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Abstract

Quantum mechanics has been extremely useful for the description of material properties.
The rapid development in control and manipulation of coherent quantum systems in recent
years allows for the study and utilization of coherent quantum phenomena as well as the
exploration of quantum mechanical concepts in realistic many-body setups. In such devices
there exists a subtle interplay between a plethora of effects such as, disorder, interactions,
and out-of-equilibrium noise that compete and limit the regimes in which coherence survives.
To describe the transport properties of such devices one requires more suitable tools that
can take into account the interplay between these effects. In the proseminar, we shall review
theoretical tools (both analytic and numerical) that have been developed to address such
transport phenomena. These tools are actively used in contemporary research , are deeply
linked to questions in quantum information theory, and are also an integral tool in the study
of topological phenomena. We shall apply these methods to study realistic models.

In this proseminar, field theoretical methods for the description of many-body transport
phenomena will be discussed.
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Introduction
An overview over some basic methods

Chapter 1
Patrik Weber, Lars Dehlwes, Guangze Chen 1

This chapter is an introduction to the basic concepts and methods we will use later. We
start with the general Hamiltonian of a solid and make some assumptions to simplify
it. We introduce Green’s functions to solve inhomogeneous differential equations such
as the single particle Schrödinger equation. We introduce Bloch’s theorem to deal with
a single electron under a periodic potential. We also introduce the Fermi liquid theory
to deal with interacting electrons in a metal.

1.1 The Hamiltonian of a Solid

We consider a solid as a lattice of ions with electrons between the ions as depicted in Fig. 1.1.
In general, such a system can be described by a Hamiltonian of the structure

H = Hion +Hel +Hel−ion, (1.1)

whereHion describes the kinetics and the interaction of only the ions, Hel describes the kinetics
and the interaction of only the electrons and Hel−ion describes the interaction between the

1supervised by Mark H. Fischer

THE FILE WAS NOT PROVIDED

Figure 1.1 Solid consisting of ions (gray) and electrons (blue). [1]
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ions and the electrons. We can write each of the constituents as follows:

Hion =

Nion∑
i=1

P2
i

2Mi

+
1

2

Nion∑
i,j=1
i̸=j

V (Ri −Rj)

Hel =

Nel∑
l=1

p2
l

2m
+

1

2

Nel∑
k,l=1
k ̸=l

e2

4πε0|rl − rk|

Hel−ion =

Nel∑
l=1

Nion∑
i=1

v(rl −Ri),

(1.2)

where

• Pi, Mi and Ri are momentum, mass and position respectively of the i-th ion,

• pl and rl are momentum and position respectively of the l-th electron and m is the
electron mass,

• V and v are two potentials and

• Nion and Nel are the total number of ions and electrons respectively.

We will now make some assumptions to simplify the Hamiltonian for some particular prob-
lems.

1.1.1 Born-Oppenheimer approximation

The Born-Oppenheimer approximation is the assumption that the nuclear kinetic energy
can be neglected and therefore, the nuclear positions enter as parameters in the remaining
Hamiltonian [2]. It is legitimate because heavy and light particles change their directions
of motion on very different time scales such that the equations of motion of the fast, light
particles can be solved without considering the motion of the slow, heavy ones. This affects
the ionic and the interaction part of the Hamiltonian as follows:

Hion +Hel−ion =
1

2

Nion∑
i,j=1
i ̸=j

V (R0
i −R0

j) +

Nel∑
l=1

Nion∑
i=1

v(rl −R0
i ). (1.3)

Note that the zero superscripts denote the constant position and the kinetic term of the ion
part can be neglected due to the assumption.
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We can furthermore combine the two potential terms to one single-particle potential V (rl)

as a function of only the electron positions:

Nel∑
l=1

V (rl) =
1

2

Nion∑
i,j=1
i̸=j

V (R0
i −R0

j)

︸ ︷︷ ︸
≡const.

+

Nel∑
l=1

Nion∑
i=1

v(rl −R0
i ). (1.4)

We do that to obtain the following simple form of the Hamiltonian:

H =

Nel∑
l=1

[
p2
l

2m
+ V (rl)

]
+

1

2

Nel∑
k,l=1
k ̸=l

e2

4πε0|rl − rk|
. (1.5)

First, we will neglect the electron-electron interaction and only consider the first term for
a single electron and without any further assumptions on the potential. We will then take
another step towards the description of solids by the assumption of the potential to be
perfectly periodic, as expected for an electron scattering in a crystal, for instance a metal
or a semiconductor. Finally, we also include the electron-electron interaction and give an
overview on Fermi-Liquid theory where we use some simple assumptions to get rid of the
potential.

1.2 Scattering of a free electron

As already mentioned in the introduction, we will only consider the first term of the Hamil-
tonian (1.5) for a single electron. Thus, we have a Hamiltonian of the form

H =
p2

2m
+ V (x). (1.6)

Denoting the eigenstates of this Hamiltonian by ψk and the corresponding eigenenergies by
Ek, we can write the time-independent Schrödinger equation of our problem as[

− ℏ2

2m
∇2
x + V (x)

]
ψk(x) = Ekψk(x). (1.7)

In order to solve this differential equation, we want to introduce the concept of Green’s
functions which we will also use many times in the upcoming chapters.
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1.2.1 Green’s functions

Green’s functions help us to solve inhomogeneous differential equations. We consider a very
general differential equation

L̂xu(x) = f(x), (1.8)

where L̂x is a differential operator acting on x, u(x) is the unknown solution and f(x) is
the inhomogeneous part. Instead of solving this equation directly, we can define a Green’s
function G(x) for the operator L̂x. Such a Green’s function is defined by the differential
equation

L̂xG(x) = δ(x), (1.9)

where δ(x) is the Dirac delta distribution. We can write a particular solution of our original
Eq. (1.8) in the form

u(x) =

∫
dy G(x− y)f(y). (1.10)

This can easily be seen when we apply the operator L̂x on this solution:

L̂xu(x) =

∫
dy L̂G(x− y)f(y)

=

∫
dy δ(x− y)f(y)

= f(x).

(1.11)

At first sight, it is not clear why this is useful since we still have to solve the differential
equation (1.9). To see what are the benefits of this method, we consider an example from
electrostatics.

Example: Poisson’s equation

In electrostatics, an electric potential φ(x) satisfies Poisson’s equation

∇2
xφ(x) = − 1

ε0
ϱ(x), (1.12)

where ϱ(x) is the charge distribution. We can identify ∇2
x as the differential operator, φ(x)

as the unknown solution and − 1
ε0
ϱ(x) as the inhomogeneous part of the differential equation.

Thus we define the corresponding Green’s function by

∇2
xG(x) = δ3(x). (1.13)
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We now want to solve this defining equation explicitly for G(x). To do so, we apply a Fourier
transform on both sides of the equation∫

d3x e−ik·x∇2
xG(x) =

∫
d3x e−ik·xδ3(x)

−k2G̃(k) = 1

G̃(k) = − 1

k2
.

(1.14)

Here, G̃(k) is the Fourier transform of G(x). We can apply the inverse Fourier transform to
obtain the Green’s function in position space,

G(x) =

∫
d3k

(2π)3
eik·xG̃(k)

= −
∫

d3k

(2π)3
eik·x

k2

= − 1

4π|x|
.

(1.15)

We can plug this in (1.10) and obtain the familiar expression for the electric potential

φ(x) =
1

4πε0

∫
d3y

ϱ(y)

|x− y|
. (1.16)

1.2.2 Lippmann-Schwinger equation

We now want to apply the introduced techniques to a more sophisticated example. Con-
sider the time-independent Schrödinger equation of a state ψE with Hamiltonian H and
eigenenergy E:

HψE = EψE. (1.17)

For a system of incoming particles described by the Hamiltonian H0 scattering at a potential
V (x), we can write our Hamiltonian as

H(x) = H0(x) + V (x). (1.18)

We assume that the potential is weak, i.e. |x|V (x) → 0, and therefore only a little perturba-
tion to the incoming waves. With this assumption, we can expect the eigenenergy of H0 to
be the same as for the whole system. Therefore, the eigenstates ψ(0)

E of the incoming waves
can be described by the time-independent Schrödinger equation

H0ψ
(0)
E = Eψ

(0)
E . (1.19)
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We now insert the Hamiltonian (1.18) into Eq. (1.17) and can write after rearranging

[E −H0(x)]ψE(x) = V (x)ψE(x). (1.20)

We can interpret this as a differential equation with the square bracket being the differential
operator, ψE(x) being the unknown function and V (x)ψE(x) being the inhomogeneous part.
Note that the inhomogeneous part also contains the unknown function. We will see later
how we can solve this problem. We can define the Green’s function of [E −H0(x)] by the
equation

[E −H0(x)]G(x) = δ3(x). (1.21)

The formal solution is now a superposition of the solution of the homogeneous problem (1.19)
and a particular solution of (1.20), where the latter is again given by an integral containing
the Green’s function:

ψE(x) = ψ
(0)
E (x) +

∫
d3yG(x− y)V (y)ψE(y). (1.22)

This equation is known as the Lippmann-Schwinger equation.

Note that we didn’t specify our Hamiltonian H0(x) yet. In the next subsection, we will do
this and also find an explicit expression for the Green’s function.

1.2.3 Scattering of an incoming plane wave

We now go back to where we started and consider the Hamiltonian (1.6) of an incoming free
particle scattering at a potential V (x). The Hamiltonian of the incoming particle then has
the form

H0(x) =
p2

2m
=

−ℏ2

2m
∇2
x. (1.23)

If we only have an incident particle, the eigenstates and eigenenergies can be written as

ψ
(0)
k (x) = eik·x, Ek =

ℏ2k2

2m
where k = |k|. (1.24)

We plug (1.23) into the differential equation for the Green’s function (1.21) and obtain[
Ek +

ℏ2

2m
∇2
x

]
G(x) = δ3(x). (1.25)
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Re(q)

Im(q)

+
√
2mEk

ℏ

−
√
2mEk

ℏ

Figure 1.2 Contour of integration of an integral with poles at q = ±
√
2mEk
ℏ where the

positive pole is included.

As in the case of the Poisson’s equation (1.13), we apply a Fourier transform to this equation
and find an explicit expression for the Fourier transform of the Green’s function:

G̃(q, Ek) =
1

Ek − εq
, εq =

ℏ2q2

2m
. (1.26)

Transforming back to position space and changing to spherical coordinates, we have

G(x, Ek) =

∫
d3q

(2π)3
eiq·x

Ek − εq

= − m

2π2ℏ2i|x|

∫ ∞

−∞
q dq

eiq|x|

2mEk

ℏ2 − q2
.

(1.27)

The remaining integral can be considered as a line integral in the complex plane with poles
at q = ±

√
2mEk

ℏ . Since these poles are on the real axis, we cannot just choose our contour
along the real axis, we must also go around the poles and either include or exclude them
in order to apply the residue theorem. The physical requirements for our solution (i.e. the
scattered wave being an outgoing wave) tell us to include the positive pole but to exclude
the negative one as depicted in Fig. 1.2. We close the contour on the upper half-plane since
the integral along the arc vanishes for |x| > 0 and q → ∞. Applying the residue theorem,
we obtain

G(x, Ek) = − m

2πℏ2
eik|x|

|x|
. (1.28)

We can plug Eq. (1.24) and (1.28) back into the Lippman-Schwinger equation (1.22) and
find

ψk(x) = eik·x − m

2πℏ2

∫
d3y

eik|x−y|

|x− y|
V (y)ψk(y). (1.29)
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Figure 1.3 Geometry of an incoming plane wave scattering at a potential and propagating
as a spherical wave. [3]

1.2.4 Scattering amplitude and cross-section

We now want to interpret the Lippmann-Schwinger equation (1.29) at large distances. We
assume the scattered wave to propagate as a spherical wave (see Fig. 1.3 and therefore expect
the following form at large distances |x| → ∞:

ψk(x) ∼ eik·x + fk(Ω)
eik|x|

|x|
, (1.30)

where fk(Ω) is the scattering amplitude. We can see that the first term already matches
(1.29), but the second does not yet, so we also expand Eq. (1.29) for |x| → ∞:

ψk(x) = eik·x − m

2πℏ2

∫
d3y e−ik′·yV (y)ψk(y)

eik|x|

|x|
, (1.31)

where k′ = ke|x| and identify the scattering amplitude

fk(Ω) = − m

2πℏ2

∫
d3y e−ik′·yV (y)ψk(y). (1.32)

We now want to connect this amplitude to the cross-section. The differential cross-section is
defined by

dσ ≡ # of scattered particles in dΩ per time
# of incoming particles per time and area

=
jscatr

2 dΩ

jin
,

(1.33)
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where jin and jscat are the current densities of the incoming and the scattered wave, respec-
tively,

j =
ℏ

2mi
(ψ∗∇ψ − ψ∇ψ∗). (1.34)

With this definition, we find

jin =
ℏk
m
,

jscat =
ℏk
m

1

r2
|fk(Ω)|2 +O

(
r−3
)
,

(1.35)

and can plug this into Eq. (1.33)

dσ = |fk(Ω)|2 dΩ . (1.36)

The total cross-section is obtained by integration

σ =

∫
dΩ |fk(Ω)|2. (1.37)

1.2.5 Born approximation

The Lippmann-Schwinger equation (1.31) still depends on ψk , i.e. we have an infinite series

ψk(x) = ψ
(0)
k (x) +

∞∑
n=1

δψ
(n)
k (x) (1.38)

with

ψ
(0)
k (x) = eik·x = δψ

(0)
k (x),

δψ
(1)
k (x) = − m

2πℏ2

∫
d3y e−ik′·yV (y)δψ

(0)
k (y)

eik|x|

|x|
,

...

δψ
(n)
k (x) = − m

2πℏ2

∫
d3y e−ik′·yV (y)δψ

(n−1)
k (y)

eik|x|

|x|
.

Stopping the expansion at n = N is called the N -th Born approximation

ψ
(N)
k (x) =

N∑
n=0

δψ
(n)
k (x). (1.39)
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For high particle energies and weak scattering potentials, the first Born approximation is a
good approximation. We can write

ψ
(1)
k (x) = eik·x − m

2πℏ2

∫
d3y V (y)ei(k−k′)·y e

ik|x|

|x|
(1.40)

and find the scattering amplitude

f
(1)
k (Ω) = − m

2πℏ2

∫
d3y V (y)ei(k−k′)·y. (1.41)

The latter is also called the Born amplitude and is basically a Fourier transform of the
scattering potential. The integral is a matrix element of the scattering potential, thus

⟨k′|V |k⟩ =
∫

d3y V (y)ei(k−k′)·y. (1.42)

Example: Coulomb potential

We now want to derive the differential cross-section of a Coulomb potential explicitly. We
define the momentum transfer q = k− k′ and write its magnitude

q = |k− k′| = 2k sin

(
θ

2

)
, (1.43)

where θ = ∡(k,k′) is the angle between the two vectors k and k′. For a central potential
V (x) = V (|x|), we can rewrite the matrix element

⟨k′|V |k⟩ =
∫ ∞

0

dr r2
∫ 2π

0

dφ

∫ 1

−1

d(cosϑ)V (r)eiqr cosϑ

=
4π

q

∫ ∞

0

dr′ r′V (r′) sin(qr′).

(1.44)

Plugging in the Coulomb potential

V (r) =
Ze2

4πε0r
=
C

r
, (1.45)

we have ∫ ∞

0

dr′ r′V (r′) sin(qr′) = C

∫ ∞

0

dr′ sin(qr′)

=
C

q
=

Ze2

4πε0q
.

(1.46)
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We introduced a small parameter ϵ to regularize the integral.

The differential cross-section then is given by

dσ

dΩ
=
∣∣∣f (1)
k (Ω)

∣∣∣2
=

m2

4π2ℏ4
|⟨k′|V |k⟩|2

=

(
m

2πℏ2
4π

q

)2(
Ze2

4πε0q

)2

=
1

16E2

(
Ze2

4πε0

)2

sin−4

(
θ

2

)
,

(1.47)

which is just Rutherford’s formula.

1.3 Bloch theory

In the previous section we focussed on the scattering of a free electron at a potential that
we interpreted as a small perturbation with respect to the Hamiltonian of a free electron.
The so-called Born approximation has been introduced and discussed. In this Section, we
want to take another step towards the description of solids, in particular metals, insulators
and semiconductors. This step is to assume a periodic potential as a simplified model of
a solid, while still disregarding the electron-electron interaction, lattice impurities and the
electron-phonon-interaction. The solid is modeled as a rigid lattice of atoms which in turn
gives rise to the periodic potential. Let our lattice be a so-called Bravais lattice, where at
each point of the set

BL :=

{
Rn =

3∑
i=1

niai

∣∣∣∣∣ n ∈ Z3

}
(1.48)

there is an atom with a potential Vatom. Here (ai)i∈(1,2,3) is a basis of R3 and let (bi)i∈(1,2,3) be
its corresponding dual basis defined by bi · aj = δij. Adding up all the identical but shifted
potentials of the atoms results in a total potential V which is periodic.

Due to the fact that we are not taking electron-electron-interactions into account, our Hamil-
tonian is effectively a single-particle Hamiltonian

H =
p2

2m
+ V (r), (1.49)

where here, however, the potential V is periodic with respect to the lattice. In formal
language, the potential V has to be invariant with respect to the action of the space group
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of the lattice. In particular, V is then invariant with respect to the action of the translation
subgroup. Labeling the action of a translation Rn by Tn ∈ GL({f : R3 → C}), we can
formalize the above statement by

∀n ∈ Z3 : (TnV ) (r)
def
= V (r+Rn)

!
= V (r) . (1.50)

Before moving on, let us now try to apply the previously introduced first-order perturbation
theory method to such a periodic potential. Clearly, this in the first place already doesn’t
sound like a very good approach (due to the non-compact support of V ), but let us explicitly
observe how it fails.

Suppose we are given an electron in a state which corresponds to a free electron of momentum
ℏk. We might want to calculate the transition rate according to Fermi’s Golden rule for such
an electron when put into a periodic potential of the form V (r) =

∑
n

Vatom (r−Rn). Doing

so yields

Γk→k′ =
2πρ

ℏ

∣∣∣∣∣
⟨
k′

∣∣∣∣∣∑
n

Vatom (r−Rn)

∣∣∣∣∣k
⟩∣∣∣∣∣

2

=
2πρ

ℏ

∣∣∣∣∣∑
n

∫
d3r ei(k−k′)·(r−Rn)Vatom (r−Rn)︸ ︷︷ ︸

=: f(k− k′)

ei(k−k′)·Rn

∣∣∣∣∣
2

=
2πρ

ℏ
|f(k− k′)|2

∑
n,m

ei(k−k′)·(Rn−Rm)

=
2πρ

ℏ
|f(k− k′)|2

∑
n

[
δ

(
k− k′ +

3∑
i=1

nibi

)]2
,

(1.51)

where ρ is the density of states at the energy of the free electron. We observe that for any k′

that differs from k by an integer linear combination of the dual basis (bi)i∈(1,2,3) on R3 the
transition rate diverges and we are left with a series of squares of delta distributions which is
a hard to interpret result in this context. What we have to deduce, however, is that we cannot
attribute a finite lifetime τk to a state of momentum ℏk, due to the divergencies. Physically
speaking, the state which corresponds to a free electron of momentum ℏk is instantaneously
decomposed by the periodic lattice in place. This can be understood as a mathematical
manifestation of Bragg diffraction. Our assumption of the free-electron energy eigenstates
being approximately held in place even when switching on the periodic potential turns out
to be utterly wrong. Finite order perturbation theory is not working out here and we are left
with no other option than to reconsider the given problem.
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1.3.1 Bloch’s theorem

As the perturbation theory approach failed, we might want to address the problem of explic-
itly finding the exact energy eigenstates of the Hamiltonian. While this is very ambitious,
we would also be satisfied with finding far-reaching conclusions about the spectrum of the
Hamiltonian and its eigenstates.

The standard idea would be to extract information about the spectrum σ(H) and the eigen-
states of H, by employing the symmetry-group of H that we are given, here, the space group
of the lattice. It turns out that if we tried to approach the problem of the spatially in-
definitely extended lattice, we would fail to draw valuable conclusions due to handling with
infinite-dimensional non-separable topological vector spaces and possibly infinite-dimensional
irreducible representations of the translation group on such.

Therefore, we substitute the problem by a simpler one. Instead of assuming a spatially
indefinitely extended lattice, we will focus on a patch of lattice with periodic boundary
conditions. Consider a patch of a lattice

Cell :=

{
3∑
i=1

λiai

∣∣∣∣∣ ∀ 1 ≤ i ≤ 3: 0 ≤ λi ≤ Ni

}
(1.52)

with atoms at positions

Lattice :=

{
3∑
i=1

(
ni +

1

2

)
ai

∣∣∣∣∣ ∀ 1 ≤ i ≤ 3: ni ∈ ZNi

}
, (1.53)

where (ai)i∈(1,2,3) is a basis of R3 as above and where ZN = {n ∈ Z | 1 ≤ n ≤ N} are the
elements of the standard integer representation of the cyclic group of order N with respect
to modular addition. Our initial separable Hilbert space would be the space of equivalence
classes of almost everywhere equal square-integrable functions on our domain L2(Cell). With
respect to our cell we will assume periodic boundary conditions, and therefore restrict our
Hilbert space further. It is easy to see that this subspace H := L2(Cell)periodic is still a
separable Hilbert space. In particular one can show that there exists a unique self-adjoint
extension of our momentum operator that we are familiar with. We thus can write down our
Hamiltonian as we wish as

H :=
p2

2m
+ V (r), (1.54)
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where we explicitly require the potential V (r) to be periodic with respect to the lattice, i.e.

∀n = (n1, n2, n3) ∈ ZN1 × ZN2 × ZN3 :

(TnV )(r)
def
= V

(
r+

3∑
i=1

(
ni −Ni

⌊
r·ai

∥ai∥ + ni

Ni

⌋)
ai

)
!
= V (r).

(1.55)

Here we have already introduced the representation of the finite translation group on the
space of Cell-periodic functions

T : ZN1 × ZN2 × ZN3 → GL ({f : Cell → C | f Cell-periodic}) , n 7→ Tn. (1.56)

In other terms, Tn=(n1,n2,n3) shifts a function by n1 atoms in −a1-direction, n2 atoms in
−a2-direction and n3 atoms in −a3-direction. Note that by our requirement for V , we have

∀n ∈ ZN1 × ZN2 × ZN3 : [H,Tn] = 0. (1.57)

What this tells us is that any eigenspace HE ofH to any eigenvalue E is an invariant subspace
with respect to our translation group representation.

It can be shown that H has a pure point spectrum and to each eigenvalue E of H, the
corresponding eigenspace HE is finite-dimensional.2

Thus for any eigenvalue E of H, the restriction of our translation group representation T to
the corresponding eigenspace HE is then a finite-dimensional complex representation.

As the translation group of the patch of crystal with periodic boundary conditions is a finite
group, we recall from the theory of finite groups that any finite-dimensional complex repre-
sentation is completely reducible. Furthermore, recall that as the translation group is abelian,
any finite-dimensional complex irreducible representation is one-dimensional. These two re-
sults enable us to decompose the finite-dimensional complex representation of T on HE into
a finite sum of one-dimensional complex irreducible representations. Translating this into a
language in terms of bases, we realize that this tells us that we can find a basis ψ1, . . . , ψdimHE

such that each basis vector spans a one-dimensional invariant subspace corresponding to a
one-dimensional complex irreducible representation of the translation group

∀ 1 ≤ l ≤ dimHE : ∀n ∈ ZN1 × ZN2 × ZN3 : ∃λn,l ∈ C : Tnψl = λn,lψl. (1.58)

Note that for each 1 ≤ l ≤ dimHE λn,l is a one-dimensional complex irreducible represen-
tation of the translation group. We can now either argue with the boundary conditions or
alternatively with the concrete realization that the translation group in our case is just a

2It turns out that H has compact resolvent [6, Theorem XIII.76]. Further, note that a densely defined
symmetric operator with compact resolvent has pure point spectrum with corresponding finite-dimensional
eigenspaces [7, Theorem 1.7.16].
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direct sum of three cyclic groups ZN1 ⊕ ZN2 ⊕ ZN3 , in order to arrive at the conclusion that
our group generators T(1,0,0), T(0,1,0) and T(0,0,1) are of the form

∀ 1 ≤ l ≤ dimHE : ∃m1,l ∈ ZN1 ,m2,l ∈ ZN2 ,m3,l ∈ ZN3 :[
λ(1,0,0),l = e

i2π
m1,l
N1 ∧ λ(0,1,0),l = e

i2π
m2,l
N2 ∧ λ(0,0,1),l = e

i2π
m3,l
N3

]
.

(1.59)

Applying an arbitrary translation to one of the basis vectors ψl, we now see that we can write

T(n1,n2,n3)ψl = e
i
∑3

i=1 niai
2πmi,l
Niai ψl = eikl·

∑3
i=1 niaiψl, (1.60)

where we wrote kl = 2π
∑3

i=1
mi,l

Ni
bi in terms of the to (ai)i∈(1,2,3) corresponding dual basis

(bi)i∈(1,2,3). Choosing to write ψl as a product of a plane wave eikl·r and some complex
function ul(r), we obtain

eik·(r+Rn) (Tnu) (r) = Tnψl (r) = eikl·Rnψl (r) = eikl·(Rn+r)ul(r), (1.61)

where we wrote Rn =
∑3

i=1 niai. As this holds for any translation, we obtain the result

∀n ∈ ZN1 × ZN2 × ZN3 : Tnul = ul, (1.62)

i.e. ul exhibits the full translational symmetry.

We conclude that any state ψ ∈ HE can be written as a linear combination

ψ(r) =

dimHE∑
l=1

Cl e
ikl·rul(r), (1.63)

where ∀ 1 ≤ l ≤ dimHE : Cl ∈ C.

Note that for any basis vector ψl, the choice of kl is not unique if not restricting kl to the
introduced collection of possible choices. In order to see this, consider k′

l = K + kl where
∀n ∈ ZN1 × ZN2 × ZN3 : e

iK·Rn = 1, in this case the term eiK·r can be absorbed into another
u′l(r) = e−iK·rul(r) which clearly also exhibits the full translational symmetry.

1.3.2 Reciprocal Lattice and first Brillouin zone

In the literature, the results of Bloch’s theorem are often a priori unjustifiedly extended to
the case of a spatially indefinitely extended lattice without periodic boundary conditions.
This corresponds to the limit of simultaneously diverging N1, N2 and N3 to ∞. This limit
however doesn’t mathematically exist and thus it is to be borne in mind that we are dealing
with a quasi-continuous but actually pure point spectrum which for reasons of simplification
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is often treated as if it were continuous.

We define the so-called reciprocal lattice

RL :=
{
K ∈ R3

∣∣ ∀R ∈ Lattice : eiK·R = 1
}
. (1.64)

On the vector space R3, we introduce an equivalence relation by

∀k,k′ ∈ R3 : [k ∼ k′ : ⇐⇒ ∃K ∈ RL : k− k′ = K] . (1.65)

We can represent the quotient set by the set{
2π

3∑
i=1

λibi

∣∣∣∣∣ ∀ 1 ≤ i ≤ 3: λi ∈ [0, 1)

}
, (1.66)

where we, however, will usually exclude 0 from the domain of the λi as this is a value which
is not attained by any simultaneous eigenstate of the Hamiltonian and all translations. An
alternative representation of the quotient set (minus the just mentioned irrelevant boundary)
is given by the so-called first Brillouin zone

FBZ :=
{
k ∈ R3

∣∣ ∀K ∈ RL \ {0} : |k| < |k−K|
}
. (1.67)

By Bloch’s theorem, for any simultaneous eigenstate ψ of the Hamiltonian and all trans-
lations, there exists a unique k in the first Brillouin zone and a unique (up to a constant
non-zero factor) periodic function u such that ψ(r) = eik·ru(r).

1.3.3 Bloch waves visualized

Now let us look at a visualization of a Bloch wave. To this end, we will restrict ourselves
to a particle moving in a one-dimensional periodic potential. This will enable us to visualize
the wave function ψ(x), plane wave eikx and u(x) in a 3-dimensional plot.

Suppose we have found a particular solution ψ(x) to some energy E which also is an eigen-
vector of all translations, just as in the above section. Our solution might look like the
complex function depicted on the right hand side of Fig. 1.4. In particular, it might already
be periodic with respect to the lattice spacing. Now, according to Bloch’s theorem there are
several ways to decompose this solution into a product of a plane wave and a lattice-periodic
function. There is a unique representation when choosing the wave number k of the plane
wave in the first Brillouin zone. In the particular case that is depicted in Fig. 1.4, the wave
number would be equal to zero and the periodic function would be equal to the proper eigen-
function ψ(x). We might, however, also absorb all the revolutions across one lattice-spacing
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f (x) = e−ikx
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−1

0

1

1

x/a
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<
(u
)

u(x) = e−cos2(π
2

x
a )

=

0

0

1
x/a

=(ψ)

<
(ψ

)

ψ(x) = f (x) · u(x)

Figure 1.4 Possible decomposition of an eigenvector ψ of the Hamiltonian and all transla-
tions into a plane wave eikx and a lattice-periodic function u. In this case we chose to set
the number of total revolutions of u across one lattice-spacing to zero. The domain of the
functions covers two lattice-spacings, i.e. x ∈ [−a, a], for better visualization.

of the ψ(x) into our plane wave eikx and end up with the composition shown on the left hand
side of Fig. 1.4.

1.3.4 Band structure, quasimomentum and effective mass

What we see when explicitly working out the spectrum of H for a specific periodic potential
is that we obtain a quasi-continuous band-structure. Once more forgetting about the fact
that our k can only take discrete values, but rather making the already discussed continuum
transition, will enable us to introduce the concept of quasiparticles later in this section.

In order to motivate and justify this continuum transition, let us quickly turn to the one-
dimensional special case. In the case of a one-dimensional periodic and bounded potential,
it is possible to derive Bloch’s Theorem without the assumption of periodic boundary condi-
tions. Further, we obtain a strong result which states that the spectrum of the Hamiltonian
is an at most countable union of open intervals.

Also, it is possible to easily evaluate the band structure for a given one-dimensional periodic
potential. Refer to Fig. 1.5 for an exemplary visualization of the energy bands for an electron
in a one-dimensional periodic square-well potential of height V0 = 10 eV, thickness a = 0.5Å
and lattice-spacing a+ b = 10Å.

Now let us move back to the general case, however, assuming a continuous spectrum. Suppose
we are given some periodic potential V . Let k0 be a minimum or maximum of a given energy
band. Expressing the energy in that band in terms of the so-called quasimomentum ℏk, we
might in particular expand the energy as Taylor series around k0. Taking into account only
terms up to second order (first order vanishes due to k0 being a minimum or maximum), we
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Figure 1.5 Energy bands for an electron in an one-dimensional square-well V0 = 10 eV
periodic potential of width a = 0.5Å and spacing a+ b = 10Å. The energy as a function of
the quasimomentum ℏk. On the left hand side, the number of revolutions of the periodic
function u(x) is fixed to total zero across one atom-spacing. Identifying the k to some
unique k ∈ (−π

a ,
π
a ) in the first Brillouin zone, the corresponding periodic function u′(x)

picks up a finite number of revolutions. As a merit of this identification, energy bands are
revealed (right hand side).

can write

En(k) = ℏ2
3∑

i,j=1

[
1

2m∗

]
ij

(k− k0)i (k− k0)j + En(k0) +O
(
(k− k0)

3) , (1.68)

where m∗ in general is a symmetric tensor, called the effective mass of a particle that in
k-space is peaked close to k0. The above expression clarifies why ℏk is often referred to as
quasimomentum. Take 1/m∗ as being proportional to the unit matrix in the chosen basis
and k0 = 0, then we can regard En(k) as the energy of a free (quasi-)particle of effective
mass m∗ and (quasi-)momentum ℏk. We can explicitly express m∗ as

[
1

m∗

]
ij

=
1

ℏ2
∂2En
∂ki∂kj

∣∣∣∣
k=k0

. (1.69)

While it is always possible to diagonalize m∗ in an orthonormal basis, the effective mass
along the main axes are in general not equal. The criterion of validity of the effective mass
approximation is in particular met for almost full valence bands or almost empty conduction
bands, for which usually k0 = 0 or some other high-symmetry property for k0 applies.

Equation (1.69) carries over to a k0 not corresponding to a minimum or maximum of En, for
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which it describes how a particle in a state that is peaked around k0 reacts to external fields.

Depending on the effect one desires to look at, one might average over the three main axes in
order to simplify further and to obtain a description which looks like the dispersion relation of
a free particle of wave vector k and scalar mass m∗. The motivation behind this lies entirely
in the reduction of the complexity of the problem.

Consider for instance the effect of crystal defects. Using the effective mass approximation,
we realize that scattering at a defect for a particle with quasimomentum ℏk looks exactly
like the scattering of a free particle with momentum ℏk and mass m∗ at a perturbation
which represents the defect, which then, however, would correspond to scattering at an atom
instead of a defect.

1.4 Fermi Liquid Theory

We have discussed the motion of a single electron under an arbitrary and a periodic potential.
In this section, we are going to consider a system of many electrons. A notable difference here
is that statistics should be considered, which makes many-body physics different from a single
particle even without interactions. We will discuss this non-interacting Fermi gas at first, and
then move forward to the interacting case. Interaction makes the system complicated, and
Fermi liquid theory seeks to get rid of the interactions, by replacing interacting electrons with
quasi-particles. The striking result is that, near the Fermi surface, quasi-particles behave as
free particles, which allows us to apply results of the non-interacting case.

1.4.1 Preliminary: many-body system

Here we follow Nagaosa[10] to introduce the second quatization which is used to deal with a
many-body system. We start with the wave function of a many-body system with n particles:

⟨r1, ..., rn|ψ(t)⟩ = ψ(r1, ..., rn, t). (1.70)

The statistics is given by

ψ(r1, ..., ri, ..., rj, ..., rn, t) = ±ψ(r1, ..., rj, ..., ri, ..., rn, t). (1.71)

Here + for bosons and − for fermions. Our goal is to reduce the Hamiltonian to a single-
particle form. To do so, we decompose the single particle wavefunction ψ(r, t) in an orthonor-
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mal basis ϕ(r):

ψ(r, t) =
∑
n

an(t)ϕ(r). (1.72)

Here ϕ(r) can be chosen as the eigenstates of the single-particle Hamiltonian H1 so that it is
orthogonal in this basis, which makes life easier.
Now, inserting the above equation into the single-particle Schroedinger equation, we have
the time evolution of an and a∗n:

iℏ
dan(t)

dt
=
∑
m

⟨ϕn|H1|ϕm⟩am(t) (1.73)

iℏ
da∗n(t)

dt
=−

∑
m

⟨ϕm|H1|ϕn⟩a∗m(t). (1.74)

We have also

⟨H1⟩ = ⟨ψ(t)|H1|ψ(t)⟩ =
∑
n,m

a∗n(t)am(t)⟨ϕn|H1|ϕm⟩. (1.75)

Inserting (1.75) into (1.73) and (1.74), we see that an and iℏa∗n fulfill the canonical equations
of ⟨H1⟩:

dan
dt

=
∂⟨H1⟩
∂(iℏa∗n)

(1.76)

d(iℏa∗n)
dt

=− ∂⟨H1⟩
∂an

. (1.77)

This motivates us to introduce ⟨H1⟩ as the new Hamiltonian, and an, a∗n to be operators. For
N particles, using the normarlized operators An =

√
Nan, A

†
n =

√
Na∗n, we can write the

many-body Hamiltonian H = ⟨H1⟩ as

H =
∑
n,m

A†
n⟨ϕn|H1|ϕm⟩Am. (1.78)

Introducing field operators:

ψ†(r) =
∑
n

A†
nϕ

∗
n(r) (1.79)

ψ(r) =
∑
n

Anϕn(r), (1.80)
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we have

H =

∫
d3rψ†(r)H1ψ(r). (1.81)

For a system of non-interacting particles, (1.81) takes the form

H = −
∫

d3rψ†(r)

(
∇2

2m

)
ψ(r), (1.82)

or, with a Fourier transfrom,

H =
∑
k

ℏ2k2

2m
ψ†
kψk =

∑
k

ℏ2k2

2m
A†

kAk. (1.83)

Here we use the quasi-momentum k = p/ℏ, p being the momentum. From now on we denote
ak = Ak, and interpret ak as the annilation operator on a particle with momentum k. Assume
the particle number of the system is not fixed so that we add a chemical potential term, the
Hamiltonian we are going to talk about is the Hamiltonian of a Fermi gas:

H =
∑
k

(
ℏ2k2

2m
− µ

)
a†kak =

∑
k

(ϵk − µ)a†kak. (1.84)

For a detailed discussion into second quatization we refer to Nagaosa[10], Altland[11] and
Feynman[12].

1.4.2 The theory of Fermi gas

Fermi-surface properties

The Hamiltonian (1.84) tells us that the energy levels of a many-particle system are the same
as those of a single-particle, the difference is that here we have many particles occupying
different energy levels. The relationship ϵ = ϵ(k) is called the dispersion of the particle.
As a result of statistics, any state can not be occupied by two fermions. Thus, even at zero
temperature, there are fermions that do not occupy the lowest band. Now if a new fermion
wants to enter this system, the lowest possible energy level for it to occupy has an energy
greater than the ground state energy, this energy is called the Fermi-energy, denoted as ϵF,
or µ. The momentums that satisfy ϵ(k) = ϵF form a surface in momentum space, which is
called the Fermi-surface. Any momentum on this surface are called Fermi-momentum,
denoted as kF, the velocity of particles on this surface is vF = ℏkF

m
, which is called the Fermi

velocity.
The Fermi-surface of three dimensional non-interacting fermions is just a sphere with radius
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kF = |kF|, where

kF =

√
2mϵF
ℏ2

. (1.85)

The density of states at Fermi-energy is given by

n(ϵF) =
1

V

dN

dϵ

∣∣∣∣
ϵF

. (1.86)

For non-interacting Fermions

N = gV

∫
d3k

(2π)3
= gV

k3F
6π2

, (1.87)

where g denotes degeneracy, for electrons there is a spin degeneracy which gives a factor of
2. Inserting (1.87) into (1.86) we find for the Fermi gas

n(ϵF) =
mkF

π2ℏ
. (1.88)

It is striking that many thermodynamic properties, such as specific heat Cv, compressibility
κ, and susceptibility χ are only related to the Fermi-surface properties:

Cv =
π2k2Bn(ϵF)

3
T (1.89)

1

κ
=
2

3

N

V
ϵF (1.90)

χ =
1

2
µ2
Bn(ϵF). (1.91)

Green’s function of a non-interacting fermionic system

The Green’s function of a non-interacting fermionic system is given by

G0(k, t) =

{
−i⟨ψ|ak(t)a†k(0)|ψ⟩ t > 0

i⟨ψ|a†k(0)ak(t)|ψ⟩ t < 0
, (1.92)

where |ψ⟩ denotes the state of the system.
Setting ℏ = 1, the Heisenberg equation of motion of ak(t) is:

i
dak(t)

dt
= [H, ak(t)]. (1.93)
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Recalling (1.84), and using [a†k(t), ak′(t)] = δk,k′ , we have

ak(t) = ake
−i(ϵk−µ)t, (1.94)

which gives

G0(k, t) =

{
−i(1− n(k))e−i(ϵk−µ)t t > 0

in(k)e−i(ϵk−µ)t t < 0
, (1.95)

where n(k) = 1
eβ(ϵk−µ)+1

is the number of particles of momentum k per volume. At zero
temperature, n(k) = 0 if |k| > kF, n(k) = 1 if |k| < kF.
Taking the Fourier transform with respect to t of (1.95), we have:

G0(k, ω) =

∫ ∞

−∞
dtG0(k, t)e

iωt (1.96)

=
1− iδk

ω − (ϵk − µ)
(1.97)

=
1

ω − (ϵk − µ) + iηk
, (1.98)

where δk and ηk are infinitesimaly small numbers: ηk > 0 if |k| > kF, ηk < 0 if |k| < kF.

Conclusion on Fermi gas

The above discussion is carried out at zero temperature. At sufficiently low temperature
it also holds. The Fermi gas at sufficiently low temperature is called the degenerate Fermi
gas which is sensitive to Pauli-exclusion. On the contrary, at high temperature it forms a
dilute Fermi gas, where the Fermi-Dirac statistics can be discribed by the classical Maxwell-
Boltzmann statistics.
Compared to single electrons, we have seen the effect of many-body physics in the Fermi gas:
statistics has to be considered and Fermi surface arises. However, the Green’s function of a
Fermi gas is the same as a free electron: after all, the Fermi gas is composed of free electrons.
Compared to Fermi gas, we are more interested in fermionic systems with interactions, which
are generally not analytically solvable. The Fermi liquid theory we are going to discuss
seeks to get rid of the interactions in this problem.
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1.4.3 Landau’s Fermi liquid theory

From now on we deal with electrons subject to electron-electron interaction. The first-
quantized Hamiltonian reads:

H = H0 +Hee =
∑
i

p2
i

2m
+
∑
i<j

V (ri − rj). (1.99)

Second quantization gives

H =
∑
k

(ϵk − µ)a†kak +
∑
k,k′,q

V (q)a†k+qa
†
k′−qakak′ , (1.100)

where V (q) =
∫
drV (r)e−iq·r is the Fourier transform of V (r). For electrons in a metal, they

interact via the short-ranged Yukawa potential which takes the form

V (q) =
4πe2

|q|2 + k2TF
, (1.101)

where kTF comes from Thomas-Fermi screening of the Coulomb potential. The short-ranged
nature of Yukawa potential makes Landau Fermi liquid theory valid for many metals.
The sum over q in the second term of (1.100) makes it generally impossible to have an analytic
solution of the thermodynamic properties of the system. Landau was first to replace this term
with an average field, resulting in free quasi-particles with an effective mass different from
that of an electron.

Landau’s theory of Fermi liquids

Let us forget about second quantization for a while and follow Landau’s approach to Fermi
liquid theory in 1956[13]. We consider a degenerate Fermi gas, and gradually turn on a weak
interaction between the fermions. This gives the transition from a Fermi gas to a Fermi
liquid. The term "gradually" means that this process is adiabatic: quantum states and
energy levels of Fermi gas are mapped one to one to those of the Fermi liquid.
The energy levels of the Fermi liquid are given by the elementary excitations, called quasi-
particles of the system. Each quasi-particle possesses a definite momentum, energy, and
spin. They obey Fermi-Dirac distribution and their number coincides with that of particles
in the Fermi liquid. Landau argued that the quasi-particle can be considered as a particle in
a self-consistent field of surrounding particles. The energy of a quasi-particle depends
on the state of surrounding particles, and the total energy of the whole system is not a simple
sum of energies of all individual particles, but a function of the distribution function.
To explicitly see this, let us consider a change in the distribution of quasi-particles δn(p),
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the corresponding change of the energy of the system is given by

δE =
∑
σ

∫
d3p

(2πℏ)3
ϵpδn(p), (1.102)

where σ denotes the spin, ϵp = δE/δn(p) can be regarded as the energy of the added quasi-
particle. It is related to the distribution of other quasi-particles since this quasi-particle is in
the self-consistent field of surrounding quasi-particles, the change of ϵp with respect to δn(p)
is

δϵp =
∑
σ′

∫
d3p′

(2πℏ)3
fσ,σ′(p,p′)δn(p′), (1.103)

where the Landau response function fσ,σ′(p,p′) is symmetric over p and p′, and it depends
on spins.
Using ϵp we can define the effective mass of quasi-particles

m∗ = p

(
∂ϵp
∂p

)−1
∣∣∣∣∣
p=pF

, (1.104)

which is different from that of electrons.

Landau’s theory of Fermi liquids in second quantized language

Inserting (1.103) into (1.102), replacing momentum p with quasi-momentum k = p/ℏ, we
have the Landau energy functional

δE =
∑
k,σ

(ϵk,σ−µ)a†k,σak,σ+
1

2V

∑
k,k′

∑
σ,σ′

fσσ′(k,k′)a†k,σa
†
k′,σ′ak,σak′,σ′ (1.105)

=
∑
k,σ

(ϵk,σ−µ)δnk,σ+
1

2V

∑
k,k′

∑
σ,σ′

fσσ′(k,k′)δnk,σδnk′,σ′ , (1.106)

where we have considered the chemical potential. The dispersion of the quasi-particle is given
by

ϵ′k,σ =
δE

δnk,σ

= ϵk,σ +
1

V

∑
k′,σ′

fσσ′(k,k′)δnk′,σ′ . (1.107)

The second term is the energy of the quasi-particle in the self-consistent field. At low tem-
peratures, this term is proportional to T 2[8], the first term is temperature-independent, thus
we can neglect the second term and return to a free particle dispersion ϵk,σ, this time with a
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different mass m∗ to that of an electron:

ϵk,σ =
ℏ2k2

2m∗ . (1.108)

The density of states at Fermi-energy is given

n(ϵF) =
m∗kF

π2ℏ2
. (1.109)

Now we can derive the thermodynamic properties of a Fermi liquid, noting that fσσ′(k,k′)

enters κ and χ:

Cv =
π2k2Bn(ϵF)

3
T (1.110)

1

κ
=

2
3
N
V
ϵF

1 + F s
0

(1.111)

χ =
µ2
Bn(ϵF)

1 + F a
0

, (1.112)

where (assuming spherical summetry of fσσ′(k,k′))

fσσ′(k,k′) =f s(k,k′) + σσ′fa(k,k′) (1.113)

F s,a
0 =n(ϵF)

∫
dΩk̂′

4π
f s,a(k̂, k̂′). (1.114)

We see that up to some correction with Landau parameters, the thermodynamic properties
of a Fermi liquid match that of a Fermi gas.

Lifetime of quasi-particles

Unlike free electrons, quasi-particles are subject to interactions and have a chance to decay.
In the following we calculate the lifetime of quasipaerticles. We see that the quasi-particle
lifetime is finite and proportional to (ϵk − ϵF)

−2[9].
Consider a quasi-particle at momentum k, after some time it decays into a quasi-particle with
momentum k− q, in the meantime, a quasi-particle below Fermi-energy with momentum k′

will be excited to the state with momentum k′ + q. The inverse lifetime is the sum over rates
of all possible decays, given by Fermi’s golden rule:

1

τk
=

2π

ℏV 2

∑
k′,q,s′

|V (q)|2n0,k′(1− n0,k−q)(1− n0,k′+q)δ(
∑

ϵ), (1.115)
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where δ(
∑
ϵ) = δ(ϵk−q−ϵk−ϵk′+ϵk′+q) gives energy conservation, n0,k′(1−n0,k−q)(1−n0,k′+q)

is the Pauli exclusion principle, V (q) is the interaction between quasi-particles.
We consider the three dimensional case, and do the sum over k′ first, Pauli exclusion and
energy conservation restricts the number of possible k′s:

S(ωq,k, q) =
1

V

∑
k′

n0,k′(1− n0,k′+q)δ(ϵk−q − ϵk − ϵk′ + ϵk′+q) (1.116)

=
n(ϵF)

4

ωq,k

qvF
, (1.117)

where ℏωq,k = ℏ2(2k · q− q2)/2m. The sum over s′ gives a factor of 2, and all we have to do
is the sum over q:

1

V

∑
q

|V (q)|2ωq,k

q
∝ (ϵk − ϵF)

2

∫
dq|V (q)|2. (1.118)

For Yukawa potential (1.101) the integral
∫
dq|V (q)|2 is finite and we have

1

τk
∝ (ϵk − ϵF)

2. (1.119)

We see that the lifetime of quasi-particle is infinite only when the quasi-particle is
near the fermi surface.
For detailed calculation, the reader is referred to [9].

Green’s function of quasi-particles

We will calculate the Green’s function of quasi-particles, and expect it to be similar to the
Green’s function of free electrons (1.98). Recalling (1.92), and noticing that in the interacting
case [H, ak,σ(t)] takes a rather complicated form, we use the following Heisenberg equation
of motion:

ak,σ(t) = eiHtak,σe
−iHt. (1.120)

In the meantime, we denote the ith energy eigenstate of N interacting particles as |ψNi ⟩. It
suffices to see that

∑
m |ψNm⟩⟨ψNm | = 1 for all N .

Now, the Green’s function is taken on the ground state of an interacting N particle system,
using (1.92) and (1.120), we have:

G(k, t) =

{
−i⟨ψN0 |eiEN

0 take
−iHta†k|ψN0 ⟩ t > 0

i⟨ψN0 |a†keiHtake−iEN
0 t|ψN0 ⟩ t < 0

. (1.121)
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For t > 0, inserting
∑

m |ψN+1
m ⟩⟨ψN+1

m | = 1 after e−iHt, we get

G(k, t) = −i
∑
m

|⟨ψN0 |ak|ψN+1
m ⟩|2e−i(EN+1

m −EN
0 )t. (1.122)

The energy difference EN+1
m −EN

0 is just the energy cost to introduce an extra quasi-particle
to the N-particle ground state. The extra particle is added to its mth energy level ϵN+1

m , s.t.
EN+1
m − EN

0 = ϵN+1
m − µ. Notice this µ here, since t > 0, we require ϵN+1

m − µ > 0, s.t. the
Fourier transform G(k, ω) has poles at Re(ω) > 0, which means this is a possitive-energy
solution. Otherwise we will have negative energy for the added particle. This requirement
says that if a particle is added to the Fermi sea, it has to be added above the Fermi energy,
in agreement with Pauli-exclusion principle.
The Fourier transform of (1.122) gives

G(k, ω) =
∑
m

|⟨ψN0 |ak|ψN+1
m ⟩|2

ω − (ϵm − µ) + iδk
, (1.123)

where δk > 0. For Fermi liquid, this complicated sum actually leads to a simple form 3:

G(k, ω) =
zk

ω − (ϵk − µ) + iηk
+ regular part, (1.124)

where ηk > 0, ϵk = k2/2m∗. The regular part does not contribute to G(k, t) and can be ne-
glected. This Green’s function gives rise to a quasi-particle with dispersion ω− (ϵk −µ) = 0.
The constant zk is called the quasi-particle weight and is always less than 1.
Taking account of the quasi-particle-lifetime, the Green’s function G(k, t) decays exponen-
tially with t: G(k, t) ∝ exp(−t/τk), this gives ηk ∝ 1/τk in (1.124). To really get the Green’s
function of a free particle, we need τk → ∞, recalling (1.119), we see that this requires a
quasi-particle near Fermi energy. We conclude that quasi-particles near the Fermi en-
ergy behave like free particles.
For the case t < 0, we insert

∑
m |ψN−1

m ⟩⟨ψN−1
m | = 1. This time we have extracted a quasi-

particle, or, in other words, added a quasihole to the Fermi sea. The Green’s function for
the quasiholes is given by

G(k, ω) =
zk

ω − (ϵk − µ)− iηk
. (1.125)

Here |ϵm − µ| is the energy cost to excite a quasi-particle inside the Fermi sea to the Fermi
surface. In all, we can write the Green’s function as

G(k, ω) =
zk

ω − (ϵk − µ) + iηk
, (1.126)

3For detailed calculation, the reader is referred to [14]
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where ηk ∝ 1/τksgn(|k| − |kF|). The fact that zk < 1 leads to a modified distribution of
quasi-particles at zero temperature, rather than a simple step function (Fig.1.6).

Figure 1.6 Left panel: distribution of quasi-particles at zero temperatre. Right panel:
distribution of electrons at zero temperatre.

The jump at kF can be seen as follows:

n(k) =⟨a†k(t)ak(t)⟩ (1.127)

=− i lim
t→0−

G(k, t) (1.128)

= lim
t→0−

∫ +∞

−∞

dω

2πi
G(k, ω)e−iωt (1.129)

= lim
t→0−

∫ +∞

−∞

dω

2πi

zk
ω − (ϵk − µ) + iηk

e−iωt. (1.130)

Since t < 0, we close the contour at the upper half-plane when integrating ω. For k > kF,
ηk > 0, the pole of G(k, ω) is at the lower half-plane, so (1.130) gives zero. For k < kF,
(1.130) is equal to zk, indicating that

lim
ϵ→0

n(kF − ϵ)− n(kF + ϵ) = zkF . (1.131)

Validicity of Landau’s Fermi liquid theory in metals

We want to apply the Fermi liquid theory introduced above to metals. However, a notable
difference between metals and the system of intereacting electrons is that in metals we have
atoms forming a lattice. The result of having a lattice structure is that the Fermi surface
is no longer a sphere as in the above discussion. This, fortunately, does not influence the
validicity of Fermi liquid theory. Another influence comes from the phonons provided by
the lattice. Below Debye temperature, the electron-phonon interaction dominates, forcing
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electrons to form Cooper pairs. At this time the Fermi liquid theory fails. However, for this
phenomena to happen one needs very low temperature(∼ 10K), so this does not affect the
validicity of Fermi liquid theory to metals at higher temperatures.
The Fermi liquid theory is not valid in 1D, where instead of forming a Fermi liquid, inter-
acting fermions form a Luttinger liquid. In a Luttinger liquid, the qusiparticle weight zk
vanishes and the distribution n(k) is continuous at kF.
A final remark to add here is that although the above derivation is carried out at low temper-
ture, at high temperature the Fermi liquid theory is still valid as it is at low temperature.

1.5 Conclusion

We started with the general Hamiltonian of a solid and simplified it with the Born-Oppenheimer
approximation. In a very first approach, we neglected the electron-electron interaction and
considered the scattering of only a single electron at a not yet periodic potential. We applied
the method of Green’s function on this example and obtained a self-consistent equation:
the Lippmann-Schwinger equation. We then made the first Born approximation to obtain a
solution for weak scattering potentials and connected this solution to the scattering ampli-
tude and the cross-section. We derived the cross-section explicitly and saw that it was just
Rutherford’s formula.

We moved on to considering an electron inside a periodic lattice as a simple model of a
solid. We experimented with the application of first order perturbation theory in order to
see that a periodic potential can no longer be treated as a perturbation to the unperturbed
Hamiltonian of a free electron. As a consequence, the problem had to be reconsidered. Ex-
ploiting the symmetry of the Hamiltonian led to far-reaching conclusions about the form of
eigenwavefunctions, Bloch’s theorem. The result suggested us to introduce the concept of
quasi-momentum which enabled us to interpret energy-bands. Further we have seen that a
particle in an energy-band can under certain conditions be treated as a free quasiparticle
with some effective masss m∗. In this picture, the quasi-momentum ℏk can be understood
as the momentum of the free quasiparticle.

Finally we went to Fermi liquid theory, following Landau’s approach, using the simple hy-
pothesis of quasi-particles in a self-consistent field, we are able to treat interacting electrons
as non-interacting quasiparticles. This treatment works only for quasiparticles near the Fermi
surface. However, this does not restrict our usage of Landau’s Fermi liquid theory since we
are only interested in the low-energy physics. The Green’s function (1.124) of quasiparticles
justifies our picture of non-interacting quasiparticles: near the Fermi surface, (1.124) takes
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the form of the Green’s function of a free fermion, indicating free quasiparticles.
The Fermi liquid theory allows us to treat many metals as non-interacting fermionic sys-
tems. From now on we drop the electron-electron interaction and work in the frame of free
quasi-particles.
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Gaussian integrals & su-
permathematics

Chapter 2
Anton Eder 1

The diagrammatic perturbation approach from previous chapters is well suited for de-
scribing conductivity or other response functions, but becomes increasingly tedious for
calculating higher order moments. Other phenomena like energy level statistics are com-
pletely inaccessible to this formalism. We thus need a new approach: Supersymmetric
non-linear sigma models allow for efficient and mathematically rigorous calculation of
higher order moments and level statistics. To derive such a model in a consistent way,
we have to make use of two new concepts: Gaussian integrals and superlinear algebra. In
this chapter, we will provide a short introduction to those mathematical tools, following
mainly the book of Efetov [1] and notes by J. Shapiro [2].

2.1 Conductivity on a lattice

The arguably most important transport quantity of a solid is its conductivity σ. Since this
chapter focuses on introducing the basic concepts necessary for deriving a non-linear sigma
model for the conductivity, it is sufficient to look at σ on an infinite lattice. Although we are
ultimately interested in the continuum version of σ, the lattice approach offers the advantage
of simplifying most calculations while still capturing all relevant physical phenomena.

2.1.1 Discrete Kubo formula

Suppose that we have a system in equilibrium state ρ0 and apply a weak perturbation

V (t) = −V0f(t)A

to it, where A is a Hermitian operator and the real function f accounts for the time depen-
dence. To ensure that

lim
t→−∞

ρ(t) = ρ0

1supervised by Jacob Shapiro
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for the perturbed state ρ(t), we require the perturbation to be turned on adiabatically, i.e.

lim
t→−∞

f(t) = 0 ,

f(0) = 1 .

Linear response theory tells us that if we then probe this system with an observable B, its
response to V (t) can be described by

⟨B⟩ρ(t=0) = ⟨B⟩ρ0 + χBAV0 +O(V 2
0 ) ,

χBA = i

∫ 0

−∞
tr
(
e−iHtBeiHt[A, ρ0]

)
f(t) dt . (2.1)

Since we are interested in the DC conductivity, we take our perturbation to be a weak electric
field in xj-direction

V (t) = E · x eεt = Ejxj e
εt

in the limit ε→ 0+ and probe the system by measuring the current density in xi-direction

ji = −Tr (vi (ρ(0)− ρ0)) = σijEj +O(E2
j ) ,

with v = i[H,x] referring to the electron velocity. It should be noted that starting from this
equation, we have to replace the regular trace tr( · ) by the trace per unit volume

Tr( · ) := lim
Λ→Zd

1

|Λ|
∑
x∈Λ

⟨δx| · |δx⟩ ,

since xk is not a trace class operator. However, all trace properties relevant for this derivation,
i.e. linearity and cyclicity, still hold. Assuming that the equilibrium state corresponds to a
Fermi-Dirac distribution at zero temperature and Fermi energy E, we can describe ρ0 in the
single-particle picture by the Fermi projection:

ρ0 = χ≤E(H) := lim
β→∞

(
1 + eβ(H−E)

)−1

After inserting these expressions, equation (2.1) becomes

σij(E) = − lim
ε→0+

∫ 0

−∞
Tr
(
e−iHt [H, xi] e

iHt [xj, χ≤E(H)]
)
eεt dt .

We can then rewrite
eεt =

d

dt

(
eεt − 1

ε

)
,
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which allows us to perform a partial integration leading to

σij(E) = lim
ε→0+

∫ 0

−∞

(
d

dt
Tr
(
e−iHt [H, xi] e

iHt [xj, χ≤E(H)]
)) eεt − 1

ε
dt . (2.2)

For a derivation avoiding this point please see [3]. Making use of the cyclicity of the trace
and the fact that [H, ρ0] = 0, we can express the time derivative by

d

dt
Tr
(
e−iHt [H, xi] e

iHt [xj, χ≤E(H)]
)
= Tr

(
[H, xi]

d

dt

[
eiHt xj e

−iHt, χ≤E(H)
])

= Tr
(
[H, xi] e

iHt [i[H, xj], χ≤E(H)] e−iHt
)

= −i Tr
(
vi e

iHt [vj, χ≤E(H)] e−iHt
)
.

We can use the spectral decomposition of H to express functions f(H) as

f(H) =

∫
λ∈R

f(λ) dP (λ) ,

where P is the projection-valued spectral measure of H. This allows us to move the expo-
nentials - and therefore the time dependence - out of the trace:

Tr
(
vi e

iHt [vj, χ≤E(H)] e−iHt
)
= Tr

(
vi
(
eiHt vjχ≤E(H) e−iHt − eiHt χ≤E(H)vj e

−iHt
))

=

∫
(λ1,λ2)∈R2

ei(λ1−λ2)t (χ≤E(λ2)− χ≤E(λ1)) Tr (vi dP (λ1) vj dP (λ2))

If we then rewrite
eεt − 1 = t

∫ ε

0

eηt dη ,

we can perform the time integration in equation (2.2):

σij(E) = i lim
ε→0+

∫
λ1,λ2

∫ ε

0

dη

ε

(∫ 0

−∞
t ei(λ1−λ2−iη)t dt

)
(χ≤E(λ1)− χ≤E(λ2)) dmij(λ1, λ2)

= i lim
ε→0+

∫
λ1,λ2

∫ ε

0

dη

ε

1

(λ1 − λ2 − iη)2
(χ≤E(λ1)− χ≤E(λ2)) dmij(λ1, λ2) ,

where we defined
dmij(λ1, λ2) := Tr (vi dP (λ1) vj dP (λ2)) .

For well-behaved functions f , we can replace

lim
ε→0+

1

ε

∫ ε

0

f(η) dη = lim
η→0+

f(η)
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and with the help of the Sokhotski-Plemelj formula, we find that

lim
η→0+

1

(t− iη)2
= − d

dt
lim
η→0+

1

t− iη

= −
(
P 1

t

)′

− iπδ′(t) .

In this equation, P refers to the Cauchy principal value. If we assume our system to be
time-reversal invariant, one can easily show that

dmij(λ1, λ2) = dmij(λ2, λ1) .

The product (χ≤E(λ1)− χ≤E(λ2)) dmij(λ1, λ2) is therefore an odd function of (λ1, λ2); it
follows from symmetry considerations that the integration over the even P ′-term vanishes
and we are left with integrating over the odd δ′-function:

σij(E) = π

∫
λ1,λ2

δ′(λ1 − λ2) (χ≤E(λ1)− χ≤E(λ2)) dmij(λ1, λ2)

= π

∫
λ

(∂λ χ≤E(λ)) dmij(λ, λ)

At T = 0, the Fermi distribution is simply a step function around E and we have

∂λ χ≤E(λ) = ∂λΘ(E − λ) = δ(E − λ)

and thus
σij(E) = π

∫
λ

δ(E − λ) Tr (vi dP (λ) vj dP (λ))

= π ∂λ1∂λ2 Tr (vi χ≤λ1(H)vj χ≤λ1(H))
∣∣∣
λ1=λ2=E

.
(2.3)

We can then make a connection to the Green’s function by using Stone’s formula (cf. page
237 of [4]) and express the density matrix as

χ≤E(H) = lim
η→0+

1

π

∫ E

−∞
Im[R(ϵ+ iη)] dϵ = lim

η→0+

η

π

∫ E

−∞
|R(ϵ+ iη)|2 dϵ , (2.4)

where Im[O] := (O −O)/2i and R refers to the resolvent of the Hamiltonian:

R(z) = (H − z1)−1 = R(z)



39
2.1. CONDUCTIVITY ON A LATTICE

39
2.1. CONDUCTIVITY ON A LATTICE

39
2.1. CONDUCTIVITY ON A LATTICE

Inserting equation (2.4) into the Kubo formula (2.3) and using the cyclic property of the
trace, we obtain

σij(E) = lim
η→0+

η2

π
Tr
(
viR(E + iη)R(E + iη) vj R(E + iη)R(E + iη)

)
= − lim

η→0+

η2

π
Tr (R(E − iη)[H, xi]R(E − iη)R(E + iη)[H, xj]R(E + iη)) .

With the useful identity
R[H,O]R = [O,R]

for any operator O, the above equation simplifies to

σij(E) = − lim
η→0+

η2

π
Tr ([xi, R(E − iη)] [xj, R(E + iη)]) .

At this point, we can apply Birkhoff’s theorem and relate the trace per unit volume to the
expectation value E [ · ] of disorder averaging:

σij(E) = − lim
η→0+

lim
Λ→Zd

η2

π|Λ|
∑
x∈Λ

⟨δx| [xi, R(E − iη)] [xj, R(E + iη)] |δx⟩

= − lim
η→0+

η2

π
E [⟨δ0| [xi, R(E − iη)] [xj, R(E + iη)] |δ0⟩]

Since xk |δ0⟩ = 0, only one term in the expectation value remains:

σij(E) = lim
η→0+

η2

π
E [⟨δ0|R(E − iη)xixjR(E + iη) |δ0⟩]

and by inserting an identity 1 =
∑

x∈Zd |δx⟩⟨δx| between the two position operators, we arrive
at

σij(E) = lim
η→0+

η2

π
E

[∑
x∈Zd

xixj ⟨δ0|R(E − iη) |δx⟩ ⟨δx|R(E + iη) |δ0⟩

]

= lim
η→0+

η2

π

∑
x∈Zd

xixj E
[
⟨δx|R(E + iη) |δ0⟩ ⟨δx|R(E + iη) |δ0⟩

]
= lim

η→0+

η2

π

∑
x∈Zd

xixj E
[
|G(x, 0;E + iη)|2

]
(2.5)

with the Green’s function in position basis

G(x, y; z) := ⟨δx| (H − z1)−1 |δy⟩ .

This is then our single particle, zero temperature Kubo formula for the DC conductivity on
an infinite lattice. This formula and its derivation can also be found in Appendix A of [5].
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2.1.2 Green’s functions on a finite lattice

To simplify further calculations and get a better understanding of G, we now go to a fi-
nite lattice Λ, where operators become matrices and we can express the Green’s function
G(x, y;E ± iη) as components of an inverse matrix

GΛ(x, y;E ± iη) =

(
1

HΛ − (E ± iη)1

)
xy

.

We can connect our results for the finite lattice back to the Kubo formula (2.5) by using the
fact that

lim
Λ→Zd

GΛ(x, y; z) = G(x, y; z) .

This is shown in [6]. Depending on the sign of the regulator, GΛ is either a retarded (“+iη”)
or advanced (“−iη”) Green’s function. This can easily be seen by expressing the Green’s
function as a Laplace transform:

(H − (E ± iη))−1 = i

∫ ±∞

0

e−iHtei(E±iη)t dt

We choose to model the electron dynamics by a simple Anderson Hamiltonian with a kinetic
hopping term and a random potential diagonal in position space:

(HΛ)xy = Txy + Vxy =
∑

e∈Λ: |e|=1

δx−y,e + v(x) δxy , (2.6)

where the potential values v(x) are elements of an independent and identically distributed
sequence {v(x)}x∈Λ, each drawn with a probability distribution µ on R (cf. [6]). The main
difficulty in evaluating the right-hand side of equation (2.5) now arises from having to average
over the inverse of a random potential. However, after introducing both Gaussian integrals
and superlinear algebra, we will be able to express GΛ in a way that allows us to easily take
the expectation value.

2.2 Path integrals

In the derivation of our non-linear sigma model, we will be making use of Gaussian integrals,
which are closely related to path integrals. Although these two are not exactly the same, we
wish to illustrate some physical principles using the latter before proceeding with the former.
To do so, we will follow Chapter 9 of [7]. So far, all quantum calculations were done in the
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Hamiltonian formalism, where the time evolution of a state is described by the operator

Û = exp

(
− i

ℏ
Ĥt

)
.

The path integral formalism is an equivalent description that makes use of the system’s
classical Lagrangian instead of its quantum Hamiltonian. In this formalism, one can also
easily see how classical mechanics arises from quantum physics.

2.2.1 The action principle in classical mechanics

In classical mechanics, the trajectory q of a particle going from point x1 = q(t1) to x2 = q(t2)

is determined by the action principle: Along q(t), the action

S [q] =

∫ t2

t1

L [q(t), q̇(t), t] dt

becomes stationary, i.e. its variation vanishes:

δS [q] = 0 (2.7)

From this condition, we can derive the Euler-Lagrange equations and thus the equations of
motion for any classical system, given that we know its Lagrangian L.

2.2.2 The action principle in quantum physics

As it turns out, one can generalize this to a quantum mechanical action principle. Since quan-
tum theory is probabilistic, we now have to talk about transition amplitudes K(x1,x2; t2−t1)
instead of deterministic trajectories q. The probability of the particle going from x1 to x2 in
the time interval t2− t1 is then given by |K|2. In the path integral formalism, this amplitude
is obtained by summing over all possible paths q(t) the particle could take going from (t1,x1)

to (t2,x2), each weighted by a phase factor

exp(iφ[q]) = exp

(
i
S[q]

ℏ

)
.

We thus obtain
K(x1,x2; t2 − t1) =

∫
Dq eiS[q]/ℏ , (2.8)
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where the the right-hand side is a functional integration over all allowed paths q obeying the
boundary conditions. In non-relativistic quantum mechanics, S is just the classical action

S [q] =

∫ (m
2
q̇2 − V (q)

)
dt .

In quantum field theory, on the other hand, we talk about fields instead of particles, so
we have to replace trajectories q : R → R3 by spacetime-dependent field configurations
ϕ : R4 → Cn; the action along a certain field configuration is then its spacetime-integrated
Lagrangian density L:

S [ϕ] =

∫
R4

L [ϕ, ∂µϕ, xµ] d
4x

The analog of equation (2.8) is therefore

K(ϕ1, ϕ2;T ) = ⟨ϕ2(x, T )| e−
i
ℏ ĤT |ϕ1(x, 0)⟩ =

∫
Dϕ exp

(
i

ℏ

∫ T

0

d4xL[ϕ]
)
.

2.2.3 Connection to classical mechanics

Taking the limit ℏ → 0, the quantum action principle (2.8) becomes equivalent to the clas-
sical action principle (2.7). This can be understood intuitively: Paths close to the classical
trajectory qcl all contribute with roughly the same phase φcl, since δφcl = δS[qcl]/ℏ = 0 by
definition. The transition probability is thus enhanced by the constructive interference of
those paths. Paths further away from qcl, however, vary strongly in S and their phase con-
tributions rotate with period 2πℏ. Therefore, when summing over those paths, their phases
“average out” and one can neglect their contribution. For typical quantum systems, S has
order of ℏ and we have to consider many different paths. For classical systems, S ≫ ℏ and
even slight deviations from qcl shift the action by δS ≫ ℏ. Consequently, all paths not
infinitesimally close to the classical one interfere destructively and the transition probability
is determined entirely by the trajectory satisfying the action principle (2.7). More formally,
one could also expand in powers of ℏ around qcl and get quantum corrections corresponding
to a WKB approximation.

2.3 Gaussian integrals

While the path integral formalism allows us to express matrix elements
(
e−itH

)
xy

of the time
evolution operator, the Kubo formula (2.5) requires the Green’s function

(
(H − z1)−1

)
xy

. In
this section, we will derive a way to express the matrix elements of such inverted operators
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via Gaussian integrals. It can be easily shown that for φ ∈ C and any a ∈ C with Re[a] > 0,

1

π

∫
C
e−a|φ|

2

dφ =
1

a
.

We are now interested in generalizing this formula for complex vectors φ ∈ Cn and matrices
A ∈ Cn×n:

IB(A) :=
1

πn

∫
Cn

e−⟨φ,Aφ⟩ dφ

To ensure convergence, A has to have a positive real part Re[A] > 0. Let us also assume that
A is unitarily diagonalizable:

A = U † diag(a1, . . . , an)U

By substituting φ→ Uφ̃ and using the fact that |det(U)| = 1, we find that

IB(A) =
1

πn

∫
Cn

e−⟨φ̃,diag(a1,...,an)φ̃⟩ dφ̃

=
n∏
i=1

1

π

∫
C
e−ai|φ̃i|2 dφ̃i

=
n∏
i=1

1

ai
=

1∏n
i=1 ai

.

By definition of the determinant, we then have

1

πn

∫
Cn

e−⟨φ,Aφ⟩ dφ =
1

det(A)
. (2.9)

One can also show that this is invariant under shifts:

1

πn

∫
Cn

e−⟨φ+α,A(φ+β)⟩ dφ =
1

det(A)
∀α, β ∈ Cn (2.10)

By completing the square and using equation (2.10), we get

1

πn

∫
Cn

e−⟨φ,Aφ⟩+⟨α,φ⟩+⟨φ,β⟩ dφ =
e⟨α,A−1β⟩

det(A)
(2.11)

and have thus found the partition function of A with sources α and β, i.e. the generating
functional

ZB (A;α, β) :=
1

πn

∫
Cn

e−⟨φ,Aφ⟩+⟨α,φ⟩+⟨φ,β⟩ dφ .
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Differentiating both sides of equation (2.11) by components αi and βj and subsequently
evaluating them at α = β = 0, we finally arrive at

1

πn

∫
Cn

φiφj e
−⟨φ,Aφ⟩ dφ =

(A−1)ij
det(A)

. (2.12)

With this formula, we are now able to express the inverse of a matrix as a Gaussian integral,
which could potentially simplify the disorder averaging in equation (2.5). However, we still
have an additional factor of det(A), which can be highly non-trivial. By combining equations
(2.9) and (2.12), we can eliminate this factor:

(
A−1

)
ij
=

∫
Cn φiφj e

−⟨φ,Aφ⟩ dφ∫
Cn e−⟨φ,Aφ⟩ dφ

=
∂αi

∂βjZB(A;α, β)

ZB(A; 0, 0)

∣∣∣∣
α=β=0

Unfortunately, this normalization brings us back to the initial problem of having to average
over the inverse of a random potential; we therefore have to find another way.

2.4 The replica trick

One possible way to do this would be the replica trick : Using equation (2.9), we can write

1 = det(A)

∫
Cn

e−⟨φ,Aφ⟩ dφ

πn

and insert this into equation (2.12) (N − 1)-times:

(A−1)ij =

(
det(A)

∫
Cn

e−⟨φ,Aφ⟩ dφ

πn

)N−1

det(A)

∫
Cn

φiφj e
−⟨φ,Aφ⟩ dφ

πn

With Fubini’s theorem, we can write this as an integration over N identical replicas φ(k) of
our system:

(A−1)ij = det(A)N
∫
CnN

φ
(1)
i φ

(1)
j e−

∑N
k=1⟨φ(k),Aφ(k)⟩

N∏
k=1

dφ(k)

πn
∀N ∈ N (2.13)

The trick is to now take the formal limit N → 0:

(A−1)ij = lim
N→0

det(A)N
∫
CnN

φ
(1)
i φ

(1)
j e−

∑N
k=1⟨φ(k),Aφ(k)⟩

N∏
k=1

dφ(k)

πn
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If this limit were well-defined, we could take the limit of the first factor and thus eliminate
the determinant:

(A−1)ij = lim
N→0

∫
CnN

φ
(1)
i φ

(1)
j e−

∑N
k=1⟨φ(k),Aφ(k)⟩

N∏
k=1

dφ(k)

πn

If we were also allowed to interchange the order of disorder averaging and taking the limit,
we would have found a way to easily calculate the expectation value:

E
[
(A−1)ij

]
= lim

N→0
E

[∫
CnN

φ
(1)
i φ

(1)
j e−

∑N
k=1⟨φ(k),Aφ(k)⟩

N∏
k=1

dφ(k)

πn

]

However, since the right-hand side of equation (2.13) is only defined for N ∈ N, it is not clear
how the continuous limit N → 0 can be understood. It is also not obvious that E [ · ] and
limN→0 can be interchanged. The replica trick is therefore not mathematically rigorous and
can in fact lead to wrong results; for more detailed criticism, see [8]. A rigorous alternative
to this trick is the supersymmetry method, which we will now derive.

2.5 Fermionic integrals

In the previous section, we integrated over complex vectors φ ∈ Cn, whose components φx
could be interpreted as the values of some (scalar) field at each lattice point x ∈ Λ. Since
those components are regular commuting complex numbers, i.e.

φiφj = φjφi ,

such a field would be of bosonic nature. How could we then describe fermionic fields? To
see this, we have to introduce the concept of anti-commuting variables.

2.5.1 Grassmann numbers

An n-dimensional complex vector space V with an orthonormal basis {ei}ni=1 can be regarded
as a 2n-dimensional real vector space Ṽ with a complex structure

J : Ṽ → Ṽ , J2 = −1

and an orthonormal basis {ei, Jei}ni=1. We can use this to define the Grassmannian algebra

Gn := C⊗R
∧

Ṽ
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as the complexification of
∧
Ṽ , the 22n-dimensional exterior algebra over Ṽ . As such, it

has complex dimension 22n and 2n complex generators {ei, Jei}ni=1. Since we are ultimately
interested in describing fermions, it is useful to make a change of basis to

ψi :=
1√
2
(1⊗ ei − i⊗ Jei) ,

ψ̃i :=
1√
2
(1⊗ ei + i⊗ Jei) .

This way, we get a natural particle anti-particle structure on Gn; both ψi and ψ̃i are eigen-
vectors of J and related to each other via complex conjugation:

ψi = ψ̃i , ψ̃i = ψi

To simplify further definitions, let us label the generators of Gn more compactly by

{γi}2ni=1 :=
{
ψi, ψ̃i

}n
i=1

.

A general element of Gn can then be written as

η =
∑

j1,...,j2n∈{0,1}

αj1...j2nγ
j1
1 ∧ . . . ∧ γj2n2n with αj1...j2n ∈ C , (2.14)

where ∧ denotes the exterior product, i.e. the multiplication operation on Gn. A more
detailed characterization of Gn and its structure can be found in Folland’s book [9]; for our
basic introduction, however, it is sufficient to know that the generators of Gn anti-commute,

γi ∧ γj = −γj ∧ γi , (2.15)

making them an obvious choice for representing fermionic fields. In particular, this means
that their square always vanishes:

γ2i := γi ∧ γi = 0

As a consequence, any analytic function of these so-called Grassmann variables is a finite
linear combination of all 22n basis elements of Gn, given that we interpret the powers in the
series representation of such a function as exterior products:

ηk := η∧k =
k
∧
i=1
η , η ∈ Gn

For our purposes, it is also convenient to define both differentiation and integration on this
algebra as linear functionals mapping Gn to C. Without having to deal with any kind of
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limit, we can define an algebraic derivative ∂γi by

∂γi1 := 0 ,

∂γiγj := δij

and extend this linearly via the generalized Leibniz rule

∂γi(η1 ∧ η2) := (∂γiη1) ∧ η2 + (−1)deg(η1)η1 ∧ (∂γiη2) (2.16)

to higher-degree elements as defined in equation (2.14). We also define integration to be the
same as differentiation: ∫

· dγi := ∂γi (2.17)

Changing the notation back from (γi, γi+1) to (ψi, ψ̃i), we define:∫
Gn

· dψ dψ̃ :=

∫
Gn

· dψ1 ∧ dψ̃1 ∧ . . . ∧ dψn ∧ dψ̃n

= ∂ψ̃n
∂ψn . . . ∂ψ̃1

∂ψ1

This can be interpreted as the integration over a fermionic field ψ = (ψ1, . . . , ψn) and its
corresponding antiparticle field ψ̃ = (ψ̃1, . . . , ψ̃n) and we find, for example, that∫

Gn

1 dψ dψ̃ = 0 and (2.18)∫
Gn

ψ1 ∧ ψ̃1 ∧ . . . ∧ ψn ∧ ψ̃n dψ dψ̃ = 1 . (2.19)

There also exists a fermionic analog for Fubini’s theorem, which can be easily shown with
definitions (2.17) and (2.16):∫

Gn

F (γ1, . . . , γl) ∧G(γl+1, . . . , γ2n) dγ1 . . . dγ2n

= (−1)(2n−l−1)deg(∂γl ...∂γ1F (γ1,...,γl))

(∫
Gl/2

F (γ1, . . . , γl) dγ1 . . . dγl

)
·
(∫

Gn−l/2

G(γl+1, . . . , γ2n) dγl+1 . . . dγ2n

)
for functions F : Gl/2 → Gn and G : Gn−l/2 → Gn. We can also generalize Fubini’s theorem
to integrals over both bosonic and fermionic variables: For a function f : X → Gn mapping
some measure space X with measure µ to the Grassmannian algebra Gn, the integral∫

x∈X

(∫
Gn

f(x) dψ dψ̃

)
dµ(x)
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has a clear interpretation, since∫
Gn

f(x) dψ dψ̃ ∈ C ∀x ∈ X .

On the other hand, we may expand any such f in a basis {ei}2
2n

i=1 of Gn ∼= C22n :

f(x) =
22n∑
i=1

fi(x)ei

with coordinate maps fi : X → C. Viewing Gn as a Banach space, we can interpret

∫
x∈X

f(x) dµ(x) =
22n∑
i=1

(∫
x∈X

fi(x) dµ(x)

)
ei ∈ Gn

as a Bochner integral. The integrals on the right-hand side of this equation are then obviously
well-defined. We can thus conclude that∫

Gn

(∫
x∈X

f(x) dµ(x)

)
dψ dψ̃ =

∫
x∈X

(∫
Gn

f(x) dψ dψ̃

)
dµ(x)

as long as f is Bochner-integrable.

2.5.2 Fermionic Gaussians

We are now interested in the fermionic equivalent of equation (2.9):

IF(A) :=

∫
Gn

e−⟨ψ,Aψ⟩ dψ dψ̃

After defining the bilinear form

⟨ψ,Aψ⟩ :=
n∑

i,j=1

Aij ψ̃i ∧ ψj ,

we can expand the Gaussian up to n-th order (all higher orders vanish because of the anti-
commutativity (2.15)):

e−⟨ψ,Aψ⟩ =
n∑
k=0

1

k!

(
n∑

i,j=1

Aij ψ̃i ∧ ψj

)∧k
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Integrating over ψ and ψ̃, all terms of order smaller than n in the Gaussian also vanish (cf.
equation (2.18)) and the integral simplifies to

IF(A) =

∫
Gn

1

n!

(
n∑

i,j=1

Aij ψ̃i ∧ ψj

)∧n

dψ dψ̃

=

∫
Gn

(−1)n

n!

n∑
i1,j1,...,in,jn=1

Ai1j1 . . . Ainjn ψ̃i1 ∧ ψj1 . . . ψ̃in ∧ ψjn dψ dψ̃

Commuting all ψ̃ik ∧ ψjk to −ψjk ∧ ψ̃ik and summing over all permutations of ik, we get an
additional factor of ((−1)n n!):

IF(A) =

∫
Gn

n∑
j1,...,jn=1

A1j1 . . . Anjn ψ1 ∧ ψ̃j1 ∧ . . . ∧ ψn ∧ ψ̃jn dψ dψ̃

We then permute the Grassmann variables into the “right” order, giving each term in the
sum an additional sign:

IF(A) =

∫
Gn

(
n∑

j1,...,jn=1

sgn(σj)A1j1 . . . Anjn

)
ψ1 ∧ ψ̃1 . . . ψn ∧ ψ̃n dψ dψ̃

= det(A)

∫
Gn

ψ1 ∧ ψ̃1 ∧ . . . ∧ ψn ∧ ψ̃n dψ dψ̃

Using equation (2.19), we then finally arrive at our fermionic Gaussian integral:∫
Gn

e−⟨ψ,Aψ⟩ dψ dψ̃ = det(A) (2.20)

Comparing this result to equation (2.9), we can see that we again obtain the determinant of
A, but this time in the numerator! Analogous to the bosonic case (2.10), one can then show
that for any η ∈ Gn, ∫

Gn

e−⟨ψ,Aψ⟩+⟨η,ψ⟩+⟨ψ,η⟩ dψ dψ̃ = det(A) e⟨η,A−1η⟩ . (2.21)

We have thus found the fermionic partition function of A with source η:

ZF(A; η) :=

∫
Gn

e−⟨ψ,Aψ⟩+2Re[⟨η,ψ⟩] dψ dψ̃
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After differentiating both sides of equation (2.21) by η̃i and ηj and evaluating the result at
η = 0, we find the fermionic equivalent to equation (2.12):∫

Gn

ψi ∧ ψ̃j e−⟨ψ,Aψ⟩ dψ dψ̃ = det(A) (A−1)ij (2.22)

To get rid of the determinant factor, we could normalize this expression by inserting equation
(2.20): (

A−1
)
ij
=

∫
Gn ψi ∧ ψ̃j e−⟨ψ,Aψ⟩ dψ dψ̃∫

Gn e−⟨ψ,Aψ⟩ dψ dψ̃
=
∂η̃i∂ηjZF(A; η)

ZF(A; 0)

∣∣∣∣
η=0

Since this once again brings us back to our inital problem of having to average over the
denominator, we have to find a smarter way to eliminate the determinant, for example by
integrating over both bosonic and fermionic Gaussians. Combining either equations (2.12)
and (2.20) or (2.9) and (2.22), we get

(
A−1

)
ij
=

(∫
Gn

e−⟨ψ,Aψ⟩ dψ dψ̃

)(
1

πn

∫
Cn

φiφj e
−⟨φ,Aφ⟩ dφ

)
=

(
1

πn

∫
Cn

e−⟨φ,Aφ⟩ dφ

)(∫
Gn

ψi ∧ ψ̃j e−⟨ψ,Aψ⟩ dψ dψ̃

)
.

With Fubini’s theorem for mixed integrals, this can be written as

(
A−1

)
ij
=

1

πn

∫
Cn

∫
Gn

φiφj e
−⟨ψ,Aψ⟩−⟨φ,Aφ⟩ dψ dψ̃ dφ

=
1

πn

∫
Cn

∫
Gn

ψi ∧ ψ̃j e−⟨ψ,Aψ⟩−⟨φ,Aφ⟩ dψ dψ̃ dφ .

(2.23)

We have thus found a way to overcome our “denominator problem”; to simplify further
calculations, however, we have to introduce another new concept.

2.6 Superlinear algebra

Looking at equation (2.23), one can immediately see that it would be very convenient to
somehow combine the two fields φ and ψ into a single new field. Indeed, one can define a
so-called supervector

Φ = φ⊕ ψ ∈ Cn ⊕ Gn

with both bosonic and fermionic components. This is a formal object. Since such supervectors
are elements of a highly non-trivial space, we should first examine how concepts from regular
linear algebra can be translated to these superspaces.
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2.6.1 Linear algebra with anti-commuting scalars

This section follows Chapter 2 of Efetov’s book [1]; we will therefore momentarily switch to
his notation, which differs slightly from our previous conventions. Most importantly, Efetov
defines complex conjugation in such a way that

(ψ) = −ψ ,

while in our convention,
(ψ) = ψ̃ = ψ .

Given supervectors of the form

Φ =

(
φ

ψ

)
,

a general supermatrix F acting on such vectors can be written in the following block form:

F =

(
a σ

ρ b

)
Here, a and b are “regular” matrices mapping bosons to bosons and fermions to fermions,
while σ and ρ map fermions to bosons and vice versa. It follows, then, that a and b must
have commuting components, whereas σ and ρ must have anti-commuting components. We
define the supertranspose of such a matrix by

FT :=

(
at −ρt
σt bt

)
with · t referring to regular transposition (At)ij = Aji. This way, it is ensured that

(F1F2)
T = FT

2 F
T
1 .

We should note that in general, (FT)T ̸= F ; however, defining Hermitian conjugation of
supermatrices by

F † := FT ,

one can easily see that
(F1F2)

† = F †
2F

†
1 ,

(F †)† = F .

Taking into account the anticommutativity of the fermionic components of Φ, we define a
generalized supertrace

str(F ) := tr(a)− tr(b)
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that inherits all important properties of the regular trace, e.g. cyclicity:

str(F1 . . . Fn−1Fn) = str(FnF1 . . . Fn−1)

Similarly, we define a superdeterminant

sdet(F ) := det
(
a− σb−1ρ

)
det
(
b−1
)
,

which again inherits all properties from its regular variant, e.g. multiplicativity:

sdet(F1F2) = sdet(F1) sdet(F2)

We then also maintain the following useful identity:

log(sdet(F )) = str(log(F ))

Finally, defining the Hermitian conjugate of supervectors by

Φ† = Φt :=
(
φ, ψ

)
,

one can also define their scalar product

⟨
Φ1,Φ2

⟩
:= Φ1†Φ2 =

2n∑
i=1

Φ1
iΦ

2
i =

n∑
i=1

(
φ1
iφ

2
i + ψ̃1

i ∧ ψ2
i

)
and bilinear forms

⟨
Φ1, FΦ2

⟩
:= Φ1†FΦ2 =

2n∑
i,j=1

Φ1
iFijΦ

2
j

=
n∑

i,j=1

(
φ1
i aijφ

2
j + φ1

iσij ∧ ψ2
j + ψ̃1

i ∧ ρijφ2
j + ψ̃1

i ∧ bijψ2
j

)
in the usual manner. These few definitions suffice for our calculations; a more detailed
introduction to superlinear algebra can be found in [1].

2.6.2 Gaussian superintegrals

Let us now return to equation (2.23) and our previous notation. Interpreting A as a super-
matrix A⊕ A, we can condense the two bilinear forms into one:

⟨Φ, AΦ⟩ = ⟨φ,Aφ⟩+ ⟨ψ,Aψ⟩
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We are also free to define the integration measure on our superspace as

dΦ :=
dφ dψ dψ̃

πn

and can thus write our inversion formula in the compact form

(
A−1

)
ij
=

∫
Φα
i Φ

α
j e

−⟨Φ,AΦ⟩ dΦ ,

where the index α ∈ {1, 2} refers to either the bosonic or fermionic part of Φ and is completely
arbitrary (cf. equation (2.23)). Note that there is no implied summation over α. One could
then interpret this integral as a field average over a Gaussian distribution determined by the
supermatrix A, suggesting the shorthand notation

⟨ · ⟩A :=

∫
· e−⟨Φ,AΦ⟩ dΦ

such that we can compactly write

⟨1⟩A = 1 ,⟨
Φα
i Φ

α
j

⟩
A
= (A−1)ij . (2.24)

2.7 Taking the disorder average

After introducing these concepts, we can now return to our initial problem of calculating the
conductivity. Equipped with the supersymmetric inversion formula (2.24), we can express
the electronic Green’s functions as

GΛ(x, y;E ± iη) =
(
[HΛ − (E ± iη)1]−1)

xy

= ±i
(
[η1± i(HΛ − E1)]−1

)
xy

= ±i
⟨
Φα
xΦ

α
y

⟩
η1±i(HΛ−E1)

.

Note that it’s necessary to factor out ±i to ensure convergence of the integral; since the
regulator η is by definition a positive number, this always works. Inserting this back into the
expectation value in the Kubo formula (2.5), we find:

E
[
|GΛ(x, 0;E + iη)|2

]
= E

[
GΛ(x, 0;E + iη) GΛ(x, 0;E + iη)

]
= E [GΛ(0, x;E − iη) GΛ(x, 0;E + iη)]

= E
[⟨
Φα

0Φ
α
x

⟩
η1−i(HΛ−E1)

⟨
Φα
xΦ

α
0

⟩
η1+i(HΛ−E1)

] (2.25)
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With the superintegral version of Fubini’s theorem, we can then combine these two integrals
into one: ⟨

Φα
0Φ

α
x

⟩
η1−i(HΛ−E1)

⟨
Φα
xΦ

α
0

⟩
η1+i(HΛ−E1)

=:
⟨
Φα

0Φ
α
x

⟩
F−

⟨
Φα
xΦ

α
0

⟩
F+

=

(∫
Φα−

0 Φα−
x e−⟨Φ−,F−Φ−⟩ dΦ−

)(∫
Φα+
x Φα+

0 e−⟨Φ+,F+Φ+⟩ dΦ+

)
=

∫
Φα−

0 Φα−
x Φα+

x Φα+
0 e−⟨Φ−,F−Φ−⟩−⟨Φ+,F+Φ+⟩ dΦ− dΦ+

=

∫
Ψα−

0 Ψα−
x Ψα+

x Ψα+
0 e−⟨Ψ,FΨ⟩ dΨ =

⟨
Ψα−

0 Ψα−
x Ψα+

x Ψα+
0

⟩
F
,

where we defined a new supervector

Ψ := Φ− ⊕ Φ+

and a new supermatrix

F := F− ⊕ F+ := [η1− i(HΛ − E1)]⊕ [η1+ i(HΛ − E1)]

such that we can express the modulus square of the Green’s function as a single superfield
average. Introducing the supermatrix

Λ := σ3 ⊗ 1 =

(
1 0

0 −1

)
(which should not to be confused with the lattice Λ) we can compactly write

F = η1− iΛ⊗ (HΛ − E1) .

Going back to the impurity average (2.25), one can show that the expectation value and the
superintegration

∫
dΨ can be swapped:

E
[
|GΛ(x, 0;E + iη)|2

]
= E

[⟨
Ψα−

0 Ψα−
x Ψα+

x Ψα+
0

⟩
F

]
= E

[∫
Ψα−

0 Ψα−
x Ψα+

x Ψα+
0 e−⟨Ψ,FΨ⟩ dΨ

]
=

∫
E
[
Ψα−

0 Ψα−
x Ψα+

x Ψα+
0 e−⟨Ψ,FΨ⟩

]
dΨ

and since the superfield components are non-random, we can move them out of the expecta-
tion value:

E
[
|GΛ(x, 0;E + iη)|2

]
=

∫
Ψα−

0 Ψα−
x Ψα+

x Ψα+
0 E

[
e−⟨Ψ,FΨ⟩] dΨ .
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We are thus left with the impurity average over the Gaussian; writing out the Hamiltonian
(2.6), we find:

E
[
e−⟨Ψ,FΨ⟩] = E

[
e−⟨Ψ,[η1−iΛ⊗(HΛ−E1)]Ψ⟩]

= E
[
e−⟨Ψ,[η1−iΛ⊗(TΛ−E1)]Ψ⟩ ei⟨Ψ,(Λ⊗VΛ)Ψ⟩]

The randomness of the Hamiltonian is contained entirely within the potential term VΛ; it can
therefore be shown that we can also move the non-random Gaussian out of the expectation
value:

E
[
e−⟨Ψ,FΨ⟩] = e−⟨Ψ,[η1−iΛ⊗(TΛ−E1)]Ψ⟩ E

[
ei⟨Ψ,(Λ⊗VΛ)Ψ⟩]

Using the fact that the potential is diagonal in position basis (cf. equation (2.6)) and the
potential values {v(x)}x∈Λ are independently distributed across the lattice sites, we can write

E
[
ei⟨Ψ,(Λ⊗VΛ)Ψ⟩] = E

[
ei

∑
x∈Λ v(x)⟨Ψx,ΛΨx⟩

]
=
∏
x∈Λ

E
[
eiv(x)⟨Ψx,ΛΨx⟩

]
=:
∏
x∈Λ

hx (⟨Ψx,ΛΨx⟩) , (2.26)

where hx denotes the characteristic function

hx(t) :=

∫
v∈R

eivt dµ(v) ≡ E
[
eiv(x)t

]
∀x

of the distribution µ according to which the potential values {v(x)}x∈Λ are distributed. As-
suming for simplicity that µ is a Gaussian distribution, we find

hx(t) =

∫
v∈R

eivt

(
e
− 1

2σ2
x
v2

√
2πσx

dv

)

=

∫
v∈R

e−
σ2
x
2
t2

(
e
− 1

2σ2
x
(v−iσ2

xt)
2

√
2πσx

dv

)
= e−

σ2
x
2
t2
∫
v∈R

dµ(v − iσ2
xt) = e−

σ2
x
2
t2

and our expectation value (2.26) can be written as

E
[
ei⟨Ψ,(Λ⊗VΛ)Ψ⟩] =∏

x∈Λ

e−
σ2
x
2
⟨Ψx,ΛΨx⟩2

= e−
∑

x∈Λ
σ2
x
2
⟨Ψx,ΛΨx⟩2 .

Since the potential values are also identically distributed, σx = σ ∀x and we get

E
[
ei⟨Ψ,(Λ⊗VΛ)Ψ⟩] = e−

σ2

2

∑
x∈Λ⟨Ψx,ΛΨx⟩2

= e−
σ2

2
⟨Ψ,ΛΨ⟩2 .
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Finally, we can insert this back into the Kubo formula (2.5):

σij(E) = lim
η→0+

η2

π

∑
x∈Zd

xixj lim
Λ→Zd

E
[
|GΛ(x, 0;E + iη)|2

]
= lim

η→0+

η2

π

∑
x∈Zd

xixj lim
Λ→Zd

∫
Ψα−

0 Ψα−
x Ψα+

x Ψα+
0 e−FΛ[Ψ] dΨ ,

where we defined an “effective action”

FΛ[Ψ] := − log
(
E
[
e−⟨Ψ,FΨ⟩])

= ⟨Ψ, [η1− iΛ⊗ (TΛ − E1)] Ψ⟩+ σ2

2
⟨Ψ,ΛΨ⟩2 ,

(2.27)

going back to the notion of path integrals. We were thus able to perform the disorder
averaging at the cost of introducing a ϕ4-type self-interaction of our superfield Ψ. To make
efficient calculations in the presence of this term, we will have to introduce the concept of
non-linear sigma models, which will be the focus of chapter ??.

2.8 From the lattice to the continuum

This last section is devoted to making the transition from the lattice to the continuum, where
our superfields become continuous functions of spacetime, matrices become linear operators
and integrals over Ψ become functional integrals:

(Ψx)x∈Λ → Ψ(r)

(Hxy)x,y∈Λ → Ĥ∫
dΨ →

∫
DΨ

Our Gaussian integrals thus change into

⟨ · ⟩F =

∫
· e−⟨Ψ,FΨ⟩ dΨ →

∫
· e−

∫
dxΨ†F̂Ψ DΨ . (2.28)

We will also adopt the notation of Efetov and introduce a conjugate field

Ψ := Ψ†Λ ,

which should not be confused with complex conjugate of Ψ. We note that the product

ΨΨ = Ψ†ΛΨ = Ψ−†Ψ− −Ψ+†Ψ+
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is not positive definite. Modelling the impurities by a white noise potential, our effective
action for the DC conductivity then has the following form:

FDC[Ψ] =

∫
dx

{
ηΨ†Ψ− iΨ

(
p̂2

2m
− E

)
Ψ+

σ2

2

(
ΨΨ
)2}

As we can see, this expression is a direct analog to the lattice action (2.27). To make the
physics more interesting and establish a connection to Efetov, we want to generalize this
action for the AC conductivity. As we have seen many times before, this means we have to
introduce an additional frequency dependence to the advanced Green’s function:

G(x, y;E − iη) G(x, y;E + iη) → G(x, y;E + ω − iη) G(x, y;E + iη)

We can account for this by adding a projector

P− =

(
1 0

0 0

)
=

1

2
(1+ Λ)

onto the space of the advanced superfield Ψ− to our superoperator F̂ in equation (2.28):

F̂DC =

(
η − i(Ĥ − E) 0

0 η + i(Ĥ − E)

)
= η − iΛ⊗ (Ĥ − E)

→ F̂AC =

(
η − i(Ĥ − E + ω) 0

0 η + i(Ĥ − E

)
= η − i

[
Λ⊗ (Ĥ − E) +

ω

2
(1+ Λ)

]
The effective action for the AC conductivity thus becomes

FAC[Ψ] =

∫
dx

{
ηΨ†Ψ− iΨ

(
p̂2

2m
− E +

ω

2
(1+ Λ)

)
Ψ+

σ2

2

(
ΨΨ
)2}

.

2.9 Conclusion

Introducing various new concepts like path integrals, Grassmann numbers and supervectors,
we were able to express the conductivity of a system as a functional integral over a weighted
Gaussian. In contrast to the diagrammatic approach from previous chapters, this allowed us
to non-perturbatively calculate the disorder average of σ, albeit at the cost of introducing a
ϕ4-type interaction to our theory, again forcing us to use approximations. To deal with this
interaction efficiently, one can use non-linear sigma models, which will be introduced in the
next chapter.
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A Non Linear Sigma
Model from Conductivity

Chapter 3
Jeremy Mann 1

3.1 A Supersymmetric Field Theory from Conductivity

The aim of this report is to describe the conductivity of disordered metals. If electron-electron
interactions are neglected, the one-particle Hamiltonian for the electrons is given by :

Ĥ = Ĥ0 + u(r̂), (3.1)

where Ĥ0 is the Bloch Hamiltonian of the electrons in a potential with lattice periodicity, and
u(r̂) is a random potential generated by (non-magnetic) disorder/impurities in the metal.

To simplify calculations, we will use the following model :

1. in the absence of disorder, Ĥ0 = ϵ(p̂) describes a gas of non-interacting Fermionic
quasiparticles. At low temperatures, contributions to macroscopic quantities come
primarily from quasi-particles at the Fermi sea ϵ(p) = ϵF .

2. In the continuum limit, ϵ(p) ≡ p2

2m
is the free (quasi-)particle Hamiltonian, with mo-

mentum operator p̂ = −iℏ∇.

3. The disorder potential is an operator-valued random variable following a "white noise"
distribution :

E [u(r)] = 0 , E [u(r)u(r′)] =
δ(r− r′)

2πντ
. (3.2)

This model can be applied to the Fermi liquid theory of metals, where quasi-particles at the
Fermi surface are described by the above dispersion with an effective mass m∗ (see [1]).

Knowledge of the following physical quantities will be necessary in order to compute the
impurity-averaged conductivity :

1supervised by Jacob Shapiro
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• the free density of states ν := dn
dϵ
(ϵF ) at the Fermi surface and the mass m characterizes

the quasi-particle dispersion at low temperature in the Fermi Liquid picture.

• The mean free time τ and the mean free path l = vF τ provide average time and length
scales over which a conduction electron propagates freely in the metal before scattering
with an impurity, as reflected in (3.2).

From the Kubo formula, conductivity is proportional to the impurity averaged product of
advanced and retarded Green’s functions [2, Eq (2.5)], which can be re-expressed using the
supersymmetry method as a Gaussian integral over supervector fields Ψ :

E
[
GA
ϵ−ω(r, 0)G

R
ϵ (0, r)

]
=

∫
DΨE

[
e−F̃ω [Ψ;u(r)]

]
Ψ1,α(r)(Ψ†)1,α(0)Ψ2,β(0)(Ψ†)2,β(r),(3.3)

F̃ω[Ψ;u] =

∫
dr Ψ̄(r)

{
Λ
(
η − i

ω

2

)
+ i
(
ϵ− ω

2
− Ĥ0 − u(r)

)}
Ψ(r),(3.4)

(3.5)

where Ψ̄ ≡ Ψ†Λ and Λ = σAR
z ⊗ 1FB. The AR and FB subscripts denote matrices on

advanced/retarded space (Ψ+,Ψ−) and Fermion/Boson space (ϕ, χ) respectively.

This allows us to explicitly obtain the impurity-averaged potential contribution E
[
e−i

∫
dru(r)Ψ̄Ψ

]
=

e−
1

4πντ

∫
dr (Ψ̄Ψ)2 . We then obtain an effective action for the supervector field Ψ :

E
[
e−F̃ω [Ψ;u]

]
= e−Fω [Ψ], (3.6)

Fω[Ψ] =

∫
dr

{
ηΨ†Ψ− iΨ̄

(
Ĥω +

ω

2
Λ
)
Ψ+

1

4πντ
(Ψ̄Ψ)2

}
, (3.7)

where Hω := Ĥ0 − ϵ+ ω
2
. Note that the positive parameter η → 0+ is the regulator initially

used to displace the real poles of the advanced and retarded Green’s functions to the upper
and lower complex plane respectively, thus imposing that the electrons propagate forward
in time. Similarly, in the action (3.7), η can also be seen as a "regulator" that ensures the
convergence of the path integral (since Ψ†Ψ ≥ 0) and correlation functions such as (3.3).
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3.2 Analysis of the Effective Action

3.2.1 Decomposition of the Action

At this stage, it is helpful to decompose the effective action into three parts :

Fω[Ψ] = Ffree[Ψ; ϵ− ω+/2] + Fint[Ψ] + ω+Fext[ψ],

Ffree[Ψ;E] = −i
∫

dr Ψ̄
(
Ĥ0 − E

)
Ψ,

Fint[Ψ] =
i

4πντ

∫
dr (Ψ̄Ψ)2,

Fext[Ψ] = − i

2

∫
dr Ψ̄ΛΨ,

where :

1. the "free" action Ffree[Ψ;E] = −i
∫
dr Ψ̄

(
Ĥ0 − E

)
Ψ is pure imaginary, thus only

changing the phase of the partition weight e−F . Ffree is stationary for plane waves of
energy E, i.e.

δFfree[Ψ;E]/δΨ̄ = 0 ⇐⇒ Ĥ0Ψ = EΨ. (3.8)

In this case, E = ϵ− ω/2.

2. The quartic self-interaction Fint[Ψ] = 1
4πντ

∫
dr (Ψ̄Ψ)2 obtained from averaging the

phase contributions of the random potential is now a real positive functional, and adds
an exponential decay to the partition weight in the path integral. Largest contributions
to the path integral will now be those that minimize Fint :

Fint[Ψ] = min
Ψ
Fint[Ψ] = 0 ⇐⇒ Ψ̄Ψ = 0 ⇐⇒ |Ψ−| = |Ψ+| (3.9)

3. The "external field" term ω+Fext[Ψ] = −iω
2

∫
dr Ψ̄ΛΨ is linear in the AC frequency

ω and the regulator η, combined into the complex variable ω+ ≡ ω + iη. In the limit
η → 0+, ωFext[Ψ] is pure imaginary, and its stationary points correspond to supervectors
"aligned" with the "external field" ωΛ :

δFext[Ψ]/δΨ̄ = 0 ⇐⇒ ωΛΨ = ±ωΨ ⇐⇒ Ψ+ = 0 OR Ψ− = 0 (3.10)
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Since Ĥ0 = p̂2/2m is a scalar in retarded/advanced and Fermion/Boson space, one expects
a large degeneracy in saddle point solutions of the DC action Fω=0[Ψ]. However, in the AC
case ω > 0, much of the degeneracy in supervector components is lifted by the "external
field" matrix Λ.

3.2.2 Symmetry Group of the DC Action

Given an arbitrary saddle point solution ΨT ∈ MΨ, any other saddle point Ψ′
T = VΨT can

be obtained as the image of ΨT by a (supermatrix) symmetry transformation :

V ∈ GΨ ⇐⇒ F0[VΨ] = F0[Ψ] , ∀Ψ. (3.11)

An arbitrary supermatrix transformation is given by :

Ψ → VΨ

Ψ̄ → Ψ̄V̄ , V̄ = ΛV †Λ

F0[Ψ] → F0[VΨ] =

∫
dr

{
−iΨ̄

(
Ĥ0 − E

)
V̄ VΨ+

1

4πντ
(Ψ̄V̄ VΨ)2

}
Fext[Ψ] → Fext[VΨ] = − i

2

∫
dr Ψ̄V̄ ΛVΨ

Therefore, V leaves the DC action F0 invariant if it conserves the sesquilinear product Ψ̄Ψ,
i.e. :

V ∈ G⇐= V̄ V = ΛV †ΛV = 1. (3.12)

On the other hand, ωΛ is "rotated" under V by its adjoint action ωΛ → V −1 (ωΛ)V , hence
the name "external field" in analogy to SO(3) rotations of external magnetic fields in spin
systems. Although we are ultimately interested in the DC limit, the inclusion of the external
field term gives us an explicit solution to the saddle point solution (see Sec. 3.2.3) on which
to apply the symmetry group transformations in the DC limit.

In addition to supermatrix transformations of the form (3.12), the action (3.7) is also in-
variant under time reversal symmetry T (with or without external field term). This discrete
symmetry is defined by its action on the (quasi-)electron momentum operator :
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T : Ĥ(p̂, r̂) → Ĥ(−p̂, r̂) = Ĥ(p̂T, r̂) = ĤT(p̂, r̂) (3.13)

Where the relation p̂T = −p̂ can be obtained using integration by parts. Equivalently, T
can be re-expressed as a supervector transformation :

T : Ψ → Ψ∗, (3.14)

Supermatrix transformations in GΨ must therefore preserve time reversal symmetry in ad-
dition to (3.12). This condition can be materialized by requiring the external field (as an
operator) to remain time reversal invariant after being "rotated" : (V̄ ΛV )T = V̄ ΛV .

Alternatively, one can rewrite the 4-component complex supervector as an 8-component real
supervector in "time reversal space", that is :

Ψ ↔ ΨTR ≡ 1√
2

(
Ψ

T Ψ

)
=

(
Ψ

Ψ∗

)
. (3.15)

In this case, invariance under time reversal can be rewritten as a reality condition in TR
space :

Ψ∗ ↔ Ψ∗TR ≡ C0Ψ
TR, (3.16)

where C0 is a real-valued 8x8 matrix defined by :

C0

(
ϕ±

ϕ∗±

)
≡
(
ϕ∗±

ϕ±

)
, C0

(
χ±

χ∗±

)
≡
(
χ∗±

−χ±

)
, (3.17)

i.e. C0 =
(
JTR ⊕ σTR

x

)
⊗ 1AR, where J = iσy =

(
0 1

−1 0

)
is the symplectic form on the TR

space of Grassmann variables. One can then rewrite supermatrices V invariant under time
reversal as real-valued 8x8 supermatrices with the reality condition :

V † ↔ (V TR)† ≡ C0(V
TR)TCT

0 (3.18)

The symmetry group G is then given by real 8x8 supermatrices that conserve the bilinear
form C := C0Λ = (JTR ⊕ σTR

x )⊗ σAR
z :
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V TR ∈ GΨ ⇐⇒ V TRC(V TR)T = C (3.19)

In any case, the adjoint (...)† and (...) operations have the same algebraic properties in 4-
dimensional "complex" and 8-dimensional "real" supervector space. As such, the distinction
between Ψ and ΨTR will only be made explicit when the dealing with the domain on which
saddle points and their symmetry group are defined. For a more rigorous description of GΨ

as a Lie supergroup, see [3].

3.2.3 Explicit Saddle Points : Mean Field Approximation

The AC Saddle point

Now that the supermatrix group G moving between saddle points is well defined, we only
need to know one explicit saddle point ΨT in order to determine a whole orbit {VΨT}V ∈GΨ

of
other saddle points. Given the similarity of (3.7) with ϕ4-theories describing spin systems, it
make sense to try out the mean field ansatz in this situation as well. This consists of assuming
that the quartic self-interaction Fint averages to a static (proportional to Λ) external field
interaction generated by the mean field solutions, i.e.

∫
dr

{
−iω

+

2
Ψ̄ΛΨ +

1

4πντ
(Ψ̄Ψ)2

}
−→ −iωMF

2

∫
dr Ψ̄MFΛΨMF . (3.20)

Since the self-interaction is non-negative, the mean field contribution should be a non-negative
imaginary term I{ωMF} ≥ 0

After defining the projector field QΨ := 2
πν
ΨΨ̄ :=

(
ΨIΨ̄J

)
I,J=(F/B,±)

, the interaction term
can be rewritten as :

Fint[Ψ] = Fint[QΨ] :=
πν

16τ

∫
dr trQ2

Ψ, (3.21)

where the supertrace operator "tr " is defined by trAQΨ := Ψ̄AΨ for any supermatrix-valued
operator A (See Sec. 3.3 for a more general definition). In this form, the ansatz (3.20) is
equivalent to a first order expansion of Fint[QΨ] around its mean field average ⟨QΨ⟩ :
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Fint[⟨QΨ⟩+ δQΨ] = Fint[⟨QΨ⟩] + tr

∫
dr δQΨ

δFω
δQΨ

[⟨QΨ⟩] +O(δQ2
Ψ)

= Fint[⟨QΨ⟩] +
πν

8τ
tr

∫
dr δQΨ⟨QΨ⟩+O(δQ2

Ψ),

with an added constraint that ⟨QΨ⟩ be of the same form as the static external field term ωΛ

:

Ψ̄

(
ω+Λ +

i

τ
⟨QΨ⟩

)
Ψ ≡ Ψ̄ (ωMFΛ)Ψ ⇐⇒ ⟨QΨ⟩ ≡ −iτ(ωMF − ω+)Λ (3.22)

Since Fω[⟨QΨ⟩] ∝ tr1, tr Λ = 0, we obtain the mean field action as suggested by (3.20) :

FMF [Ψ] := −iπν
2

∫
dr Ψ̄

(
Hω +

1

2
ωMFΛ

)
Ψ. (3.23)

Now, for this ansatz to be consistent, the mean field average ⟨QΨ⟩ = −iτ(ωMF −ω)Λ around
which the action was expanded must correspond to the 2-point function 2

πν
⟨ΨΨ̄⟩FMF [Ψ] aver-

aged with respect to the mean field path integral with action (3.23). Since FMF is quadratic,
2-point functions are given by the inverse of the operator Ĥω +

ωMF

2
Λ. This provides us with

a self-consistency equation, often called the mean field equation, that determines the value
of the mean-field ωMF :

⟨QΨ⟩(r) =
i

πν
⟨r|
(
Ĥω +

ω+

2
Λ +

i

τ
⟨QΨ⟩

)
|r⟩ = i

πν
⟨r|
(
Ĥω +

ωMF

2
Λ
)
|r⟩ . (3.24)

With the free Hamiltonian Ĥω = p̂2

2m
− ϵ + ω

2
being diagonal in momentum space and Λ

diagonal in supervector space, we can rewrite (3.24) in terms of separate p-integrals for each
diagonal entry of Λ :

⟨QΨ⟩IJ(r) = ⟨QΨ⟩IJ(0) = δIJ
i

πν

∫
ddp

(2π)d

(
ξ(p) +

ω+

2
+ ΛII

ωMF

2

)−1

, (3.25)

where ξ(p̂) ≡ p̂2

2m
− ϵ. In Fermi liquid theory, only quasi-particles with momenta p near the

Fermi surface ϵ(p) = ϵF contribute to macroscopic quantities, so we can make the approxi-
mation ddp

(2π)d
= dξ ν(ξ) ≃ νdξ . We therefore obtain the equation :
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⟨QΨ⟩IJ = δIJ
i

π

∫
R
dξ

1

ξ + ΛIIωMF/2
. (3.26)

Assuming ωMF ∈ C − R is non-real, the integrand in (3.26) has a simple pole which is in
the upper complex plane for ΛIII{ωMF} > 0 and the lower complex plane ΛIII{ωMF} > 0.
By deforming the contour in upper and lower complex plane respectively, we can apply the
residue theorem to obtain :

⟨QΨ⟩IJ = δIJsgn (ΛIII{ωMF}) = ±ΛIJ (3.27)

Since ⟨QΨ⟩ ≡ −iτ(ωMF − ω+)Λ, (3.27) implies ωMF ≡ ω+ ± iτ−1. Of course, the partition
sum e−FMF from (3.23) can only converge if I{ωMF} > 0, which reduces the mean field
solution to :

⟨ΨMF (r)Ψ̄MF (r)⟩F [Ψ] =
πν

2
(ω+ + iτ−1)Λ. (3.28)

There is still a large degeneracy of supervectors ΨMF satisfying (3.28), the most obvious being
related to one another by an arbitrary phase transformation ΨMF → eiθΨMF. However, it is
not necessary to explicitly determine the family of mean-field supervectors satisfying (3.28)
to compute physical quantities : since FMF is quadratic in Ψ, all 2n-point functions are given

by products n Green’s functions gMF (r, r
′) = ⟨r|

(
Ĥω+ + ωMF

2
Λ
)−1

|r′⟩ using Wick’s theorem.
In particular, for the four-point functions needed to compute conductivity in (3.3) :

⟨ΨI(r)Ψ̄J(0)ΨK(0)Ψ̄L(r)⟩FMF[Ψ] = kJKg
IL
MF (r, r)g

KJ
MF (0, 0) + gIJMF (r, 0)g

KL
MF (0, r), (3.29)

where k = 1AR ⊗ σFB
z = (−)F/B gives a plus/minus sign after permutation of Boson-

ic/Fermionic fields.

In conclusion, the mean field scheme reduces the self-interaction contribution in (3.23) to a
quadratic form FMF

int [Ψ] = πν
4τ

∫
drΨ†Ψ, assuming negligeable fluctuations of ΨΨ̄ around its

average value (3.28). In particular, this term has the same form as the regularization ηΨ†Ψ

in (3.7), which consists in giving a lifetime η−1 → ∞ to the particles. This approximation
is therefore equivalent to a renormalization ϵ(p) → ϵ(p)− iτ−1 of the energy spectrum that
gives a constant lifetime τ to the particles, namely the Drude-Boltzmann approximation
previously obtained in the context of perturbation theory using the diagrammatic approach.
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Mean Field Saddle Points in the DC Limit

In the absence of external field ω = 0, there is no compelling reason to impose that the mean
field generated by the self-interaction be in the same direction as the static field, ⟨QΨ⟩ ∝ Λ.
We can thus loosen the constraint (3.22) in the first order expansion of (3.21) to obtain the
DC mean field ansatz :

FMF[Ψ] = −iπν
2

∫
dr Ψ̄

(
Hω+ +

i

2τ
⟨QΨ⟩

)
Ψ, (3.30)

with ⟨QΨ⟩(r) ≡ const. Since ⟨QΨ⟩ → V ⟨QΨ⟩V̄ is covariant under G for Ψ → VΨ, the mean
field action (3.30) and the mean field equation (3.24) are invariant under G. This implies
that solutions to the DC mean field equation (3.24) are obtained by "rotating" the AC mean
field Λ by a supermatrix V ∈ GΨ :

⟨QΨ⟩ = V̄ ΛV. (3.31)

In particular, the set of mean field saddle points for ⟨QΨ⟩, MΨ :=
{
⟨QΨ⟩ = V ΛV̄

}
V ∈GΨ

contains the saddle point manifold M = {V ΛV̄ }V ∈G ⊂ MΨ, G ⊂ GΨ (see Sec. ??). In
Sec. 3.3.3, we will show that arbitrary saddle points can be expressed as M-valued fields
Q(r) ∈ M fluctuating between mean field saddle points on M.

3.3 Supermatrix Action from F [Ψ]

The mean field approximation of F [Ψ] suggests that a saddle point analysis at the level
of a mean field-type variable Q ∼ ΨΨ̄ can eliminate redundancies and provide explicit
parametrizations of the saddle points that dominate the low energy physics in the DC limit.
This "variable change" F [Ψ] → F [Q] can be achieved without any approximation of the form
(3.20) using the Hubbard-Stratonovich transformation.

3.3.1 Hubbard-Stratonovich Transformation

The Hubbard-Stratonovich (HS) transformation is a general method used to rewrite an in-
teraction term (in this case (Ψ̄Ψ)2) as an external field term (in this case Ψ̄QΨ), with an
external field Q(r) that is now an extra dynamical variable whose values must be summed
over in the path integral.
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As an illustration, we will start with a toy model ϕ4-theory, obtained by reducing the SUSY
action (3.7) to only one Bosonic component, i.e. Ψ → ϕ ∈ R. In this case, the action (with
external field ω ∈ R) is given by :

Fω[ϕ] =

∫
dr

{
−iϕ

(
p̂2

2m
+
ω

2

)
ϕ+ λϕ4

}
(3.32)

The HS transformation then consists in inserting the gaussian integral N−1 :=
∫
Dh e−m2

∫
drh2

in the path integral for ϕ :

e−λ
∫
drϕ4 =

∫
Dh e−

∫
dr (m2h2+λϕ4)∫

Dh e−m2
∫
drh2

(3.33)

Although h is real-valued, the integration can be shifted into the complex plane by R →
R+ i

√
λ
m
ϕ2 without changing the value of the gaussian integral. The ϕ4-term thus cancels out

in favor of an external field term −i2m
√
λϕhϕ, which allows to rewrite the path integral as :

∫
Dϕ e−Fω [ϕ] = N

∫
Dϕ

∫
Dh e−Fω+2m

√
λh[ϕ], (3.34)

where N−1 =
∫
Dh e−m2

∫
drh2 is the normalization factor introduced in (3.33).

In conclusino, the HS procedure transforms a quartic interaction term λϕ(r)4 into an external
field interaction ω(r)ϕ(r)2, where the external field is is a dynamical variable : ω → ω(r) =

ω + 2m
√
λh(r).

The procedure above generalizes in a straightforward way to Grassmannian fields, for instance
by reducing (3.7) to one Fermionic component Ψ → χ ∈ G, yielding an action :

Fω[χ] =

∫
dr

{
−iχ∗

(
p̂2

2m
+
ω

2

)
χ+ λ(χ∗χ)2

}
(3.35)

As before, we can introduce the identity 1 = N
∫
Dϕ e−m2

∫
drh2 in the path integral and shift

the contour by R → R+ i
√
λ
m
χ∗χ, ending in (3.34) for the Fermionic path integral

∫
DχDχ∗ .

Going back to the supervector case, we now have a quartic term mixing advanced/retarded
and Fermionic/Bosonic fields : (Ψ̄Ψ)2 = (ϕ+∗ϕ+ + χ+∗χ+ − ϕ−∗ϕ− − χ−∗χ−)

2. In this case,
two extra subtleties must be taken into account in the HS procedure Ψ̄Ψ → Ψ̄QΨ :



713.3. SUPERMATRIX ACTION FROM F [Ψ]
713.3. SUPERMATRIX ACTION FROM F [Ψ]
713.3. SUPERMATRIX ACTION FROM F [Ψ]

(a) the interaction term now mixes Bosonic and Fermionic fields with quartic terms of the
form ϕ∗ϕχ∗χ. Separating these terms requires Fermionic HS fields Q(B,±)(F,±) ∈ G.

(b) Instead of performing a separate HS transformation on each separate quartic term in
(Ψ̄Ψ)2, one must ensure that the resulting external field term Ψ̄QΨ remains invariant
under the symmetry group of the initial DC action F0[Ψ]. Therefore, unlike the static
external field ωΛ, the dynamical external field Q must "rotate" with the supervectors
to preserve the symmetry group GΨ :

Ψ → VΨ

Q → V QV̄

Ψ̄QΨ → Ψ̄QΨ.

In addition, the supermatrix Q should obey a reality condition 2 in order to preserve time-
reversal invariance of the action :

Ψ∗QΨ∗ = Ψ̄
(
T QT −1

)
Ψ = Ψ̄QΨ ⇒ T QT −1 = Q̄ = Q (3.36)

In general, (a) implies thatQ should be a supermatrix with diagonal Bosonic entriesQFF , QBB ∈
M2(C) and off-diagonal Fermionic entries QFB, QBF ∈ M2(G). Moreover, in order to satisfy
(b), it makes the most sense to apply the HS-procedure at the level of the G-invariant
sesquilinear product Ψ̄Ψ, instead of separate terms (ΨB/F )†ΨB/F .

In order to achieve this, we first decompose the self-interaction in momentum space :

∫
dr (Ψ̄Ψ)2 =

∑
p1+p2+p3+p4=0

Ψ̄p1Ψp2Ψ̄p3Ψp4 , (3.37)

where Ψp := F [Ψ](p) =
∫
dr eip·rΨ(r) is the Fourier transform of Ψ, such that Ψ̄p ≡

F [Ψ̄](p) = F [Ψ](−p) = Ψ−p.

The constrained sum over the four momenta can be rewritten as a sum over three momenta
(p1,p2,q) describing the averaged impurity scattering processes (p1,p2) → (p1 ±q,p2 ∓q).
Since the mean free path l defines the average distance along which an electron propagates
freely between two collisions, we can neglect scattering events at lengths |q|−1 ≡ q−1 ≫ l

that are very unlikely to occur. In this limit, the interaction term can be reexpressed as :
2Recall that the condition (3.17) implies (QTR)† = C0Q

TRCT
0 as QTR is a supermatrix on TR space.
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∫
dr (Ψ̄Ψ)2 ≃

∑
q≪l−1

{∑
p1

(
Ψ̄p1Ψ−p1+q

)∑
p2

(
Ψ̄p2Ψ−p2−q

)
+ (3.38)

∑
p1,p2

Ψ̄p1Ψp2

(
Ψ̄−p2−qΨ−p1+q + Ψ̄−p1+qΨ−p2−q

)}
(3.39)

It is important to note that without the bound on q, the three terms above would be equal
to one another after suitable redefinitions of the sum over q.

The first term (3.38) is "separable" in the sense that it can be written as the (Fourier
transform of a) square a∗qaq of a scalar aq ≡

∑
p Ψ̄pΨ−p+q = a∗−q in q-space. We can

then perform a HS-transformation using a real scalar E with momentum space components
Eq = E∗

−q :

e−
1

4πντ

∑
q a

∗
qaq =

∫
DE e−

∑
q{ πν

16τ
E∗
qEq+ i

8τ (a∗qEq+E∗
qaq)}∫

DE e−
πν
16τ

∫ ∑
q E∗

qEq
. (3.40)

In real space, the scalar external field term becomes a mass term : − i
8τ

∑
q≪l−1

(
a∗qEq + c.c.

)
→

− i
4τ

∫
dr E(r)Ψ̄(r)Ψ(r), where E(r) is a slowly fluctuating field. Therefore, in the limit

ϵτ ≫ 1 ⇒ |∇E| ≪ 1, this interaction term will only contribute by a (quasi-constant)
renormalization of the energy ϵ→ ϵ+ E

4τ
∈ R without any noticeable contributions to Fermi

surface averaged observables.

On the other hand, the second and third terms (3.39) cannot be reduced to scalar interactions
in q-space, and the HS-transformation can only be achieved with a full supermatrix fieldQ(r).
It is interesting to note that these two terms are related to one another by time reversal 3, thus
suggesting their interpretation as the impurity-averaged Diffuson and Cooperon interactions.
In any case, a re-ordering of the p1,2 sums shows that these terms are equal to one another in
the SUSY formalism 4, and can be "separated" as in (3.38), but only as the supertrace of a
matrix product trĀqAq in q-space, where Aq :=

∑
p ΨpΨ̄−p+q = A−q. Since Aq transforms

like (b) under V and T , the HS transformation can be done with a supermatrix Q of the
same type as Aq, and more generally transforming like Q ∼ ΨΨ̄ under GΨ.

Naively, one would expect to obtain the same expression as (3.40) using the prescription
(aq, E , E−qaq) → (Aq, Q, trQ−qAq). While this formally provides the final result, the domain
of the supermatrix components QIJ will have to be different than that of E ∈ R in order to

3since Ψ̄∗
1Ψ

∗
2 = (Ψ̄2Ψ1)

T = Ψ̄2Ψ1, and T Ψ = Ψ∗.
4In the absence of time-reversal breaking interactions.
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ensure the convergence of the identity element 1 =
∫
DQe−

πν
16τ

tr
∑

q Q
∗
qQq inserted in the HS

transformation. This comes from the important caveat that the supertrace of a square is not
non-negative :

trQ2 = trQ2
FF − trQ2

BB (3.41)

Where QFF and QBB are 2x2 matrices in advanced/retarded space whose components are
Bosonic variables. Therefore, in order for the gaussian integral to converge, the diagonal
components of QBB must be pure imaginary :

trQ2 > 0 ⇒ trQ2
BB < 0 ⇒ QBB =

(
ib++ −b+−

b∗+− ib−−

)
, (3.42)

where b±± ∈ R such that trQ2
BB = −b2++ − b2−− − 2|b+−|2 < 0. On the other hand, the

Fermionic matrix QFF = Q†
FF can be an arbitrary hermitian matrix, such that trQ2

FF =

λ2F,+ + λ2F,− > 0, where λF,± ∈ R are the real eigenvalues of QFF . Now that the domain of Q
is established (in accordance with condition (a)), the Hubbard-Stratonovich transformation
for (3.39) gives :

e−tr 1
4πντ

∑
q A−qAq =

∫
DQe−tr

∑
q{ πν

16τ
Q−qQq+

i
8τ

(A−qQq+Q−qAq)}. (3.43)

Bearing in mind that
∑

q≪l−1 restricts the external field to slowly variying modes Qq, we can
rewrite (3.43) in real space as :

e−
1

4πντ

∑
q A−qAq =

∫
slowmodes

DQe−tr
∫
dr{ πν

16τ
Q2+ i

4τ
Ψ̄QΨ}, (3.44)

where the restriction to slow variations of Q(r) in the path integral will be implicitly as-
sumed for the remainder of the report. Note that in supersymmetric case, N = 1, and the
normalization is unchanged by the HS transformation.

3.3.2 Integration of Supervector Fields and Wick’s Theorem

Owing to the HS transformation, the effective action is now quadratic in Ψ with the cost of
adding a new dynamic supermatrix field Q to the path integral :
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⟨...⟩F [Ψ] =

∫
DΨ e−F [Ψ](...) =

∫
DQ

∫
DΨ e−F [Ψ;Q](...) =: ⟨...⟩F [Ψ;Q], (3.45)

where the new effective action F [Ψ;Q] is given by :

Fω[Ψ;Q] = −1

2
tr

∫
dr
(
Ψ̄gω[Q]

−1Ψ+
πν

4τ
Q2
)

(3.46)

gω[Q]
−1 := i

(
Ĥω+ +

ω+

2
Λ +

i

2τ
Q(r̂)

)
(3.47)

The SUSY approach started by showing the proportionality between conductivity σ(ω) and
certain linear combinations of four-point functions of Ψ of the form CIJKL⟨ΨI(r)Ψ̄J(r)ΨK(0)Ψ̄L(0)⟩F [Q].
Since Fω[Ψ;Q] ∝ Ψ̄gω[Q]

−1Ψ, two-point functions in Ψ can be rewritten as Q-averages of
Green’s functions gω[Q](r, r′), namely :

⟨ΨI(r)Ψ̄J(r′)⟩Fω [Ψ;Q] = ⟨gIJω [Q](r, r′)⟩Fω [Q], (3.48)

where Fω[Q] is the supervector-averaged action defined by :

e−Fω [Q] :=

∫
DΨ e−Fω [Ψ;Q] = e−

πν
8τ

tr
∫
drQ2

√
det gω[Q]−1. (3.49)

In (3.49), "det " is the superdeterminant, defined by detQ = detQFF/detQBB for Q =

QFF ⊕QBB in accordance with the formulae for scalar/Grassmannian gaussian integrals and
the passage from supertrace to superdeterminant by exponentiation : etr (...) ≡ det e(...). Now,
to write 4-point functions of Ψ in terms of gω[Q], we must use Wick’s theorem :

⟨ΨI(r)Ψ̄J(0)ΨK(0)Ψ̄L(r)⟩Fω [Ψ;Q] = kJK⟨gILω (r, r)gKJω (0, 0)⟩Fω [Q] + ⟨gIJω (r, 0)gKLω (0, r)⟩Fω [Q],

(3.50)

In addition, sinceQ(r̂) in g[Q] contains only the slowly varying modes q ≪ l−1, the propagator
(3.47) should decay exponentially in real space over scales of the order of the mean free path,
i.e. g[Q](r, r′) ∼ e−|r−r′|/l. This means that the product of 0 ↔ 0, r ↔ r propagators have a
much larger contribution to (3.50) than the product of 0 ↔ r propagators, such that :
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⟨ΨI(r)Ψ̄J(0)ΨK(0)Ψ̄L(r)⟩Fω [Ψ;Q] ≃ kJK⟨gILω (r, r)gKJω (0, 0)⟩Fω [Q]. (3.51)

3.3.3 Saddle Points of the Supermatrix Action

Now that all correlation functions in ΨΨ̄ have been re-expressed Q-dependent quantities
averaged over over the partition sum e−F [Q], we have translated the supervector field theory
into a supermatrix field theory.

Saddle points QT (r) of Fω[Q] are defined by the vanishing of the functional differential
δFω[QT ] := 0. Using δtrQ2 = 2trQδQ and δ lnA[Q] = trA−1[Q]δA[Q] ("tr " can be seen
here both as a supermatrix trace over I and a trace in position space over r), we obtain :

4τδFω[QT ] = tr

∫
dr (πνQT (r)− gω[QT ](r, r)) δQ(r) = 0 ⇐⇒ QT (r) =

1

πν
gω[QT ](r, r).

(3.52)

Mean Field Saddle Points

In the case where QT (r) = const, the saddle point equation (3.52) reduces to the mean
field equation (3.24) for Q ↔ ⟨QΨ⟩, with the AC solution QT = Λ and the degenerate DC
solutions QT ∈ M. However, the constraints (3.42) on the Bosonic part of Q imply that it
must have imaginary eigenvalues in the Bosonic sector, unlike ΛBB = σAR

z , which would
imply that there is no mean field (translationally invariant) solution for Q! This problem can
be solved by deforming the contour

∫
DQBB over the Bosonic sector of Q such that certain

mean field solutions Q = V ΛV̄ are well defined, albeit with an additional constraint on the
supermatrices V (for a more detailed explanation, see [4], §4.2.2 or [5]) :

V −1 = V̄ ≡ KV †K, (3.53)

where K := diag(1, 1, 1,−1) = 1FB ⊕ σFB
z is the supermatrix differing from Λ by K−− =

σFB
z ̸= −1FB. Therefore, as expected from the mean-field analysis, translationally-invariant

solutions of the saddle point equation in the DC limit are given by arbitrary elements of the
saddle point manifold, which is now explicitly as the orbit of Λ by the symmetry group G :

M = OΛ :=
{
V ΛV −1

}
V ∈G , (3.54)
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where the symmetry group G ⊂ GΨ obeys an extra constraint (c.f. (3.12)) :

G :=
{
V ∈ GΨ | V̄ ≡ KV †K

}
. (3.55)

Arbitrary DC Saddle Points

In the DC limit ω → 0, the Green’s function operator in the saddle point equation (3.52) is
given by :

g0[Q] ≡ g[Q] = i

(
ξ(p̂) +

i

2τ
Q(r̂)

)−1

. (3.56)

As mentioned previously, general DC saddle points are expected to be given by arbitrary
fluctuations on the manifold of mean field solutions, that is Q(r) = V (r)ΛV̄ (r) ∈ M, ∀r.
This can be proven in the case of small fluctuations Q(r) ≡ QMF + δQ(r). In this case, we
can make the expansion :

g[QMF + δQ] =

(
g[QMF ]

−1 +
i

τ
δQ

)−1

=

(
1+

i

τ
g[QMF ]δQ

)−1

g[QMF ]

= g[QMF ]−
i

τ
g[QMF ]δQ g[QMF ] +O(δQ2).

Since QMF automatically satisfies the saddle point equation, we can reduce (3.52) to :

δQ =
1

πντ
⟨r| g[QMF ]δQ g[QMF ] |r⟩+O(δQ2). (3.57)

We can now divide fluctuations δQ into two categories :

(T) : Transverse fluctuations or "Goldsone modes" δTQ are tangent to the saddle point
manifold. its explicit form can be obtained by expanding an infinitesimal transforma-
tion Q(r) = V (r)QMF V̄ (r), where V (r) = ev(r) = 1 + v(r) + O(v2) is continuously
related to the identity, and v ∈ g is in the Lie algebra of G. In this case the condition
V V̄ = V ΛV †Λ = 1 for V ∈ G translates to :

(1 + v)Λ(1 + v†)Λ = 1 +O(v2) ⇒ v̄ = Λv†Λ = −v, (3.58)

We can therefore parametrize δTQ in terms of v :
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Q = evQMF e
−v = QMF + [v,QMF ] +O(v2) ≡ QMF + δTQ+O(v2), (3.59)

which implies in particular :

δTQ = (v + v̄)QMF = −QMF (v + v̄),(3.60)

QMF δTQ = −Q2
MF (v + v̄) = QMF (v + v̄)QMF = −δTQQMF ⇐⇒ {QMF , δTQ} = 0.(3.61)

We can thus solve (3.57) using (3.61) :

⟨r| g[QMF ]δTQg[QMF ] |r⟩ = ⟨r| g[QMF ]g[−QMF ] |r⟩ δTQ(r). (3.62)

Using Q2
MF = Λ2 = 1, (3.62) greatly simplifies :

g[QMF ]g[−QMF ] = −
[(
ξ(p̂)− i

2τ
QMF

)(
ξ(p̂) +

i

2τ
QMF

)]−1

= −
(
ξ(p̂) + (2τ)−2

)−1
1.

(3.63)

We can then directly compute the (r, r) component of (3.63) as a momentum integral :

⟨r| g[QMF ]g[−QMF ] |r⟩ =

∫
ddp

(2π)d
1

ξ(p)2 + (τ/2)−2

≃ ν

∫
R
dξ

1

ξ2 + (2τ)−2
= πντ

With a similar analysis up to arbitrary orders O(δTQ
n), we can show that the saddle

point equation (3.52) is automatically satisfied for transverse fluctuations QT (r) :=

V (r)ΛV̄ (r) on the saddle point manifold, where V (r) is continuously related to the
identity. However, it is important to note that the perturbative saddle point equation
(at arbitrary order) neglects solutions r → Q(r) ∈ M where {Q(r)}r covers several
time the whole manifold. These modes cannot be continuously parametrized in terms
of local coordinates on M, and can play an important role in topological transport
phenomena.

(L) Longitudinal or "massive" fluctuations are defined by variations in directions per-
pendicular to the manifold in Q-space. This corresponds to variations of the eigen-
values of QMF = V ΛV −1 ∈ M, and can be parametrized by : Q(r) = V (Λ+ δΛ(r))V̄ ,
where δΛ(r) := diag(δλI(r))I=(F/B,±). The above parametrization δLQ(r) := V δΛ(r)V̄

is equivalent to imposing :
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[QMF , δLQ] = V [Λ, δΛ] V̄ = 0. (3.64)

This implies that we can rewrite (3.57) as :

⟨r| g[QMF ]δLQg[QMF ] |r⟩ = ⟨r| g[QMF ]g[+QMF ] |r⟩ δLQ(r). (3.65)

However, we have in this case g[QMF ]
2 = V

(
ξ(p̂) + i

2τ
Λ
)−2

V̄ , which leads to a vanish-
ing momentum integral :

⟨r| g[QMF ]
2
IJ |r⟩ = VIK

∫
ddp

(2π)d

(
1

ξ(p) + iΛII(2τ)−1

)2

V̄KJ

≃ ν VIK

∫
R
dξ

(
1

ξ + iΛII(2τ)−1

)2

V̄KJ = 0

Therefore, only the trivial solution δLQ = 0 satisfies the infinitesimal saddle point
equation (3.57) for longitudinal fluctuations, i.e. massive fluctuations leave the saddle
point manifold.

3.4 From the Supermatrix Action to a NLSM on the Saddle
Point Manifold

Since diagonal elements of the Green’s function correspond to saddle points according to
(3.52), we can rewrite the Q-averages (3.51) as 2-point functions of saddle points QT (r) =

V (r)ΛV̄ (r), meaning that only fluctuations on the saddle point manifold contribute to con-
ductivity :

σ(ω) ∝ E[GA
ϵ−ω(r, 0)G

R
ϵ (0, r)] ≃ CIJKL⟨QIJ

T (r)QKL
T (0)⟩F [Q]. (3.66)

Knowing this, we can reduce F [Q] to a field theory on M ∋ QT following the procedure
below :

1. find the appropriate DC limit Fω→0[Q],

2. decompose the path integral into longitudinal/transverse contributions by expanding
the action F [QMF + δTQ+ δLQ] around a mean field saddle point,
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3. and integrate out the longitudinal modes in the path integral to obtain an action
describing a non-linear sigma model (NLσM) on the saddle point manifold M.

3.4.1 Linearization of the ωΛ-contribution

As mentioned previously, the ωΛ-term, which is now in ln gω[Q]
−1 breaks the V -symmetry

similarly to a weak external field. In the DC limit ω+ → i0+, we can expand tr ln gω[Q]
−1 to

obtain once again a linear contribution :

Fω[Q] = F0[Q] +
dFω=0[Q]

dω
ω+ +O(ω2)

= F0[Q]−
iω

2πντ
tr

∫
drΛQ+O(ω2),

using d
dω
tr f(A(ω)) = trf ′(A(ω))dA

dω
. The zero-frequency action is now given by :

F0[Q] = tr

∫
dr

(
πν

8τ
Q2 − 1

2
ln g[Q]−1

)
, (3.67)

where g[Q] = i
(
ξ(p̂) + i

2τ
Λ
)−1.

3.4.2 Gaussian Expansion in F [Q]

We now consider arbitrary fluctuations Q(r) ≡ QMF + δQ(r) around a mean-field saddle
point QMF . In the limit of small fluctuations δQ ≪ 1, we can approximate F0[QMF + δQ]

by its leading order fluctuations, which corresponds to a Gaussian expansion around QMF

F0[QMF + δtQ] = F0[QMF ] + δF0[Q] +
1

2
δ2F0[Q] +O(δQ3), (3.68)

where δ2F0[Q] = tr
∫
dr
∫
dr′ δQ(r) δ2F0[QMF ]

δQ(r)δQ(r′))
δQ(r′). As in the mean-field case, we have

F0[QMF ] ∝ tr Λ, tr1 = 0 since trV AV̄ = trA. The second variation δ2F0 of (3.67) will
behave very differently depending on whether δXQ is transverse (X = T ) or longitudinal
(X = L) :

• The Gaussian expansion of the quadratic part of (3.67) is given by : δ2X
∫
drQ(r)2 =
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2
∫
dr δXQ(r)

2.

• The variation of the logarithmic part of (3.67) is given by :

δ2
∫

dr tr ln g[Q](r) =
1

2τ
δ

(∫
dr tr g[Q](r, r)δQ(r)

)
=

1

4τ 2

∫
dr

∫
dr′ tr g[Q](r, r′)δQ(r′)g[Q](r′, r)δQ(r)

and as a consequence of (3.61), (3.64) :

g[Q](r, r′)δXQ = δXQg[(−)XQ](r, r′), (3.69)

where (−)L = +1 and (−)T = −1 distinguishes the commutation properties of longitu-
dinal and transverse fluctuations with the mean field saddle point Q (see Sec. 3.3.3).

The Gaussian expansion for transverse/longitudinal modes is thus given by :

F0[QMF+δXQ] =
πν

8τ
tr

∫
dr (δXQ)

2− 1

2τ 2
tr

∫
dr

{∫
dr′ g[Q](r, r′)g[(−)XQ](r′, r)

}
δXQ(r

′)δXQ(r).

(3.70)

3.4.3 Gradient Expansion of The Quadratic Action

Since g[Q](r, r′) ∼ e|r−r′|/l falls off like the mean free path, we can spatially expand both
fluctuations δXQ(r/r′) in (3.70) :

δXQ(x± y/2) = δXQ(x)±
1

2
y ·∇δXQ(x) +O(l2), (3.71)

where r := x+ y/2 and r′ := x− y/2 is a convenient variable change such that r− r′ = y =

O(l).
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• At order O(l0) :∫
dy g0[Q](x− y/2,x+ y/2)g0[(−)XQ](x+ y/2,x− y/2)

=

∫
dr′ g0[Q](r, r

′)g0[−Q](r′, r)

= ⟨r| g[Q]g[(−)XQ] |r′⟩
= −πντδXT ,

according to (3.62) and (3.65).

This provides a term quadratic in δTQ(r) that cancels with the transverse variation of
the quadratic term πν

8τ

∫
dr tr δTQ(r)

2.

• At order O(l), we expect the integral to cancel in an isotropic material, since g[Q](r, r′) ≡
g[Q](|r− r′|) should not depend on the direction of r− r′ :

∫
dy y g[Q](x− y/2,x+ y/2)g[−Q](x+ y/2,x− y/2) ≡ 0.

• At order O(l2), isotropy now limits the form of the integral to :∫
dy yiyj f(|y|) ≡

δij
d

∫
dy y2 f(|y|). (3.72)

We can make the further approximation :∫
dy y2 f(|y|) ≃ l2

∫
dy f(|y|) = −l2πντδXT , (3.73)

with f(|y|) = g[Q](r, r′)g[(−)XQ](r′, r) ∼ e−|y|/l decays sufficiently fast for variations
in y2 to be negligeable in (3.73).

Longitudinal Fluctuations

Up to order O(l2) in the gradient expansion, the only contribution to longitudinal fluctuations
in the Gaussian approximation comes from the quadratic (mass) term in (3.67), hence the
term "massive fluctuations" :

F0[QMF + δLQ] =
πν

8τ
tr

∫
dr δLQ

2 +O(δLQ
3; l3). (3.74)
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As shown previously, we are only interested in correlation functions of supermatrices on the
saddle point manifold, so we can integrate out all fluctuations δLQ that leave the saddle point
manifold in the path integral. From (3.74), this corresponds to a supersymmetry Gaussian
integral, which therefore leaves no normalization factor to the remaining partition function :

∫
DδLQe−F0[QMF+δLQ] =

∫
DδLQe−

πν
8τ

tr
∫
dr δLQ

2

= 1. (3.75)

Transverse Fluctuations

As mentioned before, the O(l0)-term in the gradient expansion of the logarithmic term cancels
out with the transverse variation of the quadratic term in (3.67) so that transverse modes are
effectively "massless". Therefore, the only remaining term lower than order l2 is the kinetic
term :

F0[QMF + δTQ] =
πνl2

8τd
tr

∫
dr |∇δTQ(r)|2 +O(δTQ

3; l3). (3.76)

3.4.4 Non Linear Sigma Model

After integrating out the longitudinal modes in (3.75), the resulting field theory is defined
solely on the saddle point manifold QT (r) = QMF + δTQ(r) = V (r)ΛV̄ (r) ∈ M :

∫
DQe−F [Q] =

∫
DδQT e

−Fω [QMF+δQT ] =:

∫
DQT e

−Fω [QT ]. (3.77)

If we define the diffusion coefficient D0 := l2

τd
= v2F τ/d, the effective action describing the

Goldstone modes on M is given by :

Fω[QT ] =
πν

8
tr

∫
dr
{
D0(∇QT )

2 + i2ω+ΛQT

}
. (3.78)

The effective field theory (3.78) is called a (supermatrix) non linear sigma model. Note
that the non-linearity here comes only from the fact that the supermatrix field is defined
on a manifold that is not generally flat. In the DC limit, this model contains only one cou-
pling constant t−1 := πνD0/8, whose renormalization provides all the information on the
conductivity of the metallic system. This, in turn, depends crucially on the properties of the
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manifold M (or alternatively the symmetry group G) on which the NLSM is defined. The
limits of this model lie essentially in the validity of the Gaussian approximation (3.68) for
the (exact) action in (3.49). Unlike the gradient expansion of Sec. 3.4.3, there is no small
parameter that can be constructed from the physical inputs ν,τ ,l to justify the perturbative
expansion. In particular, topologically non-trivial modes can contribute to the path integral
with additional topological terms in (3.78) that evade perturbation theory, leading to topo-
logical transport phenomena such as the Integer Quantum Hall Effect. As such, the NLσM
should be used with caution beyond the perturbative Cooperon/Diffuson-dominated regime.
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