NON-Q-FACTORIAL POSITIVE CHARACTERISTIC FLIPS IN DIMENSION THREE

1. Some results and definitions from [HW20]

Definition 1.1. Let X be an F-finite scheme defined over a field of characteristic p > 0. Given an effective Q-divisor B, we say that (X, B) is globally F-regular (resp. purely globally F-regular) if for every effective divisor D on X (resp. every $D \ge 0$ intersecting $\lfloor B \rfloor$ properly) and every integer $e \gg 0$, the natural homomorphism of \mathcal{O}_X -modules

$$\mathcal{O}_X \to F^e_* \mathcal{O}_X(|(p^e - 1)B| + D))$$

splits.

If the above splittings hold locally on X, then we refer to these notions as strong *F*-regularity, and pure *F*-regularity, respectively (they should be thought of as analogues of klt and plt). Given a morphism $f: X \to Y$, we say that (X, B) is relatively (over Y) F-regular, or purely F-regular, if the above splittings hold locally over Y.

Lemma 1.2 ([HW20, Lemma 2.4]). Let (X, S + B) be a plt pair where $S = \lfloor S+B \rfloor$ is a prime divisor and let $f: X \to Z$ be a proper birational morphism of normal varieties over an *F*-finite field of characteristic p > 0. Assume that $-(K_X + S + B)$ is *f*-ample and $(S^{\nu}, B_{S^{\nu}})$ is relatively *F*-regular over f(S), where $S^{\nu} \to S$ is the normalisation and $K_{S^{\nu}} + B_{S^{\nu}} = (K_X + S + B)|_{S^{\nu}}$. Then (X, S + B) is purely globally *F*-regular over a neighborhood of $f(S) \subset Z$.

Proposition 1.3 ([HW20, Proposition 2.5]). Suppose that (X, S + B) is a purely *F*-regular pair over an *F*-finite field of characteristic p > 0 where |S + B| = S is a prime divisor. Then S is normal.

Proof. Apply [Das, Theorem A] to the base change over the algebraic closure of the base field k.

Proposition 1.4 ([HW20, Proposition 3.1]). Let (X, S+A+B) be a dlt pair over an *F*-finite field of characteristic p > 0 where $\lfloor S+A+B \rfloor =$ S+A, the Q-Cartier Weil divisor *A* is ample, and the Weil divisor *S* is irreducible. Further, let $f: X \to Z$ be a contraction with *Z* affine such that $(X, S + (1 - \epsilon)A + B)$ is relatively purely *F*-regular over *Z* for any $\epsilon > 0$. Write $K_S + B_S = (K_X + S + B)|_S$ and $A_S = A|_S$. Then for every $k \ge 1$ such that $k(K_X + S + B + A)$ is Cartier, we have

$$|k(K_X + S + A + B)|_S = |k(K_S + A_S + B_S)|.$$

2. Existence of flips

Lemma 2.1 (cf. [HW19a, Lemma 3.3], [HW20, Lemma 4.1]). Let (S, C+B) be a two-dimensional plt pair defined over an *F*-finite field of characteristic p > 0, where $f: S \to T$ is a birational morphism, *C* is an irreducible divisor with $f|_C: C \to f(C)$ birational, and $-(K_S + C + B)$ is an *f*-ample Q-divisor. Then (S, C+B) is relatively purely *F*-regular over a neighbourhood of $f(C) \subset T$. In particular, $(S, (1 - \epsilon)C + B)$ is relatively *F*-regular for every $0 < \epsilon \leq 1$.

Proof. Since S is two-dimensional, C is normal. Write $K_C + B_C = (K_S + C + B)|_C$. The klt pair (C, B_C) is strongly F-regular and hence relatively F-regular over f(C) as $f|_C$ is affine. Thus, by Lemma 1.2, (S, C+B) is relatively purely F-regular over a neighbourhood of $f(C) \subseteq T$.

Proposition 2.2. Let $g: X \to Y$ be a projective birational morphism of varieties defined over an F-finite field k of characteristic p > 0 and let (X, Δ) be a dlt pair such that $\text{Supp Exc}(g) = \lfloor \Delta \rfloor$. Let E_i be all irreducible exceptional divisors, and suppose that they are \mathbb{Q} -Cartier. Further assume that $K_X + \Delta \sim_{\mathbb{Q},Y} \sum e_i E_i$ for $e_i \in \mathbb{Q}$ and that there exists a relatively anti-ample effective exceptional divisor F.

Let $H \sim_{\mathbb{Q},Y} \sum_i h_i E_i$ be a \mathbb{Q} -divisor such that $K_X + \Delta + H$ is nef and induces a small birational morphism $h: X \to Z$ for which $-(K_X + \Delta)$ is h-ample. Suppose that all the exceptional divisors E_i are \mathbb{Q} -equivalent to each other over Z up to a multiple. Then the canonical ring $R(K_X + \Delta)$ is finitely generated over Z.

Proof. Since F is relatively anti-ample over Y (and so over Z), there exists an effective irreducible exceptional divisor $S := E_k$ which is h-anti-ample for some k > 0. Furthermore, by the negativity lemma, the nef exceptional Q-divisor $\sum_i (e_i + h_i)E_i$ is anti-effective and $e_i + h_i < 0$ for every i > 0. Since $\sum_i (e_i + h_i)E_i$ is numerically relatively trivial over Z and E_k is relatively anti-ample, there exists a g-exceptional irreducible divisor $A := E_l$ which is relatively ample over Z.

By a small perturbation by exceptional divisors, we may assume that $\Delta = S + A + B$, where $\lfloor B \rfloor = 0$. Then $(X, S + (1 - \epsilon)A + B)$ is relatively purely F-regular over Z by Lemma 2.1 and inversion of F-adjunction (Lemma 1.2). Thus S is normal and the assumptions of Proposition

 $\mathbf{2}$

1.4 are satisfied. In particular,

$$|k(K_X + S + A + B)|_S = |k(K_S + A_S + B_S)|.$$

for $(K_X+S+B)|_S = K_S+B_S$ and $A_S = A|_S$. Since $R(K_S+A_S+B_S)$ is finitely generated over h(S) by the two-dimensional MMP (see [Tanaka, Theorem 1.1 and Theorem 4.2]), so is $R(K_X+S+A+B)$ over Z by the usual argument (cf. [Corti, Lemma 2.3.6]).

References

- [HW20] C. Hacon, J. Witaszek On the relative Minimal Model Program for fourfolds in positive characteristic
- [HW19a] C. Hacon, J. Witaszek On the relative Minimal Model Program for threefolds in low characteristics
- [HW18] C. Hacon, J. Witaszek On the rationality of Kawamata log terminal singularities in positive characteristic

[Corti] A. Corti 3-fold flips after Shokurov. Flips for 3-folds and 4-folds,

[Das] O. Das On strongly F-regular inversion of adjunction

[Tanaka] H. Tanaka Minimal Model Program for excellent surfaces