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CHAPTER 1

Introduction

The goal of this article is to present various applications of Frobenius-splitting
techniques in birational geometry. We review some fundamental theorems and show
new results obtained by the author.

The modern approach to positive characteristic birational geometry would not
have been developed, if not for the breakthrough results of Hochster and Huneke.
Their “tight closure theory” revolutionised geometric aspects of commutative algebra,
enabling to prove various difficult facts in a surprisingly easy way. Although the
theory captivated the mathematical community at that time, the climax of its
importance came only many years later.

One of the most striking discoveries in algebraic geometry in the last twenty
years, was that the notions of singularities arising from the tight closure theory
posses unbelievable similarities to those coming from birational geometry and the
minimal model program. The work aiming to comprehend this interplay has been
undertaken by Smith, Hara, Watanabe, Schwede, and many others, and it led to
profound breakthroughs in both of those areas of mathematics. One of the most
fundamental off-springs of the theory is the development of the minimal model
program for Kawamata log terminal threefolds in characteristic p ą 5 (see [22]).

The main difficulty in dealing with birational geometry in positive characteristic
is the lack of Kawamata-Viehweg vanishing theorem. One often applies this theorem
to show that a certain restriction map on global sections of a line bundle is surjective.
In many cases, one can show the surjectivity by proving that the corresponding
first cohomology group in the long exact sequence vanish. Frobenius techniques
allow us to show the surjectivity of restriction maps without showing the vanishing
of cohomologies.
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There are two approaches to this problem. One, called the evaporation technique,
is based on the idea, that although the cohomology in question might not vanish, it
may be torsion under the action of the Frobenius map. The second, more prolific
technique, is based on the concept of a trace map. Mixing those two approaches,
we are able to prove the following proposition as a corollary to [3].

Proposition 1.0.1. Let X be a smooth projective threefold defined over Fp. Let A
be an ample line bundle on X such that KX`A is nef and big. Further, suppose that
there exists a smooth irreducible divisor S P |KX `A|. Then KX `A is semiample.

This proposition is a weak version of the base point free theorem. Although
our assumptions are rarely achievable, we believe that blends of similar approaches
might shed a new light on positive characteristic birational geometry.

One of the questions that motivated the study of Frobenius techniques in
birational geometry was the following conjecture.

Conjecture 1.0.2 (Fujita conjecture). Let X be a smooth projective variety of
dimension n, and let A be an ample Cartier divisor on X. Then KX ` pn` 1qA is
very ample.

Fujita-type results play a vital role in understanding geometry of algebraic
varieties, an example being the classification of Fano varieties. Even in characteristic
zero, the conjecture is known only for n ď 4.

If we assume that A is also base point free, the conjecture becomes easy in
characteristic zero, but, in positive characteristic, it was widely open for many years.
The development of the Frobenius trace map led to the solution of this problem
(see [13, Theorem 1.1], c.f. Smith ([14] and [15]) and Hara ([17], [16])).

We obtain a new result in this direction, allowing singularities, while on the
other hand demanding more positivity than usual.

Theorem 1.0.3. Let X be an F -pure normal Q-Gorenstein projective variety of
dimension n and let H be an ample base point free Cartier divisor. If H ´KX is
ample, then pn` 2qH `N is very ample for any nef Cartier divisor N .

Despite the significant progress in the research about Frobenius singularities
and Frobenius techniques, there are very few important applications of them in
the study of birational geometry of algebraic varieties in arbitrary dimension. The
main results of this article concern algebraic surfaces.

The motivation for many results of this article centers around Fujita conjecture
and the following question: given an ample Cartier divisor A, find n P N for which
nA is very ample. A famous theorem of Matsusaka states that one can find n
which depends only on the Hilbert polynomial of A, when the variety is smooth
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and the characteristic of the field if equal to zero ([9]). This theorem plays a
fundamental role in constructing moduli spaces. In positive characteristic, Kollar
proved the same statement for normal surfaces, but without providing explicit
bounds ([1, Theorem 2.1.2]).

In positive characteristic, Fujita conjecture is known only for curves, and those
surfaces which are neither of general type, nor quasi-elliptic. This follows from
a result of Shepherd-Barron which says that on such surfaces, rank two vector
bundles which do not satisfy Bogomolov inequality are unstable ([10, Theorem 7]).
Indeed, the celebrated proof by Reider of Fujita conjecture for characteristic zero
surfaces, can be, in such a case, applied without any modifications (see [12], [11]).

Given lack of any progress for positive characteristic surfaces of general type,
Di Cerbo and Fanelli, undertook a different approach to the problem. They proved,
among other things, that 2KX ` 4A is very ample, where A is ample, and X is a
smooth surface of general type in characteristic p ě 3. Then, they used it to obtain
Mastusaka-type bounds.

One of the aims of this article is to generalize results of Fanelli and Di Cerbo
([8, Theorem 1.2] and [8, Theorem 1.4]) to singular surfaces. As far as we now, no
effective bounds for singular surfaces in positive characteristic have been obtained
before.

Theorem 1.0.4. Let X be a projective surface with log terminal singularities
defined over an algebraically closed field of characteristic p ą 5. Assume that mKX

is Cartier for some m P N. Then, for an ample Cartier divisor A, we have that

• 4mKX ` 14mA is base point free, and

• 16mKX ` 56mA is very ample.

The bounds are not sharp. See Theorem 3.3.1 for a slightly more general
statement.

The proof consists of three main ingredients. First, we apply the result of Di
Cerbo and Fanelli on a desingularization of X. This shows that the base locus
of 2mKX ` 4mA is zero dimensional. Then, we apply a stupendous technique of
Cascini, Tanaka and Xu (see [4, Theorem 3.8]), to construct certain “nearly-F-pure”
centers, and use them to show that the base locus is empty. The last part follows
by Theorem 1.0.3.

As far as we know, after the paper of Cascini, Tanaka and Xu ([4]) has been
anounced, no one has yet applied their technique. We believe that down-to-earth
examples provided in our paper may work as a gentle introduction to their prolific
paper [4].

As a corollary to the main theorem, we obtain the following Matsusaka-type
bounds.
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Corollary 1.0.5. Let A and N be, respectively, an ample and a nef Cartier divisor
on a log terminal projective surface defined over an algebraically closed field of
characteristic p ą 5. Let m P N be such that mKX is Cartier. Then kA ´ N is
very ample for any

k ą
2A ¨ pH `Nq

A2
ppKX ` 2Aq ¨ A` 1q,

where H :“ 16mKX ` 56mA.

After constructing a very ample line bundle, a natural question to ask is whether
its higher cohomologies vanish. In characteristic zero, it often follows by Kodaira
vanishing. In this article, we present an unpublished result of Hiromu Tanaka which
deals with this issue in positive characteristic. It is used in the part of our article
which concerns bounds on log del Pezzo surfaces. We are grateful to Hiromu Tanaka
for allowing us to use his theorem in our article.

Theorem 1.0.6. Let H and A be, respectively, a very ample and an ample Cartier
divisor on a projective surface X. Assume that mKX is Cartier for m P N, and
A` pm´ 1qKX is nef. Then

H i
pX,Hq “ 0

for i ą 0, where

• H :“ mKX `H ` A, if m ‰ 1

• H :“ 2KX `H ` A, if m “ 1.

In particular, H1pX, 4KX ` 21Aq “ 0 for an ample Cartier divisor A on a
smooth projective surface X, since 2KX ` 20A is always very ample, by [8].

The same way as Frobenius singularities correspond to singularities from the
minimal model program, varieties that admit a global splitting of Frobenius, corre-
spond to log Calabi-Yau and log Fano varities. For example, Schwede and Smith
([31]) proved that any globally F -regular variety in positive characteristic is a klt
log Fano, and big enough reduction modulo p of a klt log Fano variety pX,∆q in
characteristic zero is globally F -regular.

We give a new proof of the latter statement, when X is smooth and ∆ is a simple
normal crossing. In particular, it gives a new proof of the following proposition.

Proposition 1.0.7. Let X be a singular del Pezzo surface defined over an alge-
braically closed field of characteristic 0. Then, a reduction of X modulo p " 0 is
globally F -regular.
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One of the fundamental conjectures in birational geometry is Borisov-Alexeev
Boundedness conjecture, which says that ε-klt log Fano varieties are bounded. It is
believed to be a crucial component that could lead to a proof of the ACC conjecture
for minimal log discrepancy, and, henceforth, the termination of flips.

For surfaces, the theorem has been proved by Alexeev ([2, Theorem 6.9]) using
Nikulin’s diagram method, the “sandwich” argument and the beforementioned
result about boundedness of polarized surfaces by Kollar ([1, Theorem 2.1.2]). The
obtained bounds were highly inexplicit.

A different approach has been undertaken by Lai, who showed explicit bounds
for the volume of an ε-klt log del Pezzo pair ([7, Theorem 4.3]). Instead of using
the “sandwich argument” and Nikulin’s diagram method, he applied a covering
family of tigers.

For characteristic p ą 5, in the proof of the boundedness of ε-klt log del Pezzo
pairs, we can replace Kollar’s result by Theorem 1.0.4, and hence obtain rough, but
explicit bounds on the size of the bounded family.

Theorem 1.0.8. Let pX,∆q be a klt log del Pezzo surface of a Q-factorial index
m. Then, there exists a very ample divisor H on X such that H ipX,Hq “ 0 for
i ą 0 and

H2
ď 128m5

p2m´ 1qa2
`maxp64, 8m` 4q2b2,

H ¨KX ď 128m5
p2m´ 1qa,

H ¨∆ ď 3mmaxp64, 8m` 4qpa` bq ` 128m5
p2m´ 1qa,

where a “ 17m and b “ 59m. In particular, X embeds into Pk, where

k ď 128m5
p2m´ 1qa2

`maxp64, 8m` 4q2b2.

Note that ε-klt log del Pezzo surfaces have Q-factorial index at each point
bounded by 2p2{εq128{ε5 (see (d) in Proposition 4.2.1).

We apply this theorem to prove the existence of a bounded family of ε-klt log
del Pezzo surfaces over SpecZ (taken from a soon-to-be-published paper of Cascini,
Tanaka, Witaszek). In particular,

Theorem 1.0.9 (from the soon-to-be-published paper of Cascini, Tanaka, Witaszek).
Let I Ď r0, 1sXQ be a finite set. Take ε ą 0. Then there exists ppI, εq which satisfies
the following property:

If pX,Bq is an ε-klt log del Pezo surface defined over an algebraically closed
field of characteristic p ą ppI, εq and such that the coefficients of B are contained
in I, then pX,Bq is globally F -regular.

In the soon-to-be-published paper of Cascini, Tanaka, Witaszek, a constant p is
found which depends only on I.
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The existence of the Z-bounded family, shows that for big enough characteristic
singular del Pezzo surfaces X of Gorenstein index m lift to characteristic zero. In
particular, H1pX,Lq “ 0 for all nef line bundles L. The following proposition gives
an effective bound on characteristic, starting from which this property holds.

Theorem 1.0.10. Let X be a singular del Pezzo surface of Gorenstein index m
defined over an algebraically closed field of characteristic p ą 0. If p ą 2m2, then
H1pX,Lq “ 0 for any nef line bundle L on X.

The paper is organized as follows. In the first chapter, we introduce main
notions in the theory of Frobenius splittings, and discuss results which concerns
varieties of higher dimension. In the second chapter, we derive effective bounds for
base point freeness, very ampleness and vanishing of cohomologies, in the case of
surfaces. In the third chapter, we discuss global F -regularity, also focusing on the
case of surfaces.

As far as we are concerned, the best source of knowledge about Frobenius
singularities are unpublished notes of Karl Schwede [5]. We also recommend [6].
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Notation

If not mentioned otherwise, all varieties are defined over an algebraically closed
field k of positive characteristic p ą 0.

We refer to [21] for basic definitions in birational geometry like log discrepancy or
log terminal singularities. We say that a pair pX,∆q is a log Fano pair if ´pKX`∆q
is ample. In the case when dimpXq “ 2, we say that pX,∆q is a log del Pezzo
pair. If ´pKX `∆q is big and nef, then we call pX,∆q a weak log Fano, or, when
dimpXq “ 2, a weak log del Pezzo.

A pair pX,Bq is ε-klt, if the log discrepancy along any divisor is greater than ε.
Note that the notion of being 0-klt is equivalent to klt.

We denote the base locus of a line bundle L by BpLq. Note, that by abuse
of notation, we use the notation for line bundles and the notation for divisors
interchangeably.

The following facts are used in the course of the proofs in this paper.

Theorem 1.0.11 ([19, Theorem 1.8.5]). Let X be a projective variety, and let M
be a globally generated ample line bundle on X. Let F be a coherent sheaf on X
such that H ipX,F bM´iq “ 0 for i ą 0. Then F is globally generated.

Theorem 1.0.12 ([19, Theorem 1.4.35] and [19, Remark 1.4.36]). Let X be a
projective variety, and let H be an ample divisor on X. Given any coherent sheaf
F on X, there exists an integer mpF , Hq such that

H i
`

X,F bOXpmH `Dq
˘

“ 0,

for all i ą 0, m ě mpF , Hq and any nef divisor D on X.

Theorem 1.0.13 (Log-concavity of volume). For two big Cartier divisors D1 and
D2 on a normal variety X of dimension n we have that

volpD1 `D2q
1
n ě volpD1q

1
n ` volpD2q

1
n .

Recall that

volpDq :“ lim sup
mÑ8

H0pX,mDq

mn{n!
.

Proof. See [8, Theorem 2.2] (cf. [20, Theorem 11.4.9] and [24]).



CHAPTER 2

Frobenius singularities and the trace map

All the rings in this sections are assumed to be geometric and of positivie charac-
teristic, that is finitely generated over an algebraically closed field of characteristic
p ą 0.

2.1 Local and global Frobenius splitting

This subsection is partially taken from author’s minor first-year-of-PhD project
“Different viewpoints on multiplier ideal sheaves and singularities of theta divisors”.
It is based on [5] and [6].

One of the most amazing discoveries of singularity theory, is that properties of
the Frobenius map may reflect how singular a variety is. This observation is based
on the fact that for a smooth local ring R, the e-times iterated Frobenius map
RÑ F e

˚R splits. Further, the splitting does not need to hold when R is singular.
This lead to a definition of F -split rings, rings R such that for divisible enough

e " 0 the e-times iterated Frobenius map F e : R Ñ F e
˚R splits. For log pairs, we

have the following definition.

Definition 2.1.1. We say that a log pair pX,∆q is globally F -split if for enough
divisible e " 0 the e-times iterated Frobenius map OX Ñ F e

˚OXprppe ´ 1q∆sq splis.

The problem with this property is that, in general, it does not behave well. For
example, it is neither an open nor a close condition on fibers of a family.

Note, that F e : RÑ F e
˚R splits if and only if there exists a map φ : F e

˚RÑ R
such that 1 P φpF e

˚Rq. This suggests to consider rings which are F -split “under
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all small perturbations”. More formally we say that R is F -regular if for every
c P R z 0, there exists e ą 0 a map φ : F e

˚RÑ R such that 1 P φpF e
˚cRq.

For log pairs, we have the following definition.

Definition 2.1.2. We say that a log pair pX,∆q is globally F -regular if for every
principal divisor D Ď X there exists e ą 0 and a map

φ P HomXpF
e
˚OXprppe ´ 1q∆`Dsq,OXq

such that 1 P φpF e
˚OXq.

This definition may seem a bit mysterious in the first glance. Let us untangle it.
Firstly, Grothendieck duality gives

HompF e
˚OX ,OXq » H0

pX,ω1´pe

X q.

This explains the following crucial proposition.

Proposition 2.1.3 ([33, Theorem 3.11, 3.13]). There is a natural bijecion.

$

&

%

Non-zero OX-linear maps
φ : F e

˚OX Ñ OX up to
pre-multiplication by units.

,

.

-

ÐÑ

"

Effective Q-divisors ∆ such that
p1´ peq∆ „ ´p1´ peqKX

*

The Q-divisor corresponding to φ : F e
˚OX Ñ OX will be denoted by ∆φ. The

morphism extends to φ : F e
˚OXpppe ´ 1q∆φq Ñ OX .

Other way round, given a Q-divisor ∆ such that ppe ´ 1qpKX ` ∆q „ 0, the
corresponding morphism will be denoted by TrX,∆ : F e

˚OX Ñ OX . As before, it
extends to

TrX,∆ : F e
˚OXpppe ´ 1q∆φq Ñ OX .

A general definition of the trace map TrX,∆ maybe be found in Section 2.2.

Lemma 2.1.4 ([31, Lemma 3.5]). If pX,∆q is globally F -regular (F -split), then
pX,∆q is globally F -regular (F -split, respectively) for any ∆ ď ∆.

Now, it is easy to see, that a log pair pX,∆q is globally F -regular if and only
if for every principal divisor D Ď X there exists a splitting φ : F e

˚OX Ñ OX such
that ∆φ ě ∆` 1

pe´1
D.

We also consider local versions of these notions.

Definition 2.1.5. A log pair pX,∆q is strongly F -regular (F -pure), if all of its
local rings are globally F -regular (F -split, respectively).
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Considering X to be a Spec of a local ring, all the above remarks hold true in
the local setting. The local and global notions coincide for affine varieties.

Frobenius singularities are alleged to be the correct counterparts of birational
singularities in positive characteristic (see Chapter 3 for a more detailed explanation).
This supposition is propped up by the following theorems.

Theorem 2.1.6 (see [27]). Let X be a normal variety. If pX,Bq is strongly F -
regular (F -pure), then pX,Bq is kawamata log terminal (log canonical, respecitvely).

Theorem 2.1.7 ([25]). Let X be a log terminal projective surface defined over an
algebraically closed field of characteristic p ą 5. Then X is strongly F -regular.

We sketch the proof of the erstwhile theorem. First, we need to understand
how our theory behaves under taking resolutions of singularities. The following
proposition should be clear given the discussion above.

Proposition 2.1.8 ([32, Proof of Theorem 6.7], [6, Exercise 4.17]). Suppose that

π : rX Ñ X is a proper birational map of varieties, where X is normal, and take
φ P HomXpF

e
˚OX ,OXq. Let ∆φ be as in Proposition 2.1.3 and let r∆φ be such that

K
rX `

r∆φ “ π˚pKX `∆φq.

Then φ : F e
˚OXpppe ´ 1q∆φq Ñ OX induces a map

rφ : F e
˚O rXppp

e
´ 1qr∆φq ÝÑ O rX

which agrees with φ, where π is an isomorphism.

Sketch of a proof of Theorem 2.1.6. We assume that pX,Bq is F -pure, and show
that it is log canonical. The strongly F -regular part is analogous.

We can assume that X is a Spec of a local ring. Take an enough divisible e " 0
and let φ : F e

˚OXpppe ´ 1q∆φ,OXq be an F -splitting of pX,Bq (see Proposition
2.1.3). Recall that ∆φ Ě B.

Let π : rX Ñ X be a log resolution of singularities. By contradiction, assume
that pX,Bq is not log canonical. Then, for e " 0, there exists an integral divisor S
such that

ppe ´ 1qr∆φ “ nS `R,

where n ě pe, and S Ę SuppR.
By Proposition 2.1.8, there exists a surjection

rφ : F e
˚O rXppp

e
´ 1qr∆φq ÝÑ O rX .

Replacing rX by its localisation at the generic point of S, we get a morphism

rφ : F e
˚O rXpnSq ÝÑ O rX .
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In particular, since n ě pe, we get rφpF e
˚O rXq Ď OXp´Sq, and so

φpF e
˚OXq Ď mq,

where mq is the maximal ideal of a point q P πpSq. This yields a contradiction,
because φ was assumed to be an F -splitting.

Although, taking localisation at the generic point of S is not necessary, it makes
the statement clearer given that r∆φ does not need to be effective.

2.2 Trace map

A key tool in the theory of Frobenius splittings is a trace map (see [3] and [16]).
For an integral divisor D on a normal variety X, there is an isomorphism derived
from the Grothendieck duality (see [22, Lemma 2.9]):

HomOX
pF e
˚OXpDq,OXq » OXp´ppe ´ 1qKX ´Dq. (2.1)

Definition 2.2.1. Let B be a Q-divisor such that ppe´ 1qpKX `Bq is Cartier. We
call

TreX,B : F e
˚OXp´ppe ´ 1qpKX `Bqq Ñ OX ,

the trace map. It is constructed by applying the above isomorphism (2.1) to the
map

HomOX
pF e
˚OXpppe ´ 1qBq,OXq

ev
ÝÑ HomOX

pOX ,OXq (2.2)

being the dual of the composition OX
F e

ÝÑ F e
˚OX ãÝÑ F e

˚OXpppe ´ 1qBq.

The rank one sheaves in question are not necessary line bundles, but since X is
normal, we can always restrict ourselves to the smooth locus. If B “ 0, then we
denote the trace map by TrX : F e

˚OXp´ppe ´ 1qKXq Ñ OX .
The following proposition reveals the significance of the trace map and unravels

its a bit complicated definition.

Proposition 2.2.2 ([22, Proposition 2.10]). Let pX,Bq be a normal log pair. Then
pX,Bq if F -pure at a point x P X if and only if the trace map TreX,B is surjective
at x for all enough divisible e " 0.

Proof. The key point is that TreX,B is induced by the evaluation map (2.2). Replace
pX,Bq by the local ring at x. For φ P HomOX

pF e
˚OXpppe ´ 1qBq,OXq, the image

evpφq is defined by the commutativity of the following diagram:

OX F e
˚OXpppe ´ 1qBq OX .F e

evpφq

φ
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Note that HompOX ,OXq » OX is generated by the identity morphism id. In
particular, ev is surjective if and only if there exists φ such that evpφq “ id, which
is equivalent to φ being a splitting.

Remark 2.2.3. As announced in Proposition 2.1.3, if ∆ is a Q-divisor such that
ppe ´ 1qpKX `∆q „ 0, then

TrX,∆ : F e
˚OX Ñ OX

is the morphism corresponding to ∆. We sketch a proof below.
Consider the following commutative diagram.

ppe ´ 1q∆ TreX,∆

H0
`

X,F e
˚ω

1´pe

X

˘

Hom
`

F e
˚OX ,OX

˘

Hom
`

F e
˚OX

`

p1´ peqpKX `∆q
˘

,OX

˘

H0
`

X,F e
˚ω

1´pe

X

˘

Hom
`

Hom
`

F e
˚ω

1´pe

X ,OX

˘

,OX

˘

Hom
`

Hom
`

F e
˚OX

`

ppe´1q∆
˘

,OX

˘

,OX

˘

ppe ´ 1q∆ ev

»

=

»

» »

» »

P P

P P

The upper left horizontal arrow is constructed via Grothendieck duality. The
lower left horizontal arrow follows from a natural isomorphism between a vector
bundle and its double dual. The right horizontal arrows are constructed via the
isomorphism

OX » OXpp1´ peqpKX `∆qq,

and the two vertical isomorphism follows from Grothendieck duality. In particular,
the diagram is commutative.

Our goal is to show that ppe ´ 1q∆ is sent to TreX,∆ via those isomorphisms. By
the construction of TreX,∆, this is equivalent to showing that ppe ´ 1q∆ is sent to
the evaluation map ev via the lower horizontal isomorphisms.

The last supposition follows by the following fact. Let E be a vector bundle
and s P H0pX, Eq » HompOX , Eq a section of it. This section induces some vector
bundle Es and an isomorphism ŝ : Es » E . Then, via the following sequence of
isomorphisms:

H0pX, Eq HompHompE ,OXq,OXq HompHompEs,OXq,OXq,

s ev

pŝ^q^

P P
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the section s is sent to the evaluation map ev P HompHompEs,OXq,OXq, which
takes φ P HompEs,OXqpUq on some open set U , composes it with s P HompOX , Esq,
and evaluates it at 1 P OX .

OX Es OX .s

evpφq¨id

φ

We leave it to the reader to verify this fact.

Further, we consider another version of the trace map. Let D be a Q-divisor
such that KX `H `D is Cartier. Tensoring the trace map TreX,B by it, we obtain:

TreX,BpDq : F
e
˚OXpKX `B ` p

eDq Ñ OXpKX `B `Dq.

By abuse of notation, both versions of the trace map are denoted in the same way.

2.2.1 Examples

All the proofs and examples in this subsection come from [3].
Let X be a smooth algebraic variety and D be an effective divisor. The following

proposition exemplifies the importance of the trace maps.

Proposition 2.2.4. If the action of the trace map on the i-th cohomology of X

TreX : H i
pX,OXpKX ` p

eDqq Ñ H i
pX,OXpKX `Dqq

is surjective for e " 0, and D is ample, then the Kodaira vanishing holds, that is

H i
pX,OXpKX `Dqq “ 0.

Proof. By Serre vanishing we have H ipX,ωXpp
eDqq “ 0, and so H ipX,ωXpDqq “ 0

by the surjectivity of the trace map.

We provide two examples of varieties, which always satisfy the assumptions of
the above proposition: globally F -split varieties and abelian varieties.

Lemma 2.2.5 ([3, Proposition 2.11]). If X is globally F-split, then the action of
the trace map on cohomologies

TreX : H i
pX,OXpKX ` p

eDqq Ñ H i
pX,OXpKX `Dqq

is surjective for any i ě 0.
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Proof. Let φ : F e
˚OX Ñ OX be a splitting of Frobenius. By applying Homp´, ωXq

and Grothendieck duality, we obtain a map ψ : ωX Ñ F e
˚ωX .

The composition

H i
pX,ωXpDqq

ψ
ÝÑ H i

pX,ωXpp
eDqq

TreX
ÝÝÑ H i

pX,ωXpDqq

is an identity, which concludes the proof of the lemma.

Lemma 2.2.6 ([3, Proposition 2.9]). If X is an abelian variety and D is ample,
then the action of the trace map on cohomologies

TreX : H i
pX,OXpKX ` p

eDqq Ñ H i
pX,OXpKX `Dqq

is surjective for any i ě 0.

We follow a proof from [3].

Proof. Consider the morphism nX : X Ñ X, which is the multiplication by an
integer n. Assume that p - n. We have the following diagram.

H ipX,F e
˚ωXpp

en˚XDqq H ipX,F e
˚ωXpp

eDqq

H ipX,ωXpn
˚
XDqq H ipX,ωXpDqq

TreX TreX

To obtain the horizontal arrows, we applied the functor Homp¨, ωXq to the
natural morphism OXp´Dq Ñ pnXq˚OXp´n˚XDq and used Grothendieck duality.

It is a well known fact that the OX-morphism OX Ñ pnXq˚OX splits. Hence,
the horizontal arrows in the diagram are surjective. Thus, to conclude the proof of
the lemma, it is enough to show that

H i
pX,ωXpp

en˚XDqq
TreX
ÝÝÑ H i

pX,ωXpn
˚
XDqq

is surjective. Set
B :“ ker

`

TreX : F e
˚ωX Ñ ωX

˘

.

By the long exact sequence of cohomologies, it is enough to show that

H i`1
pX,Bpn˚XDqq “ 0.

No, we apply the following formula, well known in the theory of abelian varieties
([34]):

n˚XD “
n2 ` n

2
D `

n2 ´ n

2
p´1q˚XD.

The line bundle p´1q˚XD is ample, and so we can conclude the proof by Theorem
1.0.12.
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We get a simple proof of the following fact.

Corollary 2.2.7. Let  L be an ample Cartier divisor on an abelian variety A. Then
H0pA,Lq ‰ 0.

Proof. By the Kodaira vanishing for abelian varieties, H ipA,Lq “ 0 for i ą 0.
Hence H0pA,Lq “ χpLq “ LdimA ‰ 0 (see [34]).

We finish this section, by providing a sketch of a simple example, how one can
apply the trace map to show surjectivity of a restriction map.

Proposition 2.2.8 ([3, Corollary 4.3]). Let C be a smooth curve on a smooth
surface X. Fix an ample divisor A on X. If H0pC,KC ` A|Cq ‰ 0, then

H0
pX,KX ` C ` Aq Ñ H0

pC,KC ` A|Cq

is a nonzero map.

Sketch. Consider the following diagram for e " 0 (see Lemma 2.2.9)

H0pX,KX ` p
epC ` Aqq H0pC,KC ` p

eA|Cq H1pX,KX ` p
epC ` Aq ´ Cq

H0pX,KX ` C ` Aq H0pC,KC ` A|Cq.

φ

TreX TreC

ψ

Since φ is surjective by Serre vanishing, it is enough to show that TreC is nonzero.
This is proved in [3, Corollary 4.2].

In the above proposition we used the following lemma. We state it in a higher
generality, as we will need this version in a later part of this article.

Lemma 2.2.9 (c.f. [3, Lemma 2.6]). Let X be a projective variety. Let S be an
irreducible smooth divisor on it such that SuppS X SingpXq “ H, and let B and D
be Q-divisors such that

ppe ´ 1qpKX `Bq, and

KX `B `D

are Cartier for some e ą 0. Then, the following diagram is commutative

0 F e
˚OXpKX ` peDq F e

˚OXpKX ` S ` peDq F e
˚OSpKS ` peD|Sq 0

0 OXpKX `Dq OXpKX ` S `Dq OSpKS `D|Sq 0.

TreXpDq TreX,SpDq TreSpD|Sq



2. Frobenius singularities and the trace map 18

Proof. Consider the diagram

0 F e
˚pOXp´Sqq F e

˚OX F e
˚OS 0

0 OXp´Sq OX OS 0.

F e
X F e

X F e
S

Since ExtipOS, ωXq “ ωS for i “ 1, and it is zero otherwise, the lemma follows
by applying the functor Homp´, ωXq to the above diagram, using Grothendieck
duality (see (2.1)) and tensoring everything by D.

Note, that after restricting to X zS the commutativity is trivial, and X is
smooth along S, so there are no issues with singularities.

2.3 Cartier isomorphism

A source of miracles in positive characteristic algebraic geometry is provided by
the Cartier isomorphism ([35, Theorem 3.5]):

Ωi
X » Hi

pX,F˚Ω
‚
Xq,

where X is a smooth projective variety and Ω‚X denotes the de Rham complex with
standard differentials.

To exemplify its significance let us give a sketch of the following celebrated
result of Deligne, Illusie and Raynaud. The sketch comes from an article of Illusie
in [35]. We refer to this source for a definition of the second Witt vectors W2pkq.

Theorem 2.3.1 ([35, Theorem 5.8]). Let X be a smooth projective variety defined
over an algebraically closed field k of characteristic p ą dimpXq. Assume that X is
liftable to W2pkq. Then the Kodaira vanishing holds on X, that is

H i
pX,L´1

b Ωj
Xq “ 0

for any i` j ă dimpXq and an ample divisor L.

They key component of the proof is the fact, that if p ą dimpXq and X is
liftable to W2pkq, then F˚Ω

‚
X is decomposable inside the bounded derived category

of coherent sheaves DbpXq of X ([35, Corollary 5.5]). In particular, by Cartier
isomorphism, we get a quasi-isomorphism

F˚Ω
‚
X »

à

Ωj
Xr´js.

For simplicity, we omit the details related to the fact that the absolute Frobenius
is not a morphism of OX-modules.



2. Frobenius singularities and the trace map 19

Proof. By Serre vanishing and, if necessary, repeatedly replacing L by Lp, it is
enough to prove the theorem under the assumption that

H i
pX,L´p b Ωj

Xq “ 0

for any i` j ă dimpXq.
Consider the standard hypercohomology spectral sequence

Ei,j
1 “ H i

pX,L´1
b F˚Ω

j
Xq ùñ Hi`j

pX,L´1
b F˚Ω

‚
Xq.

Since by the above assumption

Ei,j
1 “ H i

pX,L´1
b F˚Ω

j
Xq “ H i

pX,L´p b Ωj
Xq “ 0,

we get HkpX,L´1 b F˚Ω
‚
Xq “ 0 for k ă dimpXq. But, by the decomposability of

F˚Ω
‚
X , we know that

Hk
pX,L´1

b F˚Ω
‚
Xq “

à

i`j“k

H i
pX,L´1

b Ωj
Xq,

which concludes the proof.

The second application of Cartier isomorphism provided in this subsection
concerns surjectivity of trace maps for curves.

Proposition 2.3.2 ([30, Lemma 10], [16, Section 3.1]). Let C be a smooth curve
defined over an algebraically closed field of characteristic p ą 0, and let D be an
effective divisor on it such that degD ě

2gpCq´2
p

. Then

TreCpDq : H
0
pC,KC ` p

eDq ÝÑ H0
pC,KC `Dq

is surjective.

Proof. It is enough to prove the proposition for e “ 1. The Cartier isomorphism
for curves is equivalent to the exactness of the following sequence

0 Ñ OC Ñ

F˚Ω‚X
hkkkkkkkkkkkikkkkkkkkkkkj

F˚OC Ñ F˚OCpKCq
TrCpDq
ÝÝÝÝÑ OCpKCq Ñ 0.

After tensoring it by D and splitting it in the middle, we get

0 ÝÑ OCpDq ÝÑ F˚OCppDq ÝÑ K ÝÑ 0

0 ÝÑ K ÝÑ F˚OCpKC ` pDq ÝÑ OCpKCq ÝÑ 0
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By chasing the corresponding long exact sequences, is is easy to see that the
surjectivity of TrCpDq follows from the following vanishings

H2
pC,OCpDqq “ 0, and

H1
pC,OCppDqq “ 0.

The latter is a consequence of degD ě
2gpCq´2

p
and Serre duality.

In Chapter 2, we will need a more general version of this proposition, and for
this we need a more general Cartier isomorphism.

For a reduced simple normal crossing divisor E “
ř

Ej on X,

Ωi
XplogEq » Hi

pX,F˚Ω
‚
XplogEqq

holds (see [36]). Further, for B “
ř

rjEj such that 0 ď rj ď p´ 1, it is true that
the following inclusion of complexes of OX-modules

F˚Ω
‚
XplogEq Ñ F˚pΩ

‚
XplogEqpBqq

is a quasi-isomorphism (see [37, Lemma 3.3], [5, Lemma 23.4]). All the above
implies:

Theorem 2.3.3 ([5], [36], [37]). Let X be a smooth projective variety defined over
an algebraically closed field of characteristic p ą 0 and let E be a reduced simple
normal crossing divisor on X. Let B “

ř

rjEj be an effective integral divisor
supported on E such that 0 ď rj ď p´ 1. Then, there exists a quasi-isomorphism

Ωi
XplogEq » Hi

`

X,F˚
`

Ω‚XplogEqpBq
˘˘

.

Now, we can prove a more general version of Proposition 2.3.2.

Proposition 2.3.4. Let C be a smooth curve defined over an algebraically closed
field of characteristic p ą 0. Let ∆ be an effective, and D an arbitrary Q-divisor
such that

t∆u “ 0,

∆`D is Cartier, and

degD ě
2gpCq ´ 2

p
` deg ∆,

where gpCq is the genus of C. Then,

TreC,∆pDq : H
0
pC,KC `∆` peDq ÝÑ H0

pC,KC `∆`Dq

is surjective for all e ą 0 for which ppe ´ 1qD, or equivalently ppe ´ 1q∆, is Cartier.
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Proof. Let e ą 0 be such that ppe ´ 1qD and ppe ´ 1q∆ are Cartier. Fix 0 ď k ď e
and consider the enhanced Cartier isomorphism (Theorem 2.3.3):

0 Ñ OC Ñ

F˚Ω‚XplogEqpBq
hkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkj

F˚OCpBq Ñ F˚OCpKC ` E `Bq Ñ OCpKCq Ñ 0,

where

B “ tpk`1∆u´ ptpk∆u, and

E “ SuppB.

Note that the sequence consists only of vector bundles, because C is smooth, and
so F˚OC is free.

Set ∆k “ pk∆´ tpk∆u. Observe that ∆e “ ∆0 “ ∆. Applying the functor

Hom
`

´,OCpKC `∆k ` p
kDq

˘

to the exact sequence, and using Grothendieck duality (2.1), we get a sequence:

0ÐOC
`

KC `∆k ` p
kD

˘ Trk
ÐÝÝF˚OC

`

KC `∆k`1 ` p
k`1D

˘

ÐÝÝ F˚OC
`

´E `∆k`1 ` p
k`1D

˘

Ð OC
`

∆k ` p
kD

˘

Ð 0,

It is exact, because a dualization of an exact sequence consisting only of vector
bundles is exact.

Since ∆e “ ∆0 “ ∆, we can decompose TreC,∆pDq into a composition of the
maps Trk:

H0
pC,KC`∆e`p

eDq
Tre´1
ÝÝÝÑ H0

pC,KC`∆e´1`p
e´1Dq Ñ . . .ÝÑ H0

pC,KC`∆0`Dq.

Hence, we are left to show that Trk is surjective. By chasing the corresponding
long exact sequences, is is easy to see that the surjectivity of Trk follows from the
following vanishings

H2
pC,OCp∆k ` p

kDqq “ 0, and

H1
pC,OCp´E `∆k`1 ` p

k`1Dqq “ 0.

The former is a consequence of dimC “ 1. Applying Serre duality to the latter
cohomology, we see that to show its vanishing it is enough to prove that

2gpCq ´ 2` degE ´ deg ∆k`1 ´ p
k`1 degD ă 0

This follows from the assumptions, given that deg ∆k`1ě 0 and degE ď deg tpk`1∆u.

This train of ideas is developed later in Chapter 3.
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2.4 Evaporation technique

Except of Proposition 1.0.1, this section is based on [38].

Definition 2.4.1. Let X be a scheme, and let F be a sheaf on it. We say that
a morphism f : Y Ñ X, where Y is a scheme, evaporates a cohomology class
α P H ipX,Fq, if f˚α “ 0.

The idea of evaporation sprouts out from the following observation. Let D
be an ample Cartier divisor on a projective scheme X defined over a field of
characteristic p ą 0. Then e-times iterated Frobenius F e evaporates all clases in
H ipX,OXpDqq “ 0 for i ą 0 and e " 0. Indeed, it follows by Serre vanishing, since

pF e
q
˚H i

pX,OXpDqq Ď H i
pX,OXppeDqq “ 0.

The theorem below embraces the full strength of evaporation.

Theorem 2.4.2 (Hochster, Huneke, see [38, Theorem 5.19]). Let X be a projective
scheme over a field of characteristic p ą 0 and let D be an ample divisor on it.
Then, there exists a finite map f : Y Ñ X of degree pk such that

f˚H i
pX,OXpmDqq “ 0

for all i ą 0 and m ě 0,

For m ą 0, the theorem follows by the above observation for f being a power of
Frobenius. The main difficulty lies in the case m “ 0, where one needs to consider
more complicated purely inseparable morphisms than the Frobenius.

As an example, we will use this theorem to show the semiampleness of rational
and elliptic nef curves on smooth surfaces defined over Fp, following an exercise in
[38]. Note that, by [39], nef curves of genus two do not need to be semiample.

Proposition 2.4.3. Let C be a smooth curve on a smooth surface S defined over
Fp. Assume that C is nef and gpCq ď 1. Then C is semiample.

Proof. If C2 ą 0, then C is big and nef, and so it is semiample ([40, Theorem 2.9]).
Hence, we may assume that C2 “ 0. Since we are working over Fp, all points of the
abelian variety Pic0

pCq are torsion, and so there exists m P Zě0 such that mC|C is
trivial. Let m be the smallest such positive integer.

We have the following exact sequence

H0
pS, kCq Ñ H0

pC, kC|Cq Ñ H1
pS, pk ´ 1qCq Ñ H1

pS, kCq Ñ H1
pC, kC|Cq.
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Given, that for 0 ă k ă m

H0
pC, kC|Cq “ 0, and

H1
pC, kC|Cq “ 0, by gpCq ď 1,

we get
H1
pS,OSq “ H1

pS,Cq “ . . . “ H1
pS, pm´ 1qCq.

By Theorem 2.4.2, there exists a purely inseparable morphism f : pS Ñ S such
that f˚H1pS,OSq “ 0. Set pC :“ f˚pCq. Note that pC is not reduced.

Consider the following commutative diagram, where the rows come from the
above long exact sequence for k “ m:

H0pŜ,OŜpm pCqq H0p pC,O
pCq H1ppS,O

pSppm´ 1q pCqq

H0pS,OSpmCqq H0pC,OCq H1pS,OSppm´ 1qCqq.

f˚φ

f˚ f˚

φ

f˚

Take 1 P H0pC,OCq. Since f˚p1q “ 1 and f˚pφp1qq “ 0, we get that 1 P

H0p pC,O
pCq lifts, and so there exists D P |m pC| such that D X pC “ H. Hence, m pC

is base point free.
Since f factors through Frobenius F k for some k ě 0, we get that mpkC is base

point free (see [41, Lemma 1.4]).

The majority of cases in the proof of Proposition 1.0.1 are covered by [3, Theorem
0.4]. The new part is very similar to the above proof of the semiampleness of nef
rational and elliptic curves.

Proof of Proposition 1.0.1. First, assume that κpS,KS ` A|Sq ‰ 0. Then, by
[3, Theorem 0.4], the restriction map

H0
pX, kpKX ` S ` Aqq Ñ H0

pS, kpKS ` A|Sqq

is surjective for k " 0. By the base point free theorem for surfaces [26, Theorem
A.4], KS ` A|S is semiample, and so is KX ` S ` A „ 2pKX ` Aq.

Thus, we can assume that κpS,KS ` A|Sq “ 0. Since we are working over Fp,
all points of the abelian variety Pic0

pSq are torsion, and so KS ` A|S is torsion.
Since KS ` A|S „ 2S|S, there exists m P Zě0 such that mS|S is trivial. Let m be
the smallest such positive integer.

We have the following exact sequence

H0
pX, kSq Ñ H0

pS, kS|Sqq Ñ H1
pX, pk ´ 1qSq Ñ H1

pX, kSq Ñ H1
pS, kS|Sq.
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Note that KS ” ´A|S, and so S is Fano. Given, that for 0 ă k ă m

H0
pS, kS|Sq “ 0, and

H1
pS, kS|Sq “ H1

pS,KS ´KS ` kSSq “ 0, by Kodaira vanishing,

we get
H1
pX,OXq “ H1

pX,Sq “ . . . “ H1
pX, pm´ 1qSq.

By Theorem 2.4.2, there exists a purely inseparable morphism f : pX Ñ X such
that f˚H1pX,OXq “ 0. Set pS :“ f˚pSq. Note that pS is not reduced.

Consider the following commutative diagram, where the rows come from the
above long exact sequence for k “ m:

H0pX̂,OX̂pmpSqq H0p pX,O
pXq H1p pX,O

pXppm´ 1qpSqq

H0pX,OXpmSqq H0pX,OXq H1pX,OXppm´ 1qSqq.

f˚φ

f˚ f˚

φ

f˚

Take 1 P H0pX,OXq. Since f˚p1q “ 1 and f˚pφp1qq “ 0, we get that 1 P

H0p pX,O
pXq lifts, and so there exists D P |mpS| such that D X pS “ H. Hence, mpS

is base point free.
Since f factors through Frobenius F k for some k ě 0, we get that mpkS is base

point free (see [41, Lemma 1.4]).

The proof of [3, Theorem 0.4] is based on the surjectivity of the trace map, which
fails when κpS,KS ` A|Sq “ 0. It is astonishing, that the evaporation technique
shines exactly when the trace map fails. We believe that this complementarity is
worth future investigation.

2.5 Very ampleness

The goal of this section is to prove Theorem 1.0.3. We start with the following
example as a warm-up.

Example 2.5.1 (c.f. [16, Theorem 3.8]). Let X be an n-dimensional smooth
projective variety defined over an algebraically closed field of characteristic p ą 0
and let L be a Cartier divisor on it. The goal of this example is to prove that:

if L is ample and base point free, then KX `pn` 1qL is base point free.
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First, notice that by Theorem 1.0.11, F e
˚OXpKXq b OXppn ` 1qLq is a globally

generated coherent sheaf for e " 0, given that for 0 ă i ď n

H i
`

X,F e
˚OXpKXq bOXppn` 1´ iqLq

˘

“ H i
`

X,OXpKX ` p
e
pn` 1´ iqLq

˘

“ 0,

where the last equality follows from Serre vanishing.
Since X is smooth, the trace map

TreXpLq : F
e
˚OXpKXq bOXppn` 1qLq Ý� OXpKXq bOXppn` 1qLq.

is surjective (Proposition 2.2.2). As the former sheaf is globally generated, so is the
later one.

Now, we proceed with the proof of Theorem 1.0.3. A similiar strategy was
considered in [13]. We also apply Mumford regularity, but for a different version of
the trace map. Further, since we work on singular varieties, we cannot use that
F e
˚OX is flat.

The following proposition is based on a train of ideas from [19], but we need to
perform a careful analysis of Tor modules.

Proposition 2.5.2 (c.f. [19, Examples 1.8.18 and 1.8.22]). Let X be a normal
irreducible projective variety of dimension n. Consider a coherent sheaf F and a
point x P X. Let B be a globally generated ample line bundle. If

H i`k´1
`

X,F bB´pi`kq
˘

“ 0,

for 1 ď i ď n and 1 ď k ď n, then F bmx is globally generated.

Proof. Set Fp´iq :“ F bB´i. Our goal is to prove that

H i
pX,Fp´iq bmxq “ 0

for all i ą 0. Then, Theorem 1.0.11 would imply the global generatedness of F bmx.
Since B is ample and globally generated, it defines a finite map and so there

exist sections s1, s2, . . . , sn P H
0pX,Bq intersecting in a zero dimensional scheme

W containing x. We claim the following.

Claim H ipX,Fp´iq b IW q “ 0.

Assuming the claim, we prove the proposition. Consider the following short
exact sequence

0 ÝÑ IW ÝÑ mx ÝÑ mx{IW ÝÑ 0,

and tensor it by Fp´iq, to get a short exact sequence

0 ÝÑ G ÝÑ Fp´iq b IW ÝÑ Fp´iq bmx ÝÑ Fp´iq b
`

mx{IW
˘

ÝÑ 0,
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where the term
G :“ ker

`

Fp´iq b IW ÝÑ Fp´iq bmx

˘

comes from the fact that F may not be flat. Since mx{IW is flat off W , we have
that

dim Supp
`

Tor1
`

Fp´iq,mx{IW
˘˘

“ 0,

and so dim SupppGq “ 0. Simple diagram chasing (similiar to the proof of Lemma
2.5.3), shows that H ipX,Fp´iq bmxq “ 0 for i ą 0, and so we are done.

We are left to show the claim. In order to do this, we take U :“ B‘n and
consider a Koszul complex induced by the map U˚ Ñ IW coming from the sections
s1, s2, . . . , sn:

0 ÝÑ
n
ľ

U˚ ÝÑ . . . ÝÑ
1
ľ

U˚ ÝÑ IW ÝÑ 0.

By [19, Appendix B2], the complex is exact off W . We tensor it by Fp´iq. Since
on X z SupppW q the sequence consists of free objects, tensoring by Fp´iq is exact
there, and so the homologies of the sequence Fp´iq b

Ź‚ U˚ are supported on W .
Hence, we can apply Lemma 2.5.3, and so to show that

H i
pX,Fp´iq b IW q “ 0,

it is enough to know that

0 “ H i`k´1
´

X,Fp´iq b
k
ľ

U˚
¯

“ H i`k´1
´

X,Fp´i´ kq
¯‘pnkq

.

Proof of Theorem 1.0.3. Choose a point q P X. To prove the theorem, it is enough
to show that OX

`

pn` 2qH `N
˘

bmx is globally generated at q for all x P X.
By F -purity we know that there exists a Q-divisor B such that

ppe ´ 1qpKX `Bq

is Cartier, and
F e
˚OXp´ppe ´ 1qpKX `Bqq ÝÑ OX

is surjective at q, for enough divisible e " 0 (Proposition 2.2.2 and Proposition
2.1.3). If the Q-Gorenstein index of X is indivisible by p, then we can take B “ 0.
By increasing e and decreasing coefficients of B, we may assume that H ´KX ´ 2B
is ample.
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By the above, the morphism

F e
˚OX

`

´ppe´1qpKX `Bq`p
e
`

pn`2qH`N
˘˘

bmx ÝÑ OX
`

pn`2qH`N
˘

bmx

is surjective at q. It implies that in order to show global generatedness of

OX
`

pn` 2qH `N
˘

bmx,

at q, it is enough to show that

F e
˚OX

`

´ppe ´ 1qpKX `Bq ` p
e
`

pn` 2qH `N
˘˘

bmx

is globally generated. And this follows from Proposition 2.5.2, because by Fujita
vanishing (Theorem 1.0.12),

H i`k´1
`

X,F e
˚OX

`

´ppe´1qpKX`Bq ` p
e
`

pn` 2qH`N
˘˘

bOXp´pk`iqHq
˘

“ H i`k´1
`

X,OX
`

ppe´1qpH´KX´Bq `H ` p
e
`

pn`1´k´iqH `N
˘˘

“ 0,

for e " 0 and all i, k ą 0 such that i` k ´ 1 ď n.

In the proof we used the following lemma.

Lemma 2.5.3. Let A‚ be a bounded complex of sheaves on a scheme X such that
A´i “ 0 for i ą 0 and A1 Ñ A0 is surjecitve. Assume that HipA‚q are supported
on a zero dimensional scheme for each i ě 0 and H i`k´1pX,Akq “ 0 for i, k ą 0.
Then H ipX,A0q “ 0.

Proof. Consider the following diagram:

. . . A4 A3 A2 A1 A0 0

K3 0 I2 K2 0 I1 K1

0 H3 0 H2 0 H1

0 0 0

Here, Ki is a kernel of Ai Ñ Ai´1. Further, Ii is the image of Ai`1 Ñ Ki, and Hi is
the cohomology of A‚ at the i-th position.

Note that H ipX,Hjq “ 0 for i, j ą 0, since Hj is supported on a zero dimensional
scheme.
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Now, to show the vanishing ofH ipX,A0q it is enough to show thatH i`1pX,K1q “

0, as we have the short exact sequence

0 ÝÑ K1 ÝÑ A1 ÝÑ A0 ÝÑ 0

and we know that H ipX,A1q “ 0.
Using the short exact sequence

0 ÝÑ I1 ÝÑ K1 ÝÑ H1 ÝÑ 0

we reduce to showing that H i`1pX, I1q “ 0. The same way, using

0 ÝÑ K2 ÝÑ A2 ÝÑ I1 ÝÑ 0,

we reduce to showing that H i`2pX,K2q “ 0. Now, the argument goes in exactly
the same manner.



CHAPTER 3

Effective bounds on surfaces

The readers interested in Matsusaka theorem and Fujita-type theorems are encour-
aged to consult [20, Section 10.2 and 10.4]. Certain Fujita-type bounds for singular
surfaces in characteristic zero are obtained in [18].

3.1 Reider’s analysis

Reider’s analysis is a method of showing that divisors of the form KX ` L are
globally generated or very ample, where L is a big and nef divisor on a smooth
surface X.

The idea is that a base point of KX`L provides us with a rank two vector bundle
E which does not satisfy Bogomolov inequality c1pEq2 ą 4c2pEq. In characteristic
zero, such vector bundles must split. Using such a splitting one can deduce a
contradiction, when L is “numerically-ample enough”.

In positive characteristic, the aforementioned fact about unstable vector bundles,
has been proved by Shepherd-Barron ([10]) for surfaces which are neither of general
type nor quasi-elliptic of Kodaira dimension one. This leads to the following.

Proposition 3.1.1 ([12, Theorem]). Let X be a smooth projective surface neither
of general type nor quasi-elliptic with κpXq “ 1, and let D be a nef divisor such
that D2 ě 5. Assume that q P X is a base-point of KX `D. Then, there exists a
divisor C containing q, such that D ¨ C ď 3.

In particular, for such surfaces, KX`4A is base point free for an ample divisor A.
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3.1.1 A proof of Fujita conjecture using Reider’s analysis

In this subsection, we present a proof of Proposition 3.1.1. We follow closely [12].
Let X be a smooth projective surface defined over an algebraically closed field.

Definition 3.1.2. A vector bundle E of rank two is called unstable if there exist a
short exact sequence

0 ÝÑ OSpAq ÝÑ E ÝÑ OSpCq b IZ ÝÑ 0,

where A and C are Cartier divisors, IZ is the ideal sheaf of a 0-dimensional
subscheme Z on S and

• pA´ Cq2 ą 0, and

• pA´ Cq ¨H ą 0 for any ample divisor H on S.

One can show that this definition is equivalent to the standard definition of
unstability.

One of the most striking results of Bogomolov is that when a vector bundle
E does not satisfy Bogomolov inequality c1pEq

2 ď 4c2pEq, then E is unstable. In
positive characteristic we have the following result of Shepherd-Barron.

Theorem 3.1.3 ([10]). Let X be a smooth projective surface defined over an
algebraically closed field of characteristic p ą 0 which is neither of general type nor
quasi-elliptic with κpXq “ 1. Further, let E be a rank two vector bundle on X such
that c1pEq

2 ą 4c2pEq. Then E is unstable.

Now, we can proceed with the proof of Proposition 3.1.1.

Proof of Propostion 3.1.1. Assume that q P X is a base point of KX `D. Let Iq
be the ideal sheaf corresponding to q. The long exact sequence associated to

0 ÝÑ OXpKX `Dq b Iq ÝÑ OXpKX `Dq ÝÑ OqpKX `Dq ÝÑ 0

gives us that

Ext1
pOXpKX `Dq b Iq,OXpKXqq “ H1

pX,OSpKX `Dq b Iqq
^
‰ 0,

where the first equality follows by Serre duality. In particular, we get a rank two
vector bundle E, which sits in the long exact sequence:

0 ÝÑ OX ÝÑ E ÝÑ OXpDq b Iq ÝÑ 0.

Since c1pEq “ rDs and c2pEq “ rqs, Theorem 3.1.3 implies that E is unstable.
In particular, we have the following diagram:
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0

OXpAq

0 OX E OXpDq b Iq 0

OXpCq b IZ

0,

where A, C and IZ are as in Definition 3.1.2. By conducting a comparison between
Chern classes, we get that D „ A` C.

Step 1 In this step we show that H0pX,OXpCq b Iqq ‰ 0.
First, notice that H0pX,OXp´Aqq “ 0. Indeed, if ´A was effective, then for

any ample divisor H, we would have pA´ Cq ¨H “ p2A´Dq ¨H ă 0, because D
is nef. This is a contradiction with the assumptions of Definition 3.1.2.

Consider the map OXpAq Ñ OXpDq b Iq induced by the above diagram. It
must be non-zero, because otherwise OXpAq Ñ E would factor through some map
OXpAq Ñ OX , which contradicts H0pX,OXp´Aqq “ 0. Since D „ A ` C, the
claim of this step follows.

Now, we can assume that C is effective and passes through q.

Step 2 We show that D2 ą 2D ¨ C.
Since D is nef and big, we have by the Hodge index theorem

0 ă pA´ Cq2 ¨D2
ď ppA´ Cq ¨Dq2 “ ppD ´ 2Cq ¨Dq2,

and so pD ´ 2Cq ¨ D ą 0, which implies D2 ą 2D ¨ C. Here, we used that
pA´ Cq ¨D ě 0 by one of the assumptions of Definition 3.1.2.

Step 3 We finish the proof.
By comparison of second Chern classes, we get that

1 “ A ¨ C ` degZ,
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and in particular A ¨ C “ pD ´ Cq ¨ C ď 1. Hence D ¨ C ´ 1 ď C2.
On the other hand, by Step 2 and the Hodge index theorem

2pD ¨ Cq ¨ C2
ă D2

¨ C2
ď pD ¨ Cq2,

and this implies that 2C2 ă D ¨ C.
Combining inequalities from the above two paragraphs, we get

2D ¨ C ´ 2 ă 2C2
ď D ¨ C,

which concludes the proof.

To show that Reider’s analysis is useful not only for the Fujita conjecture, let
us also present the following theorem of Mumford.

Theorem 3.1.4 ([12, Theorem 1.6]). Let X be a smooth projective surface defined
over an algebraically closed field, which is neither of general type nor quasi-elliptic
with κpXq “ 1. Then, the Kodaira vanishing holds, that is H1pX,OXpKX`Lqq “ 0
for any ample divisor L.

Proof. Assume by contradiction that H1pX,OXpKX ` Lqq ‰ 0. Since by Serre
duality

H1
pX,OXpKX ` Lqq “ Ext1

pOXpKX ` Lq,OXpKXqq
^,

we get a rank two vector bundle E and a non-split sequence

0 ÝÑ OX ÝÑ E ÝÑ OXpLq ÝÑ 0.

Since c1pEq “ rLs and c2pEq “ 0, Theorem 3.1.3 implies that E is unstable. In
particular, we have the following diagram:

0

OXpAq

0 OX E OXpLq 0

OXpCq b IZ

0,
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where A, C and IZ are as in Definition 3.1.2.
As before, we get that L „ A`C, and C is effective. Comparing second Chern

classes, we obtain
0 “ A ¨ C ` degZ,

and so A ¨ C ď 0. In particular, L ¨ C ď C2.
Further, by assumptions in Definition 3.1.2, we have

pL´ 2Cq ¨ L “ pA´ Cq ¨ L ě 0,

and so L2 ě 2L ¨ C.
Mixing inequalities obtained above with the Hodge index theorem, we get

pL ¨ Cq2 ě L2
¨ C2

ě 2pL ¨ Cq2.

In particular, L ¨ C “ C2 “ 0. Since C is effective, we get C “ 0 and L „ A. In
this case, the vertical arrow OXpAq Ñ E provides a splitting of

0 ÝÑ OX ÝÑ E ÝÑ OXpLq,

which is a contradiction.

3.1.2 Effective bounds for smooth surfaces

The goal of this subsection is to prove the following proposition, which covers all
types of surfaces.

Proposition 3.1.5. Let X be a smooth projective surfaces defined over an alge-
braically closed field of characteristic p ą 0, and let D be a nef and big line bundle
on it. Assume that q P S is a base point of KX `D. Further, suppose that

1. D2 ą 4, if X is quasi-elliptic with κpXq “ 1,

2. D2 ą volpKXq ` 4, if X is of general type and p ě 3,

3. D2 ą volpKXq ` 6, if X is of general type and p “ 2, or

4. D2 ą 8, otherwise.

Then, there exists a curve C containing q such that

(1a) D ¨ C ď 5, if X is quasi-elliptic with κpXq “ 1 and p “ 3,

(1b) D ¨ C ď 7, if X is quasi-elliptic with κpXq “ 1 and p “ 2,

(2) D ¨ C ď 1, if X is of general type and p ě 3,
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(3) D ¨ C ď 7, if X is of general type and p “ 2, or

(4) D ¨ C ď 3, otherwise.

Note that the case (4) is nothing else but Proposition 3.1.1. The proof follows
step by step the proof by Di Cerbo and Fanelli ([8]). The only addition, is that the
curve C must contain q. This chain of ideas traces back to Sakai ([23]).

The following is crucial in the proof of Proposition 3.1.5.

Proposition 3.1.6 ([8]). Consider a birational morphism π : Y Ñ X between
smooth projective surfaces X and Y . Let D be a big divisor on Y such that

H1pY,´Dq ‰ 0 and D
2
ą 0. Further, suppose that

1. D
2
ą volpKXq, if X is of general type and p ě 3, or

2. D
2
ą volpKXq ` 2, if X is of general type and p “ 2.

Then, there exists a non-zero non-exceptional effective divisor E on Y , such
that

0 ď D ¨ E ă
kα

2
,

D ´ 2E is big,

pD ´ Eq ¨ E ď 0,

where D “ π˚D, E “ π˚E, α “ D2 ´D
2
, and

• k “ 3, if X is quasi-elliptic with κpXq “ 1 and p “ 3,

• k “ 4, if X is quasi-elliptic with κpXq “ 1 and p “ 2,

• k “ 1, if X is of general type and p ě 3, or

• k “ 4, if X is of general type and p “ 2.

Proof. It follows directly from [8, Proposition 4.3], [8, Theorem 4.4], [8, Proposition
4.6] and [8, Corollary 4.8].

Further, we need the following lemma.

Lemma 3.1.7 ([23, Lemma 2]). Let D be a nef and big divisor on a smooth surface
S. If

D ” D1 `D2

for numerically non-trivial pseudo-effective divisors D1 and D2, then D1 ¨D2 ą 0.
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Now, we can proceed with the proof of the main proposition in this subsection.

Proof of Proposition 3.1.5. The first case is covered by Proposition 3.1.1, so we
may assume that X is of general type or quasi-elliptic with κpXq “ 1.

Let π : Y Ñ X be a blow-up at q P X with the exceptional curve F . Given that
q is a base point of KX `D, we obtain that

H1
pY,OY pKY ` π

˚D ´ 2F q “ H1
pY,OY p´pπ˚D ´ 2F qqq ‰ 0.

Set D :“ π˚D ´ 2F . Since
D

2
“ D2

´ 4,

we have D
2
ą 0, and the assertions p1q and p2q in Proposition 3.1.6 are satisfied.

Hence, by this proposition, there exists a non-zero non-exceptional effective divisor
E on Y , such that

0 ď D ¨ E ď 2k ´ 1, and

D ´ 2E is big, and

pD ´ Eq ¨ E ď 0,

where E “ π˚E.
To finish the proof, it is enough to show that E contains a component, which

intersects F properly. Its pushforward onto X would be the sought-for curve C.
Assume that the claim is not true, i.e. E “ µ˚E ` aF for a ě 0. We have that

0 ě pD ´ Eq ¨ E “ pD ´ Eq ¨ E ` p2` aqa.

It implies D ¨E ď E2. Since D ¨E ě 0, it holds that E2 ě 0. Given D´2E is big,
we may apply Lemma 3.1.7 with D “ pD´ 2Eq` 2E, and obtain that D ¨E ą 2E2.
This is a contradiction with the other inequalities in this paragraph.

3.2 Effective bounds for singular surfaces

The goal of this section is to prove Theorem 1.0.4.
The following lemma is a crucial component, without which we would not be

able to apply our strategy.

Lemma 3.2.1. Let L be an ample Cartier divisor on a normal projective surface
X. Let π : rX Ñ X be the minimal resolution of singularities. Then K

rX ` 3π˚L is
nef, and K

rX ` nπ
˚L is nef and big for n ě 4.
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Proof. Take an effective curve C. We need to show that pK
rX ` 3π˚Lq ¨ C ě 0. If

K
rX ¨C ě 0, then the inequality clearly holds. Thus, by cone theorem ([26, Theorem

3.13] and [26, Remark 3.14]), we need to prove it, when C is an extremal ray
satisfying K

rX ¨ C ă 0. In such a case, we have that K
rX ¨ C ě ´3.

If C is not an exceptional curve, then 3π˚L ¨C ě 3, and so the inequality holds.
But C cannot be exceptional, because then its contraction would give a smooth
surface (see [21, Theorem 1.28]), and so rX would not be a minimal resolution. This
concludes the first part of the lemma.

As for the second part, K
rX ` nπ

˚L is big and nef for n ě 4, since adding a nef
divisor to a big and nef divisor gives a big and nef divisor.

The following proposition yields the first step in the proof.

Proposition 3.2.2. Let X be a projective surface defined over an algebraically
closed field of characteristic p ą 3. Assume that mKX is Cartier for some m P N.
Let A be an ample Cartier divisor on X. Then

BpmpaKX ` bAqq Ď SingpXq,

where a “ 2 and b “ 7.

Proof. Let π : X Ñ X be a minimal resolution of singularities with the exceptional
locus E. First, we prove that

Bp2KX ` 7π˚Aq Ď E.

This would imply that Bpmp2KX ` 7Aqq Ď πpEq, which would conclude the proof.
Assume it is not true, and so there exists a base point q P X of 2KX ` 7π˚A such
that q R E.

We apply Proposition 3.1.5 for D “ KX ` 7π˚A. The assumptions are satisfied,
because, by Lemma 3.2.1, D is big and nef, and, by Theorem 1.0.13,

volpDq ě volpKXq ` 49.

Henceforth, there exists a curve C containing q such that

C ¨D ď 3.

We can write D “ pKX `3π˚Aq`4π˚A. By Lemma 3.2.1, the first summand is nef.
Fruther, C ¨ π˚A ą 0, as C is not exceptional. Thus, we obtain a contradiction.

Applying above Proposition 3.2.2 and Theorem 2.1.7, the base point free part
of Theorem 1.0.4 follows from the following proposition by taking L :“ mpaKX `

bAq ´KX .
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Proposition 3.2.3. Let X be an F -pure projective surface defined over an alge-
braically closed field of characteristic p. Let L be an ample Q-divisor on X such
that KX ` L is a nef Cartier divisor and

BpKX ` Lq Ď SingpXq,

Then 2pKX ` Lq `N is base point free for any nef Cartier divisor N .

If we just assume that dimBpKX ` Lq “ 0, then the same proof will give us
that 3pKX ` Lq `N is base point free.

Before proceeding with the proof, we would like to give an example explaining
our strategy in characteristic zero.

Example 3.2.4. Here, X is a normal Gorenstein surface defined over an alge-
braically closed field k of characteristic zero, and L is an ample Cartier divisor on
it. The goal of this example is to prove:

if KX ` L is ample and dimBpKX ` Lq “ 0, then 3pKX ` Lq is base
point free.

Take any point q P BpKX`Lq. It is enough to show that 3pKX`Lq is base point
free at q. By assumptions, KX`L defines a finite map outside of its zero dimensional
base locus, and so there exist divisors D1, D2, . . . , Dn P |KX ` L| intersecting
properly such that the multiplier ideal sheaf IpX,∆q for ∆ “ 2

n
pD1 ` . . . Dnq

satisfies

dim IpX,∆q “ 0, and

q P IpX,∆q.

Note that ∆ „ 2pKX ` Lq.
Let W be a zero-dimensional subscheme defined by IpX,∆q. We have the

following exact sequence

0 Ñ OXpKX `∆` Lq b IpX,∆q Ñ OXpKX `∆` Lq Ñ OW pKX `∆` Lq Ñ 0.

By Nadel vanishing theorem ([20, Theorem 9.4.17])

H1
pX,OXpKX `∆` Lq b IpX,∆qq “ 0,

and so
H0
pX,OXpKX `∆` Lqq ÝÑ H0

pW,OW pKX `∆` Lqq

is surjective. Since dimW “ 0, we get that KX `∆`L „ 3pKX `Lq is base point
free along W , and so it is base point free at q.
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Proof of Proposition 3.2.3. Take an arbitrary closed point q P W . We need to show
that q R BpKX ` Lq.

By assumptions, KX ` L defines a finite map outside of its zero dimensional
base locus, so there exist divisors D1, D2 P |KX ` L| such that dimpD1 XD2q “ 0.
We can assume that q P D1 XD2 and q P SingpXq. Note, that IW “ ID1 ` ID2 , and
D1, D2 are Cartier.

By Theorem 1.0.12, we can choose e ą 0 such that

H1
`

X,OX
`

ppe ´ 1qL`M
˘

b IW
˘

“ 0

for any nef Cartier divisor M .
By F -purity (see Proposition 2.1.3 and Proposition 2.2.2), we know that there

exists a Q-divisor B such that

ppe ´ 1qpKX `Bq

is Cartier, and
TrX,B : F e

˚OXp´ppe ´ 1qpKX `Bqq ÝÑ OX
is surjective at q, for enough divisible e " 0. If the Q-Gorenstein index of X is
indivisible by p, then we can take B “ 0. By increasing e and decreasing coefficients
of B, we may assume that 1

2
L´B is ample.

Now, take maximal λ1, λ2 P Zě0 such that

TrX,∆ : F e
˚LÑ OX

is surjective at the stalk OX,q, where

L :“ OXp´ppe ´ 1qpKX `Bq ´ λ1D1 ´ λ2D2q, and

∆ :“ B `
λ1

pe ´ 1
D1 `

λ2

pe ´ 1
D2.

We want to show existence of the following diagram:

F e
˚L F e

˚

`

L|W
˘

OX OX,q{mq

TrX,∆

To show that such a diagram exists we need to prove that the image of F e
˚pLb IW q

under TrX,∆ is contained in mq. This follows from the fact that IW “ Op´D1q `

Op´D2q and from the maximality of λ1, λ2. More precisely the image of

F e
˚OXp´ppe ´ 1qpKX `Bq ´ pλ1 ` 1qD1 ´ λ2D2q
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must be contained in mq (analogously for λ2 ` 1).
So, we tensor this diagram by the line bundle OXpKX `∆`Hq, where

H :“
´

2´
λ1

pe ´ 1
´

λ2

pe ´ 1

¯

pKX ` Lq ´KX ´B `N,

and take H0 to obtain the diagram

H0
`

X,F e
˚OXpKX `∆` peHq

˘

H0
`

W,OW
˘

H0
`

X,OXpKX `∆`Hq
˘

H0
`

q,OX,q{mq

˘

,

Note that KX `∆`H “ 2pKX `Lq `N and KX `∆` peH “ ppe´ 1qL`M
for some nef Cartier divisor M . Further, by Theorem 2.1.6, pX,∆q is log canonical
at q P X, and so by Lemma 3.2.5 we get

λ1

pe ´ 1
`

λ2

pe ´ 1
ď 1.

Therefore, H is ample.
The right vertical arrow is surjective, since TrX,∆ : F e

˚LÑ OX is surjective, and
dimW “ 0. The upper horizontal arrow is surjective by

H1
pX,OXpppe ´ 1qL`Mq b IW q “ 0.

Thus, the lower horizontal arrow is surjective, and so the proof of base point freeness
is completed.

The following lemma was used in the proof.

Lemma 3.2.5. Let pX, a1D1`a2D2q be a log canonical two dimensional pair, such
that a1, a2 P Rě0 and D1 together with D2 are Cartier divisors, intersecting at a
singular point x P X. Then a1 ` a2 ď 1.

Of course, the lemma is not true, when x is a smooth point.

Proof. Consider a minimal resolution of singularities π : rX Ñ X. Write

K
rX `∆

rX ` π
˚
pa1D1 ` a2D2q “ π˚pKX ` a1D1 ` a2D2q.

Since π is a minimal resolution, we have that ∆
rX ě 0.

Take an exceptional curve C over x. Since D1 and D2 are Cartier, the coefficient
of C in ∆

rX`π
˚pa1D1`a2D2q is greater or equal a1`a2. Since pX,∆

rX`π
˚pa1D1`

a2D2qq is log canonical, this concludes the proof of the lemma.

Now, the proof of the Theorem 1.0.4 is straightforward.

Proof of Theorem 1.0.4. It follows directly from Theorem 2.1.7, Proposition 3.2.2,
Proposition 3.2.3 and Theorem 1.0.3.



3. Effective bounds on surfaces 40

3.3 Generalization of the main theorem

In this section we present a technical generalisation of Theorem 1.0.4.

Theorem 3.3.1. Let X be an F -pure projective surface defined over an algebraically
closed field of characteristic p ą 0. Assume that mKX is Cartier for some m P N.
Let L be an ample Cartier divisor on X and let N be any nef Cartier divisor. The
following holds.

• If X is neither of general type nor quasi-elliptic with κpXq “ 1, then

2mKX ` 8mL`N is base point free, and

8mKX ` 32mL`N is very ample.

• If p “ 3 and X is quasi-elliptic with κpXq “ 1, then

2mKX ` 12mL`N is base point free, and

8mKX ` 48mL`N is very ample.

• If p “ 2 and X is quasi-elliptic with κpXq “ 1, then

2mKX ` 16mL`N is base point free, and

8mKX ` 64mL`N is very ample.

• If p ě 3 and X is of general type, then

4mKX ` 12mL`N is base point free, and

16mKX ` 48mL`N is very ample.

• If p “ 2 and X is of general type, then

4mKX ` 22mL`N is base point free, and

16mKX ` 88mL`N is very ample.

The bounds are rough. The theorem is a direct consequence of the following
proposition.

Proposition 3.3.2. Let X be a projective surface defined over an algebraically
closed field of characteristic p ą 0. Let L be an ample Cartier divisor on X. Then

BpaKX ` bLq Ď SingpXq,

where
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• a “ 1, b “ 4, if X is neither of general type nor quasi-elliptic,

• a “ 1, b “ 6, if X is quasi-elliptic with κpXq “ 1 and p “ 3,

• a “ 1, b “ 8, if X is quasi-elliptic with κpXq “ 1 and p “ 2,

• a “ 2, b “ 5, if X is of general type and p ě 3,

• a “ 2, b “ 11, if X is of general type and p “ 2.

Proof. It follows from Proposition 3.1.5, by exactly the same proof as of Proposition
3.2.2.

Proof of Theorem 3.3.1. It follows directly from Theorem 2.1.7, Proposition 3.3.2,
Proposition 3.2.3 and Theorem 1.0.3.

3.4 Matsusaka-type bounds

The goal of this section is to prove Corollary 1.0.5. The key part of the proof is the
following proposition.

Proposition 3.4.1. Let A be an ample Cartier divisor and let N be a nef Cartier
divisor on a normal projective surface X. Then kA´N is nef for any

k ě
2A ¨ pH `Nq

A2
ppKX ` 3Aq ¨ A` 1q ` 1.

Proof. The proof is exactly the same as [8, Theorem 3.3]. The only difference is
that for singular surfaces, the cone theorem is weaker, so we have KX ` 3D in the
statement, instead of KX ` 2D.

The following proof is exactly the same as of [8, Theorem 1.2].

Proof of Proposition 1.0.5. By Theorem 1.0.4, we know that H is very ample. By
the above proposition, we know that kA´ pH `Nq is a nef Cartier divisor. Thus,
by Theorem 1.0.4

H ` pkA´ pH `Nqq “ kA´N

is very ample.

Applying Theorem 3.3.1, we obtain the following.
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Corollary 3.4.2. Let A and N be respectively an ample and a nef Cartier divisor on
an F -split projective surface defined over an algebraically closed field of characteristic
p ą 0. Let m P N be such that mKX is Cartier. Then kA ´N is very ample for
any

k ą
2A ¨ pH `Nq

A2
ppKX ` 2Aq ¨ A` 1q,

where

• H :“ 8mpKX ` 4Aq, if X is neither quasi-elliptic with κpXq “ 1, nor of
general type,

• H :“ 8mpKX ` 8Aq, if X is quasi-elliptic with κpXq “ 1 and p “ 3,

• H :“ 8mpKX ` 19Aq, if X is quasi-elliptic with κpXq “ 1 and p “ 2,

• H :“ 8mp2KX ` 8Aq, if X is of general type and p ě 3,

• H :“ 8mp2KX ` 19Aq, if X is of general type and p “ 2.

3.5 Effective vanishing of H1

The goal of this section is to present the proof of Theorem 1.0.6. It is an unpublished
result of Hiromu Tanaka. We are grateful to him for allowing us to attach his proof
in our paper.

First, we need the following lemma.

Lemma 3.5.1 ([30, Lemma 10],[16, Section 3.1]). Let C be a smooth projective
curve defined over an algebraically closed field of characteristic p ą 0, let B be an
effective Q-divisor, and let A be an ample Q-divisor on C, such that both KC`B`A
and ppe ´ 1qB are Cartier for some natural number e ą 0. Further, suppose that
degB ď 1. Then

TreC,BpKC ` Aq : H
0
`

C,KC `B ` p
e
pKC ` Aq

˘

Ñ H0
`

C,KC `B ` pKC ` Aq
˘

is surjective.

Proof. This is an immediate consequence of Proposition 2.3.4.

Proof of Theorem 1.0.6. Assume that m ‰ 1. The proof for m “ 1 is analogous.
We claim that

H1
pX,mKX ` kH ` Aq » H1

pX,mKX ` pk ` 1qH ` Aq

for all k ě 1. This claim, together with Serre vanishing, concludes the proof.
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Since H is very ample, we can assume that it is a smooth irreducible curve
such that SuppH X SingpXq “ H. Take a Q-divisor B such that ppe´ 1qpKX `Bq
is Cartier for divisible enough e " 0 and pm ´ 2qKX ` A ´ B is ample. We can
assume, that degB is negligibly small, in particular degB ď 1.

Set Dk :“ KX `H ` ppk´ 1qH ` pm´ 2qKX `A´Bq. Since, pm´ 1qKX `A
is nef, DK is ample. By Lemma 2.2.9, we have the following commutative diagram:

H0
`

X,KX`H`B ` peDk

˘

H0
`

H,KH`B|H ` peDk|H
˘

H1
`

X,KX`B ` peDk

˘

H0
`

X,KX`H`B `Dk

˘

H0
`

H,KH`B|H `Dk|H
˘

,

TrX,H`BpDkq TrH,BpDkq

where KX `H `B `DK “ mKX ` pk ` 1qH ` A.
By Serre vanising, H1pX,KX ` B ` peDkq “ 0 for e " 0, and so the upper

horizontal arrow is surjective. Futher, by the fact that

Dk|H “ KH ` ppk ´ 1qH ` pm´ 2qKX ` A´Bq|H ,

the middle vertical arrow TrH,BpDkq is surjective as well, by Lemma 3.5.1.
Henceforth, the lower horizontal arrow is surjective. Since

H1
pH,KH `Dk|Hq “ 0,

the claim holds by considering the long exact sequence of cohomologies.



CHAPTER 4

Globally F -regular varieties

In this chapter we consider globally F -regular varieties. First, we will try to explain
that globally F -regular varieties are positive characteristic counterparts of klt log
Fano varieties. Second, we will discuss F -spliteness in the case of surfaces.

We start by recalling basic properties of globally F -regular varieties. The
theorem below underpins the theory.

Theorem 4.0.1 ([31, Theorem 4.3]). Let pX,∆q be a globally F -regular variety.

Then, there exists an effective divisor p∆ such that ∆ ď p∆ and pX, p∆q is a klt log
Fano pair.

Further, there is the following correspondence between local and global F -
regularity.

Proposition 4.0.2 ([31, Proposition 5.3]). Let pX,∆q be a log pair with a fixed
embedding X Ď Pn. Then pX,∆q is globally F -regular (F -split) if and only if
pConepXq,Conep∆qq is strongly F -regular (F -pure, respectively).

Here, ConepXq denotes the cone of X inside An`1.

Proposition 4.0.3 ([43]). Let pX,∆q be a log Fano pair, and let m P N be such
that ´mpKX ` ∆q is very ample. Consider an embedding X Ď Pn induced by
´mpKX `∆q. Then pConepXq,Conep∆qq is kawamata log terminal.

The following two proofs are copied from the soon-to-be-published paper of
Cascini, Tanaka and Witaszek.
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Lemma 4.0.4. Let pY,∆q be a globally F -regular log pair, let X be a normal
variety, and let f : Y Ñ X be a proper birational morphism. Then, pX, f˚∆q is
globally F -regular.

Proof. For every divisor D on X and a sufficiently divisible e ą 0, the Frobenius
morphism

OY ÝÑ OY pxppe ´ 1q∆y` π˚Dq

splits. Let U Ď X be a subscheme of codimension at least two, such that f : f˚U Ñ
U is an isomorphism. By the above, we get that the Frobenius morphism

OU ÝÑ OUpxppe ´ 1qf˚∆y`Dq

splits. Since U is of codimension at least two, the lemma follows.

Lemma 4.0.5 (cf. [22, Propostion 2.11]). Let pY,∆Y q and pX,∆Xq be normal log
pairs. Suppose we have a proper birational morphism π : Y Ñ X, such that

KY `∆Y “ π˚pKX `∆Xq.

Then pX,∆Xq is globally F -regular if and only if pY,∆Y q is globally F -regular.

Proof. If pX,∆Xq is globally F -regular, then pY,∆Y q is globally F -regular by
[22, Propostion 2.11]. The other direction follows by Lemma 4.0.4.

4.1 Reduction modulo p of a log Fano pair

In this section, we consider the following theorem.

Theorem 4.1.1 ([31, Theorem 5.1]). Let pX,∆q be a log Fano pair defined over
an algebraically closed field of characteristic zero. Then, for p " 0, the reduction of
pX,∆q modulo p is globally F -regular.

First, we present a proof of this theorem from [31]. After that, we give a new
proof of it, made up by the author, in the case when X is smooth and ∆ is a simple
normal crossing divisor.

4.1.1 Reduction modulo p in the local setting

By Proposition 4.0.2 and Proposition 4.0.3, the proof of Theorem 4.1.1, follows
from the following.

Theorem 4.1.2. Let pX,∆q be a klt pair defined over an algebraically closed field
of characteristic zero. Then, for p " 0, the reduction of pX,∆q modulo p is strongly
F -regular.
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Before starting the proof, we need to state Hara’s surjectivity lemma.

Theorem 4.1.3 (Hara’s surjectivity lemma [5, Lemma 23.1]). Suppose that R is a

ring of characteristic zero, π : rX Ñ SpecR is a log resolution of singularities, D is
a π-ample Q-divisor with simple normal crossing support. We reduce this setup to
characteristic p " 0. Then, the natural map

pF e
q
^ : H0

p rX,F e
˚ω rXprp

eDsqq “ HomO
ĂX
pF e
˚O rXpt´p

eDuq, ω
rXq ÝÑ

HomO
ĂX
pO

rXpt´Duq, ω
rXq “ H0

p rX,ω
rXprDsqq

surjects.

Note, that pF eq^ is obtained by taking the dual of the Frobenius F e : O
rX Ñ F e

˚O rX ,
tensoring by ω

rX and restricting to certain subsheaves of considered sheaves.

Proof of Theorem 4.1.2. For simplicity, we will show only that pX,∆q is F -pure.
Since X is local affine, by perturbing ∆ we may assume that ppe´1qpKX`∆q „ 0

for divisible enough e ą 0.
Replace pX,∆q by its reduction modulo p for some p " 0. We need to show

that TreX,∆ is surjective (see Proposition 2.2.2). Let π : rX Ñ X be a log resolution

of singularities and let r∆ be such that

K
rX `

r∆ “ π˚pKX `∆q.

Consider the following commutative diagram (c.f. Section 2.2):

π˚F
e
˚O rXppp

e ´ 1qr∆q π˚O rX

F e
˚OXpppe ´ 1q∆q OX .

Tre
ĂX,Ă∆

» »

TreX,∆

Since t∆u “ 0, this induces:

π˚F
e
˚O rXpr´

r∆sq π˚O rXpr´
r∆sq

F e
˚OX OX .

Tre
ĂX,Ă∆

Ď »

TreX,∆

Since pX,∆q is klt, r´r∆s is effective, and so the right vertical arrow is an isomor-
phism.

Take a π-anti-ample effective exceptional Q-divisor E such that r´r∆ ´ Es “

r´r∆s. Since E is exceptional, the diagram above induces
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π˚F
e
˚O rXpr´

r∆´ peEsq π˚O rXpr´
r∆´ Esq

F e
˚OX OX .

Tre
ĂX,Ă∆

Ď »

TreX,∆

In order to show surjectivity of the trace map TreX,∆, it is enough to show that

Tre
rX,r∆

: π˚F
e
˚O rXpr´

r∆´ peEsq Ñ π˚O rXpr´
r∆´ Esq

is surjective. Since ´r∆ “ K
rX ´ π˚pKX `∆q and ppe ´ 1qpKX `∆q „ 0, we get

isomorphisms

π˚F
e
˚O rXpr´

r∆´ peEsq π˚O rXpr´
r∆´ Esq

π˚F
e
˚ω rXpr´p

eπ˚pKX `∆q ´ peEsq π˚ω rXpr´π
˚pKX `∆q ´ Esq,

Tre
ĂX,Ă∆

» »

pF eq^

where pF eq^ is as in Theorem 4.1.3. The diagram commutes, because both pF eq^

and Tre
rX,r∆

are obtained by taking the dual of the Frobenius F e : O
rX Ñ F e

˚O rX ,

tensoring by ω
rX and restricting to certain subsheaves of considered sheaves.

Applying Theorem 4.1.3 with D “ ´π˚pKX ` ∆q ´ E, we get that pF eq^ is
surjective, which concludes the proof.

4.1.2 Reduction modulo p in the global setting

Here, we give a new proof of Theorem 4.1.1 in the case when X is smooth and ∆ is
a simple normal crossing divisor. The advantage of this proof is that it does not
involve any transition to a local problem. As before, for simplicity, we only show
global F -spliteness.

In [44], one can find a proof of Theorem 4.1.1 when X is a smooth Fano variety
(∆ “ 0). The following proposition is motivated by their chain of ideas.

Proposition 4.1.4. Let pX,∆q be a smooth klt n-dimensional pair over an alge-
braically closed field of characteristic p ą 0. Assume that ∆ is an simple nor-
mal crossing divisor whose coefficients have denominators indivisible by p. Set
∆k “

1
pk

tpk∆u.
If for all k ě 0, we have

• H ipX,Ωn´i`1plogEqppkpKX `∆kqqq “ 0 for 0 ď i ď n´ 2, and

• H ipX,Ωn´iplogEqppk`1pKX `∆k`1qqq “ 0 for 0 ď i ď n´ 1
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then pX,∆q is globally F-split.

Observe that for e ą 0 such that ppe ´ 1q∆ is a Weil divisor, we have pe∆e “

ppe ´ 1q∆.

Remark 4.1.5. We do not assume that pX,∆q is a log Fano variety. In particular,
we get, that if those cohomological criterions are satisfied, then pX,∆q is a log Fano
variety.

Remark 4.1.6. The first condition holds by Kodaira-Akizuki-Nakano, and the second
one by Serre vanishing if X is a reduction mod p " 0 of a log Fano variety of
characteristic zero. In particular, this shows Theorem 4.1.1, when X is smooth and
∆ is a simple normal crossing divisor.

Proof of Proposition 4.1.4. Take 0 ď k ď e´ 1. By the enhanced Cartier isomor-
phism (see Theorem 2.3.3), with B “ pk`1p∆k`1 ´∆kq, we get the following exact
sequences

0 ÝÑ F˚Z
i
ÝÑ F˚Ω

i
XplogEqppk`1

p∆k`1 ´∆kqq ÝÑ F˚B
i`1
ÝÑ 0

0 ÝÑ F˚B
i
ÝÑ F˚Z

i
ÝÑ Ωi

XplogEq ÝÑ 0,

where Z‚ and B‚ are complexes of cycles and boundaries, respectively.
We tensor it by pkpKX `∆kq, and get:

0 Ñ F˚Z
i
ppk`1

pKX `∆kq Ñ F˚Ω
i
XplogEqppk`1

pKX `∆k`1qq Ñ F˚B
i`1
ppk`1

pKX `∆kqq Ñ 0

0 Ñ F˚B
i
ppk`1

pKX `∆kqq Ñ F˚Z
i
ppk`1

pKX `∆kqq Ñ Ωi
XplogEqppkpKX `∆kqq Ñ 0.

For i “ 0, the first sequence gives us:

0 ÝÑ OXppkpKX`∆kqq ÝÑ F˚OXppk`1pKX`∆k`1qq ÝÑ F˚pB
1ppk`1pKX`∆kqqq ÝÑ 0.

By Lemma 4.1.7, to prove that pX,∆q is globally F-split, it is enough to show that

Hn´1
pX,F˚B

1
ppk`1

pKX `∆kqqq “ 0

for all k ě 0. By the second exact sequence, this follows from the vanishing of:

Hn´2
pX,Ω1

XplogEqppkpKX `∆kqqq “ 0, and

Hn´1
pX,F˚Z

1
ppk`1

pKX `∆kqqq “ 0.

Now, by the first sequence, the vanishing of the latter group follows from the
vanishing of:

Hn´1
pX,F˚pΩ

1
XplogEqppk`1

pKX `∆k`1qqqq “ 0, and

Hn´2
pX,F˚B

2
ppk`1

pKX `∆kqqq “ 0.

Recursively proceeding in same way concludes the proof.
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Lemma 4.1.7. Let pX,∆q be a log pair of dimension n. Assume that

Hn
pX,ωXq Ñ Hn

pX,F e
˚ω

pk

X ptpp
e
´ 1q∆uqq

is injective for enough divisible e " 0, where the map is induced by the Frobenius.
Then pX,∆q is globally F-split.

Proof. It is enough to show that the evaluation by the Frobenius map

HompF e
˚OXptppe ´ 1q∆uq,OXq ÝÑ HompOX ,OXq

is surjective. By Serre duality, it is equivalent to the injectivity of

Hn
pX,ωXq Ñ Hn

pX,ωX b F
e
˚OXptppe ´ 1q∆uqq.

Since the exceptional locus of a minimal resolution of a log terminal singularity
is a simple normal crossing divisor, the above proposition and Lemma 4.0.5 imply
Proposition 1.0.7.

4.2 Log del Pezzo pairs

4.2.1 Bounds on log del Pezzo pairs

The goal of this subsection is to prove Theorem 1.0.8. We need the following facts.

Proposition 4.2.1. Let pX,∆q be a weak ε-klt log del Pezzo pair for ε ą 0. Let
π : X Ñ X be the minimal resolution. Then

(a) 0 ď pKX `∆q2 ď maxp64, 8{ε` 4q,

(b) rk PicpXq ď 128p1{εq5

(c) 2 ď ´E2 ď 2{ε for any exceptional curve E of π : X Ñ X

(d) If m is a Q-factorial index at some point x P X, then

m ď 2p2{εq128{ε5 .

Proof. Point (a) follows from [7, Theorem 4.4]. Points (b) and (c) follow from
[28, Theorem 1.8] and [28, Lemma 1.2], respectively. Last, (d) follows from the
fact that the Cartier index of a divisor divides the determinant of the intersection
matrix of the minimal resolution of a singularity (see also the paragraph below
[7, Theorem A]).
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Further, we need to prove the following:

Lemma 4.2.2. Let pX,∆q be a weak klt log del Pezzo pair of Cartier index m.
Then

1. 0 ď pKX `∆qKX ď 3mmaxp64, 8m` 4q, and

2. |K2
X | ď 128m5p2m´ 1q.

The Cartier index of pX,∆q is the minimal number m P N such that mpKX`∆q
is Cartier. If pX,∆q is klt, then it must be 1{m-klt.

Proof. The non-negativity in p1q is clear, since
`

KX `∆
˘

KX “
`

KX `∆
˘2
´
`

KX `∆
˘

∆ ě 0.

Let π : X Ñ X be the minimal resolution of singularities of X. Let ∆X be such
that KX `∆X “ π˚

`

KX `∆
˘

. Note that
`

KX `∆X

˘

KX “
`

KX `∆
˘

KX .

By Lemma 3.2.1, KX ´ 3m
`

KX `∆X

˘

is nef, and so
`

KX `∆X

˘

¨
`

KX ´ 3m
`

KX `∆X

˘˘

ď 0.

This, together with (a) in Proposition 4.2.1, implies p1q.
To prove p2q, we proceed as follows. First, by (b) in Proposition 4.2.1, we have

rk PicpXq ď 128m5, and so ´9 ď ´K2
X
ď 128m5. Indeed, the self intesection of

the canonical bundle on a minimal model of a rational surface is 8 or 9, and each
blow-up decreases it by one.

Write
KX `

ÿ

aiEi “ π˚KX ,

where Ei are the exceptional divisors of π. Notice, that since X Ñ X is minimal
and X is klt, we have 0 ď ai ă 1. By applying (b) and (c) from Proposition 4.2.1,
we obtain

|K2
X | “

ˇ

ˇ

`

KX `
ÿ

aiEi
˘

¨KX

ˇ

ˇ

ď
ˇ

ˇKX

ˇ

ˇ

2
` 128m5

`

|Ei|
2
´ 2

˘

ď 128m5
p2m´ 1q.

Proof of Theorem 1.0.8. By Theorem 1.0.4 and Theorem 1.0.6, the divisor H :“
aKX ´ bpKX `∆q is very ample, and H ipX,Hq “ 0 for i ą 0. The bounds on H2,
H ¨KX and H ¨∆ follow from Proposition 4.2.1 and Lemma 4.2.2.

Since H0pX,Hq “ χpHq, the last part follows from the Riemann-Roch theorem.



4. Globally F -regular varieties 51

4.2.2 Proof of Theorem 1.0.8

The goal of this section is to prove Theorem 1.0.8. The idea of the proof is to
construct a Z-bounded family of ε-klt log del Pezzo pairs, and use Theorem 4.1.1.

The construction of the bounded family is standard, but we review it for the
convenience of the reader.

Proposition 4.2.3 (cf. [2, Lemma 1.2]). Let I Ď r0, 1s XQ be a finite set. Take
ε ą 0. Then there exists a bounded family X Ñ Z, where Z is a scheme of finite
type over SpecZ, together with a Q-divisor Ξ Ď X satisfying the following property.

If pX,Bq is an ε-klt log del Pezzo pair defined over an algebraically closed field K
and such that the coefficients of B are contained in I, then it is a fiber of pX ,Ξq Ñ Z
up to base change of the field. More precisely, there exists a, nonnecessarily closed,
point q P Z such that

X » Xq bOZ,q{q K, and

∆ » Ξq bOZ,q{q K,

where the two isomorphisms are compatible. By abuse of notation, q also denotes
the prime ideal corresponding to the chosen point.

Proof. Let pX,Bq be an ε-klt log del Pezzo pair defined over an algebraically closed
field K such that the coefficients of B are contained in I. Take bpI, εq and H as in
Theorem 1.0.8.

By representability of the Hilbert functor over Z, there exists n P N and a
finitely generated subscheme H Ď HilbZ Pn together with a universal family

U Ď HilbZPn ˆ Pn

H Ď HilbZPn

such that X is a fiber of it up to base change of the field. Note that the choice of
the scheme H depends only on bpI, εq. Now, we need to enlarge the family to be
able to construct the divisor Ξ.

Let m be least common multiple of denominators of the elements in I. In
particular, mB is Weil. Since, it is easier to work with Weil divisors, we focus on
constructing mΞ.

Let HilbHpUq be the relative Hilbert scheme of subschemes of fibers in U Ñ H,

and let rH Ď HilbHpUq be a finite type subscheme parametrizing Weil divisors D in
those fibers such that

degOPnp1q|D ď mbpI, εq.
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Let rUdiv Ñ rH be the universal family over rH. Its fibers are exactly one-dimensional
schemes in Pn lying on appropriate surfaces, and satisfying the above inequality.
Consider the following diagram:

rUdiv U ˆH rH U

rH H

φ

where φ is the natural map coming from the construction of the relative Hilbert
scheme. We take X :“ U ˆH H and Ξ :“ 1

m
φpUdivq. By restricting to a suitable

open subscheme of H, we may assume that Ξ is a divisor.

Since ampleness of line bundles and having klt singularties are both open
conditions, we can assume that all fibers of the constructed family pX ,Ξq Ñ SpecR
are klt log del Pezzo pairs.

Proof of Theorem 1.0.9. Let pX ,Ξq Ñ Z be the bounded family as above. By
covering Z by a finite number of open sets, it is enough to show the proposition
only for those log del Pezzo pairs which are isomorphic to fibers of X over some
open set SpecR Ď Z up to base change of the field.

The ring R is a finitely generated Z-module, and so X |SpecR Ñ SpecR is a
model of the log del Pezzo pair pXζ ,Ξζq where ζ is the generic point of SpecR. In
particular, by Theorem 4.1.1 there exists an open dense subset U Ď SpecR such
that the closed fibers of X |U Ñ U are globally F -regular after a base change to an
algebraically closed field. Further, by applying an induction on the components of
SpecR zU which are dominant over SpecZ, we may assume that SpecR zU is not
dominant over SpecZ.

Thus for p " 0, the closed fibers over SpecR are globally F -regular. The global
F -regularity of fibers over nonclosed points of SpecR follows by openness of global
F -regularity in equi-characteristic families.

Notice, that existence of the Z-bounded family has a lot of consequences. For
example, for p0 " 0 depending on m, all log del Pezzo pairs pX,∆q of Cartier
index m defined over an algebraically closed field of characteristic p ą p0 are good
reductions from characteristic zero, and in particular they satisfy

H1
pX,Lq “ 0,

for any nef divisor L. In the last section of this article, we show that one can take
p0 “ 2m2.
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4.3 Effective bounds for vanishing

The goal of this section is to prove Theorem 1.0.10.
First, we state the following effective bound for Kodaira vanishing by Langer.

Theorem 4.3.1 ([45, Theorem 2.22]). Let L be a big and nef Cartier divisor on
a smooth projective variety X. If H0pX,ΩXp´p

mLqq “ 0 for all m ě 1, then
H1pX,´Lq “ 0.

Langer also proved:

Proposition 4.3.2 ([45, Theorem 2.22]). Let L be a big and nef Cartier divisor
on a smooth projective variety X. Then H1pX,´mLq “ 0 for m " 0.

We need the following generalization of Theorem 4.3.1 to the log case.

Proposition 4.3.3. Let pX,∆q be log pair such that X is smooth, t∆u “ 0 and
E :“ Suppp∆q is a simple normal crossings divisor. Let KX `∆` L be a Cartier
divisor on X, where L is a big and nef Q-divisor. If

H0
pX,Ω1

XplogEqp´pkL´∆1
qq “ 0

for all k ě 1 and all Q-divisors ∆1 ě 0 such that

• t∆1u “ 0,

• Suppp∆1q Ď E, and

• pkL`∆1 is Cartier,

then
H1
pX,KX `∆` Lq “ 0.

Proof. By the generalized Cartier isomorphism (Theorem 2.3.3), we get the following
exact sequence

0 ÝÑ OX ÝÑ F˚OXpBq Ñ F˚pΩXplogEqpBqq.

Set B :“ tp∆u. After tensoring this sequence by ´L´∆, we get

0 ÝÑ OXp´L´∆q ÝÑ F˚OXp´pL´∆1q Ñ F˚pΩXplogEqp´pL´∆1qq,

where ∆1 “ tp∆u :“ p∆´ tp∆u.
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By Serre duality H1pX,KX `∆` Lq “ H1p´L´∆q. By the above sequence,
in order to show the vanishing of this cohomology group, it is sufficient to prove
that

H1
pX,F˚OXp´pL´∆1qq “ 0, and,

H0
pX,F˚pΩXplogEqp´pL´∆1qqq “ 0.

The latter holds by our assumption. To prove the former, we repeat the same
argument with L,∆ replaced by pL,∆1.

Set recursively ∆k “ tp∆k´1u for k ě 2. By repeating this procedure many
times, we see that it is enough to show

H1
pX,´pkL´∆kq “ 0

for some k ě 1. Notice that ∆k “ 0 for k " 0. Indeed, for a P QXp0, 1q, taking tpau
removes the first digit in the base-p expansion, and shifts the expansion “left”. Since
any rational number has a finite base-p expansion, this algorithm must terminate
after a finite number of steps.

Now, the vanishing of H1pX,´pkLq for k " 0 follows from Proposition 4.3.2.

Now, we can prove Theorem 1.0.10.

Proof of Theorem 1.0.10. Let π : rX Ñ X be a minimal resolution of singularities.
Take a divisor ∆ so that

K
rX `∆ “ π˚KX .

By the classification of klt singularities, ∆ is a simple normal crossing divisor. Let
E “ Suppp∆q.

By [26], klt surface singularities are rational, and hence it is enough to show

that H1p rX, π˚Lq “ 0. Set M “ π˚L´ pK
rX `∆q. Note that M is big and nef. By

Proposition 4.3.3, in order to prove our vanishing, it is enough to verify that

H0
p rX,Ω1

rX
plogEqp´pkM ´∆1

qq “ 0

for all k ě 1 and all Q-divisors ∆1 ě 0 such that

• t∆1u “ 0,

• Suppp∆1q Ď E, and

• pkL`∆1 is Cartier.
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Set N “ pkM `∆1. By [19, Lemma 4.2.4], we have an inclusion:

Ω1
rX
plogEq Ď Ω1

rX
pEq,

so it is enough to show that H0p rX,Ω1
rX
p´N ` Eqq “ 0.

Let ρ : rX Ñ rXmin be a minimal model map. It is enough to show that
H0p rXmin,Ω

1
rXmin
p´ρ˚N ` ρ˚Eqq “ 0, where the pushforward is ment as an op-

eration on divisors.

We need to consider two cases.

Case 1 rXmin » P2.
By the Euler exact sequence, we have a natural inclusion

Ω1
P2p´ρ˚N ` ρ˚Eq Ď OP2p´ρ˚N ` ρ˚E ´Hq

‘3,

where H is a divisor of a line on P2. To get a desired vanishing, it is enough to
show that p´ρ˚N ` ρ˚E ´Hq ¨H ă 0.

We have that
´pK

rX `∆q ¨ ρ˚H ě 0,

and so

2 “ ´K
rX ¨ ρ

˚H ě ∆ ¨ ρ˚H ě
1

m
E ¨ ρ˚H,

since m∆ is a Z-divisor supported on E. Now,

p´ρ˚N ` ρ˚E ´Hq ¨H ă ´pkM ¨ ρ˚H ` E ¨ ρ˚H ď
´pk

m
` 2m ď 0,

where the sublast inequality followed from the fact that mM is Cartier.

Case 2 rXmin » ProjpOP1 ‘OP1pnqq for n ď 0.
Let f be the fiber of the natural projection to P1, and let C be the normalized

section. We have an exact sequence

0 ÝÑ O
rXmin
p´2fq ÝÑ Ω1

rXmin
ÝÑ Ω1

rXmin{P1 ÝÑ 0,

and a natural inclusion coming from the Euler exact sequence

Ω1
rXmin{P1 Ď O rXmin

p´C0q ‘O rXmin
p´C0 ` nfq.

Since an effective divisor has a nonnegative intersection with f , mixing the
above, we see that it is enough to show

p´N ` Eq ¨ ρ˚f ă 0.
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As before, we have

2 “ ´K
rX ¨ ρ

˚f ě ∆ ¨ ρ˚f ě
1

m
E ¨ ρ˚f.

Hence

p´N ` Eq ¨ ρ˚f ă ´pkM ¨ ρ˚f ` E ¨ ρ˚f ď
´pk

m
` 2m ď 0.
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