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Introduction

Projective hypersurfaces played a vital role in the history of algebraic geometry
and they are still a source of surprising phenomena. Mathematicians were for
decades captivated by the idea of describing their geometry. It all started with the
result of Cayley and Salmon, who proved that there are exactly 27 lines on any
cubic surface. This marked a significant milestone in the development of algebraic
geometry and led to future profound discoveries.

In this thesis we present a description of the geometry of very general smooth
quartics in P3 in relation to the projective Gauss map. As far as we know, there
is no reference containing a modern comprehensive study of this subject. Some
of the proofs in this thesis were developed by the author, other are rewritten or
simplified versions from other papers. The majority of the results have been known
to the 19th century mathematicians, but we hope that the reader will appreciate
our modern approach to this subject. We combine methods of the enumerative
theory of singularities, degenerations of plane curves, stable maps and projective
differential geometry.

Smooth quartics in P3 are the simplest examples of K3 surfaces. There are
still many conjectures about K3 surfaces, like Bloch-Beilinson conjecture, which
haven’t been checked even for a single example. We hope that this thesis may help
other mathematicians in verifying their hypothesis.

Our main objects of interest are three curves: the parabolic curve Cpar which
is the ramification locus of the Gauss map, the double-cover curve which is the
non-injective locus of the Gauss map, and the flecnodal curve Chf , which is the
locus of points p of the property that there exists a line intersecting the surface at
p with multiplicity four.

A curve on a surface is called a constant cycle curve, if all of its points are
represented by the same element in the Chow group CH0. They were introduced
in [19] in order to better understand CH0 of a K3 surface. In the same paper
it is proved that the curve Chf is a constant cycle curve. There is the following
conjecture raised by Prof. Huybrechts:
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Figure 1: Singularities of hyperplane sections of very general smooth quartics

Conjecture. The parabolic curve Cpar and the double-cover curve Cd are constant
cycle curves.

We show that the method of proving that Chf is a constant cycle curve, does
not work in the case of Cd. Further, we show that the curve Cpar is a constant
cycle curve for the Fermat quartic.

The main reference for the theory of hypersurfaces in P3 is an old book [27].
A local description of the Gauss map and properties of the curve Cpar and its
interesection points with Chf may be found in [24]. The properties of the curve
Chf are shown in [34]. The description of the singularities of dual surfaces, which
uses a method of multitransversality, is contained in [6]. A modern proof of Cayley-
Zeuthen’s formulas, describing numerical data of hypersurfaces in P3, may be found
in [25].

The paper is organised as follows. In the first chapter we review some properties
of plane curves, stable maps, the enumerative theory and the Gauss map. In
the second chapter we describe the geometry of very general smooth quartics in
P3. We present the Gauss map in local coordinates, classify hyperplane sections,
analyse enumerative properties and singularities of special curve, and describe the
singularities of dual surfaces. In the last chapter, we discuss some properties of
general smooth quartics based on the analysis of the space of smooth quartics.
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Notations and conventions

In this thesis all the varieties are defined over C.

General

R̂ The completion of a ring R.
pq The line through points p and q.

P̌3 The space of hyperplanes in P3.
Res(ω) The residue of a form ω.
CJx1, . . . , xkK The ring of formal power series in variables x1, . . . , xk.

Curves

C1 tp C2 Curves C1 and C2 interesect transversally at a point p.
C1 gp C2 Curves C1 and C2 are tangent at a point p.
TCp The reduction of the tangent cone of a curve C at a

point p.
µp(C) The Milnor number of a point p on a curve C.
rp(C) The number of analytic branches of a curve C at a

point p.
δp(C) The δ-invariant of a point p on a curve C.
g(C) The genus of a curve C.
pa(C) The arithmetic genus of a curve C.
Hessp(C) The Hessian matrix of a function f describing C locally

around p.
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Varieties

deg(X) The degree of an embedded variety X ⊆ Pn.
Sing(X) The set of singular points of a variety X.
Pic(X) The Picard group of a scheme X.
PicX/T The Picard scheme of a T -scheme X.

CHk(X) The Chow group of k-cycles on a variety X.
[V ] The class of a k-cycle V in CHk(X).
TpX The tangent space of a variety X at a point p.
Σ(π) The locus of points where a morphism π is not smooth.

Surfaces in P3

IIp The projective second fundamental form at a point p.
EpS The tangent curve of a surface S at a point p.
Cpar The parabolic curve.
Cd The double cover curve.
Chf The flecnodal curve.
Swallowtail(S) The set of Gauss swallowtail points on a surface S.
Γq The polar locus of a point q.
|OP3(4)|sm The space of smooth quartics in P3.

We say that a general point on a variety X satisfies a property P , if there exists
an open dense subset of points of X satisfying the property P .

We say that a very general point on a variety X satisfies a property P , if there
exists a countable union of closed subsets of X such that all the points outside of
it satisfy the property P .
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CHAPTER 1

Preliminaries

We recall the definition of the conductor. Let X be a variety and p : X → X its
normalization. We define the conductor scheme C ⊆ X to be the inverse image of
the non-normal locus of X. Formally, if I ⊆ OX is the maximal ideal sheaf for
which IOX is a subset of OX , then C is defined by the ideal IOX in OX .

1.1 Curves

In this section, we recall theorems about singularities of plane curves. We are
particularly interested in their deformations.

1.1.1 Singularities of plane curves

We review properties of singularities of plane curves and classify singularities of
plane curves of degree four.

Let C ⊆ P2 be a plane curve. Denote by multp(C) the multiplicity of a point
p ∈ C.

Remark 1.1.1. A singular point p ∈ C satisfies multp(C) = 2 if and only if
Hessp(f) 6= 0 at p, where f ∈ C[x, y] is an equation defining C locally around
p.

Let p ∈ Sing(C) be a singular point with multp(C) = 2. Then p is analytically
isomorphic to the singularity defined by the equation xy = 0 or x2 − yk for k ≥ 3.
We call the singularity xy = 0 a node, the singularity x2 − y3 = 0 a cusp and the
singularity x2 − y4 = 0 a tacnode. We say that a singularity is ordinary if it is a
node or a cusp. Note that this notation differs slightly from the usual one.

The tangent cone of C at p is defined by

vT Hessp(f)v = 0,
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where v ∈ C2 and f ∈ C[x, y] is an equation describing C locally around p. We
define TCp to be the reduction of the tangent cone of C at p. If p is a node, then
TCp is a union of two lines. Otherwise, TCp is a line.

A crucial invariant of singularities is the Milnor number.

Definition 1.1.2. Take a power series F ∈ CJx, yK which describes C locally
around p. Define the Milnor number µp(C) by

µp(C) := dimCJx, yK/(Fx, Fy),

where Fx and Fy are derivatives of F . The Milnor number does not depend on the
choice of F describing C.

Let rp(C) be the number of branches of C at a singular point p. We define the
δ-invariant by the formula

δp(C) :=
1

2
(µp(C) + rp(C)− 1).

Lemma 1.1.3 ([33, Corollary 7.1.3]). Let C be an irreducible plane curve of degree
d. Then

g(C) =
1

2
(d− 1)(d− 2)−

∑
p∈Sing(C)

δp(C).

Remark 1.1.4. For p ∈ Sing(C), we have

µp(C) ≥
(

multp(C)

2

)
,

σp(C) ≥ 1

2

(
multp(C)

2

)
.

The invariants of the singularities of multiplicity two have the following values:

Ordinary singularities

Node Cusp Tacnode General singularity, n ≥ 3

Equation xy x2 − y3 x2 − y4 x2 − y2n−1 x2 − y2n

µp 1 2 3 2n− 2 2n− 1

rp 2 1 2 1 2

δ 1 1 2 n− 1 n

Figure 1.1: The numerical invariants of the singularities of multiplicity two

Remark 1.1.5. Assume that p is the singularity x2 − yk for k ≥ 3. Then

multp(TCp ∩ C) = k.

We will use the following lemma to understand the singularities of curves in
|OS(1)|, where S ⊂ P3 is a very general smooth surface of degree four.
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Lemma 1.1.6. Let C ⊆ P2 be a curve of degree four. Then C has at most three
singularities. If g(C) = 0 and C is nodal, then C has exactly three nodes. If
g(C) = 1, then Sing(C) consists of

1. one point of multiplicity three, or

2. one tacnode, or

3. two nodes, or

4. node and a cusp, or

5. two cusps.

If g(C) = 2, then C has exactly one node or one cusp.

Proof. Lemma 1.1.3 shows that

g(C) = 3−
∑

p∈Sing(C)

σp(C).

Since g(C) ≥ 0 and σp(C) ≥ 1 for p ∈ Sing(C), the curve C has at most three
singularities.

If g(C) = 0 and C is nodal, then σp(C) = 1 for every p ∈ Sing(C), and so C
has exactly three nodes.

If g(C) = 2, then by the genus formula there can only be one singularity, with
δ-invariant equal to one. Thus, it must be a cusp or a node.

Let now g(C) = 1. Take p ∈ Sing(C). Note that p cannot be the singularity
x2 − yk for k ≥ 5, because in such case multp(TCp ∩ C) ≥ 5, and this contradicts
the assumption that deg(C) = 4. We have

σp(C) = 1, if p is a node or a cusp,

≥ 2, if p is a tacnode or multp(C) = 3,

≥ 3, if multp(C) ≥ 4.

Thus, this part of the lemma also follows from the genus formula.

Proposition 1.1.7. Let E be an algebraic, not necessarily plane, curve. Assume
that Sing(E) consists of nodes or cusps. Then,

g(E) = pa(E)− | Sing(E)|,

where pa(E) is the arithmetic genus of E.

Proof. See [17, Exercise IV.1.8].

Remark 1.1.8. Since any smooth surface is locally analytically isomorphic to open
subsets of C2, the properties of the singularities of plane curves extend to curves
on smooth surfaces.
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1.1.2 Simultaneous resolutions of singularities

The following section is based on [16, Section 2]. We show that a certian strong
simultaneous resolution of singularities holds. Later, we will use it in Section 3.3.

Let

X ⊆ T × Pn

T

π

be a flat family of projective reduced curves, where X and T are reduced varieties.
Let φ(t) be the geometric genus of Xt for t ∈ T .

The following holds.

Lemma 1.1.9 ([16, Theorem 2.4]). The function φ is lower semicontinous in the
Zariski topology.

Lemma 1.1.10 ([8, p. 80] or [16, Theorem 2.5]). Assume that T is normal and
φ is constant on T . Let p : X ′ → X be the normalization.

X ′ X

T

p

π ◦ p
π

Then π ◦ p : X ′ → T is a smooth family of curves and each fiber of π ◦ p is the
normalization of the corresponding fiber of π.

We need the following lemma in Section 3.3.

Lemma 1.1.11. Assume that φ is constant on T . Then there exists a strong
simultaneous resolution of singularities, that is a diagram

X ′ X

T ′ T

φ

ψ

f

together with divisors D1, . . . , Dm on X ′, where

• T ′ and X ′ are smooth,

• ψ is finite,

• X ′t′ is the normalization of the curve Xψ(t′) for t′ ∈ T ′,
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• D1|X ′
t′
, . . . , Dm|X ′

t′
are exactly the points of φ∗

(
Sing

(
Xψ(t′)

))
for a general

t′ ∈ T ′.

Proof. By taking the base change with the normalization T → T , we may assume
witout loss of generality that T is normal.

Let p : X → X be the normalization of X and let C ⊆ X be the reduction of
the conductor of p. By Lemma 1.1.10, the morphism X → T is a simultaneous
resolution of singularities. Now, we need to modify X , so that we would be able
to construct divisors D1, . . . , Dm.

Since smoothness is an open condition, the subset Σ(f) =
⋃
t∈T Sing(Xt) is

closed. Further, X \ Σ(f) → T is smooth, and so X is normal outside of Σ(f)
by Lemma 1.1.12. On the other hand, X → T is a simultaneous resolution of
singularities, and thus X cannot be normal at points of Σ(f). It shows that
Σ(f) = p(C)red. In particular, Ct := C|X t

for t ∈ T is set theoretically equal to
p∗ (Sing (Xt)).

Let µT be the generic point of T and let k(µT ) = K(T ) be its residue field.
Consider a finite field extension L ⊇ k(µT ) such that the zero-dimensional generic
fiber Cµt of f ◦ p|C : C → T splits over L into geometrically connected points.

Let T̂ be the closure of T in L. Over an affine Spec(A) ⊆ T , the morphism
T̂ → T restricts to the morphism Spec(AL) → Spec(A), where AL is the normal
closure of A in the field L.

k(µT ) L

A AL

Take T ′ to be the resolution of singularities of T̂ . Let µT ′ be the generic point of
T ′. Consider the diagram

X ′ := X ×T T ′ X X

T ′ T

φ p

f

Take divisors Di to be the closures in C×T T ′ of closed points of C×k(µT )k(µT ′).
This gives us a strong resolution of singularities. Note that X ′ is smooth, because
T ′ is smooth and the morphism X ′ → T ′ is smooth (see [17, Proposition 10.1]).

Now, we show the lemma used in the proof above.

Lemma 1.1.12. Let X → Y be a smooth morphism between varieties. Suppose
that Y is normal. Then X is normal.
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Proof. By [14, Exposé 2], morphism X → Y decomposes into X → AnY → Y ,
where X → AnY is étale and AnY → Y is a projection. Since AnY is normal, the
variety X must also be normal by [14, Théorème 1.9.5].

In order to use the result from this section, we need to be able to check when
a family of curves is flat over a base. For this, we recall the following theorem.

Theorem 1.1.13 ([17, Theorem 9.9]). Let T be an integral noetherian scheme.
Let X ⊆ PnT be a closed subscheme. For each point t ∈ T , we consider the Hilbert
polynomial Pt ∈ Q[z] of the fiber Xt considered as a closed subscheme of Pnk(t).
Then X is flat over T if and only if the Hilbert polynomial Pt is independent of t.

Recall that the Hilbert polynomial is uniquely determined by the equation
Pt(m) = χ(OXt(m)) for m ∈ Z.

Corollary 1.1.14. A family of plane curves of fixed degree is flat.

Proof. Recall the Riemann-Roch formula for singular curves (see [17, Exercise
IV.1.9])

χ(OC(D)) = deg(D) + χ(OC),

where C is a curve and D is a divisor such that Supp(D) ∈ Csm. It implies that
the Euler characteristic of a line bundle on a plane curve depends only on the
degree of the line bundle and the degree of the curve. Thus, fibers in a family of
plane curves of fixed degree have the same Hilbert polynomial.

1.1.3 Spaces of plane curves of fixed degree

The following section is based on [16, p. 455] and [28, Subsection 4.7.2]. We present
formulas for the dimensions of the spaces of plane curves of fixed degree. We will
use them later on to show that certain curves on smooth quartic hypersurfaces
degenerate in families and also that certain curves do not occur on general smooth
quartics.

We consider curves of degree d in P2. They are represented by sections of
OP2(d) (homogenous polynomials of degree d in three variables). We say that
P (OP2(d)) is the space of plane curves of degree d.

We define the Severi variety Vδ,κd to be the subset of curves in P (OP2(d)) with
exactly δ nodes and κ cusps. By [28, Theorem 4.7.3], it is a locally closed subvariety
of P (OP2(d)). The following holds.

Proposition 1.1.15. If κ < 3d, then

dim
(
Vδ,κd

)
= 3d+ g − 1− κ.

Proof. See [28, Corollary 4.7.8 and p. 312].

Now, we present a formula for the dimensions of spaces of plane curves of fixed
degree and genus.
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Lemma 1.1.16 ([16, Lemma 4.14]). Let Ud,g be the closure in P(OP2(d)) of the
locus of points corresponding to reduced curves of degree d and geometric genus g.
Then every component of Ud,g has dimension 3d+ g − 1.

Let

C ⊆ P(OP2(d))× P2

P(OP2(d))

π

be the universal family of plane curves of degree d. The fiber Cf ⊆ P2 for f ∈
P(OP2(d)) is the plane curve described by the equation f = 0. The family is flat
by Corollary 1.1.14.

By the semicontinuity of the geometric genus (see Lemma 1.1.9) applied to C ,
we see that curves in Ud,g have geometric genus at most g.

1.1.4 Deformations of germs of singularities

The following section is based on [7]. We need to understand when a set of singu-
larities can collide to a certain singularity.

Let

(X , x0)

(D, 0)

π

be the germ of a flat family of reduced plane curves, where D ⊂ C is a small disc
with center 0.

For t ∈ D we define

µt := µ(Xt) =
∑

p∈Sing(Xt)

µ(Xt, p),

δt := δ(Xt) =
∑

p∈Sing(Xt)

δ(Xt, p).

Theorem 1.1.17. Functions µt and δt are upper semicontinous in the Euclidean
topology.

Proof. See [7, Theorem 6.1.7].

In particular, we get that two singularities cannot collide to an ordinary sin-
gularity.
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Corollary 1.1.18. Assume that Xt has at least two singularities for t ∈ D \ {0}.
Then δ0 ≥ 2, and so x0 cannot be an ordinary singularity of X0.

Remark 1.1.19. The above theorem is also valid for nonplanar singularities.

1.2 Locally stable maps and their singularities

Given a holomorphic map f : X → Y between complex manifolds, we would like
to describe it and its image locally. Without any assumptions on the map f , this
is a very difficult task, because its singularities may be very complicated.

In this section, we recall the definition of locally stable maps, whose behaviour
is much easier to describe. Then we explain under which assumptions the analytic
branches of the image of a stable map at some point are transversal to each other.

1.2.1 Locally stable maps

The following material is based on [32]. The definitions in the differentiable setting
may be found in [2] and [22].

Let X1, X2, Y1, Y2 be complex manifolds. We say that two holomorphic
maps f1 and f2 are equivalent if there exist biholomorphisms ψ : X1 → Y1 and
φ : X2 → Y2, together with a commutative diagram

X1 Y1

X2 Y2

f1

ψ

f2

φ

We say that two map-germs are equivalent, if they are germs of equivalent holo-
morphic maps.

Definition 1.2.1. Let X and Y be complex manifolds, S be a subset of points of
X and p be a point on Y . A holomorphic multigerm f : (X,S)→ (Y, p) satisfying
f(S) = p is simultaneously stable, if any small deformation of f is trivial.

Definition 1.2.2. Let X and Y be complex manifolds. We say that a holomorphic
map f : X → Y is locally stable if for every point p ∈ Y and every finite subset
S ⊆ f−1(p), the multigerm f : (X,S)→ (Y, p) is simultaneously stable.

We state a proposition of Mather, which says that stability is a Zariski open
condition. For a morphism of smooth varieties f : X → Y , we denote by Σ(f) the
subvariety of X where f is not smooth

Σ(f) := {x ∈ X | rank(dfx) < dim(Y )} .
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Proposition 1.2.3 ([22, Proposition 1]). Consider the following diagram

X Y

T

f

π

where X , Y and T are smooth varieties. For t ∈ T , we denote by ft : Xt → Yt
the restriction of f to the fibers over t. Suppose that f and π ◦ f are smooth.
Additionally, assume that f |Σ(f) and π are projective morphisms. Then

{t ∈ T | ft is locally stable}

is a Zariski open subset of T .

The following result is crucial in describing the Gauss map locally.

Proposition 1.2.4 ([24, (3.4)]). The space of simulatenously stable map-germs
f : (C4, 0)→ (C3, 0) consists of three equivalence classes:

• fold, (x1, x2, x3, x4)
F17−→ (x2

1 + x2
2, x3, x4),

• cusp, (x1, x2, x3, x4)
F27−→ (x2

1 + x3
2 + x2x3, x3, x4),

• swallowtail point, (x1, x2, x3, x4)
F37−→ (x2

1 + x4
2 + x2

2x3 + x2x4, x3, x4).

1.2.2 The normal-crossing condition and transversality

We follow the presentation of [13, VI.5]. Let f : X → Y be a map between complex
manifolds. We define Si(f) to be the set of points of X, where the rank of f drops
by i. Inductively, we define

Si1,...,ik(f) =
{
x ∈ Si1,...,ik−1

(f)
∣∣∣ rank(f |Si1,...,ik−1

) drops by ik

}
.

Definition 1.2.5. Let I1, . . . , Ik be multi-indices. Take distinct points x1, . . . , xk
such that xj ∈ SIj for 1 ≤ j ≤ k and

f(x1) = . . . = f(xk).

Let Hj be the tangent space to SIj at xj . We say that f satisfies the NC condition
if

(df)x1H1, . . . , (df)xkHk

lie in a general position in the tangent space to Y.
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Proposition 1.2.6. Holomorphic locally stable maps satisfy the NC condition.

Proof. See [32, Corollary 1.5] and in the differentiable setting [13, Theorem 5.2].

To understand the importance of the NC condition, we first recall the definition
of transversality.

Definition 1.2.7. Let X1, X2 and Y be complex manifolds. We say that two
maps f1 : X1 → Y and f2 : X2 → Y are transverse to each other, if for every
x1 ∈ X1 and x2 ∈ X2 such that f1(x1) = f2(x2) = y, we have

(df1)x1(Tx1X1) + (df2)x2(Tx2X2) = TyY.

We use the same notation as in the definition of the NC condition. Take k = 2
and let U1 and U2 be small open neighbourhoods of x1 and x2 respectively. If
we assume that dim((df)x1H1) + dim((df)x2H2) ≥ dimY , then the NC condition
implies that f |U1 and f |U2 are transverse.

The notion of transversality is important, because of the following proposition.

Proposition 1.2.8. Let X1, X2 and Y be complex manifolds and let f1 : X1 → Y ,
f2 : X2 → Y be two transverse morphisms. Assume that f2(X2) ⊆ Y is smooth.
Then f−1

1 (f2(X2)) ⊆ X1 is smooth.

Proof. See [15, Section §5].

1.3 Picard schemes

The following section is based on [11]. We use Picard schemes in Section 3.3.
Let X → T be a morphism of schemes.

Definition 1.3.1. We define the relative Picard functor Pic(X/T ) from the category
of T -schemes to abelian groups by

Pic(X/T )(S) := Pic(X ×T S)/Pic(S),

where S is a T -scheme.

We say that a morphism f : Y ′ → Y between schemes is an étale covering if it is
étale and surjective. Note that we don’t assume anything about the connectedness
of Y or Y ′.

Let Pic(X/T )(ét) be the sheafification in the étale topology of the functor Pic(X/T ).
It is defined by the following conditions:

• Let S be a T -scheme. Elements in Pic(X/T )(ét)(S) are represented by those
line bundles L′ ∈ PicX/T (S′), where S′ → S is an étale coverings, for which
there exists an étale covering f
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S′′ S′ ×S S′ S′
f

π1

π2

such that f∗ (π∗1L′) = f∗ (π∗2L′), where π1 and π2 are natural projections.

• Take two elements L1,L2 ∈ Pic(X/T )(ét)(S) represented by L′1 ∈ Pic(X/T )(S
′
1)

and L′2 ∈ Pic(X/T )(S
′
2) for étale coverings S′1 → S and S′2 → S. Then they

are identified in Pic(X/T )(ét)(S) if and only if there exists an étale covering f

S′1

S′′ S′1 ×S S′2 S

S′2

f

π2

π1

such that f∗ (π∗1L′1) = f∗ (π∗2L′2), where π1 and π2 are natural projections.

The following theorem deals with the representability of the Picard functor.

Theorem 1.3.2 ([11, Theorem 9.4.8]). Assume that f : X → T is projective
Zariski locally over T , and is flat with integral geometric fibers. Then Pic(X/T )(ét)

is representable by a separated scheme locally of finite type over T .

Definition 1.3.3. The Picard scheme PicX/T is the scheme representing the func-
tor Pic(X/T )(ét).

The Picard schemes behave well under base changes. Let T ′ → T be any
morphism of schemes and assume that PicX/T exists. Then

PicX/T ×TT ′ = PicX×TT ′/T ′ .

Additionally, if T = Spec(k) for a field k, then

PicX/T (k) = Pic(X/T )(ét)(k) = Pic(X).

Remark 1.3.4. Take a line bundle L ∈ Pic(X). Its image in Pic(X/T )(ét)(T ) defines
us a T -point, that is a section

sL : T −→ PicX/T .

Note that for t ∈ T and a fiber Xt over it, we have

sL(t) = 0 if and only if L|Xt = OXt .

This follows from the fact that(
PicX/T

)
t
(k(t)) = PicXt/t(k(t)) = Pic(Xt),

where
(
PicX/T

)
t

is the fiber of PicX/T → T over t and k(t) is the residue field of
t.
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1.4 The enumerative theory

In this section, we recall three enumerative formulas: for the conductor of the
normalization of a surface in P3, for the locus of points on a surface tangents at
which contain a fixed point and for the number of nodal rational curves on K3
surfaces.

Note, that the following is true:

Fact 1.4.1. Let f : X → Y be a morphism of smooth varieties. Assume that
dim(X) = dim(Y ). Then the ramification locus of f is a divisor.

Proof. The ramification locus of f is the zero locus of the section

det(df) ∈ H0 (X, (detTX)∗ ⊗ f∗ (detTY )) .

A stronger result is known.

Theorem 1.4.2 ([29, p. 247]). Suppose f : X → Y is a finite dominant morphism,
where X is a smooth and Y is a normal variety. Then, the ramification locus of
f is a divisor.

1.4.1 The double-point formula

Now, we follow the presentation of [9, p. 628]. Let f : X → Y be a morphism of
smooth proper varieties of dimension m and n respectively. Let Z be the blow-up
of the diagonal ∆ in X ×X. Define D̃(f) to be the strict transform of X ×Y X in
Z. It is a subset of points (x1, x2) ∈ X ×X for x1 6= x2 such that f(x1) = f(x2),
together with those tangents in P(N∆/X×X) = P(TX) which vanish under f .

Let D(f) be the image of D̃(f) in X under any of the two projections Z →
X × X → X. We call D(f) the double-point set. The scheme D(f) should be
expected to usually have dimension 2m− n.

The following double-point formula holds.

Theorem 1.4.3 ([12, Theorem 9.3]). If dim(D(f)) = 2m− n, then

[D(f)] = f∗f∗[X]− (c(f∗TY )c(TX)−1)m−n ∈ CH2n−m(X),

where CHk(X) is the Chow group of k-cycles on X, CHk(X) is the Chow group of
codimension k cycles on X and c(E) =

∑m
i=0 ci(E) ∈

⊕m
i=0 CHi(X) is the Chern

class of a vector bundle E on an m-dimensional variety X.

Later, we will use the following form of the double-point formula.

Proposition 1.4.4 ([9, p. 628]). Let Y = P3 and let f be a finite map, which is
birational onto its image. Then D(f) is of pure dimension one and

D(f) ≡ f∗S + f∗KY −KX ,

where S := f(X).
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Note that a map is finite and birational if and only if it is a normalization. In
this case the scheme D(f) is the conductor of f .

Proof. Assume by contradiction that D(f) is not of pure dimension one. Then
there exists an isolated point p ∈ D(f).

First, assume that p lies in the non-injective locus of f , in other words, that
there exists a point q ∈ D(f) such that f(p) = f(q) and p 6= q.

Let U1 and U2 be disjoint small open neighbourhoods of p and q in X. Then
f(U1) and f(U2) are two codimension one analytic branches intersecting in codi-
mension three. This contradicts the Principal Ideal Theorem of dimension theory
applied to ÔP3,f(p) (cf. [10, Theorem 10.2]).

Let us now assume that p does not lie in the non-injective locus. Then, f
ramifies at p and f(p) is an isolated non-normal singularity of the hypersurface S.
This contradicts Proposition 1.6.3.

The second part of the statement follows from the double-point formula.

1.4.2 Polar loci

Now, we follow the presentation of [20, IV. B]. Let X ⊆ Pm be a smooth variety of
dimension n and let A be a linear subspace in Pm of codimension k. In particular,
for k = m, the set A is a point. We define the k-th Polar locus of A

ΓkA := {x ∈ X | dim (TxX ∩A) ≥ n− k + 1} ,

where 1 ≤ k ≤ n + 1. Note that a general linear subspace of dimension n in Pm
intersects A along a linear subspace of dimension n−k. Hence, ΓkA is the subset of
those points on X whose tangent space intersects A in one more dimension than
expected.

Suppose that A is a general linear subspace of codimension k. Then ΓkA is empty
or has pure codimension n − k + 2 (see [20, IV.B, p. 346]). Its class [Γk] := [ΓkA]
in CHn−k+2 is independent of A. The following recursive formula for [Γk] holds:

Theorem 1.4.5 ([20, (IV,29)]).

ci (TX) = (−1)i+1

(
n+ 1

i

)
c1 (L)i +

i−1∑
j=0

(−1)j+1

(
n+ 1− i+ j

j

)
[Γn−i+j+2]c1 (L)j ,

where L = OX(1) and 1 ≤ i ≤ n.

In particular for i = 1 we get

[Γn+1] = (n+ 1)c1 (OX(1)) + c1 (KX) .

This implies the following corollary:
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Corollary 1.4.6. Let S ⊆ P3 be a smooth surface. Take a point q ∈ P3 and define

Γq := {p ∈ S | q ∈ TpS} .

Then

deg(Γq) = deg(S) · (deg(S)− 1).

1.4.3 Nodal rational curves on K3 surfaces

This section is based on [18, Chapter 13, Section 4]. Let (X,H) be a very general
polarized projective K3 surface of degree d. By a polarization of degree d we mean
that the surface X is equipped with an ample line bundle H, which is indivisible
in Pic(X) and H2 = d. By the adjunction formula, any smooth curve in |H| has
genus g, where 2g − 2 = d.

For the reader’s convenience, we show the proof of the following fact:

Fact 1.4.7. There are only finitely many rational curves in |H|.

Proof. We apply the semicontinuity of the geometric genus (see Proposition 1.1.9)
to the family

X E :=
{

(p, s) ∈ X × |H|
∣∣ s(p) = 0

}

|H|

πX

π|H|

and get that the locus Z =
{
s ∈ |H|

∣∣ g(Es) = 0
}

is closed. Note that Z := π−1
|H|(Z)

is uniruled. If dim(Z) ≥ 2, then πX |Z : Z → X would be surjective, and so X
would also be uniruled, which is impossible, because X is a K3 surface. Thus,
dim(Z) ≤ 1 and dim(Z) ≤ 0.

We say that a curve is nodal if all of its singularities are nodes.

Fact 1.4.8 ([18, Theorem 13.1.6]). Every rational curve in |H| is nodal.

A natural question to ask is: how many rational curves are in |H|? One can
show that this number depends only on d = H2. We denote it by ng for g ≥ 2,
where 2g − 2 = d.

Theorem 1.4.9 ([18, 13.4.1]). The following equality of formal power series in a
variable q holds ∑

g≥0

ngq
g =

∏
n≥1

(1− qn)−24,

where we set n0 = 1 and n1 = 24.
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It is called the Yau-Zaslow formula. The first values in this series are the
following (see [18, 13.4.2]):∑

g≥0

ngq
g = 1 + 24q + 324q2 + 3200q3 + 25650q4 + . . . .

1.5 Constant cycle curves

The following section is based on [18]. Let X be a projective K3 surface. Take
x ∈ X such that x lies on some rational, not necessarily smooth, curve. The
following holds.

Fact 1.5.1 ([5, Theorem 1a]). The class [x] in the Chow group of points CH0(X)
on X does not depend on the choice of x.

We call this class the Beauville-Voisin class and denote it by cX . For the
reader’s convenience, we prove this fact, following [5].

Proof. Let x lie on an irreducible rational curve R. First, we show that for any
other point x′ ∈ R, we have [x] = [x′]. Let p : P1 → R be the normalization of R.
Then x = p∗x̃ and x′ = p∗x̃

′ for some x̃, x̃′ ∈ P1. Since points in P1 are rationally
equivalent and taking pushforward preserves rational equivalence, we get

[x] = p∗[x̃] = p∗[x̃
′] = [x′].

Take a point y on some other rational curve T . We need to show that [x] = [y].
Let H be any ample divisor on X. By [19, Corollary 13.13], H is equivalent to a
union of rational curves

⋃k
i=1Ci, which is connected, because all ample divisors on

a surface are connected (cf. [17, Exercise 11.3]). Clearly, R ·H > 0 and T ·H > 0,
and so R∪ T ∪

⋃k
i=1Ci is also connected. Hence, by the same argument as above,

the classes of points on those curves are the same. In particular, [x] = [y].

On every projective K3 surface there exists a rational curve, and so the class
cX is always well defined.

Let C be an integral curve. Take a point x0 ∈ X such that [x0] = cX in
CH0(X). We define

κC := p∗(∆C − {x0} × C) ∈ CH0 (X × k (µC)) ,

where k(µC) is the residue field of the generic point µC of C, a curve ∆C ⊆ X×C
is the graph of the inclusion C ↪→ X, and p : X × k(µC) → X × C is a natural
inclusion. This class does not depend on the choice of x0.

Definition 1.5.2. We call an integral curve C a constant cycle curve if the class
κC ∈ CH0 (X × k (µC)) is torsion. An arbitrary curve is a constant cycle curve, if
each irreducible component of its reduction is a constant cycle curve.
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The following holds:

Proposition 1.5.3. A curve C ⊆ X is a constant cycle curve if and only if for
any two points p1, p2 ∈ C we have an equality [p1] = [p2] in CH0(X).

Proof. See [19, Proposition 3.7].

Note that any ample divisor is equivalent to a union of rational curves (see
[19, Corollary 13.13]), and so there must exist a rational curve intersecting C. In
particular, C contains a point of class cX . Hence, a curve C is a constant cycle
curve if and only if [p] = cX for every p ∈ C.

It is usually nontrivial to show that a certain curve is a constant cycle curve.
Some possible approaches are via the following propositions.

Proposition 1.5.4 ([19, Proposition 7.1]). Let f : X
∼−→ X be an automorphism

of X of finite order such that f∗ 6= id on H2,0(X). If each point of a curve C ⊆ X
is fixed by f , then C is a constant cycle curve.

Proposition 1.5.5 ([5, Theorem 1b]). The image of the intersection product

Pic(X)⊗ Pic(X) −→ CH0(X)

is contained in ZcX .

Proof. This follows from the fact that every effective divisor is equivalent to a
union of rational curves (see [18, Corollary 13.13]).

Additionally, note that:

Proposition 1.5.6 ([18, Proposition 12.1.3]). The Chow group of points CH0(X)
of a complex projective K3 surface is torsion free.

1.6 Hypersurfaces in P3

In this section, we recall properties of hypersurfaces in P3 and their Gauss maps.
Additionally, we define the second fundamental form and asymptotic directions.

Let V be a four-dimensional complex linear space and let S ⊂ P(V ) be a
smooth hypersurface of degree d. The embedding into the projective space gives
us an ample divisor OS(1) on S.

In this thesis, we frequently use the following result called Noether-Lefschetz
theorem.

Theorem 1.6.1. Let S ⊆ P3 be a very general smooth hypersurface of degree
d ≥ 4. Then Pic(S) = ZOS(1).

In particular, all curves in |OS(1)| are irreducible and there are no lines on S.
Additionally, every curve on S is connected.
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Proof. See [35, Section 3.3.2].

Remark 1.6.2. By the above theorem, we have

C1 · C2 =
deg(C1) deg(C2)

deg(S)
,

where C1 and C2 are curves on a very general hypersurface S ⊆ P3. Hence, the
intersection number of two curves does not depend on the position of those curves
on the surface.

We also note the following.

Proposition 1.6.3 ([26, Appendix to §3]). Let X be a locally complete intersection
variety. Then X cannot have isolated non-normal singularities.

Proof. Since X is a locally complete intersection, it is Cohen-Macaulay, and so it
satisfies Serre’s S2 condition. Thus, the statement follows from Serre’s criterion
for normality.

1.6.1 The Gauss map

In order to analyse the geometry of hypersurfaces, we consider the Gauss map.

Definition 1.6.4. We define the Gauss map φ : S → P(V ∗) as

p 7−→ T̂pS,

where P(V ∗) is the space of hyperplanes in V and T̂pS ⊂ V is the deprojectivization
of the tangent space TpS.

In what follows we write Tp and T̂p instead of TpS and T̂pS.

Definition 1.6.5. We define the dual variety S∗ ⊆ P(V ∗) as

S∗ := φ(S).

Proposition 1.6.6. The Gauss map φ is the normalization of S∗.

Proof. See [30, Theorem 4.2].

In other words, φ is finite and birational.

Proposition 1.6.7. The dual variety S∗ has degree d(d− 1)2.

Proof. See [30, Example 6.3, p. 112].

The following theorem relates the multiplicity of points on the dual variety
with Milnor numbers of singularities of the corresponding curves.

Theorem 1.6.8. Let H ∈ S∗ and suppose that the set Sing(S∩H) is finite. Then

multH S
∗ =

∑
p∈Sing(S∩H)

µp(S ∩H).

Proof. See [30, Theorem 10.8].
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1.6.2 The second fundamental form

Let
dφp : Tp −→ TT̂pP(V ∗)

be the derivative of the Gauss map φ. We would like to understand dφ in terms of
the tangent and the normal bundle of S in P3. First, we use a natural identification

TT̂pP(V ∗) ∼= Hom(T̂p, V/T̂p) ∼= Hom
(
T̂p, N (−1)p

)
,

where N is the normal bundle of S ⊂ P(V ). The last isomorphism follows from a
natural identification

Np = Hom
(
p̂, V/T̂p

)
,

where p̂ ⊂ V denotes the deprojectivization of a point p ∈ P(V ).
One can check that

p̂ ⊂ ker dφp(v)

for any v ∈ Tp, and so dφp factors to

II : Tp −→ Hom
(
T̂p/p̂,N (−1)p

)
∼= Hom (Tp, Np) ,

where the last isomorphism follows from a natural identification

Tp = Hom
(
p̂, T̂p/p̂

)
.

Definition 1.6.9. We call II defined above the projective second fundamental form.

The projective second fundamental form II is symmetric. It is a section of
S2T ∗ ⊗N .

Remark 1.6.10. The projective second fundamental form can be also defined in
the following way

II(v, w) = (∇vw)⊥

for v, w ∈ TS and the Levi-Civita connection ∇ of S ⊂ P3.

Definition 1.6.11. We call v ∈ TpS an asymptotic direction if II(v, v) = 0.

Definition 1.6.12. Let TpS be the tangent space to S at a point p ∈ S. We call
Ep := TpS ∩ S the tangent curve at p.

The tangent curve at p ∈ S encapsulates many properties of the Gauss map
around p (see for example Theorem 1.6.8 or Remark 1.6.14 below).

Remark 1.6.13. Note that p is a singularity of the tangent curve Ep. Tangent
curves are exactly the divisors in |OS(1)| which are singular.
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p

Figure 1.2: A tangent curve and asymptotic directions

Remark 1.6.14. We present the second fundamental form in local coordinates (see
also [30, Example 3.9]). Let p ∈ S. Choose coordinates locally around p such that
S is defined by z + F (x, y) = 0 for F ∈ CJx, yK and z = 0 is tangent to S at 0.
Then,

II =

[
Fx,x Fx,y
Fy,x Fy,y

]
= Hess(F ).

Observe that the tangent curve Ep is defined by F = 0. Hence, asymptotic direc-
tions of S at p are exactly the tangents to the branches of Ep at p.

If there is only one asymptotic direction, say v, then it is a kernel of II, that is
II(v, ·) = 0. In particular, the asymptotic direction at p is exactly the direction of
ramification of φ, that is dφp(v) = 0.



CHAPTER 2

The geometry of smooth quartics in P3

2.1 Properties of Gauss maps

Let S ⊂ P3 be a smooth quartic hypersurface described by an equation f(x, y, z, w) =
0 of degree four. Note that S is a K3 surface. Let φ : S → P3 be the Gauss map.
We have

φ (x : y : z : w) = (fx : fy : fz : fw) .

Unless stated otherwise, we assume that S is very general.
First, using the fact that for a general surface S, the Gauss map is stable,

we describe it in local coordinates following [24, Section 3]. An easy corollary
of this presentation is that the derivative of the Gauss map is always nonzero,
which implies that hyperplane sections of a general quartic have only singularities
of multiplicity two. Further, we classify all possible hyperplane sections and we
use this classification to calculate multiplicities of singularities of dual surfaces.

2.1.1 A local description

All statements and proofs in this subsection work for any general hypersurface
in P3 of degree d ≥ 3. For the reader’s convenience, we present the proof of the
following proposition following [24, Section 3].

Proposition 2.1.1 ([24, (3.4)]). Take p ∈ S. The Gauss map φ : S → P3 is locally
equivalent at p to one of the following maps:

(nonparabolic germ) • (x, y)
φ17−→ (x, y, 0),

(general parabolic germ) • (x, y)
φ27−→ (x3, x2, y),

(swallowtail germ) • (x, y)
φ37−→ (3x4 + x2y, 2x3 + xy, y).
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Proof. Define a variety

Γ := {(x,H) | x ∈ H} ⊆ S × P̌3,

where P̌3 is the space of hyperplanes in P3. The variety Γ is smooth, because we
have a flat projection Γ→ S with smooth fibers

Γx =
{
H ∈ P̌3

∣∣ x ∈ H} ∼= P2.

Let π : Γ→ P̌3 be another projection. Recall that Σ(π) is the locus of points where
π is not smooth. We have

Σ(π) = {(x, TxS) | x ∈ S} ∼= S.

This equality follows from the fact that Σ(π) =
⋃
H∈P̌3 Sing(ΓH), where ΓH =

H ∩ S is the fiber of π over H ∈ P̌3. Clearly, ΓH is singular at x ∈ ΓH if and only
if H = TxS.

Hence, π|Σ(π) : Σ(π)→ P̌3 is exactly the Gauss map φ.

Lemma 2.1.2 ([24, Lemma 3.3]). For a general smooth quartic S, the morphism
π is locally stable.

Proof. We need to show that the subset of smooth quartics, for which the Gauss
map is stable, is Zariski open and non-empty. For non-emptiness, we refer to
[24, p. 274-275], where the proof is based on topological transversality argument
of [6]. We show only the openness. Define

Λ := {(x,H, f) | x ∈ H and f(x) = 0} ⊆ P3 × P̌3 × |OP3(4)|sm,

where |OP3(4)|sm is the space of smooth quartic hypersurfaces in P3. The statement
follows by applying Proposition 1.2.3 to

Λ P̌3 × |OP3(4)|sm

|OP3(4)|sm

Π

where the maps are natural projections.

Now, we assume that S is general and π is locally stable. Note that π restricted
to a fiber Γx =

{
H ∈ P̌3

∣∣ x ∈ H} of the projection Γ→ S is an inclusion. Hence,
π is of rank at least two at every point, and thus, by Proposition 1.2.4, it is locally
equivalent to one of the following maps:

(x1, x2, x3, x4)
π17−→ (x2, x3, x4),

(x1, x2, x3, x4)
π27−→ (x2

1 + x2
2, x3, x4),

(x1, x2, x3, x4)
π37−→ (x2

1 + x3
2 + x2x3, x3, x4),

(x1, x2, x3, x4)
π47−→ (x2

1 + x4
2 + x2

2x3 + x2x4, x3, x4).
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Let fi for 1 ≤ i ≤ 4 be the projection of πi to the first coordinate. Then Σ(πi) ={
∂fi
∂x1

= 0, ∂fi∂x2
= 0
}

. We calculate

Σ(π1) = ∅,
Σ(π2) = {x1 = 0, x2 = 0} ,
Σ(π3) =

{
x1 = 0, 3x2

2 + x3 = 0
}
,

Σ(π4) =
{
x1 = 0, 4x3

2 + 2x2x3 + x4 = 0
}
.

Hence, the Gauss map is locally equivalent to one of the maps:

(x3, x4) 7→ (0, 0, x3, x4)
π27−→ (0, x3, x4),

(x2, x4) 7→ (0, x2,−3x2
2, x4)

π37−→ (−2x3
2,−3x2

2, x4),

(x2, x3) 7→ (0, x2, x3,−4x3
2 − 2x2x3)

π47−→ (−3x4
2 − x2

2x3, x3,−4x3
2 − 2x2x3).

Now, we obtain the forms we are looking for, by applying a suitable change of
coordinates.

Definition 2.1.3. A point p ∈ S is called a planar point if dφp = 0.

Lemma 2.1.4. A point p ∈ S is planar if and only if multp(Ep) > 2.

Proof. Locally, the derivative dφp, the second fundamental form IIp and Hessp(Ep)
coincide, by construction of II and Remark 1.6.14. Hence, the lemma follows from
Remark 1.1.1.

If a surface contains planar points, then it is much more difficult to understand
its geometry. Fortunately, the following proposition holds.

Proposition 2.1.5 ([24, Theorem 3.1]). There are no planar points on a general
smooth quartic S.

Proof. By Proposition 2.1.1, we have dφp 6= 0 for every p ∈ S.

Hence, on a general smooth quartic hypersurface S ⊂ P3, tangent curves have
only singularities of mutiplicity two and the second fundamental form IIp is nonzero
for all p ∈ S.

2.1.2 A classification of tangent curves

First, observe that by Theorem 1.6.1, all tangent curves are irreducible. Further,
by Fact 1.4.8 all rational tangent curves are nodal.

We say that a curve E is elliptic cuspidal if g(E) = 1 and the singularities of
E are cusps. The following holds.

Lemma 2.1.6. There are no elliptic cuspidal tangent curves on a general smooth
quartic in P3.
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Proof. We use the notation from Subsection 1.1.3. Let P (OP3(4)) be the space
of quartic hypersurfaces in P3 and let V ⊆ P (OP3(4)) be the subvariety of those
quartics, which contain an elliptic cuspidal tangent curve. In order to prove the
lemma, it is enough to show that

dim(V ) < dim (P (OP3(4))) =

(
7

3

)
− 1 = 34.

Choose coordinates x, y, z, w of P3. Let V ⊆ V be the subvariety of those
quartics for which the curve cut out by w = 0 is an elliptic cuspidal curve. Quartics
in V are the zero loci of polynomials

F (x, y, z, w) = f(x, y, z) + wg(x, y, z, w),

where g ∈ H0(P3,OP3(3)), f ∈ H0(P2,OP2(4)), and {f = 0} ∈ V0,2
4 . Hence,

dim
(
V
)

= dim
(
V0,2

4

)
+ h0

(
P3,OP3(3)

)
= 10 +

(
6

3

)
= 30.

Let P̌3 be the space of hypersurfaces in P3. We have

dim(V ) ≤ dim
(
V
)

+ dim
(
P̌3
)

= 33 < dim (P (OP3(4))) .

Proposition 2.1.7. Let p be a point on a very general smooth quartic S ⊆ P3 and
let Ep ⊆ S be the tangent curve at p. The point p is of one of the following types:

1.
(general point)
g(Ep) = 2 and Ep has one node,

2.
(simple parabolic point)
g(Ep) = 2 and Ep has one cusp,

3.
(simple Gauss double point)
g(Ep) = 1 and Ep has two nodes,

4.
(parabolic Gauss double point)
g(Ep) = 1, Ep has one node and one cusp, and p is its
cusp,

p
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5.
(dual to parabolic Gauss double point)
g(Ep) = 1, Ep has one node and one cusp, and p is its
node, p

6.
(Gauss swallowtail)
g(Ep) = 1 and Ep has one tacnode,

7.
(Gauss triple point)
g(Ep) = 0 and Ep has three nodes.

Proof. The proof follows from Lemma 1.1.6 together with Fact 1.4.8 and Lemma
2.1.6.

Remark 2.1.8. We will see later on that all the cases occur. We will prove that the
subset of simple parabolic points, parabolic Gauss double points and Gauss swal-
lowtails is closed of pure dimension one. We call it the parabolic curve. Similarily,
the double-cover curve which is the subset of simple Gauss double points, parabolic
Gauss double points, dual to parabolic Gauss double points, Gauss swallowtails
and Gauss triple points is also closed and of pure dimension one. Note that a
calculation similiar to the proof of Lemma 2.1.6, confirms that the double-cover
curve and the parabolic curve should generically have dimension one.

Using Proposition 2.1.7 we can calculate the multiplicity of a point φ(p) in S∗,
for p ∈ S.

Proposition 2.1.9. Let p ∈ S and set p∗ = φ(p). Then multp∗ S = 2 if p is
a simple parabolic point or a simple Gauss double point and multp∗ S = 3 if p
is a parabolic Gauss double point, dual to parabolic Gauss double point, a Gauss
swallowtail, or a Gauss triple point.

In particular, since S∗ is generically smooth, a general point p on S satisfies
property (1), that is g(Ep) = 2 and Ep has exactly one node.

Proof. The proposition follows from Theorem 1.6.8 and the calculation of Milnor
numbers of nodes, cusps and tacnodes in Subsection 1.1.1.

Note, that in the following sections we will redefine the parabolic curve, and
Gauss swallowtails, and then check that the new defintions agree with the ones
from Proposition 2.1.7.
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2.2 The parabolic curve

In this section, we analyze the ramification locus of the Gauss map, which we
call the parabolic curve. We show that for a general smooth quartic, this curve is
smooth of genus 129 and degree 32. It consists exactly of the points, at which the
tangent curve has a cusp.

We call the points where the Gauss map restricted to the parabolic curve
ramifies, the Gauss swallowtails. One can also define them as those points where
the tangent direction to the curve and the asymptotic direction coincide. We will
show in Subsection 2.4, that this definition agrees with the one from Proposition
2.1.7 and that there are 320 Gauss swallowtails.

Gauss

A
sy

m
pt

ot
ic

D
ir

ec
ti

on

Swallowtail

Figure 2.1: The parabolic curve

Definition 2.2.1. We define the parabolic curve Cpar to be the ramification locus
of the dual map φ. We say that a point p is parabolic if p ∈ Cpar.

We need to check that this definition agrees with the one from Remark 2.1.8.

Proposition 2.2.2. Let p ∈ S. Then p is parabolic if and only if p is a cusp or a
tacnode of Ep.

Proof. The point p is a cusp or a tacnode of Ep exactly when det(Hessp(Ep)) = 0.
Since dφ and Hess(Ep) coincide locally by Remark 1.6.14 and the construction of
II, the proposition follows.

Hence, a point p is parabolic if and only if it has exactly one asymptotic
direction.

We say that a point p is simple parabolic, if g(Ep) = 2 and p is a cusp of Ep.

Proposition 2.2.3. The parabolic curve Cpar is the zero locus of det(Hess(f)) on
S. In particular, it is of pure dimension one and lies in OS(8).
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Proof. Without loss of generality we can restrict ourselves to

U := {(x : y : z : 1)} .

Using that xfx+yfy +zfz +wfw = 4f and analogous equations for second deriva-
tives, for example xfx,x + yfx,y + zfx,z +wfx,w = 3fx, we can conduct elementary
transformations to get

det(Hess(f)) = cdet


fx,x fy,x fz,x fx
fx,y fy,y fz,y fy
fx,z fy,z fz,z fz
fx fy fz f


for a nonzero constant c.

Take p ∈ S. By an analytic change of coordinates we can assume that locally
around p we have f = z − F (x, y), where F ∈ CJx, yK and z = 0 is tangent to S.
Note that terms of F have degree at least two. We get

det(Hess(f)) = cdet


−Fx,x −Fy,x 0 0
−Fx,y −Fy,y 0 0

0 0 0 1
0 0 1 0

 = cdet(II).

Since II and dφ coincide by the construction of II, the proposition follows.

Proposition 2.2.4 ([24, Theorem 3.1]). The parabolic curve Cpar on a general
smooth quartic S is smooth.

Proof. Here, we use the notation of Proposition 2.1.1. Note that the parabolic
curve Cpar is equal to the locus Σ(φ) of the points where φ is not smooth. If the
Gauss map φ is locally equivalent to a map φi(x, y) = (fi(x, y), gi(x, y), y), then
we have

Σ(φi) =

{
∂fi
∂x

=
∂gi
∂x

= 0

}
,

and so

Σ(φ1) = ∅,
Σ(φ2) = {x = 0} ,
Σ(φ3) =

{
6x2 + y = 0

}
.

In particular, Cpar is smooth.

Corollary 2.2.5. The curve Cpar has genus 129.
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Proof. By the adjunction formula (see [4, Section II.11]) we get

g(Cpar) =
1

2
C2

par + 1 =
1

2
· 4 · 8 · 8 + 1 = 129.

Definition 2.2.6. We call p ∈ S a swallowtail of the Gauss map (Gauss swallowtail
in short) if p lies in the ramification divisor of φ|Cpar .

Remark 2.2.7. In other words, by Remark 1.6.14, Gauss swallowtails are exactly
those points on the parabolic curve Cpar where the tangent direction of Cpar at p
and the asymptotic direction at p coincide.

Remark 2.2.8. Suppose that S is a general quartic. We use, here, the notation
of Proposition 2.1.1. Take p ∈ Cpar. The calculations in the proof of Proposition
2.2.4, show that φ|Cpar is locally at p equivalent to one of the following maps

y 7→ (0, y)
φ2|Cpar7−−−−→ (0, 0, y),

x 7→ (x,−6x2)
φ3|Cpar7−−−−→ (−3x4,−4x3,−6x2).

In particular, φ1 describes the Gauss map around nonparabolic points, φ2 around
parabolic points, which are not Gauss swallowtails, and φ3 around Gauss swallow-
tails.

2.3 Bitangents, hyperflexes and the flecnodal curve

In this section, we analyse the flecnodal curve, which consists of those points, to
which one of the asymptotic direction is tangent with multiplicity four. For a very
general surface S, it is irreducible of genus 201. The points where both asymptotic
directions are tangent with multiplicity four are contained in the singular locus of
the flecnodal curve. In this section, we also find equations defining the flecnodal
curve in local coordinates, which we will use later to calculate the number of Gauss
swallowtails and show that the flecnodal curve has degree 80.

2.3.1 Bitangents

Definition 2.3.1. A line l ⊆ P3 is called a bitangent of S if it is tangent to S at
each point x ∈ S ∩ l. We call it a hyperflex if |l ∩ S| = 1.

Since there are no lines on S, a bitangent l intersects S in at most two points.
A line l is a hyperflex if and only if it intersects S at some point with multiplicity
four.

Remark 2.3.2. Take p, q ∈ S such that p 6= q. Then, the line pq is a bitangent if
and only if pq ⊆ Tp ∩ Tq = TqEp, that is pq is tangent to Ep at q (or equivalently
pq is tangent to Eq at p).
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p

q

Figure 2.2: The tangent curve Ep and the bitangent pq

Proposition 2.3.3. A general point p ∈ S has exactly six bitangents.

Proof. Let p ∈ S be a general point. Then, the curve Ep is singular only at p,
where it has a node. Additionally, g(Ep) = 2 and asymptotic directions l1, l2 satisfy
multp(Ep ∩ li) = 3. Take an arbitrary line P1 ⊆ Tp and consider the projection
π : Ep 99K P1 from p. By Remark 2.3.2, bitangents correspond to ramification
divisors of π.

Let Ẽp → Ep be the normalization of Ep and let π̃ : Ẽp → P1 be its composition
with π. As deg(Ep) = 4, it holds that deg(π̃) = deg(π) = 2. By Riemann–Hurwitz
formula

χ(Ẽp) = 2χ(P1) + deg(R),

where R is the ramification divisor, we get that deg(R) = 6. Let {p1, p2} be the
inverse image of p under the normalization of Ep, where pi corresponds to the
asymptotic direction li. It is sufficient to show that π̃ does not ramify at pi.

Since deg(S) = 4 and multp(Ep ∩ li) = 3, the asymptotic direction li intersects
Ep at exactly one another point, say qi. Then,

π̃(pi) = π̃(qi),

and so π̃ does not ramify at pi.

Remark 2.3.4. By the above calculation, we see, that a point q ∈ S has less than
six bitangents if and only if Eq has more than one singularity or there is a hyperflex
through q.

2.3.2 Global properties of the flecnodal curve

Definition 2.3.5. A point p ∈ S is called a flec point if there exists a hyperflex
through it. The flecnodal curve Chf is the reduced subscheme of flec points.

Proposition 2.3.6. The flecnodal curve Chf is closed and of pure dimension one.

Proof. Define the universal family of bitangents
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BS S

FS

p

q

where

BS := {(p, l) | l is bitangent to S at p}
FS := {l | l is bitangent to S} .

The surfaces BS , FS are irreducible and smooth (see [31] or [34]). Since Chf is the
image under p of the ramification locus of q, the proposition follows from Fact
1.4.1.

Proposition 2.3.7. For a very general quartic S, the curve Chf is irreducible. It
has geometric genus 201.

Proof. See [19, Proposition 8.8].

Proposition 2.3.8. Suppose that S is a general quartic. Then a general point
p ∈ Chf has exactly one hyperflex.

Proof. The proof is similiar to the argument of Section 3.3.

Proposition 2.3.9. The flecnodal curve Chf on a very general smooth quartic S
is a constant cycle curve.

For the reader’s convenience, we present the proof following [19, Proposition
8.7].

Proof. Take p ∈ Chf and a hyperplane H distinct from TpS, but containing a
hyperflex at p. Since deg(Ep) = 4, the hyperplane H intersects Ep only at the
point p, and so, by Proposition 1.5.5, we have

4[p] = 4cX .

Since CH0(X) is torsion free (see Proposition 1.5.6), we get [p] = cx. Thus, by
Proposition 1.5.3, the flecnodal curve Chf is a constant cycle curve.

2.3.3 The flecnodal curve in local coordinates

We use the following lemma to find equations for Chf in local coordinates.

Lemma 2.3.10. Take p ∈ S and a local chart U ⊆ S with coordinates x, y.
Choose a vector v in the asymptotic direction at p and extend it to a vector field
in asymptotic directions. Let f : U → C be a slope function y

x of this vector field.
Then Cv is a hyperflex if and only if dfp(v) = 0.
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The condition dfp(v) = 0 does not depend on the choice of a chart and local
coordinates. In the language of differential geometry, it says that flec points are
inflection points of asymptotic curves (integral curves of asymptotic directions).
Note that asymptotic curves do not need to be algebraic.

Proof. We can assume that locally around p the surface S is defined by z−F (x, y),
where F ∈ CJx, yK and z = 0 is tangent to S. Consider the continuous function
f(q) = vx

vy
, where v = (vx, vy, vz) is an asymptotic direction at q.

By Remark 1.6.14, the slope f(q) satisfies

f(q)2Fx,x + 2f(q)Fx,y + Fy,y = 0.

Taking the derivative and evaluating on v we get

dfp(v)(2fFx,x + 2Fx,y) + v−2
y M = 0, (2.1)

where
M = Fx,x,xv

3
x + 3Fx,x,yv

2
xvy + 3Fx,y,yvxv

2
y + Fy,y,yv

3
y .

Note that v is a hyperflex if and only if M = 0. Thus, if dfp(v) = 0, then Cv is a
hyperflex.

Now assume that Cv is a hyperflex. We want to prove that dfp(v) = 0. Since
Cpar and Chf does not have common components, by continuity we can assume
without loss of generality that p 6∈ Cpar, that is p has two asymptotic directions.
Then,

2f(q)Fx,x + 2Fx,y 6= 0,

and so dfp(v) = 0 by (2.1).

Let p ∈ S. Choose a local chart U ⊆ S with coordinates x, y such that p is
sent to 0 and

II =

[
µ 0
0 λ

]
,

where µ, λ ∈ CJx, yK. Since Cpar is the zero locus of det(II), we can assume that it
is given by µ = 0. Additionally, we can assume without loss of generality that λ is
nowhere vanishing on U , as there are no planar points on S by Proposition 2.1.5.

Note that for a point p ∈ Cpar, it holds that µx = 0 if and only if p is a Gauss
swallowtail (see Remark 2.2.7). The following lemma is a reformulation of the
result of McCrory and Shifrin (see [24, Lemma 1.11]).

Lemma 2.3.11. The flecnodal curve Chf is described locally around p by

(µxλ− µλx)2 λ+ (µyλ− µλy)2 µ = 0.

Proof. A vector [a, b] is an asymptotic direction at x ∈ U \ Cpar if and only if

a2µ+ b2λ = 0.
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Hence, the slope function p of asymptotic curves satisfies

p2 = −µ
λ
.

Choose x ∈ U \ Cpar and fix a branch of
√

around x. Define

ω := d

(
−
√
µ

λ

)
=

1

2

√
λ

µ

(
µxλ− µλx

λ2
dx+

µyλ− µλy
λ2

dy

)
.

By Lemma 2.3.10, the curve Chf is described outside of Cpar by

ω(
√
λ,
√
µ) · ω(

√
λ,−√µ) = 0,

which is equivalent to

λ

µ

((
µxλ− µλx

λ2

)2

λ+

(
µyλ− µλy

λ2

)2

µ

)
= 0.

Thus, the curve Chf is contained in the curve C̃hf described by

(µxλ− µλx)2 λ+ (µyλ− µλy)2 µ = 0.

Those two curves coincide on U \ Cpar. Note that C̃hf intersects Cpar exactly at
points of Cpar satisfying µx = 0, that is at Gauss swallowtails. Since the set of
Gauss swallowtails is finite, the curves Chf and C̃hf must coincide.

Corollary 2.3.12. Let p ∈ Chf be a point with two distinct hyperflexes. Then p
is a singularity of Chf .

Proof. We use, here, the notation of Lemma 2.3.11. Since p has two asymptotic
directions, it holds that p 6∈ Cpar, and so we may assume that locally around p
functions µ and λ are nowhere vanishing. In particular, we may choose a well
defined branch of

√
µ and

√
λ.

Locally around p the curve Chf is the union of two curves defined by

ω(
√
λ,
√
µ) = 0,

ω(
√
λ,−√µ) = 0.

Those two branches are distinct by Proposition 2.3.8. Since p lies on both, the
curve Chf is singular at p.

One could also prove this corollary by using the argument from the proof of
Proposition 2.3.8.
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2.4 Gauss swallowtails

In this section, following [24], we show that Gauss swallowtails are exactly the
intersection points of the flecnodal curve and the parabolic curve. It implies that
a point is a Gauss swallowtail if and only if the tangent curve at it has a tacnode.
The parabolic curve and the flecnodal curve always intersect each other with mul-
tiplicity two. Further, the flecnodal curve is smooth at Gauss swallowtails. Using
these facts, we show that there are 320 Gauss swallowtails and the flecnodal curve
has degree 80.

Let Swallowtail(S) be the set of Gauss swallowtails.

Remark 2.4.1. Recall that on the parabolic curve Cpar we have unique asymptotic
directions. Let L ⊆ TS|Cpar be the subbundle of asymptotic directions. Take a
projection π : TS|Cpar → NCpar/S . Then, by Remark 2.2.7, Gauss swallowtails are
exactly zeroes of π|L.

We say that a Gauss swallowtail p ∈ Swallowtail(S) is nondegenerate if it is a
simple zero of π|L.

Proposition 2.4.2. All Gauss swallowtails of a general smooth quartic are non-
degenerate.

Proof. See [24, Theorem 3.1].

Proposition 2.4.3. A point p ∈ Cpar is a Gauss swallowtail if and only if it is a
flec point. In other words

Swallowtail(S) = Cpar ∩ Chf .

Proof. Here, we use the notation of Lemma 2.3.11. Recall that the equation µ = 0
defines Cpar and for every q in the local chart U ⊆ S we have λ(q) 6= 0.

Take p ∈ S. If p is a Gauss swallowtail, that is µ(p) = 0 and µx(p) = 0, then
p satisfies the equation of Lemma 2.3.11, and so p ∈ Chf . Other way round, if
µ(p) = 0 and p satisfies the equation of Lemma 2.3.11, then µx(p)2λ(p)3 = 0, and
so µx(p) = 0, which is equivalent to p being a Gauss swallowtail.

Note that a point p ∈ Cpar is a flec point if and only if Ep has a tacnode at
p (see Remark 1.1.5). Therefore, we have finally verified that our definition of a
Gauss swallowtail agrees with the one from Proposition 2.1.7.

Proposition 2.4.4. For every Gauss swallowtail point p ∈ Swallowtail(S), the
curve Chf is smooth at p and Chf gp Cpar with multp(Chf ∩ Cpar) = 2.

We simplify the proof from [24, Theorem 1.8].
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Proof. Take p ∈ Swallowtail(S). Here, we use the notation of the proof of Lemma
2.3.11. The asymptotic direction at p is given by y = 0. By Remark 2.2.7, it holds
that µx(p) = 0 and, since Cpar is smooth, µy(p) 6= 0. We have µx,x(p) 6= 0 by
Proposition 2.4.2.

Take

M :=
µxλ− µλx
µyλ− µλy

.

Since µyλ− µλy 6= 0, using Lemma 2.3.11 we get that Chf is described by

µ+ λM2 = 0.

As M(p) = 0, we have (λM2)x(p) = (λM2)y(p) = 0, and so

dµ(p) = d(µ+ λM2)(p).

Hence, Chf is smooth at p and Chf gp Cpar. Easy calculation shows that at the
point p

(λM2)x,x(p) = 2λ(p)

(
µx,x(p)

µy(p)

)2

6= 0.

Hence, multp(Chf ∩ Cpar) = 2.

Proposition 2.4.5 ([24, Theorem 2.5]). There are 320 Gauss swallowtails.

We rewrite the proof from [24].

Proof. By Remark 2.4.1 and Proposition 2.4.2, we have that

| Swallowtail(S)| = degHom
(
L, NCpar/S

)
= −deg (L) + deg

(
NCpar/S

)
= −deg (L) + Cpar · Cpar

= −deg (L) + 256.

We need to calculate deg(L). Consider the map II : TS ⊗ TS → NS/P3 . On
Cpar it gives us an isomorphism

M⊗M
∼=−→ NS/P3 |Cpar ,

where M := TS|Cpar/L. Thus,

deg(L) = deg(TS|Cpar) −
1

2
deg

(
NS/P3 |Cpar

)
= −deg(KS |Cpar)−

1

2
deg

(
OCpar (4)

)
= −64.

Therefore, we have | Swallowtail(S)| = 320.
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The following may be found in [19, Proposition 8.8] or [34]. We present a
different proof based on the calculation of Gauss swallowtails.

Corollary 2.4.6. It holds that deg(Chf) = 80.

Proof. Recall that Cpar lies in |OS(8)|. By Proposition 2.4.4 and Proposition 2.4.5
we have

320 = |Swallowtail(S)| = |Chf ∩ Cpar| =
8 deg(Chf)

2
.

In particular, Chf lies in |OS(20)|, since a very general smooth quartic S has
the Picard rank one (see Theorem 1.6.1).

Note that by the adjunction formula (see [4, Section II.11])

pa(Chf) =
1

2
C2

hf + 1 = 801,

and so by Proposition 2.3.7, the curve Chf is singular.

2.5 The double-cover curve

In this section, we analyse the double-cover curve, which is the subset of points of
the following type:

Simple
Gauss
Double

Gauss
Triple

Parabolic
Gauss Double

Dual to
Parabolic

Gauss Double

Gauss
Swallowtail

We show that the locus of those points is a curve, which means that there are
no isolated points of the above type. One could also define the double-cover curve
to be the closure of the locus of simple Gauss double points.

The double-cover curve has nodes at Gauss triple points, cusps at dual to
parabolic Gauss double points and is smooth everywhere else. The parabolic curve
intersects the double-cover curve at Gauss swallowtails with multiplicity two and
at parabolic Gauss double points with multiplicity one.
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Gauss Triple

Parabolic Gauss Double

Gauss

Dual to

Cd
Cpar

Chf

Swallowtail

Parabolic Gauss Double

Figure 2.3: The geometry of a very general smooth quartic surface

We calculate that there are 3200 Gauss triple points and 1920 parabolic Gauss
double points. The double-cover curve is irreducible. It has genus 1281 and degree
320.

2.5.1 Deformations of tangent curves

Definition 2.5.1. We define the double-cover curve Cd to be the subset of points
p ∈ S satisfying g(Ep) ≤ 1.

Recall the definitions of points with g(Ep) ≤ 1 from the classification of tangent
curves (see Proposition 2.1.7). We call a point p ∈ S a Gauss double point, if Ep
has exactly two singular points and a Gauss triple point, if Ep has three singular
points.

For a Gauss double point p ∈ Cd, we define the dual point p̂ ∈ Cd to be the
second singularity of Ep. We have a natural rational involution i : Cd 99K Cd which
takes p to p̂.

We say that a Gauss double point p is parabolic, if the tangent curve Ep has
a cusp at p. We call a point p a dual to a parabolic Gauss double point, if p̂ is a
parabolic Gauss double point. We call those points nonsimple Gauss double points.
We say that a Gauss double point is simple, if it is neither parabolic, nor dual to
a parabolic point.

By the classification of tangent curves (see Proposition 2.1.7), Cd consists
exactly of simple Gauss double points, parabolic Gauss double points, dual to
parabolic Gauss double points, Gauss swallowtails and Gauss triple points. Re-
call that there are only finitely many nonsimple Gauss double points and Gauss
swallowtails.
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p

p̂

Figure 2.4: The double cover curve and the tangent curve at a point p

The aim of this subsection is to show that the double-cover curve is of pure
dimension one. In other words, we need to show that Gauss triple points, nonsim-
ple Gauss double points and Gauss swallowtails lie in the closure of the locus of
simple Gauss double points.

First, we need to show the following.

Lemma 2.5.2. The subset Cd is closed.

Proof. Define the family of tangent curves on S

E :=
{

(p, x) ∈ S × P3
∣∣ x ∈ Ep}

S

π

which is flat by Corollary 1.1.14. By the semicontinuity of the geometric genus
(see Lemma 1.1.9), we get that the locus of points p ∈ S satisfying g(Ep) ≤ 1 is
closed.

Proposition 2.5.3. The closed subset Cd has pure dimension one.

In other words, Cd is a curve.

Proof. Take a point p in Cd. We show that p cannot be an isolated point of Cd.

Case 1. Suppose that Ep has at least two singularities.

Under this assumption, there exists a point q such that p 6= q and φ(p) = φ(q).

Let U1 and U2 be disjoint, sufficiently small open neighbourhoods of p and q in
S. Images φ(U1) and φ(U2) are codimension one analytic branches of S∗ at φ(q),
and so, by dimension theory, their interesection is of codimension at most two
(more precisely, apply the Principal Ideal Theorem to ÔP3,φ(p), cf. [10, Theorem
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10.2]). Since the locus where the Gauss map φ is not injective is contained in Cd,
we get that φ−1(φ(U1) ∩ φ(U2)) ⊆ Cd, and so the point p cannot be isolated.

Case 2. Suppose that Ep has exactly one singularity. We use global deformation
theory of plane curves (see Subsection 1.1.3) to show that p cannot be an isolated
point. Note, that the following argument works, also, in the case when p is a Gauss
double point, but not when p is a Gauss triple point (see Remark 2.5.4).

Let V be the image of |OP3(1)| in |OS(1)|. Elements of V are exactly the inter-
sections of hyperplanes in P3 with S. We will show that V contains an irreducible
subvariety V of dimension at least one such that Ep ∈ V and g(C) ≤ 1 for every
C ∈ V . This would imply that p is not an isolated point of Cd, because the closed
subset

⋃
C∈V Sing(C) is contained in Cd and p is the only singularity of Ep.

First, note that dim(V ) = 3, as dim |OP3(1)| = 3 and any two distinct hyper-
planes in P3 intersect S in two distinct curves.

Every curve in V is planar of degree four. By taking a projection of TqS to
TpS for points q ∈ S in some Zariski open neighbourhood of p, we get a natural
morphism ψ : U → P(OP2(4)) parametrizing curves in V , where U ⊆ V is a Zariski
open neighbourhood of Ep ∈ V .

If dim(ψ(U)) < 3, then ψ−1(ψ(Ep)) ⊆ V is at least one-dimensional family
of curves with genus smaller or equal than one. Hence, we may assume that
dim(ψ(U)) = 3. Since, U4,1 has codimension two in P(OP2(4)) (see Lemma 1.1.16),
the image ψ(U) must intersect U4,1 along a subvariety of dimension at least one
(once again by dimension theory). The inverse image of the irreducible component
of ψ(Ep) in this intersection is the family we were looking for.

We get that Cd is the closure of the locus of simple Gauss double points. Note
that the definition of the double-cover curve and the propositions above work for
all smooth quartics in P3.

Remark 2.5.4. It is important to consider two cases of the proof separatedly. By
applying the argument of Case 2 to a Gauss triple point, we could get that nodal
rational curves degenerate in families, but it is not clear how to get from this that
nodes of rational curves degenerate in families.

Remark 2.5.5. In the case when S is a general quartic surface and the Gauss map
π is stable, one can show that Gauss swallowtails are not isolated points of Cd by
a local calculation (see the proof of Proposition 2.5.11).

Proposition 2.5.6. The curve Cd is irreducible.

Proof. See [25] or [27].

2.5.2 Singularities

In this subsection we analyse the local behaviour of the curve Cd.

Proposition 2.5.7. Let p be a Gauss double point. Assume it is not dual to a
parabolic Gauss double point. Then the double-cover curve Cd is smooth at p.
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Gauss Triple
Dual to

Cd

Parabolic Gauss Double

Figure 2.5: The singularities of the double cover curve

Proof. Since φ is stable, it satisfies the NC condition (see Proposition 1.2.6). Take
two small disjoint neighbourhoods Up, Up̂ ⊆ S containing p and p̂ respectively.
Then φ|Up and φ|Up̂

are transverse. Also, note that φ(Up̂) is smooth, because φ
does not ramify at p̂. Hence, by Proposition 1.2.8, we get that

Cd ∩ Up = φ|−1
Up

(φ (Up̂))

is smooth.

Definition 2.5.8. We say that two analytic branches B1 and B2 of Cd at points
p1 ∈ Cd and p2 ∈ Cd respectively are dual to each other, if locally i(B1) = B2.

Consider a sequence of points pi on the double-cover curve. Note that if this
sequence converges, then the sequence p̂i also converges.

Lemma 2.5.9. A sequence of points pi ∈ Cd converges to a Gauss swallowtail if
and only if the sequences pi and p̂i converge to the same point.

Proof. Assume that the sequence pi converges to a point p. If p̂i also converges to
the point p, then by Corollary 1.1.18 the point p cannot be an ordinary singularity.
By the classification of tangent curves (see Proposition 2.1.7), the point p must be
a Gauss swallowtail.

Now, assume that p is a Gauss swallowtail. In particular, Ep is singular only at
p by the classification of tangent curves (see Proposition 2.1.7). Since the sequence
p̂i converges to a singular point of Ep (see for example Theorem 1.1.17), it must
converge to p.

Proposition 2.5.10. Let p ∈ Cd be a parabolic Gauss double point. Then Cd has
a cusp at p̂.

Proof. See Proposition 2.7.3.
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Gauss

Swallowtail

p1

p̂1

p2 p3

p̂2
p̂3

Figure 2.6: A sequence of points converging to a Gauss swallowtail

Proposition 2.5.11. The double-cover curve Cd is smooth at Gauss swallowtails.

Proof. By Remark 2.2.8, we need to find an equation for Cd at the chart φ3

(x, y)
φ37−→ (3x4 + x2y, 2x3 + xy, y).

Assume that we have two points p1 := (x, y) and p2 := (x, y) such that
φ3(x, y) = φ3(x, y). Then clearly y = y. We claim that p2 = (x, y) or p2 = (−x, y).
Assume by contradiction that neither of this holds. We have

3x4 + x2y = 3x4 + x2y,

2x3 + xy = 2x3 + xy.

By dividing the first equation by x2 − x2 and the second by x− x, we get

3(x2 + x2) + y = 0,

2(x2 + xx+ x2) + y = 0.

By substracting both equations we obtain

x2 − 2xx+ x2 = 0,

which is a contradiction. Hence, x = x or x = −x.
The set of points (x, y) such that φ(x, y) = φ(−x, y) is described by the equa-

tion 2x3 + xy = 0, and so the curve Cd is the zero locus of 2x2 + y. In particular,
Cd is smooth at 0.
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B1

B̂1

B2

B̂2

B0

B̂0

p0

p1

p2

Figure 2.7: Branches of the double cover curve at Gauss triple points

Proposition 2.5.12. Let p0, p1 and p2 be Gauss triple points, which lie on the
same tangent curve E. Then the curve Cd has at those points all together six
analytic branches B0, B̂0, B1, B̂1, B2, B̂2, where B̂i is the dual of Bi. The branches
Bi and B̂(i+1) mod 3 intersect each other transversally at pi. Additionally, all the
branches are smooth.

Proof. This follows from the fact that φ satisfies the NC condition (see the proof
of Proposition 2.5.7).

Now, we describe the tangent TpCd at a point p ∈ Cd only in terms of properties
of the tangent curve Ep.

Proposition 2.5.13. Take p ∈ Cd and assume that Cd is smooth at this point.
Then TpCd ⊆ TpS is orthogonal to the line pp̂ with respect to the second funda-
mental form IIp, that is IIpi

(
TpCd, pp̂

)
= 0.

Proof. By continuity, it is enough to show the proposition in the case when Cd is
also smooth at p̂ and the dual map φ does not ramify at points p and p̂. To easy
the notation, we set p1 := p and p2 := p̂. Define H := TpiS and p∗ = φ(pi). We
write TpiS when we want to specify that the origin is pi and we write H otherwise.
Since the Gauss map φ does not ramify at points pi and Cd is smooth at those
points, the curve φ(Cd) is smooth at p∗ and we have

Tp∗φ(Cd) = dφp1(Tp1Cd) = dφp2(Tp2Cd).

Hence, dφpi(TpiCd) ⊆ dφp1(H) ∩ dφp2(H).
In order to identify the line TpiCd we use the construction of the second fun-

damental form II (see Definition 1.6.9). First, recall that dφpi(H) is contained
in

TĤ P̌
3 ∼= Hom(Ĥ,C4/Ĥ),
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where Ĥ ⊆ C4 is the deprojectivization of H and P̌3 is the space of hyperplanes
in P3. The image dφpi(H) is equal to

Hom
(
Ĥ/p̂i,C4/Ĥ

)
∼= Hom (TpiS,N) ,

where p̂i is the deprojectivization of pi and N is the orthogonal line to TpiS in P3.
Now, observe that

dφp1(H) ∩ dφp2(H) ∼= Hom
(
Ĥ/p̂1,C4/Ĥ

)
∩Hom

(
Ĥ/p̂2,C4/Ĥ

)
∼= Hom (TpiS/(p1p2), N) ,

where the second isomorphism holds, because under the indentification of Ĥ/p̂1

with Tp1S, the line p̂2 is sent to p1p2.

Since dφpi(TpiCd) ⊆ dφp1(H) ∩ dφp2(H), we have

IIpi (TpiCd, p1p2) = 0.

2.5.3 Intersection points with the parabolic curve

We want to understand how the double-cover curve and the parabolic curve inter-
sect each other. By the classification of tangent curves, the intersection points are
exactly parabolic Gauss double points and Gauss swallowtails.

Lemma 2.5.14. Let p ∈ Cd be a parabolic Gauss double point. Then the asymp-
totic direction l at the point p is tangent to Cd at p.

Cd

p

p̂

Ep

l

Figure 2.8: The double cover curve Cd and the tangent curve Ep at the parabolic
Gauss double point p

We will prove at the end of this subsection that the lemma also holds for Gauss
swallowtails.



2. The geometry of smooth quartics in P3 49

Proof. First, note that multp(Ep ∩ l) = 3. It implies that p̂ 6∈ l, because otherwise
Ep · l ≥ 5, which contradicts the fact that deg(Ep) = 4.

Thus, we have that II(pp̂, ·) is nontrivial and its kernel is l. Hence, l is the only
line orthogonal to pp̂ with respect to IIp, and so it must be the tangent to Cd at p
by Proposition 2.5.13.

Proposition 2.5.15. Let p ∈ Cd be a parabolic Gauss double point. Then Cpar tp
Cd (curves interesect each other transversally at p).

Proof. Let l be the asymptotic direction at p. By the above lemma, TpCd = l. On
the other hand, since p is not a Gauss swallowtail, we have that TpCpar 6= l by
Remark 2.2.7. Hence, TpCpar 6= TpCd, and so Cpar tp Cd.

Parabolic Gauss Double

Gauss
Dual to

Cd

Cpar

Swallowtail
Parabolic Gauss Double

Figure 2.9: Intersection points of the double cover curve and the parabolic curve

Proposition 2.5.16. Let p ∈ Cd be a Gauss swallowtail. Then Cpar gp Cd with
multp(Cpar ∩ Cd) = 2.

Proof. Recall that at the local chart φ3 (see the notation of Proposition 2.1.1), the
curve Cpar is defined by the equation 6x2 + y = 0 (see the proof of Proposition
2.2.4) and the curve Cd is defined by 2x2 + y = 0 (see the proof of Proposition
2.5.11). Thus, they are tangent with multiplicity two.

Note, that since the tangents to Cpar at Gauss swallowtails are the asymp-
totic directions, also the tangents to Cd at Gauss swallowtails are the asymptotic
directions.

2.5.4 Enumerative properties

We want to calculate the degree of Cd. By Theorem 1.6.1, we know that Cd ∈
|OS(N)| for some N ∈ N. Our strategy for calculating N is the following. First,
we get a formula for the degree of C∗d := φ(Cd) depending on N , and then we plug
it into a certain version of the double-point formula to obtain an equation for N .

A curve E is called nodal elliptic if g(E) = 1 and E has two nodes.
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Lemma 2.5.17. A general point q ∈ S lies on exactly 6N nodal elliptic curves.

Before proving the proposition, we make some general comments. Let P̌3 be
the space of hyperplanes in P3. Since, we have chosen the basis, we have a natural
isomorphism P3 → P̌3. For a point q ∈ P3, we denote the corresponding hyperplane
in P̌3 by Hq. It is the image in P3 of the hyperplane in C4 orthogonal to the
deprojectivization of q. Similarily for a line l ⊆ P3 we denote the corresponding
line in P̌3 by Ll.

Take a point q ∈ P3. Recall the definition of the polar locus curve of q

Γq := {p ∈ S | q ∈ TpS} .

Since Pic(S) ∼= Z, Corollary 1.4.6 implies that Γq ∈ OS(3).
We have

q ∈ TpS if and only if Hq 3 φ(p),

and so Γq = φ−1 (Hq ∩ S∗).
We need the following lemma.

Lemma 2.5.18. Let C be a curve on S. Then for a general point q ∈ S, the curve
Γq intersects C transversally.

Proof. Define C∗ := φ(C) ⊆ P3. It is enough to show that φ(Γq) t C∗, or
equivalently that Hq t C∗.

Let
HS := {Hp | p ∈ S} ⊆ P̌3

be the two-dimensional subspace of hyperplanes corresponding to points of S. We
also define

Htan := {(x,H) | H gx C
∗} ⊆ C∗ × P̌3

to be the space of hyperplanes tangent to C∗. Its fiber (Htan)x over a general point
x ∈ C∗ is equal to

{H | H gx C
∗} = {H | TxC∗ ⊆ H} ∼= P1,

and so dim(Htan) = 2.
Let πP̌3 : Htan → P̌3 be the projection onto P̌3. In order to show the claim,

we need to prove that HS 6⊆ πP̌3(Htan). Assume by contradiction that HS ⊆
πP̌3(Htan). Since HS and Htan are of the same dimension, some fiber

(Htan)x = {H | TxC∗ ⊆ H} ⊆ P̌3

is contained in HS for a point x ∈ C∗. Hence,

LTxC∗ ⊆ S,

which is impossible, because there are no lines on S by Theorem 1.6.1. Thus, the
claim is proved.
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Proof of Lemma 2.5.17. Using the lemma above, we get that a general point q ∈ S
lies on exactly

1

2
|Γq ∩ Cd| =

1

2
· 4 · 3 ·N = 6N

nodal elliptic curves.

Define C∗d := φ(Cd).

Corollary 2.5.19. The curve C∗d has degree 6N .

Proof. From the proof of Lemma 2.5.18 we see that a general hyperplane H inter-
sects C∗d transversally, and so we have

deg(C∗d) = |H ∩ C∗d| =
1

2
|φ∗(H ∩ S∗) ∩ Cd| =

1

2
|Γq ∩ Cd| = 6N.

Proposition 2.5.20. The curve Cd lies in |OS(80)|.

Proof. By Proposition 1.4.4, we have

Cd + 2Cpar ≡ f∗S + f∗KP3 .

Recal that Cpar ∈ OS(8) and S ∈ OP3(36). Since f∗Cd = 2C∗d, by using the
projection formula we get

(Cd + 2Cpar) · Cd = 2 (S · C∗d) + 2 (KP3 · C∗d)

= 2 · 36 · deg (C∗d)− 2 · 4 · deg (C∗d)

= 64 degC∗d.

Since deg(C∗d) = 6N and

(Cd + 2Cpar) · Cd = 4N2 + 2 · 4 · 8 ·N,

we get

N2 + 16N = 16 · 6 ·N,

and so N = 80.

Corollary 2.5.21. A general point q ∈ S lies on exactly 480 nodal elliptic curves.
The curve C∗d has degree 480.

Proposition 2.5.22 ([25, Example 4, p. 233]). There are 9600 Gauss triple points
and 1920 parabolic Gauss double points.
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Proof. By Yau-Zaslow formula (see Theorem 1.4.9) we know that there are 3200
nodal rational curves in |OS(1)|. Every such nodal rational curve must be a tangent
curve with three nodes. A node of a tangent curve determines the whole curve,
and so those nodes are pairwise distinct. Those nodes are exactly Gauss triple
points and there are 9600 of them.

Recall that Cd and Cpar intersect exactly at Gauss swallowtails and parabolic
Gauss double points with multiplicity two and one respectively. Also, recall that
Cd ∈ OS(80), Cpar ∈ OS(8) and there are 320 Gauss swallowtails. The number of
parabolic Gauss double points is equal to

Cd · Cpar − 2 · 320 = 4 · 80 · 8− 2 · 320 = 1920.

Proposition 2.5.23. The curve Cd has genus 1281.

Proof. Recall that Cd has ordinary singularities at dual to parabolic Gauss double
points and at Gauss triple points. It is smooth everywhere else. Thus, by the
adjunction formula (see [4, Section II.11]) and the above propositions, we get

g(Cd) =
1

2
C2

d + 1− (9600 + 1920)

= 12801− 11520

= 1281.

2.6 The parabolic curve on the Fermat quartic

In this section, we show that the parabolic curve of the Fermat quartic is a constant
cycle curve.

Assume that our smooth surface S is the Fermat quartic given by the equation
f = x4

1 + x4
2 + x4

3 + x4
4 = 0.

Proposition 2.6.1. The curve Cpar on the Fermat quartic S is a constant cycle
curve.

Proof. The parabolic curve is described by x2
1x

2
2x

2
3x

2
4 = 0 (see Proposition 2.2.3).

Without loss of generality it is enough to show that the curve C defined by x1 = 0
is a constant cycle curve.

We have a natural automorphism φ of S

φ ((x1 : x2 : x3 : x4)) = (−x1 : x2 : x3 : x4).

Every point of C is fixed by φ. By Proposition 1.5.4, in order to show that C
is a constant cycle curve, it is sufficient to prove that φ∗ 6= id on H2,0(X) =
H0(X,KX).

We know that (cf. [18, (1.2)])

ω := Res

(∑4
i=1(−1)ixidx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dx4

f

)
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is a trivializing section of KX . Let us take an affine chart x4 = 1 with coordinates
y1, y2, y3. At this chart, the trivializing section is equal to

Res

(
dy1 ∧ dy2 ∧ dy3

f(y1, y2, y3, 1)

)
=

1

fy1
dy2 ∧ dy3 +

1

fy2
dy1 ∧ dy3 +

1

fy3
dy1 ∧ dy2

=
1

4y3
1

dy2 ∧ dy3 +
1

4y3
2

dy1 ∧ dy3 +
1

4y3
2

dy1 ∧ dy2.

We have

φ∗ω = −ω,

and so φ∗ 6= id on H2,0.

2.7 The geometry of dual surfaces

In this section, we describe the singularities of the dual surface. Further, we
calculate the degree and the genus of the images of the double cover curve and the
parabolic curve.

Define C∗d := φ(Cd) and C∗par := φ(Cpar). Since φ is birational, it is an isomor-
phism outside of the union of the ramification locus and the locus where the map
is not injective. Hence, Sing(S∗) = C∗d ∪ C∗par.

Definition 2.7.1. A point p ∈ S∗ is called

• a swallowtail point1, if S∗ is locally at p analytically isomorphic to the image
of the map (x, y) 7→ (3x4 + x2y, 2x3 + xy, y)

Figure 2.10: A swallowtail

• a triple point, if ÔS∗,p ∼= CJt1, t2, t3K/(t1t2t3)

Figure 2.11: A triple point

1The picture is based on http://www.encyclopediaofmath.org/index.php/Thom_

catastrophes

http://www.encyclopediaofmath.org/index.php/Thom_catastrophes
http://www.encyclopediaofmath.org/index.php/Thom_catastrophes
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• a simple double point, if ÔS∗,p ∼= CJt1, t2, t3K/(t1t2)

Figure 2.12: A simple double point

• a simple cuspidal point, if ÔS∗,p ∼= CJt1, t2, t3K/(t31 − t22)

Figure 2.13: A simple cuspidal point

• a cuspidal double point, if ÔS∗,p ∼= CJt1, t2, t3K/((t31 − t22)t3)

Figure 2.14: A cuspidal double point

Remark 2.7.2. Let p be a Gauss swallowtail. In [25], it is stated that the local ring
of S∗ at φ(p) is isomorphic to the local ring of the Whitney umbrella

ÔS∗,p ∼= CJt1, t2, t3K/(t22 − t21t3).

We believe that it is a mistake. From local calculations, we know that the sin-
gularity at φ(p) is the swallowtail. The swallowtail singularity and the Whitney
umbrella are not isomorphic. Though, it must be noted that they are not very far
from each other - they are topologically equivalent (see [1, Section 1.3]).
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Proposition 2.7.3. The Gauss map φ
sends

• Gauss swallowtails
to swallowtail points

• Gauss triple points
to triple points

• simple Gauss double points
to simple double points

• simple parabolic points
to simple cuspidal points

• parabolic Gauss double points
to cuspidal double points

Proof. The description of the singularities for the images of Gauss swallowtails
and simple parabolic points follows from the local description of the Gauss map
(see Proposition 2.1.1).

Take p ∈ S∗. First, consider the case when p is the image of a parabolic Gauss
double point. Then S∗ consists of two branches at p and we can change coordinates
so that ÔS∗,p ∼= CJt1, t2, t3K/((t31− t22)f), where f is a polynomial in t1, t2, t3. Since

the Gauss map φ satisfies the NC condition, we have ∂f
∂t3
6= 0. Hence, we can replace

coordinates t1, t2, t3 by coordinates t1, t2, f . Then ÔS∗,p ∼= CJt1, t2, fK/((t31− t22)f).
Other cases are treated analogously.

Proposition 2.7.4. The curve C∗d is smooth outside of triple points and cuspidal
double points. At triple points it has three-branched nodes and at cuspidal double
points it has cusps. The curve C∗par is smooth outside of swallowtail points.

Proof. Take p ∈ C∗d. Assume that p is a swallowtail. We saw in the proof of
Proposition 2.5.11 that at the chart φ3

(x, y)
φ37−→ (3x4 + x2y, 2x3 + xy, y),

the curve Cd is defined by the equation 2x2 + y = 0. In particular, the map
φ3|Cd

: Cd → P3 is defined locally at φ−1
3 (p) by the formula

x 7→ (x,−2x2)
φ37−→ (x4, 0,−2x2).

In particular, the point p is smooth.
Now, consider the case when p is not a swallowtail. The description of the

singularities of C∗d follows from Proposition 2.7.3, if we note that locally around p
the curve C∗d is the union of the intersections of branches of S∗ at p.
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As for C∗par, recall that φ|Cpar : Cpar → C∗par is injective and ramifies exactly
at Gauss swallowtails. Thus, C∗par is singular at swallowtail points and is smooth
everywhere else.

Proposition 2.7.5 ([25, Example 4, p. 233]). The curve C∗d has degree 480 and
genus 561. The curve C∗par has degree 96 and genus 129.

Proof. By Corollary 2.5.21, we know that deg(C∗d) = 480. In order to calculate its
genus we use the Riemann-Hurwitz formula. Consider the following diagram

C̃d C̃∗d

Cd C∗d

ψ

p1

φ|Cd

p2

where p1 and p2 are the normalizations of Cd and C∗d respectively. The morphism
p1 ramifies over cusps of Cd, which are exactly dual points to parabolic Gauss
double points. The morphism φ|Cd

ramifies at parabolic Gauss double points and
Gauss swallowtails. The morphism p2 ramifies over cuspidal double points. All
the ramifications are of degree two, and so ψ ramifies exactly at the preimages
under p1 of Gauss swallowtails. There are 320 Gauss swallowtails, and so by the
Riemann-Hurwitz formula

2g(Cd)− 2 = 2(2g(C∗d)− 2) + 320.

Since g(Cd) = 1281, we have g(C∗d) = 561.
Now we consider the case of C∗par. Since φ|Cpar : Cpar → C∗par is birational, we

have g(C∗par) = g(Cpar) = 129.
For calculating deg(C∗par), we use the notation from Corollary 2.5.19. Recall

that the polar locus curve Γq lies in |OS(3)|, and also that Cpar ∈ |OS(8)|. From
the proof of Lemma 2.5.18 we see that a general hyperplane H intersects C∗par

transversally, and so we have

deg(C∗par) = |H ∩ C∗par| = |φ∗(H) ∩ Cpar| = |Γq ∩ Cpar| = Γq · Cpar = 4 · 3 · 8 = 96.
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Résumé

The double-cover curve Cd

Genus 1281
Degree 320
Singularities Gauss Triple points, Nodes

Dual to Parabolic Gauss Double points, Cusps

The dual curve C∗d

Genus 561
Degree 480
Singularities Gauss Triple points, Three-branched nodes

Cuspidal Double points, Cusps

The parabolic curve Cpar

Genus 129
Degree 32
Singularities No

The dual curve C∗par

Genus 129
Degree 96
Singularities Swallowtail points

The flecnodal curve Chf

Genus 201
Degree 80
Singularities Yes

Special points

Gauss Swallowtails 320
Gauss Triple 9600
Parabolic Gauss Double 1920



CHAPTER 3

The space of smooth quartics in P3

Take a very general point p ∈ Cd on a very general smooth quartic in P3 and let
Ẽp be the normalization of the tangent curve Ep. Our main aim is to prove that
there is no relation between p and the dual point p̂ inside Pic(Ẽp). This shows
that the method of proving that Chf is a constant cycle curve, does not work in
the case of Cd.

Additionally, we prove that a general point on Chf has exactly one hyperflex.

3.1 Embeddings of elliptic curves in P2 with two nodes

We need the following lemma for the proof of Theorem 3.1.2.

Lemma 3.1.1. Let V ⊂ C4 be a three-dimensional linear subspace. Then there
exist two nonzero vectors v1, v2 ∈ V of the form v1 = (p, q, 0, 0), v2 = (0, 0, r, s),
where p, q, r, s ∈ C.

Proof. There exist nonzero v1 ∈ V ∩(C2×{0}×{0}) and v2 ∈ V ∩({0}×{0}×C2),
since the intersection of a two-dimensional space with a three-dimensional space
in a four-dimensional space must be at least one dimensional.

Theorem 3.1.2. Let E be a smooth elliptic curve and let P1, P2, Q1, Q2 ∈ E be
pairwise distinct points such that P1+P2 6∼ Q1+Q2. Then, there exists a morphism
φ : E → P2, which is an isomorphism onto its image outside of P1, P2, Q1, Q2 and
such that φ(P1) = φ(P2) 6= φ(Q1) = φ(Q2).

Proof. Let D := P1 + P2 + Q1 + Q2 and X := Supp(D). Consider the following
exact sequence:

0 −→ H0(E,OE) −→ H0 (E,OE (D)) −→ H0(X,OX).
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As h0(E,OE) = 1 and h0(E,OE(D)) = 4, the image of H0(E,OE(D)) in
H0(X,OX) is three-dimensional. We have

H0(X,OX) = H0(P1,OP1)×H0(P2,OP2)×H0(Q1,OQ1)×H0(Q2,OQ2) ' C4.

From the lemma above we can find three linearly independent sections s0, s1, s2

of OE(D) such that the image of s0 in H0(X,OX) is zero, s1(Q1) = s1(Q2) = 0
and s2(P1) = s2(P2) = 0.

Let V be a linear system in OE(D) spanned by s0, s1, s2. Note that |D| defines
a closed embedding of E into P3. By [3, Lemma 2.1] elliptic curves in P3 have
no multisecants, so s1(P1), s1(P2) 6= 0 and s2(Q1), s2(Q2) 6= 0. As s0 is vanishing
only on X, it holds that V is base point free.

Let φ : E → P2 be the morphism associated to V . By definition of V , we get

φ(P1) = φ(P2) 6= φ(Q1) = φ(Q2). (3.1)

Claim 3.1.3. The morphism φ is birational and deg(φ(E)) = 4.

Proof. We have deg(φ) ∈ {1, 2, 4}, because deg(OE(D)) = 4. It is sufficient to
prove that deg(φ) = 1.

If deg(φ) = 4, then deg(φ(E)) = 1. In this case

φ(P1) = φ(P2) = φ(Q1) = φ(Q2),

because

D = (s0) = φ∗(H ∩ φ(E)),

for some hyperplane H ⊆ P2 and a point H ∩ φ(E). This contradicts equation
(3.1).

If deg(φ) = 2, then deg(φ(E)) = 2, and so φ(E) is a smooth rational curve. In
this case φ(P1) ∼ φ(Q1) in Pic(φ(E)), and thus

P1 + P2 = φ∗(φ(P1)) ∼ φ∗(φ(Q1)) = Q1 +Q2,

contradicting the assumption of the theorem.

The points φ(P1) and φ(Q1) are singularities of φ(E). As g(φ(E)) = 1 and
deg(φ(E)) = 4, the curve E cannot have more singularities by Lemma 1.1.3. Thus,
the morphism φ must be an isomorphism outside P1, P2, Q1, Q2.

Note that φ(E) has two branches at each φ(P1) and φ(Q1). Since φ(E) has
geometric genus one and arithmetic genus three, its singularities must be nodes
(locally analytically isomorphic to xy = 0) by Lemma 1.1.3.
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3.2 Plane curves on smooth quartics

The following theorem is crucial in the proofs of Theorem 3.3.2 and Proposition
2.3.8.

Theorem 3.2.1. Every plane curve C of degree 4 is the intersection of some
smooth quartic in P3 with a hyperplane.

Proof. Let f ∈ C[x, y, z] be a homogenous polynomial of degree 4 describing the
curve C. We show that there exist a, b, c ∈ C such that

F a,b,c := f(x, y, z) + w(ax3 + by3 + cz3) + w4 = 0 (3.2)

describes a smooth surface Sa,b,c. Note that C = Sa,b,c ∩ {w = 0}.
The partial derivatives of F a,b,c are:

F a,b,cw = ax3 + by3 + cz3 + 4w3, (3.3)

F a,b,cx = fx + 3awx2,

F a,b,cy = fy + 3bwy2,

F a,b,cz = fz + 3cwz2.

By equations (3.2) and (3.3), for (x, y, z) ∈ Sing(Sa,b,c) it holds that

f(x, y, z) = 3w4. (3.4)

Let T :=
{

(a, b, c)
∣∣ Sa,b,c is singular

}
⊆ C3. It is sufficient to show that

dim(T ) ≤ 2. Define

T1 :=
{

((a, b, c) , [x :y : z])
∣∣∣ Sa,b,c is singular at [x : y : z : 0]

}
⊆ C3 × P2,

T2 :=
{

((a, b, c) , (x, y, z))
∣∣∣ Sa,b,c is singular at [x : y : z : 1]

}
⊆ C3 × C3.

We need to show that dim(T1) ≤ 2 and dim(T2) ≤ 2.

By the equations above, we have that T1 ⊆ C3 × Sing(C) is defined by ax3 +
by3 + cz3 = 0, and so dim(T1) ≤ 2.

The scheme T2 is contained in the zero locus of

f − 3 = 0,

fx + 3ax2 = 0,

fy + 3by2 = 0,

fz + 3cz2 = 0.

Those equations are independent, and so dim(T2) ≤ 2.
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3.3 Relations between nodes of tangent curves

Let |OP3(4)| be the space of quartic hypersurfaces in P3 and let |OP3(4)|sm ⊆
|OP3(4)| be the open subset of the smooth ones. We define

S ⊆ |OP3(4)|sm × P3

|OP3(4)|sm

to be the universal family of smooth quartics in P3. For f ∈ |OP3(4)|sm, the fiber
Sf is the surface in P3 defined by f = 0.

Let Cd → |OP3(4)|sm be the universal family of double-cover curves of smooth
quartics. For f ∈ |OP3(4)|sm, the fiber (Cd)f ⊆ Sf is defined to be the double-cover
curve of Sf .

Cd S

|OP3(4)|sm

Further, let

E ⊆ S × P3

S

be the universal family of tangent curves on smooth quartics. For

(f, p) ∈ S ⊆ |OP3(4)|sm × P3,

the fiber E(f,p) ⊆ P3 is the tangent curve of Sf at p.
We say that a plane curve E of degree four is a general double curve, if E has

exactly two nodes and g(E) = 1. We define

C d := {x ∈ S | Ex is a general double curve} ⊆ Cd.

to be the subset of those points on smooth quartics, whose tangent curve is a
general double curve.

Finally, we define
Ed := C d ×S E

to be the universal family of tangent curves restricted to C d. By definitiom of C d,
all the tangent curves (E d)x for x ∈ C d are general double curves.

The above construction is presented in the following diagram.
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P3 × Cd ⊇ E d E

C d Cd S

|OP3(4)|sm

Note that the morphism E d → C d is flat by Corollary 1.1.14 and by definition
all the fibers have the same geometric genus.

Definition 3.3.1. Let E be a singular curve and p : Ẽ → E its normalization.
Let (

p−1 Sing (E)
)red

=
m⋃
i=1

pi,

where pi are closed points of Ẽ. We say that E satisfies singular divisorial relation
(SDR) of degree m if there exists a1, . . . , am ∈ Z such that

• |ai| ≤ m,

•
∑m

i=1 ai = 0,

• OẼ(a1p1 + . . .+ ampm) is trivial in Pic(Ẽ).

Theorem 3.3.2. Fix m ∈ N. Then, for a general x ∈ C d, the curve (E d)x does
not satisfy SDR of degree m.

In other words, the tangent curve at a general point of a double-cover curve of
a general smooth quartic does not satisfy SDR of degree m.

Proof. Define

V :=
{
x ∈ C d

∣∣ (E d)x does not satisfy SDR of degree m
}
.

Claim 3.3.3. V is nonempty.

Proof. Take an arbitrary smooth elliptic curve E′ and points P1, P2, Q1, Q2 such
that P1 + P2 6∼ Q1 +Q2 in Pic(E′) and there is no divisorial relation of degree m
between P1, P2, Q1, Q2.

By Theorem 3.1.2, there exists a plane curve E of degree four and a morphism
p : E′ → E which is the normalization of E with P1∪P2∪Q1∪Q2 being the inverse
image under p of the singular points.

By Theorem 3.2.1, the curve E is an intersection of some smooth quartic Sf

with a hyperplane. Since E is singular, this hyperplane must be tangent to Sf ,
and so E is a tangent curve. The curve E has exactly two nodes, and thus E is a
general double curve. Hence V is nonempty.
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We need to prove that V is open and dense. Since C d is irreducible (see Lemma
3.3.4) and V is nonempty, it is sufficient to show that V is open.

We use a strong simultaneous resolution of singularities (see Lemma 1.1.11)

Ẽd E d

C̃d C d

φ

ψ

where ψ is finite and a fiber (Ẽd)x for x ∈ C̃d is the resolution of singularities of
the curve (E d)ψ(x). Let D1,D2,D3,D4 be divisors on Ẽd such that (Di)|(Ẽd)x

for

i ∈ {1, 2, 3, 4} are all the points in φ∗ Sing
((

E d

)
ψ(x)

)
.

Let a = (a1, a2, a3, a4) be a quadruple of integers. Take a divisor D(a) :=

a1D1 + a2D2 + a3D3 + a4D4 ∈ Div(Ẽd). Since Ẽd is smooth, D(a) is Cartier. As in

Remark 1.3.4, the divisor D(a) gives us a C̃d-point of Pic
Ẽd/C̃d

, that is a section

sD(a)
: C̃d −→ Pic

Ẽd/C̃d
.

Take x ∈ C̃d and a curve E := (Ẽd)x. Recall from Remark 1.3.4 that sD(a)
(x) = 0

if and only if OE(D(a)|E) is trivial in Pic(E). Thus, we have

V =
⋂
a∈A

ψ(UD(a)
),

where

UD(a)
:=
{
x ∈ C̃d

∣∣∣ sD(a)
(x) 6= 0

}
⊆ C̃d

and

A :=

{
(a1, a2, a3, a4) ∈ Z4

∣∣∣∣∣
4∑
i=1

ai = 0 and |ai| ≤ m for i ∈ {1, 2, 3, 4}

}
.

Since sets UD(a)
are open, we get that V is open as well.

Lemma 3.3.4. The variety C d is irreducible.

Proof. Since

C d

|OP3(4)|sm

p
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is surjective and |OP3(4)|sm is irreducible, there exists an irreducible component
W ⊆ C d, which is mapped by p surjectively onto |OP3(4)|sm.

From Proposition 2.5.6, we know that there exists an open subset U ⊆ |OP3(4)|sm,
such that double-cover curves

(
C d

)
u

are irreducible for all u ∈ U . In particular

p−1(U) ⊆ W , and so any other potential irreducible component W ′ ⊆ C d can-
not be mapped by p surjectively onto |OP3(4)|sm. Hence, in order to prove the
irreducibility of C d, it is enough to show that for every x ∈ C d there exists an
irreducible closed subset of C d of dimension dim |OP3(4)|sm + 1 containing x.

We use, here, the notation of Subsection 1.1.3. Take x ∈ C d ⊆ S and consider
an open subset US ⊆ S containing x. For sufficiently small US , we have a
morphism

φ : US −→ U4,2

u 7−→ Eu,

which sends a point u ∈ US to its tangent curve. We treat all the curves Eu as
plane curves in Tp (Sf ) by taking projections, where

x = (f, p) ∈ S ⊆ |OP3(4)|sm × P3.

Since dim(US ) = dim |OP3(4)|sm +2 and U4,1 has codimension one in U4,2 (see
Lemma 1.1.16), there exists an irreducible closed subset T ⊆ US satisfying

• x ∈ T ,

• dim(T ) = dim |OP3(4)|sm + 1,

• φ(t) ∈ U4,1 for all t ∈ T , in other words g(Et) ≤ 1.

In particular, T ⊆ Cd and the closure of T in C d is the subset we were looking
for.
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