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Abstract

In those notes, we give an overview of various approaches to mul-
tiplier ideal sheaves. Further, we discuss about singularities of the
theta-null divisor on a moduli space of principally polarized abelian
varieties.

1 Introduction

Multiplier ideal sheaves play a crucial role in modern algebraic geometry.
Being developed as a tool to study solutions of certain partial differential
equation, they turned out to be a significant invariant of singularities of
complex and algebraic singularities.

There are two main aims of those notes. Firstly, we show how to under-
stand multiplier ideal sheaves from perspectives of geometry, analysis and
arithmetic. We present the proof of the fact that the reduction mod big
enough p of a multiplier ideal sheaf coincide with so called big test ideal –
an ideal coming from Frobenius actions. Moreover, we briefly explain, how
the main invariant of multiplier ideal sheaves, the log canonical threshold,
is related to differential operators and jet spaces.

Secondly, we discuss singularities of theta divisors – symmetric ample
divisors on abelian varieties, whose associated line bundles have only one
section. Those divisors are of surprising importance in algebraic geometry.

The story starts with a discovery that the theta divisor on the Jacobian
of a curve can be used to study the geometry of the curve itself. More-
over, the celebrated Torelli theorem says the Jacobian with the theta divisor
distinguishes the curve uniquely. It raised the following natural question,
known as the Schottky problem: which abelian varieties are Jacobians of
curves. It is believed that this problem is strongly related to understanding
singularities of theta divisors. The study of singularities of theta divisors
were further motivated by an astonishingly beautiful result of Clemens and
Griffiths. Comparing singularities of the theta divisors of intermediate ja-
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cobians of cubic threefolds and of rational threefolds, they showed that the
former are not rational.

Having explained the importance of the singularities of theta divisors,
let us briefly sketch the history of the research about them. First, George
Kempf proved that the theta divisors of Jacobians are irreducible, normal
and have rational singularities, and conjectured that in the general case of
an irreducible theta divisor on an abelian variety, the singularities should be
always rational. Later on, Kollar proved that normal theta divisors are log
canonical. But it was not before Ein and Lazarsfeld ([5]), that the conjecture
of Kempf has been cracked. The key point in the proof was their celebrated
generic vanishing theorem.

Given that singularities of theta divisors on abelian varieties have been
better understood, it is natural to ask about singularities of special divi-
sors on moduli spaces of abelian varieties. In those notes, we will discuss a
question raised by Prof. Shepherd-Barron – what can we say about singular-
ities of the so-called theta-null divisor. We show that standard techniques
of dealing with the problem does not lead to a success. We hope that our
overview would be helpful for somebody who would try to undertake this
question again.

The notes are organised in the following way. In Section 2 we discuss a
general theory of multiplier ideal sheaves. In Section 3, we present the proof
of the fact that singularities of irreducible theta divisors are log canonical
and rational. Further, we give a sketch of a proof of the generic vanishing
theorem. In Section 4 we give an overview of the theory of moduli spaces
of principally polarized abelian varieties, and discuss singularities of the
theta-null divisor.

The readers wanting to enhance their knowledge about algebro-geometric
theory of multiplier ideal sheaves are recommended to consult an excellent
book [9]. The analytic theory of multiplier ideal sheaves is well described
in [3]. For the Frobenius-related theory, we refer to unpublished notes of
Karl Schwede [6] or an article [4]. An overview of various approaches to
multiplier ideal sheaves may be found in [1]. As for the theory of moduli
spaces of principally polarized abelian varieties and singularities of special
divisors on them, we recommend the survey [10] or preliminaries in the
article [12].

2 Multiplier ideal sheaves and the log canonical
threshold

The goal of this section is to present different ways of approaching singu-
larities related to birational geometry, with a view toward the problem of
understanding singularities of the theta-null divisor. We believe that it may
serve as a brief but comprehensible independent survey of the theory.
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In contrast to the excellent article [1] from an International Congress
of Mathematicians, the following presentation is more down-to-earth, and
elaborates more on foundational results.

2.1 The geometric definition and properties of a multiplier
ideal sheaf

In this subsection we define multiplier ideal sheaves and present their basic
properties.

Definition 2.1. We say that pX,Dq is a log pair if KX �D is Q-Cartier,
where X is a projective variety over an algebraically closed field and D is
an effective Q-divisor on X

A multiplier ideal sheaf measures how singular a variety is.

Definition 2.2. Let pX,Dq be a log pair, and let µ : X Ñ X be a resolution
of singularities. We define the multiplier ideal sheaf of pX,Dq to be

IpX,Dq :� µ�OXprKX � µ�pKX �Dqsq.

We can show that a multiplier ideal sheaf does not depend on the choice
of a resolution. Using a multiplier ideal sheaf we can define:

Definition 2.3. Let pX,Dq be a log pair. We say that it is kawamata log
terminal (klt in short) if

IpX,Dq � OX .

We say that it is log canonical (lc in short) if

IpX, p1� εqDq � OX

for all 0   ε ! 1.

Equivalently, one can define klt (respectively lc) singularities as those
for which

ordEpKX{X � µ�Dq

is greater (respectively greater or equal) than �1 for any divisor E � X.
Now, we can define an important invariant of singularities.

Definition 2.4. We define the log canonical threshold (LCT in short) of a
log pair pX,Dq, such that pX, 0q is klt, to be

lctpX,Dq � suptλ P R¡0 | IpX,λDq � OXu.

Further, if λ P R¡0 is such that

IpX,λDq � IpX, pλ� εqDq,

for any ε ¡ 0, then we call λ a jumping number.
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Note that the log canonical threshold is the greatest jumping number.
The importance of multiplier ideal sheaves is justified by the following

vanishing theorem.

Theorem 2.5 (Nadel vanishing [9, Theorem 9.4.17]). Let pX,∆q be a log
pair in characteristic 0 and let D be a big and nef Q-Cartier divisor such
that KX �∆�D is Cartier. Then

H ipX,OXpKX �∆�Dq b IpX,∆qq � 0

for i ¡ 0.

If pX,∆q is klt, then it recovers Kawamata-Viehweg vanishing theorem.
For further applications, let us note the following lemma, which says that

that by restricting to a subvariety, the singularities may only get worse.

Lemma 2.6 ([9, Theorem 9.5.1]). Let pX,∆q be a log pair and let H � X
be a normal variety such that H � Supp ∆. Let ∆H � H be the restriction
of ∆ to H. Then IpH,∆Hq � IpX,∆qH , where the latter is the restiction
of IpX,∆q to H.

Moreover, note the following fact, which we will need later.

Proposition 2.7 (cf. [9, Theorem 9.3.37]). Consider a polynomial f P
Crx1, . . . , xns and assume that coefficients of monomials occuring in it are
sufficiently general. Let D be the divisor tfpxq � 0u. Then

IpX,Dq

does not depend on the coefficients of monomials in f .

For further usage, we remark the following: a log pair pX,Dq such that
D is an integral divisor, is log canonical if and only if pD, 0q is log canonical
(cf. [9, Corollary 9.5.11]).

2.2 The analytic definition of a multiplier ideal sheaf

The following section is based on [9] and [3]. Surprisingly, the singularities
of a divisor can be measured using purely analytic methods. A hypesurfaces
in Cn defined by a power series f P CJz1, . . . , znK is kawamata log terminal
if and only if 1

|f |2
is locally integrable!

In general, we have.

Proposition 2.8 ([3, Remark 5.9]). Let pX,Dq be a log pair such that X is
a smooth complex projective variety. Let

D �
¸
aiDi,
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and let Di be defined by a holomorphic function gi P OXpUq for some open
set U � X in the standard topology. Then.

IpX,DqanpUq � IpX,DqpUq :�

"
f P OXpUq

���� |f |2±
|gi|2ai

P L1
locpUq

*
,

where IpX,Dqan is the analytification of the multiplier ideal sheaf.

Proof. First, we show it in the case, when D is a simple normal crossing
divisor with a nonsingular point at some x P U . In this case IpX,DqpUq �
OXp�tDuqpUq, and so we are left to show that

|f |2±
|zi|2ai

is locally integrable at x if and only if |z1|
taiu � . . . � |zn|

tanu | f . Looking at
monomial ideals of f one by one, we see that the result follows from the
standard fact in analysis:

The function 1
|z|2a

in a complex variable z is locally integrable if

and only if a   1.

The case when D is general follows from the lemma below and a standard
change of coordinates formula

µ�pOY pKY q b IpY, µ�Dqq � OXpKXq b IpX,Dq,

where µ : Y Ñ X is a birational map.

Lemma 2.9 ([3, Proposition 5.8]). We keep the notation as above. Let
µ : Y Ñ X be a birational map, where Y is smooth. Then

µ�pOY pKY q b IpY, µ�Dqq � OXpKXq b IpX,Dq.

Proof. By definition, for an open subset U � X, we have that pOXpKXq b
IpX,DqqpUq consists of holomorphic forms f P OXpKXqpUq, such that

f ^ f̄±
|gi|2ai

P L1
loc.

Let S � X and µ�S � Y be the subsets where µ is not an isomorphism.
The key point is that

pOXpKXq b IpX,DqqpXzSq � pOXpKXq b IpX,DqqpXq,

that is, if you take a form f P pOXpKXq b IpX,DqqpXzSq, then f ^ f̄ P
L2

locpXzSq, and so it must extend to X.
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Hence, the lemma follows by noting that»
XzS

f ^ f̄±
|gi|2ai

�

»
Y zµ�pSq

µ�pfq ^ µ�pf̄q±
|µ�pgiq|2ai

implies that

µ�pOY pKY q b IpY, µ�DqqpXzSq � pOXpKXq b IpX,DqqpXzSq.

2.3 An arithmetic definition of the multiplier ideal sheaf

All the rings in this sections are assumed to be geometric and of positivie
characteristic, that is finitely generated over an algebraically closed field of
characteristic p ¡ 0. The section is based on [6] and [4].

One of the most amazing discoveries of singularity theory, is that prop-
erties of the Frobenius map may reflect how singular a variety is. This
observation is based on the fact that for a smooth local ring R, the e-times
iterated Frobenius map R Ñ F e�R splits. Further, the splitting does not
need to hold when R is singular.

This lead to a definition of F -split rings, rings R such that for big enough
e ¡ 0 the e-times iterated Frobenius map F e : RÑ F e�R splits. The problem
with this property is that, in general, it does not behave well. For example,
it is neither an open nor a close condition on fibers of a family.

Note, that F e : RÑ F e�R splits if and only if there exists a map φ : F e�RÑ
R such that 1 P φpF e�Rq. This suggests to consider rings which are F -split
“under all small perturbations”. More formally we say that R is strongly
F -regular if for every c P R z 0, there exists e ¡ 0 a map φ : F e�RÑ R such
that 1 P φpF e�cRq.

For log pairs, we have the following definition.

Definition 2.10. We say that a log pair pX,∆q, where X � SpecR for an
affine local ring R, is strongly F -regular if for every principal divisor D � X
there exists e ¡ 0 and a map φ P HomXpF

e
�OXprppe � 1q∆�Dsq,OXq such

that 1 P φpF e�OXq.

For general log pairs, we require those conditions to hold at every point.
This definition may seem a bit mysterious in the first glance. Let us

untangle it. Firstly, Grothendieck duality gives

HompF e�OX ,OXq � H0pX,ω1�pe

X q.

This explains the following.
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Proposition 2.11 ([11, Theorem 3.11, 3.13]). There is a natural bijecion.$&
%

Non-zero R-linear maps
φ : F e�RÑ R up to

pre-multiplication by units.

,.
-ÐÑ

$&
%

Effective Q-divisors ∆ on
X � SpecR such that

p1� peq∆ � �p1� peqKX

,.
-

The Q-divisor corresponding to φ : F e�RÑ R will be denoted by ∆φ.
Now, it is easy to see, that a log pair pX,∆q, where X is affine local,

is strongly F -regular if and only if for every principal divisor D � X there
exists a splitting φ : F e�OX Ñ OX such that ∆φ ¥ ∆� 1

pe�1D.
The same way klt singularities are detected by triviality of the corre-

sponding multiplier ideal sheaves, the strongly F -regular singularities are
related to the so-called big test ideal.

Definition 2.12. We define the big test ideal of an affine, local pX,∆q to
be the unique smallest non-zero ideal J � OX such that φpF e�Jq � J for
every φ P HomXpF

e
�OXprppe � 1q∆sq,OXq. We denote it by τpX,∆q.

Note that to evaluate φ on F e�J , we first embed φ into HomXpF
e
�OX ,OXq.

It is easy to see, that pX,∆q is strongly F -regular if and only if τpX,∆q �
OX . The big test ideal behaves well under taking localization, and it extends
to non-affine varieties.

The aim of this subsection is to show that a reduction modulo big
enoough p of the multiplier ideal sheaf is equal to the big test ideal. In
particular, for such reductions klt singularities and F -regular singularities
coincide.

In order to do so, we need to first understand how our theory behaves
under taking resolutions of singularities.

Proposition 2.13 ([13, Proof of Theorem 6.7], [4, Exercise 4.17]). Suppose
that π : rX Ñ X is a proper birational map of varieties, where X is normal,
and take φ P HomXpF

e
�OX ,OXq. Then φ induces a map

rφ : F e�O rXpp1� peqpK rX � f�pKX �∆φqqq Ñ O rX

which agrees with φ, where π is an isomorphism. Further rφ is a generator
of the space of maps between those two sheaves, and it induces

rφ : F e�O rXprK rX � f�pKX �∆φqsq Ñ O rXprK rX � f�pKX �∆φqsq.

By taking π�, we get a map

π�rφ : F e�IpX,∆φq Ñ IpX,∆φq.

In particular it shows that τpX,∆φq � IpX,∆φq. One can easily prove that
this, futher, implies the following.
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Corollary 2.14. For a log pair pX,∆q we have

τpX,∆q � IpX,∆q.

In particular, if pX,∆q is strongly F -regular, then it is klt.

In order, to achieve the aim of this section, we need two more technical
tools: test elements and Hara’s surjectivity lemma.

Definition 2.15. Let M be a torsion-free rank one R-module with a non-
zero map φ : F e�M Ñ M . We say that c is a test element for pM,φq if for
every N �M such that φpNq � N , we have that

cM � N.

By [6, Theorem 12.14] we have the following. If c P R is such that Rc is
regular and Mc � Rc, then c has some power which is a test element.

In particular, we get from this:

Proposition 2.16 ([4, Lemma 3.6], [6, Theorem 12.14]). Let pX,∆q be a
log pair such that X is affine. Consider a map φ P HompF e�OX ,OXq. Then,
a test element for pOX , φq exists.

The last piece is the following vanishing theorem.

Theorem 2.17 (Hara’s surjectivity lemma [6, Lemma 23.1]). Suppose that
R is a ring of characteristic zero, π : rX Ñ SpecR is a log resolution of
singularities, D is a π-ample Q-divisor with simple normal crossing support.
We reduce this setup to characteristic p " 0. Then, the natural map

pF eq^ : H0p rX,F e�ω rXprp
eDsqq � HomO

�X
pF e�O rXpt�p

eDuq, ω rXq ÝÑ

HomO
�X
pO rXpt�Duq, ω rXq � H0p rX,ω rXprDsqq

surjects.

Now, we can prove the main theorem of this section. The following
has been developed by many authors, including Smith, Takagi, Hara and
Yoshida. We refer to Schwede’s sketch of a proof, which does not use the
language of tight closure theory. We explain details of his proof.

Theorem 2.18 ([6, Theorem 17.8]). Let pX,∆q be a klt pair in character-
istic zero. Let pXp,∆pq be its reduction modulo p " 0. Then

τpXp,∆pq � IpXp,∆pq.

Proof. The inclusion in one direction follows from Corollary 2.14. Hence,
we are left to show that IpXp,∆pq � τpXp,∆pq. Without loss of generality
we may assume that X is a spectrum of an affine local ring.

Let π : rX Ñ X be a log resolution of singularities. Assume we found an
element d P H0pX,OXq, a π-ample snc Q-divisor D, a prime number p, a
number m P N, and a number e P N, such that
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1. rK rX � π�pKX �∆q �Ds � rK rX � π�pKX �∆qs,

2. the element dmp is a test element for pOXp , φXpq, where dp P H
0pXp,OXpq

is the reduction modulo p of d,

3. π�O rXpprK rXp � π�pKXp �∆pq � peDpsq � dmp OX ,

4. φ rXp is surjective, where

φXp : F e�OX Ñ OX is a map induced by ∆p, and where, obtained from
Proposition 2.13 by tensoring with Dp and taking round-up, we have a map

φ
�Xp

: π�F
e
�O�Xp

prK
�Xp
�π�pKXp �∆pq�p

eDpsq Ñ π�O�Xp
prK

�Xp
�π�pKXp �∆pq�Dpsq.

We assume that p is big enough so that the index of KX �∆ is not divisible
by p, and hence φX inducing ∆p exists by Proposition 2.11.

We finish the proof assuming the above conditions. We have the following
commutative diagram. Note that the first assumption implies that the object
in the upper right corner is exactly IpXp,∆pq.

π�F
e
�O�Xp

prK
�Xp
� π�pKXp �∆pq � peDpsq π�O�Xp

prK
�Xp
� π�pKXp �∆pq �Dpsq

F e�pd
m
p OXq OX

φ
�Xp

� �

φXp

Since φ rXp is surjective, we have that

φXppF
e
�pd

m
p OXqq � IpXp,∆pq.

But, by definition of the test element, τpXp,∆pq � φXppF
e
�pd

m
p OXqq, which

concludes the proof.
Now, we need to describe d, D, p and e. Choose d P H0pX,OXq such

that X z td � 0u is smooth and ∆ � td � 0u. Without loss of generality, by,
for example, changing the log resolution, we may assume that divpdq and
the exceptional locus are simple normal crossings. Take a relatively ample,
anti-effective Q-divisor �F and ε ¡ 0 such that, for D :� �F � εdivpdq, the
first property holds:

rK rX � π�pKX �∆q �Ds � rK rX � π�pKX �∆qs.

Now, for p " 0, we can find

• m ¡ 0 such that dmp is a test element, and

• e ¡ 0 such that the third condition holds.
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We are left to show the fourth condition, that is the surjectivity of φ rX . Since
ppe � 1qpKXp � ∆pq � 0 and φ rX comes from a generator (see Proposition
2.13), one can easily see that the surjectivity of φ rX is equivalent to the
surjectivity of

pF eq^ : H0p rX,F e�ωXpprp
ep�π�pKXp�∆pq�Dpqsqq Ñ H0p rX,ωXppr�π

�pKXp�∆pq�Dpsqq.

Here, we used that F e is a generator of a corresponding space of maps. Now,
the surjectivity follows from Hara’s lemma 2.17.

We finish by stating a very useful criterion for F-spliteness of hypersur-
faces.

Proposition 2.19 (Fedder’s criterion, cf. [4, Theorem 2.14]). Let k be an
algebraically closed field of characteristic p ¡ 0. Take a polynomial f P
krx1, . . . , xns. Then krx1, . . . , xns{pfq is F-split if and only if

fp�1 R pxp1, . . . , x
p
nq.

2.4 The log canonical threshold via Berstein-Sato polynomi-
als

Here we present a relation between log canonical threshold of a hypersurface
and a study of differential operators. The presentation is based on [1].

Take a nonzero polynomial f P Crx1, . . . , xns. We define the Weyl algebra
to be

An :� Crx1, . . . , xn, Bx1 , . . . , Bxns.

In the following, s denotes another variable.

Definition 2.20. We define Berstein-Sato polynomial to be the monic poly-
nomial of smallest degree for which there exists P P Anrss satisfying

bpsqfs � P ps, x, Bxq 
 f
s�1,

where 
 denotes the action of Anrss on Crx1, . . . , xn, ss.

The following theorem shows the magic of Berstein-Sato polynomials.

Theorem 2.21 ([1, Theorem 5.2]). Let Y � An be a scheme defined by
f P Crx1, . . . , xns and let λ P p0, 1s be a jumping number of pAn, Y q. Then
�λ is a root of Berstein-Sato polynomial of f . Further, the log canonical
threshold is its largest root.

The following application was probably known before.

Proposition 2.22. Consider f P Crx1, . . . , xn, y1, . . . , yms. Assume that

Byif �
¸
j

aijBxjf
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for some aij P C. Define fpx1, . . . , xnq :� fpx1, . . . , xn, 0, . . . , 0q. Then

LCTpfq � LCTpfq.

Proof. First, note that

Byif
s�1 �

¸
j

ai,jBxjf
s�1

Take the Berstein-Sato polynomial of fpx1, . . . , xn, y1, . . . , ymq together with
a corresponding differential operator P . By the relation above and the
commutativity of taking differentials, we may assume that P contains only
differentials Bx1 , . . . , Bxn .

Thus, by plugging yi � 0, we get

bpsqf
s
� P ps, x1, . . . , xn, 0, . . . , 0, Bx1 , . . . , Bxnq 
 f

s�1
.

Let b be the Berstein-Sato polynomial of f . By the above, we have that
b | b. Thus, by Theorem 2.21, we get LCTpfq ¥ LCTpfq.

The inequality in the other direction follows from Lemma 2.6.

2.5 The log canonical threshold via jet spaces

The following is based on [1]. Consider a smooth complex variety X.

Definition 2.23. We define the m-th space of jets of X to be

Xm :� HompSpecCrts{ptm�1q, Xq.

We have the following theorem of Mustata, which relates jet spaces to
the log canonical centre.

Theorem 2.24 ([1, Theorem 6.6]). Let X be a smooth complex variety, and
D � X a closed subscheme. The following holds:

LCTpX,Y q :� lim
mÑ8

codimpYm, Xmq

m� 1
.

Further, for m divisible enough the equality holds without taking a limit, that
is

LCTpX,Y q :�
codimpYm, Xmq

m� 1
.

The proof is based on properties of closed cylinders and the usage of
Change of Variable Theorem in motivic integration.
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3 Singularities of theta divisors on abelian vari-
eties

The aim of this section is to study singularities of theta divisors on prin-
cipally polarized abelian varieties. All varieties in this section are defined
over an algebraically closed field of characteristic 0.

3.1 Log canonicity of theta divisors

The following subsection is based on [9].

Definition 3.1. We say that pA, θq is a principally polarized abelian variety,
if A is an abelian variety, and θ � A is a symmetric ample divisor such that
H0pA, θq � 1.

The following theorem has been proven by Kollar.

Theorem 3.2 ([9, Theorem 10.1.6 ]). A principally polarized abelian variety
pA, θq, treated as a log pair, has log canonical singularities.

Proof. By definition of log canonicity, we need to show that Ipp1�εqθq � OA
for all 0   ε ! 1. Assume by contradiction that Ipp1� εqθq � OA.

Let Z � A be the scheme defined by Ipp1 � εqθq. We have a natural
exact sequence

0 ÝÑ OApθq b Ipp1� εqθq ÝÑ OApθq ÝÑ OZpθq ÝÑ 0.

By Nadel vanishing theorem, we have that H1pOApθqbIpp1� εqθqq � 0,
and so

H0pA,OApθqq ÝÑ H0pZ,OZpθqq

is surjective.
Since Z � θ and H0pA,OApθqq � 1, we have H0pZ,OZpθqq � 0. This

contradicts semicontinuity of cohomologies, because H0pZ,OZpθaqq � 0 for
θa � θ � a and a general a P A.

Further, Ein and Lazarsfeld proved the following:

Theorem 3.3 ([9, Theorem 10.1.8]). Let pA, θq be a principally polarized
abelian variety with irreducible θ. Then θ is normal and has rational singu-
larities.

Before proceeding with the proof, we review the generic vanishing theo-
rem and some properties of an adjoint ideal – the ideal that controls ratio-
nality of a singularity.
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3.2 The generic vanishing theorem

The following subsection is based on [7].

Theorem 3.4 (The generic vanishing theorem [8, Corollary 4.4.5]). Let X
be a smooth projective variety of dimension n and Albanese dimension n�r.
Then

H ipX,KX � Lq � 0

for i ¡ r and a general L P Pic0pXq.

We give a brief sketch of an algebraic proof based on a detailed presen-
tation from [7]. We assume that the reader is familiar with basic properties
and notation from the theory of derived categories.

Proof. For a coherent sheaf F on a variety A, define

SipA,Fq :� tL P Pic0pV q | H ipA,F b Lq � 0u.

First, we make a general comment. Assume that A is an abelian variety
and F satisfies the following:

RφP pFq � RHompG,OĀq,

where RφP : DbpAq Ñ Dbp pAq is the Fourier-Mukai transform, pA is the dual
abelian variety, and G is some coherent sheaf on pA. Then properties of Ext
imply that

codim SupppRiφP pFqq ¥ i

for all i ¥ 0. It is not difficult to see that this gives

codim SipA,Fq ¥ i.

Let alb: X Ñ A :� AlbpXq be the albanese map. Recall that r �
dimpXq � dimpalbpXqq. We apply the strategy above to Rjalb�pωXq on
A. Using Kodaira-type relative vanishing theorems, one can show that it
satisfies the condition:

RφP palb�pR
jωXqq � RHompG,O pAq,

for some coherent sheaf G (which is different for different j), so we get that

codim SipA,Rjalb�pωXqq ¥ i. (1)

To obtain the generic vanishing theorem, we need to apply the theorem
of Kollar which states that:

Rf�ωY �
rà
j�0

Rjf�ωY r�js,
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where f : Y Ñ X is a proper map between varieties, and r � dimpY q �
dimpfpY qq.

Now, take a general L P Pic0pXq. By properties of the albanese map,
we must have

L � alb�pPaq

for some Pa P Pic0pAq. Thus, by the theorem of Kollar

H ipX,KX � Lq � HipA,Ralb�ωX b Paq

�
rà
j�0

H i�jpA,Rjalb�pωXq b Paq

Hence, in order to prove that H ipX,KX �Lq � 0 for i ¡ r, we need to show
that

HkpA,Rjalb�pωXq b Paq � 0

for a general Pa P Pic0pAq and all k ¡ 0. But this is an immediate conse-
quence of (1).

In particular, the generic vanishing theorem implies that if X has max-
imal Albanese dimension, then

χpOXq � χpLq � H0pX,Lq ¥ 0,

where L P Pic0pXq used in the proof was taken as a general one.
Further, we will need the following lemma.

Lemma 3.5 ([7, Theorem 27.2]). Let X be a projective variety of maximal
Albanese dimension. If χpOXq � 0, then the image of the Albanese mapping
albpXq is fibered by tori.

The idea of the proof is the following. The condition χpOXq � 0 implies
that S0pX,ωXq is a proper subvariety of Pic0pXq. A standard fact in the
theory of generic vanishing implies that in this case some SipX,ωXq has
an irreducible component of dimension dimpXq � i. This component is a
translation of some abelian variety B � pA by a point of finite order. By
checking cohomological data, one can see that the map albpXq Ñ pB is
exactly the fibration we were looking for.

3.3 Adjoint ideals

Let pX,Dq be a log pair, where D � X is a reduced integral divisor. Let
µ : X Ñ X be a resolution of singularities. Write µ�D � µ�1

� D � F , where
µ�1
� D is the strict transform of D, and F is an exceptional divisor.

Definition 3.6. With notation as above we define the adjoint ideal to be

adjpDq :� µ�OXpKX{X � F q.

14



One can show that it is independent of the choice of a resolution.
The following proposition signifies the importance of adjoint ideals.

Proposition 3.7 ([9, Proposition 9.3.48]). Let ν : D Ñ D be a resolution
of singularities. Then we have the following exact sequence

0 ÝÑ OXpKXq ÝÑ OXpKX �Dq b adjpDq ÝÑ ν�ODpKDq ÝÑ 0.

Further, adjpDq is trivial if and only if D is normal and its singularities are
rational.

3.4 The rationality of theta divisors

We follow the presentation in [7].

Proof of Theorem 3.3. Let f : X Ñ θ be a resolution of singularities. First,
using Lemma 3.5, we would like to show that

χpXq ¥ 1.

We need to prove that θ is not fibered by tori. Assume contrary. Then, by
defintion, there exists a torus V � A such that V � a for a P A is either
contained in θ or disjoint from it. This is impossible, since θ is ample.

Recall that KA � OA. We have the standard exact sequence of an
adjoint ideal tensored by a general L P Pic0pAq.

0 ÝÑ L ÝÑ LbOApθq b adjpθq ÝÑ Lb f�OXpKXq ÝÑ 0.

Since X has maximal Albanese dimension, the generic vanishing theorem
implies that

H0pA, f�OXpKXq b Lq � H0pX,OXpKXq b f�Lq

� χpX,OXpKXq b f�Lq

� χpX,OXpKXqq ¥ 1.

Since θ is ample, Pic0pAq is generated by line bundles of the form OApθa�θq,
where θa � θ � a and a P A. Therefore

H0pA,OApθaq b adjpθqq � 0

for a general a P A.
Let Z be the subscheme defined by adjpθq. Given that h0pA,OApθaqq �

1, we get Z � θa for a general a P A. This is a contradiction.
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4 Moduli spaces of abelian varieties and singular-
ities of the theta-null divisor

4.1 Moduli spaces of principally polarized abelian varieties

We recall the basic facts about moduli spaces of abelian varieties.

Definition 4.1. We denote the moduli space of complex principally polarized
abelian varieties (ppav in short) of dimension g as

Ag � Hg{Spp2g,Zq,

where

• Hg is the Siegel upper half-space – the set of symmetric complex g� g
matrices, whose imaginary part is positive definite,

• an element of the symplectic matrices group

σ �

�
a b
c d

�
P Spp2g,Zq

acts on τ P Hg by

σ � τ :� paτ � bqpcτ � dq�1.

Further, we define the universal family

Xg :� Hg � Cg{pSpp2g,Zq � Z2gq,

where the group acts in an obvious way.

This moduli space parametrizes, up to isomorphism, principally polar-
ized abelian varieties pAτ , θτ q, where Aτ :� Cg{pZgτ � Zgq, τ P Hg, and θτ
is defined via the Riemann theta function

θpτ, zq :�
¸
mPZp

expπipmtτm� 2mtzq.

One can calculate, that θpτ, zq defined in such a way is not invariant
under the action of Spp2g,Zq. One of the problems is that this group acts
on the corresponding line bundle by translations by 2-torsion points.

Let us give a brief overview how one can circumvent this problem. First,
we define a full level l subgroup of Spp2g,Zq to be

Γgplq :� tγ P Spp2g,Zq | γ � id2g mod lu,

that is, the kernel of the projection Spp2g,Zq Ñ Spp2g,Z{lZq.
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We representAg as a quotient stack via a Galois map of varietiesAgplq Ñ
Ag, with Galois group PSpp2g,Z{lZq, where

Agplq :� Hg{Γgplq.

Further, we define the universal family

Xgplq :� Hg � Cg{
�
Γgplq � plZq2g

�
.

One can check that the Riemann theta function θpτ, zq defines a divisor
on Xgplq, which descends to a divisor Θg on the universal stack family Xg
over the stack Ag. We call it the universal theta divisor.

As mentioned before, Θg is not defined on Xg in the category of analytic
varieties.

4.2 Theta characteristics and the theta-null divisor

In what follows we denote the l-torsion points of an abelian variety A, by
Arls.

Consider a ppav pAτ , θτ q and take ε, σ P Aτ r2s � pZ{2Zqg. Then, one
can check that

x � τε{2� σ{2

lies in Aτ r2s, and t�xθ also gives a symmetric polarization. This divisor is
the zero of the the theta function with characteristic rε, σs.

Definition 4.2. For ε, σ P pZ{2Zqg we define the theta function with char-
acteristics rε, σs to be

θ

�
ε
σ

�
pτ, zq :�

¸
mPZg

expπi
�
pm�

ε

2
qtτpm�

ε

2
q � 2pm�

ε

2
qtpz �

σ

2
q
�
.

For characteristics equal to 0, this is just the standard Riemann theta
function θpτ, zq. One can see theta functions with characteristics as certain
modular forms.

We say that rε, σs has an even (respectively an odd) characteristic if
εtσ P Z{2Z is zero (respectively one).

One can show that the action of Spp2g,Zq on Hg, transforms θ

�
ε
σ

�
pτ, zq

into another theta function, but (possibly) with a different characteristic. It
motivates the following defintion.

Definition 4.3. We define the theta-null divisor θnull � Ag to be the zero
locus of

Fgpτq :�
¹
even

θ

�
ε
σ

�
pτ, 0q,

where the product is taken over all characteristics which are even.
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One can show that the theta-null divisor is well defined on the stack Xg
and is the locus of principally polarized abelian varieties whose one of the
even two-torsion points lies on the theta divisor.

The following proposition signifies θnull. Let N0 � Ag be the locus of
ppav with a singular theta divisor. It is called the Andreotti-Mayer divisor.
Let N 1

0 be the closure of the locus of ppavs, whose theta divisor does not
have a singularity at a 2-torsion point.

Proposition 4.4 ([10]). The locus N0 is a divisor, and it has two irreducible
components θnull and N 1

0. More precisely

N0 � θnull � 2N 1
0.

We are interested in understanding what are the singularities of θnull.
Since the question is local, we may start by considering only one branch of

θnull, that is a local branch defined by one function θ

�
ε
σ

�
pτ, 0q.

The crucial property of a theta function is that is satisfies the following
heat equation

B2θ

�
ε
σ

�
pτ, zq

BzjBzk
� 2πip1� σj,kq

Bθ

�
ε
σ

�
pτ, zq

Bτjk
.

It suggests that the singularities of a branch defined by θ

�
ε
σ

�
pτ, 0q should be

related to singularities of θ

�
ε
σ

�
pτ0, zq for fixed τ0, that is, translates of theta

divisors on abelian varieties. This suggests the following problem, raised by
Prof. Shepherd-Barron.

Question 4.5. Let H be a polynomial in variables z1, . . . , zn and τjk for
1 ¤ j ¤ k ¤ n. We write H P Crτjk, zis. Assume that H satisfies the heat
equation

B2Hpτ, zq

BzjBzk
�
BHpτ, zq

Bτjk
.

Set fpτq :� Hpτ, 0q and gpzq :� Hp0, zq, that is we plug zi � 0 and τjk � 0
respectively into H. Assume that tgpzq � 0u has normal, log canonical,
rational singularities, and is, further, symmetric. What can we say about
singularities of tfpτq � 0u?

Via a change of coordinates, this relates to the problem of understanding
singularities of θnull.
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4.3 Singularities of the theta-null divisor

In this section we discuss Question 4.5.

Proposition 4.6. Let

gpzq �
¸

α1,...,αn

cα1...αn

zα1
1

α1!
� . . . �

zαnn
αn!

.

Then

fpτq �
¸

α1,...,αn

cα1...αn

¸
βjk

¹
j¤k

τ
βjk
jk

βjk!
,

where the second sum is taken over βjk such that
°

1¤k¤n βjk � αj, in which
we take βjk � βkj.

Proof. It follows from the heat equation, since

B
°
αiHpτ, zq±
Bαizi

�
B
°
αiHpτ, zq±
j¤k B

βjkτjk

Corollary 4.7. It holds that

mult0pgq � 2 mult0pfq

Intuitively, the more variables and the lower multiplicity, the weaker a
singularity is. This motivates a hypothesis, that if gpzq has log canonical
singularities, then fpτq should have such, too.

Further, we can present f and g in a more admissible way. First, we
consider the following lemma.

Lemma 4.8. Every polynomial h P Crx1, . . . , xns can be presented as a sum
of powers of linear functions, that is, in the form

hpx1, . . . , xnq �
¸
i

p
¸
j

aijxjq
ni ,

for aij , ni P Z¥0.

Proof. It follows from the following well known identity

n!x1 . . . xn �
¸

1¤i1 ... ij¤n

p�1qn�jpxi1 � . . .� xij q
n.
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Hence, it is enough to understand how powers of linear series are trans-
formed the heat equation. Note, that gpzq is symmetric, so it is enough to
consider only even-degree powers.

Proposition 4.9. Let

gpz1, . . . , znq �
¸
i

�¸
j

cijzj

	2ni
.

Then

fpτjkq �
¸
i

p2niq!

ni!

� ¸
j¤k

cijcikτjk

	ni
Proof. It is easy to see, that

h1 :�

�
2ni

α1, . . . , αn


¹
j

pcijzjq
αj � p2niq!

¹
j

pcijzjq
αj

αj !

for
°
j αj � 2ni, and

h2 :�
p2niq!

ni!

�
ni

. . . , βjk, . . .


¹
j¤k

pcijcikτjkq
βjk � p2niq!

¹
j¤k

pcijcikτjkq
βjk

βjk!

for
°
k βjk � αj , satisfy

B
°
αih1pzq±
Bαizi

�
B
°
αih2pτq±

j¤k B
βjkτjk

.

Thus the proposition follows from Proposition 4.6 and the binomial iden-
tity.

Consider a decomposition of g into homogenous pieces

gpzq �
¸
i

gipzq,

where gi P Crz1, . . . , zns is a homogenous polynomial of degree 2i P N. We
have the following interesting identity, which says that some subvariety of
tfpτq � 0u has close properties to tgpzq � 0u.

Proposition 4.10. Let f P Crz1, . . . , zns be such that

fpz1, . . . , znq � fpτ jkq,

where τ jk � p2� σjkqzjzk. Then

fpz1, . . . , znq �
¸
i

p2iq!

i!
gipz1, . . . , znq.
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In particular, it gives the following corollary.

Corollary 4.11. If monomials of the polynomial gpzq have general coeffi-
cients, then tfpτq � 0u is log canonical. Further, if gpzq is a sum of two
homogenous polynomials, then the log canonicity of tfpτq � 0u also holds.

Proof. The first statement follows from the proposition above together with
Lemma 2.6 and Proposition 2.7.

For the second statement, notice, that we can modify f from the propo-
sition above, by making a change of coordinates, so that

f �
¸
i

gi.

Hence, the corollary follows from Lemma 2.6.

Berstein-Sato polynomials and other techniques
The fact, that the relation between f and g is defined via a differential

equation, suggests using Berstein-Sato polynomials to understand relations
between their singularities.

Unfortunately, we cannot use the same technique as in Proposition 2.22.
The reason is that the heat equation relates differentials of degree one with
differentials of degree two.

Moreover, the following example shows, that if a relation between Berstein-
Sato polynomials of f and g exists, then it must be nontrivial.

Example 4.12. Calculations using Macaulay2 shows that

• For g � z2
1z

4
2 we have

bg � s4 � 4s5 �
103

16
s4 �

85

16
s3 �

151

64
s2 �

17

32
s�

3

64
�

�
1

64
ps� 1q2p2s� 1q2p4s� 1qp4s� 3q.

• For f � 12pr11r
2
22 � r2

12r22q we have

bf � s4 � 4s3 �
95

16
s2 �

31

8
s�

15

16
�

�
1

16
ps� 1q2p4s� 3qp4s� 5q.

It is easy to see that there exists H P Crzi, τjks for which fpτq and gpzq are
of this form. Unfortunately, the complexity of the algorithm seesms to be
too high to calculate the Berstein-Sato polynomial of such H.

21



Similiar problem occurs when one wants to use the arithmetic definition
of multiplier ideal sheaves. Theoretically, we could consider a reduction
modulo big enough prime number and then apply Fedder’s criterion 2.19.
In order to control the log canonical threshold of a hypersurface defined by
a polynomial f , one needs to control powers fp�1. In our case there is a nice
description of a relation between f and g, but it seems much more difficult
to obtain a reasonable comparison between fp�1 and gp�1.
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