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Abstract

Quantum mechanics has been extremely useful for the description of material properties.
The rapid development in control and manipulation of coherent quantum systems in recent
years allows for the study and utilization of coherent quantum phenomena as well as the
exploration of quantum mechanical concepts in realistic many-body setups. In such devices
there exists a subtle interplay between a plethora of effects such as, disorder, interactions,
and out-of-equilibrium noise that compete and limit the regimes in which coherence survives.
To describe the transport properties of such devices one requires more suitable tools that
can take into account the interplay between these effects. In the proseminar, we shall review
theoretical tools (both analytic and numerical) that have been developed to address such
transport phenomena. These tools are actively used in contemporary research , are deeply
linked to questions in quantum information theory, and are also an integral tool in the study
of topological phenomena. We shall apply these methods to study realistic models.

In this proseminar, field theoretical methods for the description of many-body transport
phenomena will be discussed.



iviviv

Supervisors Students
Prof. Dr. O. Zilberberg Lars Dehlwes
Dr. F. Herman Daniel Puth
Dr. J. Tolsma Zhongyu Zhang
Dr. J. L. L. Villanueva Ludwig Hruza
Dr. M. Biondi Xiangzhou Zhu
Dr. W. Chen Damian Moosbrugger
Dr. C. Müller Mohsen Talebi
Dr. E. Greplova Guangze Chen
J. Shapiro Jeremy Mann
Dr. M. H. Fischer Tim Fleischmann

Patrik Weber
Jürg Haag
Michael Denner
Siman Mathis
Renato Durrer
Guliuxin Jin
Lee Mang Hei Gordon
Anton Eder



Contents

1 Gaussian integrals & supermathematics 1

Anton Eder

1.1 Conductivity on a lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Path integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Gaussian integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 The replica trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Fermionic integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Superlinear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.7 Taking the disorder average . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.8 From the lattice to the continuum . . . . . . . . . . . . . . . . . . . . . . . . 22

1.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23





Gaussian integrals & super-
mathematics

Chapter 1
Anton Eder 1

The diagrammatic perturbation approach from previous chapters is well suited for de-
scribing conductivity or other response functions, but becomes increasingly tedious for
calculating higher order moments. Other phenomena like energy level statistics are com-
pletely inaccessible to this formalism. We thus need a new approach: Supersymmetric
non-linear sigma models allow for efficient and mathematically rigorous calculation of
higher order moments and level statistics. To derive such a model in a consistent way,
we have to make use of two new concepts: Gaussian integrals and superlinear algebra. In
this chapter, we will provide a short introduction to those mathematical tools, following
mainly the book of Efetov [1] and notes by J. Shapiro [2].

1.1 Conductivity on a lattice

The arguably most important transport quantity of a solid is its conductivity σ. Since this
chapter focuses on introducing the basic concepts necessary for deriving a non-linear sigma
model for the conductivity, it is sufficient to look at σ on an infinite lattice. Although we are
ultimately interested in the continuum version of σ, the lattice approach offers the advantage
of simplifying most calculations while still capturing all relevant physical phenomena.

1.1.1 Discrete Kubo formula

Suppose that we have a system in equilibrium state ρ0 and apply a weak perturbation

V (t) = −V0f(t)A

to it, where A is a Hermitian operator and the real function f accounts for the time depen-
dence. To ensure that

lim
t→−∞

ρ(t) = ρ0

1supervised by Jacob Shapiro
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for the perturbed state ρ(t), we require the perturbation to be turned on adiabatically, i.e.

lim
t→−∞

f(t) = 0 ,

f(0) = 1 .

Linear response theory tells us that if we then probe this system with an observable B, its
response to V (t) can be described by

⟨B⟩ρ(t=0) = ⟨B⟩ρ0 + χBAV0 +O(V 2
0 ) ,

χBA = i

∫ 0

−∞
tr
(
e−iHtBeiHt[A, ρ0]

)
f(t) dt . (1.1)

Since we are interested in the DC conductivity, we take our perturbation to be a weak electric
field in xj-direction

V (t) = E · x eεt = Ejxj e
εt

in the limit ε→ 0+ and probe the system by measuring the current density in xi-direction

ji = −Tr (vi (ρ(0)− ρ0)) = σijEj +O(E2
j ) ,

with v = i[H,x] referring to the electron velocity. It should be noted that starting from this
equation, we have to replace the regular trace tr( · ) by the trace per unit volume

Tr( · ) := lim
Λ→Zd

1

|Λ|
∑
x∈Λ

⟨δx| · |δx⟩ ,

since xk is not a trace class operator. However, all trace properties relevant for this derivation,
i.e. linearity and cyclicity, still hold. Assuming that the equilibrium state corresponds to a
Fermi-Dirac distribution at zero temperature and Fermi energy E, we can describe ρ0 in the
single-particle picture by the Fermi projection:

ρ0 = χ≤E(H) := lim
β→∞

(
1 + eβ(H−E)

)−1

After inserting these expressions, equation (1.1) becomes

σij(E) = − lim
ε→0+

∫ 0

−∞
Tr
(
e−iHt [H, xi] e

iHt [xj, χ≤E(H)]
)
eεt dt .

We can then rewrite
eεt =

d

dt

(
eεt − 1

ε

)
,
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which allows us to perform a partial integration leading to

σij(E) = lim
ε→0+

∫ 0

−∞

(
d

dt
Tr
(
e−iHt [H, xi] e

iHt [xj, χ≤E(H)]
)) eεt − 1

ε
dt . (1.2)

For a derivation avoiding this point please see [3]. Making use of the cyclicity of the trace
and the fact that [H, ρ0] = 0, we can express the time derivative by

d

dt
Tr
(
e−iHt [H, xi] e

iHt [xj, χ≤E(H)]
)
= Tr

(
[H, xi]

d

dt

[
eiHt xj e

−iHt, χ≤E(H)
])

= Tr
(
[H, xi] e

iHt [i[H, xj], χ≤E(H)] e−iHt
)

= −i Tr
(
vi e

iHt [vj, χ≤E(H)] e−iHt
)
.

We can use the spectral decomposition of H to express functions f(H) as

f(H) =

∫
λ∈R

f(λ) dP (λ) ,

where P is the projection-valued spectral measure of H. This allows us to move the expo-
nentials - and therefore the time dependence - out of the trace:

Tr
(
vi e

iHt [vj, χ≤E(H)] e−iHt
)
= Tr

(
vi
(
eiHt vjχ≤E(H) e−iHt − eiHt χ≤E(H)vj e

−iHt
))

=

∫
(λ1,λ2)∈R2

ei(λ1−λ2)t (χ≤E(λ2)− χ≤E(λ1)) Tr (vi dP (λ1) vj dP (λ2))

If we then rewrite
eεt − 1 = t

∫ ε

0

eηt dη ,

we can perform the time integration in equation (1.2):

σij(E) = i lim
ε→0+

∫
λ1,λ2

∫ ε

0

dη

ε

(∫ 0

−∞
t ei(λ1−λ2−iη)t dt

)
(χ≤E(λ1)− χ≤E(λ2)) dmij(λ1, λ2)

= i lim
ε→0+

∫
λ1,λ2

∫ ε

0

dη

ε

1

(λ1 − λ2 − iη)2
(χ≤E(λ1)− χ≤E(λ2)) dmij(λ1, λ2) ,

where we defined
dmij(λ1, λ2) := Tr (vi dP (λ1) vj dP (λ2)) .

For well-behaved functions f , we can replace

lim
ε→0+

1

ε

∫ ε

0

f(η) dη = lim
η→0+

f(η)
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and with the help of the Sokhotski-Plemelj formula, we find that

lim
η→0+

1

(t− iη)2
= − d

dt
lim
η→0+

1

t− iη

= −
(
P 1

t

)′

− iπδ′(t) .

In this equation, P refers to the Cauchy principal value. If we assume our system to be
time-reversal invariant, one can easily show that

dmij(λ1, λ2) = dmij(λ2, λ1) .

The product (χ≤E(λ1)− χ≤E(λ2)) dmij(λ1, λ2) is therefore an odd function of (λ1, λ2); it
follows from symmetry considerations that the integration over the even P ′-term vanishes
and we are left with integrating over the odd δ′-function:

σij(E) = π

∫
λ1,λ2

δ′(λ1 − λ2) (χ≤E(λ1)− χ≤E(λ2)) dmij(λ1, λ2)

= π

∫
λ

(∂λ χ≤E(λ)) dmij(λ, λ)

At T = 0, the Fermi distribution is simply a step function around E and we have

∂λ χ≤E(λ) = ∂λΘ(E − λ) = δ(E − λ)

and thus
σij(E) = π

∫
λ

δ(E − λ) Tr (vi dP (λ) vj dP (λ))

= π ∂λ1∂λ2 Tr (vi χ≤λ1(H)vj χ≤λ1(H))
∣∣∣
λ1=λ2=E

.
(1.3)

We can then make a connection to the Green’s function by using Stone’s formula (cf. page
237 of [4]) and express the density matrix as

χ≤E(H) = lim
η→0+

1

π

∫ E

−∞
Im[R(ϵ+ iη)] dϵ = lim

η→0+

η

π

∫ E

−∞
|R(ϵ+ iη)|2 dϵ , (1.4)

where Im[O] := (O −O)/2i and R refers to the resolvent of the Hamiltonian:

R(z) = (H − z1)−1 = R(z)
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Inserting equation (1.4) into the Kubo formula (1.3) and using the cyclic property of the
trace, we obtain

σij(E) = lim
η→0+

η2

π
Tr
(
viR(E + iη)R(E + iη) vj R(E + iη)R(E + iη)

)
= − lim

η→0+

η2

π
Tr (R(E − iη)[H, xi]R(E − iη)R(E + iη)[H, xj]R(E + iη)) .

With the useful identity
R[H,O]R = [O,R]

for any operator O, the above equation simplifies to

σij(E) = − lim
η→0+

η2

π
Tr ([xi, R(E − iη)] [xj, R(E + iη)]) .

At this point, we can apply Birkhoff’s theorem and relate the trace per unit volume to the
expectation value E [ · ] of disorder averaging:

σij(E) = − lim
η→0+

lim
Λ→Zd

η2

π|Λ|
∑
x∈Λ

⟨δx| [xi, R(E − iη)] [xj, R(E + iη)] |δx⟩

= − lim
η→0+

η2

π
E [⟨δ0| [xi, R(E − iη)] [xj, R(E + iη)] |δ0⟩]

Since xk |δ0⟩ = 0, only one term in the expectation value remains:

σij(E) = lim
η→0+

η2

π
E [⟨δ0|R(E − iη)xixjR(E + iη) |δ0⟩]

and by inserting an identity 1 =
∑

x∈Zd |δx⟩⟨δx| between the two position operators, we arrive
at

σij(E) = lim
η→0+

η2

π
E

[∑
x∈Zd

xixj ⟨δ0|R(E − iη) |δx⟩ ⟨δx|R(E + iη) |δ0⟩

]

= lim
η→0+

η2

π

∑
x∈Zd

xixj E
[
⟨δx|R(E + iη) |δ0⟩ ⟨δx|R(E + iη) |δ0⟩

]
= lim

η→0+

η2

π

∑
x∈Zd

xixj E
[
|G(x, 0;E + iη)|2

]
(1.5)

with the Green’s function in position basis

G(x, y; z) := ⟨δx| (H − z1)−1 |δy⟩ .

This is then our single particle, zero temperature Kubo formula for the DC conductivity on
an infinite lattice. This formula and its derivation can also be found in Appendix A of [5].
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1.1.2 Green’s functions on a finite lattice

To simplify further calculations and get a better understanding of G, we now go to a fi-
nite lattice Λ, where operators become matrices and we can express the Green’s function
G(x, y;E ± iη) as components of an inverse matrix

GΛ(x, y;E ± iη) =

(
1

HΛ − (E ± iη)1

)
xy

.

We can connect our results for the finite lattice back to the Kubo formula (1.5) by using the
fact that

lim
Λ→Zd

GΛ(x, y; z) = G(x, y; z) .

This is shown in [6]. Depending on the sign of the regulator, GΛ is either a retarded (“+iη”)
or advanced (“−iη”) Green’s function. This can easily be seen by expressing the Green’s
function as a Laplace transform:

(H − (E ± iη))−1 = i

∫ ±∞

0

e−iHtei(E±iη)t dt

We choose to model the electron dynamics by a simple Anderson Hamiltonian with a kinetic
hopping term and a random potential diagonal in position space:

(HΛ)xy = Txy + Vxy =
∑

e∈Λ: |e|=1

δx−y,e + v(x) δxy , (1.6)

where the potential values v(x) are elements of an independent and identically distributed
sequence {v(x)}x∈Λ, each drawn with a probability distribution µ on R (cf. [6]). The main
difficulty in evaluating the right-hand side of equation (1.5) now arises from having to average
over the inverse of a random potential. However, after introducing both Gaussian integrals
and superlinear algebra, we will be able to express GΛ in a way that allows us to easily take
the expectation value.

1.2 Path integrals

In the derivation of our non-linear sigma model, we will be making use of Gaussian integrals,
which are closely related to path integrals. Although these two are not exactly the same, we
wish to illustrate some physical principles using the latter before proceeding with the former.
To do so, we will follow Chapter 9 of [7]. So far, all quantum calculations were done in the
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Hamiltonian formalism, where the time evolution of a state is described by the operator

Û = exp

(
− i

ℏ
Ĥt

)
.

The path integral formalism is an equivalent description that makes use of the system’s
classical Lagrangian instead of its quantum Hamiltonian. In this formalism, one can also
easily see how classical mechanics arises from quantum physics.

1.2.1 The action principle in classical mechanics

In classical mechanics, the trajectory q of a particle going from point x1 = q(t1) to x2 = q(t2)

is determined by the action principle: Along q(t), the action

S [q] =

∫ t2

t1

L [q(t), q̇(t), t] dt

becomes stationary, i.e. its variation vanishes:

δS [q] = 0 (1.7)

From this condition, we can derive the Euler-Lagrange equations and thus the equations of
motion for any classical system, given that we know its Lagrangian L.

1.2.2 The action principle in quantum physics

As it turns out, one can generalize this to a quantum mechanical action principle. Since quan-
tum theory is probabilistic, we now have to talk about transition amplitudes K(x1,x2; t2−t1)
instead of deterministic trajectories q. The probability of the particle going from x1 to x2 in
the time interval t2− t1 is then given by |K|2. In the path integral formalism, this amplitude
is obtained by summing over all possible paths q(t) the particle could take going from (t1,x1)

to (t2,x2), each weighted by a phase factor

exp(iφ[q]) = exp

(
i
S[q]

ℏ

)
.

We thus obtain
K(x1,x2; t2 − t1) =

∫
Dq eiS[q]/ℏ , (1.8)
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where the the right-hand side is a functional integration over all allowed paths q obeying the
boundary conditions. In non-relativistic quantum mechanics, S is just the classical action

S [q] =

∫ (m
2
q̇2 − V (q)

)
dt .

In quantum field theory, on the other hand, we talk about fields instead of particles, so
we have to replace trajectories q : R → R3 by spacetime-dependent field configurations
ϕ : R4 → Cn; the action along a certain field configuration is then its spacetime-integrated
Lagrangian density L:

S [ϕ] =

∫
R4

L [ϕ, ∂µϕ, xµ] d
4x

The analog of equation (1.8) is therefore

K(ϕ1, ϕ2;T ) = ⟨ϕ2(x, T )| e−
i
ℏ ĤT |ϕ1(x, 0)⟩ =

∫
Dϕ exp

(
i

ℏ

∫ T

0

d4xL[ϕ]
)
.

1.2.3 Connection to classical mechanics

Taking the limit ℏ → 0, the quantum action principle (1.8) becomes equivalent to the clas-
sical action principle (1.7). This can be understood intuitively: Paths close to the classical
trajectory qcl all contribute with roughly the same phase φcl, since δφcl = δS[qcl]/ℏ = 0 by
definition. The transition probability is thus enhanced by the constructive interference of
those paths. Paths further away from qcl, however, vary strongly in S and their phase con-
tributions rotate with period 2πℏ. Therefore, when summing over those paths, their phases
“average out” and one can neglect their contribution. For typical quantum systems, S has
order of ℏ and we have to consider many different paths. For classical systems, S ≫ ℏ and
even slight deviations from qcl shift the action by δS ≫ ℏ. Consequently, all paths not
infinitesimally close to the classical one interfere destructively and the transition probability
is determined entirely by the trajectory satisfying the action principle (1.7). More formally,
one could also expand in powers of ℏ around qcl and get quantum corrections corresponding
to a WKB approximation.

1.3 Gaussian integrals

While the path integral formalism allows us to express matrix elements
(
e−itH

)
xy

of the time
evolution operator, the Kubo formula (1.5) requires the Green’s function

(
(H − z1)−1

)
xy

. In
this section, we will derive a way to express the matrix elements of such inverted operators
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via Gaussian integrals. It can be easily shown that for φ ∈ C and any a ∈ C with Re[a] > 0,

1

π

∫
C
e−a|φ|

2

dφ =
1

a
.

We are now interested in generalizing this formula for complex vectors φ ∈ Cn and matrices
A ∈ Cn×n:

IB(A) :=
1

πn

∫
Cn

e−⟨φ,Aφ⟩ dφ

To ensure convergence, A has to have a positive real part Re[A] > 0. Let us also assume that
A is unitarily diagonalizable:

A = U † diag(a1, . . . , an)U

By substituting φ→ Uφ̃ and using the fact that |det(U)| = 1, we find that

IB(A) =
1

πn

∫
Cn

e−⟨φ̃,diag(a1,...,an)φ̃⟩ dφ̃

=
n∏
i=1

1

π

∫
C
e−ai|φ̃i|2 dφ̃i

=
n∏
i=1

1

ai
=

1∏n
i=1 ai

.

By definition of the determinant, we then have

1

πn

∫
Cn

e−⟨φ,Aφ⟩ dφ =
1

det(A)
. (1.9)

One can also show that this is invariant under shifts:

1

πn

∫
Cn

e−⟨φ+α,A(φ+β)⟩ dφ =
1

det(A)
∀α, β ∈ Cn (1.10)

By completing the square and using equation (1.10), we get

1

πn

∫
Cn

e−⟨φ,Aφ⟩+⟨α,φ⟩+⟨φ,β⟩ dφ =
e⟨α,A−1β⟩

det(A)
(1.11)

and have thus found the partition function of A with sources α and β, i.e. the generating
functional

ZB (A;α, β) :=
1

πn

∫
Cn

e−⟨φ,Aφ⟩+⟨α,φ⟩+⟨φ,β⟩ dφ .
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Differentiating both sides of equation (1.11) by components αi and βj and subsequently
evaluating them at α = β = 0, we finally arrive at

1

πn

∫
Cn

φiφj e
−⟨φ,Aφ⟩ dφ =

(A−1)ij
det(A)

. (1.12)

With this formula, we are now able to express the inverse of a matrix as a Gaussian integral,
which could potentially simplify the disorder averaging in equation (1.5). However, we still
have an additional factor of det(A), which can be highly non-trivial. By combining equations
(1.9) and (1.12), we can eliminate this factor:

(
A−1

)
ij
=

∫
Cn φiφj e

−⟨φ,Aφ⟩ dφ∫
Cn e−⟨φ,Aφ⟩ dφ

=
∂αi

∂βjZB(A;α, β)

ZB(A; 0, 0)

∣∣∣∣
α=β=0

Unfortunately, this normalization brings us back to the initial problem of having to average
over the inverse of a random potential; we therefore have to find another way.

1.4 The replica trick

One possible way to do this would be the replica trick: Using equation (1.9), we can write

1 = det(A)

∫
Cn

e−⟨φ,Aφ⟩ dφ

πn

and insert this into equation (1.12) (N − 1)-times:

(A−1)ij =

(
det(A)

∫
Cn

e−⟨φ,Aφ⟩ dφ

πn

)N−1

det(A)

∫
Cn

φiφj e
−⟨φ,Aφ⟩ dφ

πn

With Fubini’s theorem, we can write this as an integration over N identical replicas φ(k) of
our system:

(A−1)ij = det(A)N
∫
CnN

φ
(1)
i φ

(1)
j e−

∑N
k=1⟨φ(k),Aφ(k)⟩

N∏
k=1

dφ(k)

πn
∀N ∈ N (1.13)

The trick is to now take the formal limit N → 0:

(A−1)ij = lim
N→0

det(A)N
∫
CnN

φ
(1)
i φ

(1)
j e−

∑N
k=1⟨φ(k),Aφ(k)⟩

N∏
k=1

dφ(k)

πn
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If this limit were well-defined, we could take the limit of the first factor and thus eliminate
the determinant:

(A−1)ij = lim
N→0

∫
CnN

φ
(1)
i φ

(1)
j e−

∑N
k=1⟨φ(k),Aφ(k)⟩

N∏
k=1

dφ(k)

πn

If we were also allowed to interchange the order of disorder averaging and taking the limit,
we would have found a way to easily calculate the expectation value:

E
[
(A−1)ij

]
= lim

N→0
E

[∫
CnN

φ
(1)
i φ

(1)
j e−

∑N
k=1⟨φ(k),Aφ(k)⟩

N∏
k=1

dφ(k)

πn

]

However, since the right-hand side of equation (1.13) is only defined for N ∈ N, it is not clear
how the continuous limit N → 0 can be understood. It is also not obvious that E [ · ] and
limN→0 can be interchanged. The replica trick is therefore not mathematically rigorous and
can in fact lead to wrong results; for more detailed criticism, see [8]. A rigorous alternative
to this trick is the supersymmetry method, which we will now derive.

1.5 Fermionic integrals

In the previous section, we integrated over complex vectors φ ∈ Cn, whose components φx
could be interpreted as the values of some (scalar) field at each lattice point x ∈ Λ. Since
those components are regular commuting complex numbers, i.e.

φiφj = φjφi ,

such a field would be of bosonic nature. How could we then describe fermionic fields? To
see this, we have to introduce the concept of anti-commuting variables.

1.5.1 Grassmann numbers

An n-dimensional complex vector space V with an orthonormal basis {ei}ni=1 can be regarded
as a 2n-dimensional real vector space Ṽ with a complex structure

J : Ṽ → Ṽ , J2 = −1

and an orthonormal basis {ei, Jei}ni=1. We can use this to define the Grassmannian algebra

Gn := C⊗R
∧

Ṽ
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as the complexification of
∧
Ṽ , the 22n-dimensional exterior algebra over Ṽ . As such, it

has complex dimension 22n and 2n complex generators {ei, Jei}ni=1. Since we are ultimately
interested in describing fermions, it is useful to make a change of basis to

ψi :=
1√
2
(1⊗ ei − i⊗ Jei) ,

ψ̃i :=
1√
2
(1⊗ ei + i⊗ Jei) .

This way, we get a natural particle anti-particle structure on Gn; both ψi and ψ̃i are eigen-
vectors of J and related to each other via complex conjugation:

ψi = ψ̃i , ψ̃i = ψi

To simplify further definitions, let us label the generators of Gn more compactly by

{γi}2ni=1 :=
{
ψi, ψ̃i

}n
i=1

.

A general element of Gn can then be written as

η =
∑

j1,...,j2n∈{0,1}

αj1...j2nγ
j1
1 ∧ . . . ∧ γj2n2n with αj1...j2n ∈ C , (1.14)

where ∧ denotes the exterior product, i.e. the multiplication operation on Gn. A more
detailed characterization of Gn and its structure can be found in Folland’s book [9]; for our
basic introduction, however, it is sufficient to know that the generators of Gn anti-commute,

γi ∧ γj = −γj ∧ γi , (1.15)

making them an obvious choice for representing fermionic fields. In particular, this means
that their square always vanishes:

γ2i := γi ∧ γi = 0

As a consequence, any analytic function of these so-called Grassmann variables is a finite
linear combination of all 22n basis elements of Gn, given that we interpret the powers in the
series representation of such a function as exterior products:

ηk := η∧k =
k
∧
i=1
η , η ∈ Gn

For our purposes, it is also convenient to define both differentiation and integration on this
algebra as linear functionals mapping Gn to C. Without having to deal with any kind of



13
1.5. FERMIONIC INTEGRALS

13
1.5. FERMIONIC INTEGRALS

13
1.5. FERMIONIC INTEGRALS

limit, we can define an algebraic derivative ∂γi by

∂γi1 := 0 ,

∂γiγj := δij

and extend this linearly via the generalized Leibniz rule

∂γi(η1 ∧ η2) := (∂γiη1) ∧ η2 + (−1)deg(η1)η1 ∧ (∂γiη2) (1.16)

to higher-degree elements as defined in equation (1.14). We also define integration to be the
same as differentiation: ∫

· dγi := ∂γi (1.17)

Changing the notation back from (γi, γi+1) to (ψi, ψ̃i), we define:∫
Gn

· dψ dψ̃ :=

∫
Gn

· dψ1 ∧ dψ̃1 ∧ . . . ∧ dψn ∧ dψ̃n

= ∂ψ̃n
∂ψn . . . ∂ψ̃1

∂ψ1

This can be interpreted as the integration over a fermionic field ψ = (ψ1, . . . , ψn) and its
corresponding antiparticle field ψ̃ = (ψ̃1, . . . , ψ̃n) and we find, for example, that∫

Gn

1 dψ dψ̃ = 0 and (1.18)∫
Gn

ψ1 ∧ ψ̃1 ∧ . . . ∧ ψn ∧ ψ̃n dψ dψ̃ = 1 . (1.19)

There also exists a fermionic analog for Fubini’s theorem, which can be easily shown with
definitions (1.17) and (1.16):∫

Gn

F (γ1, . . . , γl) ∧G(γl+1, . . . , γ2n) dγ1 . . . dγ2n

= (−1)(2n−l−1)deg(∂γl ...∂γ1F (γ1,...,γl))

(∫
Gl/2

F (γ1, . . . , γl) dγ1 . . . dγl

)
·
(∫

Gn−l/2

G(γl+1, . . . , γ2n) dγl+1 . . . dγ2n

)
for functions F : Gl/2 → Gn and G : Gn−l/2 → Gn. We can also generalize Fubini’s theorem
to integrals over both bosonic and fermionic variables: For a function f : X → Gn mapping
some measure space X with measure µ to the Grassmannian algebra Gn, the integral∫

x∈X

(∫
Gn

f(x) dψ dψ̃

)
dµ(x)
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has a clear interpretation, since∫
Gn

f(x) dψ dψ̃ ∈ C ∀x ∈ X .

On the other hand, we may expand any such f in a basis {ei}2
2n

i=1 of Gn ∼= C22n :

f(x) =
22n∑
i=1

fi(x)ei

with coordinate maps fi : X → C. Viewing Gn as a Banach space, we can interpret

∫
x∈X

f(x) dµ(x) =
22n∑
i=1

(∫
x∈X

fi(x) dµ(x)

)
ei ∈ Gn

as a Bochner integral. The integrals on the right-hand side of this equation are then obviously
well-defined. We can thus conclude that∫

Gn

(∫
x∈X

f(x) dµ(x)

)
dψ dψ̃ =

∫
x∈X

(∫
Gn

f(x) dψ dψ̃

)
dµ(x)

as long as f is Bochner-integrable.

1.5.2 Fermionic Gaussians

We are now interested in the fermionic equivalent of equation (1.9):

IF(A) :=

∫
Gn

e−⟨ψ,Aψ⟩ dψ dψ̃

After defining the bilinear form

⟨ψ,Aψ⟩ :=
n∑

i,j=1

Aij ψ̃i ∧ ψj ,

we can expand the Gaussian up to n-th order (all higher orders vanish because of the anti-
commutativity (1.15)):

e−⟨ψ,Aψ⟩ =
n∑
k=0

1

k!

(
n∑

i,j=1

Aij ψ̃i ∧ ψj

)∧k
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Integrating over ψ and ψ̃, all terms of order smaller than n in the Gaussian also vanish (cf.
equation (1.18)) and the integral simplifies to

IF(A) =

∫
Gn

1

n!

(
n∑

i,j=1

Aij ψ̃i ∧ ψj

)∧n

dψ dψ̃

=

∫
Gn

(−1)n

n!

n∑
i1,j1,...,in,jn=1

Ai1j1 . . . Ainjn ψ̃i1 ∧ ψj1 . . . ψ̃in ∧ ψjn dψ dψ̃

Commuting all ψ̃ik ∧ ψjk to −ψjk ∧ ψ̃ik and summing over all permutations of ik, we get an
additional factor of ((−1)n n!):

IF(A) =

∫
Gn

n∑
j1,...,jn=1

A1j1 . . . Anjn ψ1 ∧ ψ̃j1 ∧ . . . ∧ ψn ∧ ψ̃jn dψ dψ̃

We then permute the Grassmann variables into the “right” order, giving each term in the
sum an additional sign:

IF(A) =

∫
Gn

(
n∑

j1,...,jn=1

sgn(σj)A1j1 . . . Anjn

)
ψ1 ∧ ψ̃1 . . . ψn ∧ ψ̃n dψ dψ̃

= det(A)

∫
Gn

ψ1 ∧ ψ̃1 ∧ . . . ∧ ψn ∧ ψ̃n dψ dψ̃

Using equation (1.19), we then finally arrive at our fermionic Gaussian integral:∫
Gn

e−⟨ψ,Aψ⟩ dψ dψ̃ = det(A) (1.20)

Comparing this result to equation (1.9), we can see that we again obtain the determinant of
A, but this time in the numerator! Analogous to the bosonic case (1.10), one can then show
that for any η ∈ Gn, ∫

Gn

e−⟨ψ,Aψ⟩+⟨η,ψ⟩+⟨ψ,η⟩ dψ dψ̃ = det(A) e⟨η,A−1η⟩ . (1.21)

We have thus found the fermionic partition function of A with source η:

ZF(A; η) :=

∫
Gn

e−⟨ψ,Aψ⟩+2Re[⟨η,ψ⟩] dψ dψ̃
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After differentiating both sides of equation (1.21) by η̃i and ηj and evaluating the result at
η = 0, we find the fermionic equivalent to equation (1.12):∫

Gn

ψi ∧ ψ̃j e−⟨ψ,Aψ⟩ dψ dψ̃ = det(A) (A−1)ij (1.22)

To get rid of the determinant factor, we could normalize this expression by inserting equation
(1.20): (

A−1
)
ij
=

∫
Gn ψi ∧ ψ̃j e−⟨ψ,Aψ⟩ dψ dψ̃∫

Gn e−⟨ψ,Aψ⟩ dψ dψ̃
=
∂η̃i∂ηjZF(A; η)

ZF(A; 0)

∣∣∣∣
η=0

Since this once again brings us back to our inital problem of having to average over the
denominator, we have to find a smarter way to eliminate the determinant, for example by
integrating over both bosonic and fermionic Gaussians. Combining either equations (1.12)
and (1.20) or (1.9) and (1.22), we get

(
A−1

)
ij
=

(∫
Gn

e−⟨ψ,Aψ⟩ dψ dψ̃

)(
1

πn

∫
Cn

φiφj e
−⟨φ,Aφ⟩ dφ

)
=

(
1

πn

∫
Cn

e−⟨φ,Aφ⟩ dφ

)(∫
Gn

ψi ∧ ψ̃j e−⟨ψ,Aψ⟩ dψ dψ̃

)
.

With Fubini’s theorem for mixed integrals, this can be written as

(
A−1

)
ij
=

1

πn

∫
Cn

∫
Gn

φiφj e
−⟨ψ,Aψ⟩−⟨φ,Aφ⟩ dψ dψ̃ dφ

=
1

πn

∫
Cn

∫
Gn

ψi ∧ ψ̃j e−⟨ψ,Aψ⟩−⟨φ,Aφ⟩ dψ dψ̃ dφ .

(1.23)

We have thus found a way to overcome our “denominator problem”; to simplify further
calculations, however, we have to introduce another new concept.

1.6 Superlinear algebra

Looking at equation (1.23), one can immediately see that it would be very convenient to
somehow combine the two fields φ and ψ into a single new field. Indeed, one can define a
so-called supervector

Φ = φ⊕ ψ ∈ Cn ⊕ Gn

with both bosonic and fermionic components. This is a formal object. Since such supervectors
are elements of a highly non-trivial space, we should first examine how concepts from regular
linear algebra can be translated to these superspaces.
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1.6.1 Linear algebra with anti-commuting scalars

This section follows Chapter 2 of Efetov’s book [1]; we will therefore momentarily switch to
his notation, which differs slightly from our previous conventions. Most importantly, Efetov
defines complex conjugation in such a way that

(ψ) = −ψ ,

while in our convention,
(ψ) = ψ̃ = ψ .

Given supervectors of the form

Φ =

(
φ

ψ

)
,

a general supermatrix F acting on such vectors can be written in the following block form:

F =

(
a σ

ρ b

)
Here, a and b are “regular” matrices mapping bosons to bosons and fermions to fermions,
while σ and ρ map fermions to bosons and vice versa. It follows, then, that a and b must
have commuting components, whereas σ and ρ must have anti-commuting components. We
define the supertranspose of such a matrix by

FT :=

(
at −ρt
σt bt

)
with · t referring to regular transposition (At)ij = Aji. This way, it is ensured that

(F1F2)
T = FT

2 F
T
1 .

We should note that in general, (FT)T ̸= F ; however, defining Hermitian conjugation of
supermatrices by

F † := FT ,

one can easily see that
(F1F2)

† = F †
2F

†
1 ,

(F †)† = F .

Taking into account the anticommutativity of the fermionic components of Φ, we define a
generalized supertrace

str(F ) := tr(a)− tr(b)
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that inherits all important properties of the regular trace, e.g. cyclicity:

str(F1 . . . Fn−1Fn) = str(FnF1 . . . Fn−1)

Similarly, we define a superdeterminant

sdet(F ) := det
(
a− σb−1ρ

)
det
(
b−1
)
,

which again inherits all properties from its regular variant, e.g. multiplicativity:

sdet(F1F2) = sdet(F1) sdet(F2)

We then also maintain the following useful identity:

log(sdet(F )) = str(log(F ))

Finally, defining the Hermitian conjugate of supervectors by

Φ† = Φt :=
(
φ, ψ

)
,

one can also define their scalar product

⟨
Φ1,Φ2

⟩
:= Φ1†Φ2 =

2n∑
i=1

Φ1
iΦ

2
i =

n∑
i=1

(
φ1
iφ

2
i + ψ̃1

i ∧ ψ2
i

)
and bilinear forms

⟨
Φ1, FΦ2

⟩
:= Φ1†FΦ2 =

2n∑
i,j=1

Φ1
iFijΦ

2
j

=
n∑

i,j=1

(
φ1
i aijφ

2
j + φ1

iσij ∧ ψ2
j + ψ̃1

i ∧ ρijφ2
j + ψ̃1

i ∧ bijψ2
j

)
in the usual manner. These few definitions suffice for our calculations; a more detailed
introduction to superlinear algebra can be found in [1].

1.6.2 Gaussian superintegrals

Let us now return to equation (1.23) and our previous notation. Interpreting A as a super-
matrix A⊕ A, we can condense the two bilinear forms into one:

⟨Φ, AΦ⟩ = ⟨φ,Aφ⟩+ ⟨ψ,Aψ⟩
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We are also free to define the integration measure on our superspace as

dΦ :=
dφ dψ dψ̃

πn

and can thus write our inversion formula in the compact form

(
A−1

)
ij
=

∫
Φα
i Φ

α
j e

−⟨Φ,AΦ⟩ dΦ ,

where the index α ∈ {1, 2} refers to either the bosonic or fermionic part of Φ and is completely
arbitrary (cf. equation (1.23)). Note that there is no implied summation over α. One could
then interpret this integral as a field average over a Gaussian distribution determined by the
supermatrix A, suggesting the shorthand notation

⟨ · ⟩A :=

∫
· e−⟨Φ,AΦ⟩ dΦ

such that we can compactly write

⟨1⟩A = 1 ,⟨
Φα
i Φ

α
j

⟩
A
= (A−1)ij . (1.24)

1.7 Taking the disorder average

After introducing these concepts, we can now return to our initial problem of calculating the
conductivity. Equipped with the supersymmetric inversion formula (1.24), we can express
the electronic Green’s functions as

GΛ(x, y;E ± iη) =
(
[HΛ − (E ± iη)1]−1)

xy

= ±i
(
[η1± i(HΛ − E1)]−1

)
xy

= ±i
⟨
Φα
xΦ

α
y

⟩
η1±i(HΛ−E1)

.

Note that it’s necessary to factor out ±i to ensure convergence of the integral; since the
regulator η is by definition a positive number, this always works. Inserting this back into the
expectation value in the Kubo formula (1.5), we find:

E
[
|GΛ(x, 0;E + iη)|2

]
= E

[
GΛ(x, 0;E + iη) GΛ(x, 0;E + iη)

]
= E [GΛ(0, x;E − iη) GΛ(x, 0;E + iη)]

= E
[⟨
Φα

0Φ
α
x

⟩
η1−i(HΛ−E1)

⟨
Φα
xΦ

α
0

⟩
η1+i(HΛ−E1)

] (1.25)
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With the superintegral version of Fubini’s theorem, we can then combine these two integrals
into one: ⟨

Φα
0Φ

α
x

⟩
η1−i(HΛ−E1)

⟨
Φα
xΦ

α
0

⟩
η1+i(HΛ−E1)

=:
⟨
Φα

0Φ
α
x

⟩
F−

⟨
Φα
xΦ

α
0

⟩
F+

=

(∫
Φα−

0 Φα−
x e−⟨Φ−,F−Φ−⟩ dΦ−

)(∫
Φα+
x Φα+

0 e−⟨Φ+,F+Φ+⟩ dΦ+

)
=

∫
Φα−

0 Φα−
x Φα+

x Φα+
0 e−⟨Φ−,F−Φ−⟩−⟨Φ+,F+Φ+⟩ dΦ− dΦ+

=

∫
Ψα−

0 Ψα−
x Ψα+

x Ψα+
0 e−⟨Ψ,FΨ⟩ dΨ =

⟨
Ψα−

0 Ψα−
x Ψα+

x Ψα+
0

⟩
F
,

where we defined a new supervector

Ψ := Φ− ⊕ Φ+

and a new supermatrix

F := F− ⊕ F+ := [η1− i(HΛ − E1)]⊕ [η1+ i(HΛ − E1)]

such that we can express the modulus square of the Green’s function as a single superfield
average. Introducing the supermatrix

Λ := σ3 ⊗ 1 =

(
1 0

0 −1

)
(which should not to be confused with the lattice Λ) we can compactly write

F = η1− iΛ⊗ (HΛ − E1) .

Going back to the impurity average (1.25), one can show that the expectation value and the
superintegration

∫
dΨ can be swapped:

E
[
|GΛ(x, 0;E + iη)|2

]
= E

[⟨
Ψα−

0 Ψα−
x Ψα+

x Ψα+
0

⟩
F

]
= E

[∫
Ψα−

0 Ψα−
x Ψα+

x Ψα+
0 e−⟨Ψ,FΨ⟩ dΨ

]
=

∫
E
[
Ψα−

0 Ψα−
x Ψα+

x Ψα+
0 e−⟨Ψ,FΨ⟩

]
dΨ

and since the superfield components are non-random, we can move them out of the expecta-
tion value:

E
[
|GΛ(x, 0;E + iη)|2

]
=

∫
Ψα−

0 Ψα−
x Ψα+

x Ψα+
0 E

[
e−⟨Ψ,FΨ⟩] dΨ .
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We are thus left with the impurity average over the Gaussian; writing out the Hamiltonian
(1.6), we find:

E
[
e−⟨Ψ,FΨ⟩] = E

[
e−⟨Ψ,[η1−iΛ⊗(HΛ−E1)]Ψ⟩]

= E
[
e−⟨Ψ,[η1−iΛ⊗(TΛ−E1)]Ψ⟩ ei⟨Ψ,(Λ⊗VΛ)Ψ⟩]

The randomness of the Hamiltonian is contained entirely within the potential term VΛ; it can
therefore be shown that we can also move the non-random Gaussian out of the expectation
value:

E
[
e−⟨Ψ,FΨ⟩] = e−⟨Ψ,[η1−iΛ⊗(TΛ−E1)]Ψ⟩ E

[
ei⟨Ψ,(Λ⊗VΛ)Ψ⟩]

Using the fact that the potential is diagonal in position basis (cf. equation (1.6)) and the
potential values {v(x)}x∈Λ are independently distributed across the lattice sites, we can write

E
[
ei⟨Ψ,(Λ⊗VΛ)Ψ⟩] = E

[
ei

∑
x∈Λ v(x)⟨Ψx,ΛΨx⟩

]
=
∏
x∈Λ

E
[
eiv(x)⟨Ψx,ΛΨx⟩

]
=:
∏
x∈Λ

hx (⟨Ψx,ΛΨx⟩) , (1.26)

where hx denotes the characteristic function

hx(t) :=

∫
v∈R

eivt dµ(v) ≡ E
[
eiv(x)t

]
∀x

of the distribution µ according to which the potential values {v(x)}x∈Λ are distributed. As-
suming for simplicity that µ is a Gaussian distribution, we find

hx(t) =

∫
v∈R

eivt

(
e
− 1

2σ2
x
v2

√
2πσx

dv

)

=

∫
v∈R

e−
σ2
x
2
t2

(
e
− 1

2σ2
x
(v−iσ2

xt)
2

√
2πσx

dv

)
= e−

σ2
x
2
t2
∫
v∈R

dµ(v − iσ2
xt) = e−

σ2
x
2
t2

and our expectation value (1.26) can be written as

E
[
ei⟨Ψ,(Λ⊗VΛ)Ψ⟩] =∏

x∈Λ

e−
σ2
x
2
⟨Ψx,ΛΨx⟩2

= e−
∑

x∈Λ
σ2
x
2
⟨Ψx,ΛΨx⟩2 .

Since the potential values are also identically distributed, σx = σ ∀x and we get

E
[
ei⟨Ψ,(Λ⊗VΛ)Ψ⟩] = e−

σ2

2

∑
x∈Λ⟨Ψx,ΛΨx⟩2

= e−
σ2

2
⟨Ψ,ΛΨ⟩2 .
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Finally, we can insert this back into the Kubo formula (1.5):

σij(E) = lim
η→0+

η2

π

∑
x∈Zd

xixj lim
Λ→Zd

E
[
|GΛ(x, 0;E + iη)|2

]
= lim

η→0+

η2

π

∑
x∈Zd

xixj lim
Λ→Zd

∫
Ψα−

0 Ψα−
x Ψα+

x Ψα+
0 e−FΛ[Ψ] dΨ ,

where we defined an “effective action”

FΛ[Ψ] := − log
(
E
[
e−⟨Ψ,FΨ⟩])

= ⟨Ψ, [η1− iΛ⊗ (TΛ − E1)] Ψ⟩+ σ2

2
⟨Ψ,ΛΨ⟩2 ,

(1.27)

going back to the notion of path integrals. We were thus able to perform the disorder
averaging at the cost of introducing a ϕ4-type self-interaction of our superfield Ψ. To make
efficient calculations in the presence of this term, we will have to introduce the concept of
non-linear sigma models, which will be the focus of chapter ??.

1.8 From the lattice to the continuum

This last section is devoted to making the transition from the lattice to the continuum, where
our superfields become continuous functions of spacetime, matrices become linear operators
and integrals over Ψ become functional integrals:

(Ψx)x∈Λ → Ψ(r)

(Hxy)x,y∈Λ → Ĥ∫
dΨ →

∫
DΨ

Our Gaussian integrals thus change into

⟨ · ⟩F =

∫
· e−⟨Ψ,FΨ⟩ dΨ →

∫
· e−

∫
dxΨ†F̂Ψ DΨ . (1.28)

We will also adopt the notation of Efetov and introduce a conjugate field

Ψ := Ψ†Λ ,

which should not be confused with complex conjugate of Ψ. We note that the product

ΨΨ = Ψ†ΛΨ = Ψ−†Ψ− −Ψ+†Ψ+
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is not positive definite. Modelling the impurities by a white noise potential, our effective
action for the DC conductivity then has the following form:

FDC[Ψ] =

∫
dx

{
ηΨ†Ψ− iΨ

(
p̂2

2m
− E

)
Ψ+

σ2

2

(
ΨΨ
)2}

As we can see, this expression is a direct analog to the lattice action (1.27). To make the
physics more interesting and establish a connection to Efetov, we want to generalize this
action for the AC conductivity. As we have seen many times before, this means we have to
introduce an additional frequency dependence to the advanced Green’s function:

G(x, y;E − iη) G(x, y;E + iη) → G(x, y;E + ω − iη) G(x, y;E + iη)

We can account for this by adding a projector

P− =

(
1 0

0 0

)
=

1

2
(1+ Λ)

onto the space of the advanced superfield Ψ− to our superoperator F̂ in equation (1.28):

F̂DC =

(
η − i(Ĥ − E) 0

0 η + i(Ĥ − E)

)
= η − iΛ⊗ (Ĥ − E)

→ F̂AC =

(
η − i(Ĥ − E + ω) 0

0 η + i(Ĥ − E

)
= η − i

[
Λ⊗ (Ĥ − E) +

ω

2
(1+ Λ)

]
The effective action for the AC conductivity thus becomes

FAC[Ψ] =

∫
dx

{
ηΨ†Ψ− iΨ

(
p̂2

2m
− E +

ω

2
(1+ Λ)

)
Ψ+

σ2

2

(
ΨΨ
)2}

.

1.9 Conclusion

Introducing various new concepts like path integrals, Grassmann numbers and supervectors,
we were able to express the conductivity of a system as a functional integral over a weighted
Gaussian. In contrast to the diagrammatic approach from previous chapters, this allowed us
to non-perturbatively calculate the disorder average of σ, albeit at the cost of introducing a
ϕ4-type interaction to our theory, again forcing us to use approximations. To deal with this
interaction efficiently, one can use non-linear sigma models, which will be introduced in the
next chapter.
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