↓

Siegel mass formula

↓
INDEFINITE ORBITS

Oh'S THEOREM

$$\#V_m(\mathbb{Z}) \cap m^{1/3}\Omega \sim \int_{m^{1/3}\Omega \times \prod_p V_m(\mathbb{Z}_p)} \delta(x) d\mu_m(x)$$

\downarrow

Siegel mass formula

↓

Lemma 1

Let
$$\Omega \subset \mathcal{O}_{p,q}$$
 for $(p,q) = (1,2)$. Then as $p \to \infty$
 $\#V_p(\mathbb{Z}) \cap p^{1/3}\Omega \sim p \cdot \zeta(3)^{-1}\mu_{\infty}(\Omega).$

<ロ > < 部 > < 言 > < 言 > こ の < で 34 / 47

INDEFINITE ORBITS

OH'S THEOREM

$$\#V_m(\mathbb{Z}) \cap m^{1/3}\Omega \sim \int_{m^{1/3}\Omega \times \prod_p V_m(\mathbb{Z}_p)} \delta(x) d\mu_m(x)$$

↓

Siegel mass formula

↓

Lemma 1

Let
$$\Omega \subset \mathcal{O}_{p,q}$$
 for $(p,q) = (1,2)$. Then as $p \to \infty$
 $\#V_p(\mathbb{Z}) \cap p^{1/3}\Omega \sim p \cdot \zeta(3)^{-1}\mu_{\infty}(\Omega).$

If (p,q) = (2,1), then $V_p(\mathbb{Z}) \cap p^{1/3}\Omega = \emptyset$.

Consequence of EMMV

As $m \to \infty$,

$$#V_m(\mathbb{Z}) \cap m^{1/3}\Omega \sim h_3(m)\mu(\Omega),$$

where μ is the lift of the Haar measure and $h_3(m)$ is the class number of $SL_3(\mathbb{Z})$ -conjugacy orbits of integral positive definite symmetric matrices of determinant m.

Consequence of EMMV

As $m \to \infty$,

$$#V_m(\mathbb{Z}) \cap m^{1/3}\Omega \sim h_3(m)\mu(\Omega),$$

where μ is the lift of the Haar measure and $h_3(m)$ is the class number of $SL_3(\mathbb{Z})$ -conjugacy orbits of integral positive definite symmetric matrices of determinant m. Siegel mass formula

Lemma 2 (Kitaoka, 1973)

As $p \to \infty$, $h_3(p) \sim p \cdot \pi^{-3} \zeta(2) \Gamma(1/2) \Gamma(3/2)$

> <ロ > < 部 > < 言 > < 言 > こ の < で 36 / 47

$$\mu(\Omega) = \pi^3 \zeta(2)^{-1} \zeta(3)^{-1} \Gamma(1/2)^{-1} \Gamma(3/2)^{-1} \mu_{\infty}(\Omega).$$

<ロト <回 > < E > < E > E のので 37/47

$$\mu(\Omega) = \pi^3 \zeta(2)^{-1} \zeta(3)^{-1} \Gamma(1/2)^{-1} \Gamma(3/2)^{-1} \mu_{\infty}(\Omega).$$

PROOF IDEA

Due to uniqueness of the Tamagawa measure on this space, μ must be a scalar of μ_{∞} .

$$\mu(\Omega) = \pi^3 \zeta(2)^{-1} \zeta(3)^{-1} \Gamma(1/2)^{-1} \Gamma(3/2)^{-1} \mu_{\infty}(\Omega).$$

PROOF IDEA

Due to uniqueness of the Tamagawa measure on this space, μ must be a scalar of μ_{∞} .

• μ is normalized so that $\mu(SL_3(\mathbb{Z}) \setminus SL_3(\mathbb{R})) = 1$

$$\mu(\Omega) = \pi^3 \zeta(2)^{-1} \zeta(3)^{-1} \Gamma(1/2)^{-1} \Gamma(3/2)^{-1} \mu_{\infty}(\Omega).$$

PROOF IDEA

Due to uniqueness of the Tamagawa measure on this space, μ must be a scalar of μ_{∞} .

- μ is normalized so that $\mu(SL_3(\mathbb{Z}) \setminus SL_3(\mathbb{R})) = 1$
- $\mu_{\infty}(\mathrm{SL}_3(\mathbb{Z})\backslash\mathrm{SL}_3(\mathbb{R})) = \zeta(2)\zeta(3).$

$$\mu(\Omega) = \pi^3 \zeta(2)^{-1} \zeta(3)^{-1} \Gamma(1/2)^{-1} \Gamma(3/2)^{-1} \mu_{\infty}(\Omega).$$

PROOF IDEA

Due to uniqueness of the Tamagawa measure on this space, μ must be a scalar of μ_{∞} .

- μ is normalized so that $\mu(SL_3(\mathbb{Z}) \setminus SL_3(\mathbb{R})) = 1$
- $\mu_{\infty}(\mathrm{SL}_{3}(\mathbb{Z})\backslash \mathrm{SL}_{3}(\mathbb{R})) = \zeta(2)\zeta(3).$
- The factor of $\pi^{3}\Gamma(1/2)^{-1}\Gamma(3/2)^{-1}$ comes from the fact we are actually working on $SL_{3}(\mathbb{R})/SO_{3}(\mathbb{R})$.

LEMMA 4 (КІТАОКА, 1973)

As
$$p \to \infty$$
,
 $h_3(p) \sim p \cdot \pi^{-3} \zeta(2) \Gamma(1/2) \Gamma(3/2)$

Lemma 5

$$\mu(\Omega) = \pi^3 \zeta(2)^{-1} \zeta(3)^{-1} \Gamma(1/2)^{-1} \Gamma(3/2)^{-1} \mu_{\infty}(\Omega).$$

Together, we get that as $p \to \infty$,

$$#V_p(\mathbb{Z}) \cap p^{1/3}\Omega \sim p \cdot \zeta(3)^{-1}\mu_{\infty}(\Omega).$$

<ロト < 目 ト < 三 ト < 三 ト < 三 ト 三 のへで 38/47

LEMMA 4 (КІТАОКА, 1973)

As
$$p \to \infty$$
,
 $h_3(p) \sim p \cdot \pi^{-3} \zeta(2) \Gamma(1/2) \Gamma(3/2)$

Lemma 5

$$\mu(\Omega) = \pi^3 \zeta(2)^{-1} \zeta(3)^{-1} \Gamma(1/2)^{-1} \Gamma(3/2)^{-1} \mu_\infty(\Omega).$$

Together, we get that as $p \to \infty$,

$$#V_p(\mathbb{Z}) \cap p^{1/3}\Omega \sim p \cdot \zeta(3)^{-1}\mu_{\infty}(\Omega).$$

This formula holds on both $\mathcal{O}_{3,0}, \mathcal{O}_{1,2}$.

SUMMING OVER PRIMES

Define the counting function:

 $\pi(T\Omega) = \#\{A \in \operatorname{Sym}_3(\mathbb{Z}) \cap T\Omega : \det(A) \text{ is prime}\}.$

SUMMING OVER PRIMES

Define the counting function:

$$\pi(T\Omega) = \#\{A \in \operatorname{Sym}_3(\mathbb{Z}) \cap T\Omega : \det(A) \text{ is prime}\}.$$

Then we can sum over all primes up to T^3 :

$$\pi(T\Omega) = \sum_{p \le T^3} \#\{A \in \operatorname{Sym}_3(\mathbb{Z}) \cap T\Omega : \det(A) = p\}$$
$$= \sum_{p \le T^3} \#V_p(\mathbb{Z}) \cap p^{1/3}\Omega.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ◆ ○◆

39/47

Summing over primes

Define the counting function:

$$\pi(T\Omega) = \#\{A \in \operatorname{Sym}_3(\mathbb{Z}) \cap T\Omega : \det(A) \text{ is prime}\}.$$

Then we can sum over all primes up to T^3 :

$$\pi(T\Omega) = \sum_{p \le T^3} \#\{A \in \operatorname{Sym}_3(\mathbb{Z}) \cap T\Omega : \det(A) = p\}$$
$$= \sum_{p \le T^3} \#V_p(\mathbb{Z}) \cap p^{1/3}\Omega.$$

We apply our solution to Linnik's problem:

$$\pi(T\Omega) = (1 + o_{\Omega}(1))\mu_{\infty}(\Omega) \sum_{p \le T^3} \zeta(3)^{-1}p$$
$$= (1 + o_{\Omega}(1))\zeta(3)^{-1}\mu_{\infty}(\Omega) \frac{T^6}{6\log(T)}.$$

For $\Omega \subset \mathcal{O}_{3,0}$ or $\mathcal{O}_{1,2}$, $\pi(T\Omega) = (1 + o_{\Omega}(1))\zeta(3)^{-1} \int_{T\Omega} \frac{1}{\log^+(\det(X))} dX.$ If $\Omega \subset \mathcal{O}_{2,1}$ or $\mathcal{O}_{0,3}$, then $\pi(T\Omega) = 0.$

> <ロト < 回ト < 言ト < 言ト < 言ト 言 の Q () 40 / 47

CONES TO BOXES

Idea: approximate the box with cones!

FIGURE: Approximating $[0, T]^2$ with cones from xy = 1

Image created by Giorgos Kotsovolis

Definition 1

An ϵ -cutting of \mathcal{R}_0 is a finite set of disjoint "nice" connected compact subsets of $V_1(\mathbb{R})$, denoted as

$$\mathcal{C}_{\epsilon} = \{\Omega_i\}_{i=1}^{N(\epsilon)},$$

such that

$$\mathcal{R}_0 = \mathcal{E} \bigcup_{\Omega \in \mathcal{C}_{\epsilon}} [0, 1/\mathrm{ht}(\Omega)]\Omega,$$

where the exceptional set satisfies that $|\mathcal{E}| \leq \epsilon$.

Here, $ht(\Omega) = \sup_{A \in \Omega} ||A||$.

イロト (日) (日) (日) (日) (日) (日)

ϵ -CUTTING

Fix $\epsilon > 0$. If C_{ϵ} is an ϵ -cutting of $\operatorname{Sym}_{3}(\mathbb{R}) \cap \{ \|A\| \leq 1 \}$, then $\operatorname{Sym}_{3}(\mathbb{R}) \cap \{ \|A\| \leq T \} = T\mathcal{E} \cup_{\Omega \in C_{\epsilon}} T/\operatorname{ht}(\Omega)\Omega$, and $|T\mathcal{E}| \leq \epsilon T^{6}$.

ϵ -CUTTING

Fix $\epsilon > 0$. If C_{ϵ} is an ϵ -cutting of $\operatorname{Sym}_{3}(\mathbb{R}) \cap \{ \|A\| \leq 1 \}$, then $\operatorname{Sym}_{3}(\mathbb{R}) \cap \{ \|A\| \leq T \} = T\mathcal{E} \cup_{\Omega \in C_{\epsilon}} T/\operatorname{ht}(\Omega)\Omega$, and $|T\mathcal{E}| \leq \epsilon T^{6}$. So, we can count the primes in the box as: $\#\{A \in \operatorname{Sym}_{3}(\mathbb{Z}) : \|A\| \leq T, \operatorname{det}(A) \text{ is prime}\}$

$$= \#\{A \in \operatorname{Sym}_3(\mathbb{Z}) \cap T\mathcal{E} : \det(A) \text{ is prime}\} + \sum_{\Omega \in \mathcal{C}_{\epsilon}} \pi(T/\operatorname{ht}(\Omega)\Omega).$$

ϵ -CUTTING

Fix $\epsilon > 0$. If C_{ϵ} is an ϵ -cutting of $\operatorname{Sym}_{3}(\mathbb{R}) \cap \{ \|A\| \leq 1 \}$, then $\operatorname{Sym}_{3}(\mathbb{R}) \cap \{ \|A\| \leq T \} = T\mathcal{E} \cup_{\Omega \in C_{\epsilon}} T/\operatorname{ht}(\Omega)\Omega$, and $|T\mathcal{E}| \leq \epsilon T^{6}$. So, we can count the primes in the box as:

 $#\{A \in \operatorname{Sym}_{3}(\mathbb{Z}) : ||A|| \leq T, \det(A) \text{ is prime}\} \\ = #\{A \in \operatorname{Sym}_{3}(\mathbb{Z}) \cap T\mathcal{E} : \det(A) \text{ is prime}\} + \sum_{\Omega \in \mathcal{C}_{\epsilon}} \pi(T/\operatorname{ht}(\Omega)\Omega).$

COUNTING PRIMES ON CONES

$$\sum_{\Omega \in \mathcal{C}_{\epsilon}} \pi(T/\mathrm{ht}\Omega\Omega) = (1 + o_{\epsilon}(1))\zeta(3)^{-1} \int_{\cup T/\mathrm{ht}(\Omega)\Omega} \frac{1}{\log^{+}(\det(X))} dX.$$

Let \mathcal{R} be a convex region in $[0,T]^n$ and $F(\mathbf{x})$ a polynomial in n variables. Then there is a constant $c_F > 0$ such that

$$#\{\mathbf{x} \in \mathcal{R}(\mathbb{Z}) : F(\mathbf{x}) \in \mathscr{P}\} \le c_F\left(\frac{|\mathcal{R}|}{\log(T)} + T^{n-1/2}\right)$$

Let \mathcal{R} be a convex region in $[0,T]^n$ and $F(\mathbf{x})$ a polynomial in n variables. Then there is a constant $c_F > 0$ such that

$$\#\{\mathbf{x} \in \mathcal{R}(\mathbb{Z}) : F(\mathbf{x}) \in \mathscr{P}\} \le c_F\left(\frac{|\mathcal{R}|}{\log(T)} + T^{n-1/2}\right)$$

 \blacksquare Upper bound holds for any polynomial F

Let \mathcal{R} be a convex region in $[0,T]^n$ and $F(\mathbf{x})$ a polynomial in n variables. Then there is a constant $c_F > 0$ such that

$$#\{\mathbf{x} \in \mathcal{R}(\mathbb{Z}) : F(\mathbf{x}) \in \mathscr{P}\} \le c_F\left(\frac{|\mathcal{R}|}{\log(T)} + T^{n-1/2}\right).$$

- Upper bound holds for any polynomial F
 an is independent of P
- c_F is independent of \mathcal{R}

Let \mathcal{R} be a convex region in $[0,T]^n$ and $F(\mathbf{x})$ a polynomial in n variables. Then there is a constant $c_F > 0$ such that

$$\#\{\mathbf{x} \in \mathcal{R}(\mathbb{Z}) : F(\mathbf{x}) \in \mathscr{P}\} \le c_F\left(\frac{|\mathcal{R}|}{\log(T)} + T^{n-1/2}\right)$$

- \blacksquare Upper bound holds for any polynomial F
- c_F is independent of \mathcal{R}
- Comes from an upper bound sieve + a level of distribution result

Applying the Proposition, we have

LEMMA 7 $\#\{A \in Sym_3(\mathbb{Z}) \cap T\mathcal{E} : \det(A) \text{ is } prime\} \le c_{\det} \frac{\epsilon T^6}{\log(T)} + T^{11/2}.$

Applying the Proposition, we have

LEMMA 7

$$#\{A \in Sym_3(\mathbb{Z}) \cap T\mathcal{E} : \det(A) \text{ is } prime\} \le c_{\det} \frac{\epsilon T^6}{\log(T)} + T^{11/2}.$$

So, we get that for any $\epsilon > 0$,

$$#\{A \in \text{Sym}_{3}(\mathbb{Z}) : ||A|| \le T, \det(A) \text{ is prime}\} = (1 + o_{\epsilon}(1))\zeta(3)^{-1} \int_{||X|| \le T} \frac{1}{\log^{+}(\det(X))} dX + O(\frac{\epsilon T^{6}}{\log(T)}).$$

<ロト < 回 ト < 注 ト < 注 ト ミ う Q (~ 45 / 47 Taking $\epsilon \to 0$, we get

THEOREM

$$\begin{split} \#\{A \in \mathrm{Sym}_3(\mathbb{Z}) : \|A\| \le T, \det(A) \text{ is prime}\} \\ &= (1 + o(1))\zeta(3)^{-1} \int_{\|X\| \le T} \frac{1}{\log^+(\det(X))} dX. \end{split}$$

Thank you!

