October 22, 2017

Contents

1	The Basis of the Tangent Space induced by a Chart	1
2	Properties of the Transition Matrices	2
3	The Flow Generated by a Vector Field	3
4	The Pushforward and the Pullback	3
5	The Lie Derivative	4

1 The Basis of the Tangent Space induced by a Chart

Let $\varphi: U_{\varphi} \to \mathbb{R}^n$ and $\psi: U_{\psi} \to \mathbb{R}^n$ be two charts near some $p \in \mathcal{M}$.

Then we define basis vectors of $T_p\mathcal{M}$ corresponding to these charts as $d_i^{\varphi} := [\partial_i (\cdot \circ \varphi^{-1})] \circ \varphi$. Note that this is really a vector field defined in a neighborhoud of p. In a point $q \in \mathcal{M}$ it is a tangent vector: d_i^{φ} at q is $\partial_i|_{\varphi(q)} (\cdot \circ \varphi^{-1})$. There are analogous definitions for ψ . We define the expansion coefficients of a vector field X in the basis corresponding to φ as X_i^{φ} :

$$X = X_i^{\varphi} d_i^{\varphi}$$

so that $X_i^{\varphi} \equiv X(\varphi_i)$ with $\varphi_i := \pi_i \circ \varphi$ and $\pi_i : \mathbb{R}^n \to \mathbb{R}$ is the natural projection. The transition rule (going from φ to ψ) for the expansion coefficients may be derived easily as

$$\begin{array}{rcl} X_i^{\psi} & \equiv & X\left(\psi_i\right) \\ & = & X_j^{\varphi} d_j^{\varphi}\left(\psi_i\right) \end{array}$$

so that we define

$$M_{ij}^{\psi\varphi} := d_j^{\varphi}(\psi_i)$$

and get

$$X_i^{\psi} = M_{ij}^{\psi\varphi} X_j^{\varphi}$$

Similarly, we can move the basis vectors themselves:

$$\begin{aligned} d_i^{\psi} &= d_i^{\psi}(\varphi_j) d_j^{\varphi} \\ &= M_{ji}^{\varphi\psi} d_j^{\varphi} \\ &=: N_{ij}^{\psi\varphi} d_j^{\varphi} \end{aligned}$$

We also have a natural basis for $(T_p\mathcal{M})^*$, given by the dual of d_i^{φ} . Explicitly it is given by

$$e_i^{\varphi} := \cdot (\varphi_i)$$

That is, given any tangent vector X, $e_i^{\varphi}(X) \equiv X(\varphi_i) = X_i^{\varphi}$. The expansion coefficients of a 1-form ω are given by

$$\omega_i^{\varphi} = \omega \left(d_i^{\varphi} \right)$$

so that

$$\omega = \omega_i^{\varphi} e_i^{\varphi}$$

and the transformation rule for the expansion coefficients is

$$\begin{split} \omega_i^{\psi} &\equiv \omega \left(d_i^{\psi} \right) \\ &= \omega_j^{\varphi} e_j^{\varphi} \left(d_i^{\psi} \right) \end{split}$$

But $e_j^{\varphi}\left(d_i^{\psi}\right) \equiv d_i^{\psi}\left(\varphi_j\right) = N_{ij}^{\psi\varphi}$ so that we get

$$\omega_i^{\psi} = N_{ij}^{\psi\varphi}\omega_j^{\varphi}$$

and of course the dual basis vectors transform again in the opposite way compared to the expansion coefficients:

$$\begin{array}{rcl} e_i^{\psi} & = & e_i^{\psi} \left(d_j^{\varphi} \right) e_j^{\varphi} \\ & = & d_j^{\varphi} \left(\psi_i \right) e_j^{\varphi} \\ & = & M_{ij}^{\psi\varphi} e_j^{\varphi} \end{array}$$

We find that the expansion coefficients of a general (k, l) tensor T transform as

$$T^{\psi}_{i_1\cdots i_k j_1\cdots j_l} = M^{\psi\varphi}_{i_1i'_1}\cdots M^{\psi\varphi}_{i_ki'_k}N^{\psi\varphi}_{j_1j'_1}\cdots N^{\psi\varphi}_{j_lj'_l}T^{\varphi}_{i'_1\cdots i'_kj'_1\cdots j'_l}$$

2 Properties of the Transition Matrices

1 Claim. We have $N_{ij}^{\psi\varphi}M_{ik}^{\psi\varphi} = \delta_{jk}$ and $N_{ij}^{\psi\varphi}M_{kj}^{\psi\varphi} = \delta_{ik}$.

Proof. We start by plugging in the definitions

$$N_{ij}^{\psi\varphi}M_{ik}^{\psi\varphi} \equiv d_i^{\psi}(\varphi_j) d_k^{\varphi}(\psi_i)$$

we swap out φ_j and ψ_i for e_j^{φ} and e_i^{ψ} respectively, because it is more transparent then that these are dual vectors to the *d*'s. We get

$$\begin{split} N_{ij}^{\psi\varphi}M_{ik}^{\psi\varphi} &= d_i^{\psi}\left(e_j^{\varphi}\right)d_k^{\varphi}\left(e_i^{\psi}\right) \\ &= d_j^{\varphi*}\left(d_i^{\psi}\right)d_i^{\psi*}\left(d_k^{\varphi}\right) \\ &= \left\langle d_j^{\varphi}, d_i^{\psi}\right\rangle \left\langle d_i^{\psi}, d_k^{\varphi}\right\rangle \\ &= \left\langle d_j^{\varphi}, d_i^{\psi}\otimes d_i^{\psi*}d_k^{\varphi}\right\rangle \end{split}$$

Now we use the fact that $d_i^{\psi} \otimes d_i^{\psi*} = 1$ because $\left\{ d_i^{\psi} \right\}_{i=1}^n$ is an ONB of $T_p \mathcal{M}$ for each p in the domain of that basis. Thus

$$N_{ij}^{\psi\varphi}M_{ik}^{\psi\varphi} = \langle d_j^{\varphi}, d_k^{\varphi} \rangle$$

and again using the fact that $\{d_i^{\varphi}\}_{i=1}^n$ is a basis one obtains the proper result. The other result is obtained by repeating the argument with $\varphi \leftrightarrow \psi$.

2 Corollary. We have $d_l^{\varphi}\left(N_{ij}^{\psi\varphi}\right)M_{ik}^{\psi\varphi} = -N_{ij}^{\psi\varphi}d_l^{\varphi}\left(M_{ik}^{\psi\varphi}\right)$.

Proof. Apply d_l^{φ} on the foregoing equation. Since δ_{ik} is a constant scalar function, we get zero on the left hand side (as a tangent vector working on any scalar function is zero). On the right hand side we use the Leibniz property of d_l^{φ} .

3 Claim. We have $d_k^{\varphi}\left(M_{ii'}^{\psi\varphi}\right) = d_{i'}^{\varphi}\left(M_{ik}^{\psi\varphi}\right)$.

Proof. If we expand out the definitions we will find that this boils down to the fact that $[d_i^{\varphi}, d_k^{\varphi}] = 0$, which is always true for basis tangent vectors which correspond to charts, which is what d_i^{φ} is. Indeed,

$$M_{ii', k} - M_{ik, i'} \equiv d_k^{\varphi} \left(M_{ii'} \right) - d_{i'}^{\varphi} \left(M_{ik} \right) \\ = d_k^{\varphi} \left(d_{i'}^{\varphi} \left(\psi_i \right) \right) - d_{i'}^{\varphi} \left(d_k^{\varphi} \left(\psi_i \right) \right) \\ = \left[d_k^{\varphi}, d_{i'}^{\varphi} \right] \left(\psi_i \right)$$

and $\left[d_i^{\varphi}, d_j^{\varphi}\right] = 0$ because

$$\begin{pmatrix} \left[d_i^{\varphi}, d_j^{\varphi}\right] \end{pmatrix}(f) \equiv d_i^{\varphi} d_j^{\varphi} f - (i \leftrightarrow j) \\ = \left[\partial_i \left(d_j^{\varphi} f \circ \varphi^{-1}\right)\right] \circ \varphi - (i \leftrightarrow j) \\ = \left[\partial_i \left(\left[\partial_j \left(f \circ \varphi^{-1}\right)\right] \circ \varphi \circ \varphi^{-1}\right)\right] \circ \varphi - (i \leftrightarrow j) \\ = \left[\partial_i \left(\partial_j \left(f \circ \varphi^{-1}\right)\right)\right] \circ \varphi - (i \leftrightarrow j) \\ = 0$$

as $\partial_i \partial_j = \partial_j \partial_i$.

3 The Flow Generated by a Vector Field

Let $X \in \Gamma(T\mathcal{M})$ (that is, X is a section on the tangent bundle $T\mathcal{M}$, or equivalently, X is a vector field on \mathcal{M}).

Recall that a flow η is a group morphism $\eta : \mathbb{R} \to \operatorname{Aut}(\mathcal{M})$, where $\operatorname{Aut}(\mathcal{M})$ is the group of automorphisms of \mathcal{M} considered as a smooth manifold, that is, the group of all diffeomorphisms $\mathcal{M} \to \mathcal{M}$. The flow η_X induced by a vector field X is the solution to the following differential equation

$$\begin{cases} \partial_t \left(\cdot \circ \left(\eta_X \left(t \right) \right) \left(p \right) \right) &= X \left(\left(\eta_X \left(t \right) \right) \left(p \right) \right) & \forall p \in \mathcal{M} \\ \eta_X \left(0 \right) &= \mathbb{1}_{\mathcal{M}} \end{cases}$$

Note what the first equation actually means. Once we pick a scalar function $f \in \mathcal{F}_{p}(\mathcal{M})$, the map

 $t \mapsto f \circ (\eta_X(t))(p)$

is a function $\mathbb{R} \to \mathbb{R}$ so that the equation is a first order ordinary differential equation on that map.

By the Picard-Lindelöf theorem we know that there is a unique solution for such an ODE at least in a small enough neighborhoud. Thus in principle there is not a *global* flow $\eta_X : \mathbb{R} \to \operatorname{Aut}(\mathcal{M})$ associated to X but rather only a local flow $\eta_X^{\varepsilon} : (-\varepsilon, \varepsilon) \to \operatorname{Aut}(\mathcal{M})$ for $\varepsilon > 0$ sufficiently small, near any give point $p \in \mathcal{M}$.

In class we looked at the following example which illustrates why the integration may not always be global:

4 Example. Let $\mathcal{M} := \mathbb{R}$ and a vector field (given by its components) be given by $X(p) := p^2 + 1$. Then the flow $\gamma : \mathbb{R} \to \mathbb{R}$ must satisfy

$$\gamma' = \gamma^2 + 1$$

so that $\gamma = \tan(-C)$ for some constant $C \in \mathbb{R}$. To find it we employ the boundary condition: at time 0 the flow should land at p, so that $\gamma(0) \stackrel{!}{=} p$ and thus $C = -\arctan(p)$ and $\gamma_p(t) := \tan(t + \arctan(p))$. Clearly this is not everywhere define, for example, if p = 0 the map is not define at $t \in \frac{\pi}{2}\mathbb{Z}$. Please make sure you understand how we got the description of a vector field as a derivation on scalar maps (which is how we think of it in the abstract setting of smooth manifolds) to this concrete example where it is merely a map $\mathbb{R} \to \mathbb{R}$. This goes through the identification in this example of $T_p\mathcal{M} \equiv T_p\mathbb{R} \cong \mathbb{R}$, so that a vector field $\mathcal{M} \to T_p\mathcal{M}$ is just a map $\mathbb{R} \to \mathbb{R}$.

4 The Pushforward and the Pullback

Let $\eta \in \operatorname{Aut}(\mathcal{M})$ be given. Then given any point $p \in \mathcal{M}$ we have defined a map

$$T_p\mathcal{M} \ni v \quad \mapsto \quad v\left(\cdot \circ \eta\right) \in T_{\eta(p)}\mathcal{M}$$

Indeed, If $f \in \mathcal{F}_p(\mathcal{M})$ then $f \circ \eta \in \mathcal{F}_{\eta(p)}(\mathcal{M})$ so that the tangent vector at $T_p\mathcal{M}$ "learns" how to act on scalar fields at $\eta(p)$ and is thus transformed into a tangent field at $T_{\eta(p)}\mathcal{M}$. So we have a map called *the differential*

$$\mathrm{d}\eta_p: T_p\mathcal{M} \to T_{\eta(p)}\mathcal{N}$$

given by

$$\mathrm{d}\eta_p\left(v\right) := v\left(\cdot \circ \eta\right)$$

5 Claim. For any $p \in \mathcal{M}$, $d\eta_p : T_p\mathcal{M} \to T_{\eta(p)}\mathcal{M}$ is a well-defined linear map.

If now $X \in \Gamma(T\mathcal{M})$ (that is, a vector field rather than a tangent vector) then since η is a diffeomorphism (in particular it is bijective) then we may also see how η applies on X rather than just on $X(p) \in T_p\mathcal{M}$ pointwise in $p \in \mathcal{M}$ (in fact η applied on X will define a new vector field). The definition goes as follows:

$$\eta_* : \Gamma(T\mathcal{M}) \to \Gamma(T\mathcal{M})$$

is called *the pushforward map* and is given by

$$(\eta_* (X)) (p) := d\eta_{\eta^{-1}(p)} (X (\eta^{-1} (p))) \quad \forall p \in \mathcal{M}$$

= $\mathcal{F}_p (\mathcal{M}) \ni f \mapsto (X (\eta^{-1} (p))) (f \circ \eta) \in \mathbb{R}$

Indeed, $X(\eta^{-1}(p)) \in T_{\eta^{-1}(p)}\mathcal{M}$ so that $d\eta_{\eta^{-1}(p)} : T_{\eta^{-1}(p)}\mathcal{M} \to T_p\mathcal{M}$ and so the definition makes sense and gives back a tangent vector in $T_p\mathcal{M}$, which is what we were trying to obtain.

Similarly, given a 1-form $\omega \in T^*\mathcal{M}$, for any point $p \in \mathcal{M}$ we get a dual tangent vector $\omega(p) \in T_p^*\mathcal{M}$ and so we may define a map

$$\eta^*: T^*\mathcal{M} \to T^*\mathcal{M}$$

via

$$\left(\left(\eta^{*}\left(\omega\right)\right)\left(p\right)\right)\left(X\right) := \left(\omega\left(\eta\left(p\right)\right)\right)\left(\mathrm{d}\eta_{p}\left(X\right)\right) \quad \forall X \in T_{p}\mathcal{M}, \forall p \in \mathcal{M}$$

Indeed, $d\eta_p(X) \in T_{\eta(p)}\mathcal{M}$ so that it makes sense for $\omega(\eta(p)) \in T_p^*\mathcal{M}$ to act on it, and we get thus $(\eta^*(\omega))(p) \in T_p^*\mathcal{M}$. In this sense we can define how to move general (k, l) tensor field $T \in \underline{T\mathcal{M} \otimes \cdots \otimes T\mathcal{M}} \otimes \underline{T\mathcal{M}^* \otimes \cdots \otimes T\mathcal{M}^*}$:

$$\eta_{*}(T) := T\left(\eta^{*-1}\cdot, \cdots, \eta^{*-1}\cdot, \eta_{*}\cdot, \cdots, \eta_{*}\cdot\right) \circ \eta$$

5 The Lie Derivative

Let $X \in \Gamma(\mathcal{M})$ be given. The Lie derivative of a general (k, l) tensor field $T \in \underbrace{T\mathcal{M} \otimes \cdots \otimes T\mathcal{M}}_{k} \otimes \underbrace{T\mathcal{M}^* \otimes \cdots \otimes T\mathcal{M}^*}_{l}$ is defined to be again a (k, l) tensor field denoted by $\mathcal{L}_X T$ and given by the formula

$$\mathcal{L}_X T \quad := \quad \partial_t|_{t=0} \, \eta \left(t \right)^* \left(T \right)$$

where $\eta : (-\varepsilon, \varepsilon) \to \operatorname{Aut}(\mathcal{M})$ is the flow corresponding to X. 6 Claim. If $f \in \mathcal{F}(\mathcal{M})$ then $\mathcal{L}_X f = X(f)$.

Proof. We have $\eta(t)^*(f) = f \circ \eta(t)$ so that $\partial_t|_{t=0} f \circ \eta(t)$ is just the definition of X(f), since η is X's flow.

7 Claim. If $Y \in \Gamma(\mathcal{M})$ then $\mathcal{L}_X Y = [X, Y]$.

Proof. We have $(\eta(t)^*(Y))(p) = (\eta(-t)_*(Y))(p) = d\eta(-t)_{\eta(-t)^{-1}(p)} (Y(\eta(-t)^{-1}(p)))$ so that upon taking the derivative with time we should take into account the dependence on t coming from either $d\eta(-t)_{\eta(-t)^{-1}(p)}$ or $\eta(-t)^{-1}(p)$. Also note that because η is a group morphism $\eta(-t)^{-1} = \eta(t)$.

$$\begin{array}{lll} \left(\left(\mathcal{L}_{X}Y\right) (f) \right) (p) &\equiv \partial_{t} |_{t=0} \left(\eta \left(-t \right)_{*} \left(Y\right) \right) (f) \\ &= -\partial_{t} |_{t=0} \left(d\eta \left(t \right)_{\eta \left(t \right)^{-1} \left(p \right)} \left(Y \left(\eta \left(t \right)^{-1} \left(p \right) \right) \right) \right) \right) (f) \\ &= -\partial_{t} |_{t=0} Y \left(\eta \left(t \right)^{-1} \left(p \right) \right) \left(f \circ \eta \left(t \right) \right) \\ &= -\partial_{t} |_{t=0} Y \left(\eta \left(-t \right) \left(p \right) \right) \left(f \circ \eta \left(t \right) \right) \\ &\stackrel{*}{=} & -Y \left(p \right) \left(\underbrace{ \partial_{t} |_{t=0} f \circ \eta \left(t \right) }_{=X \left(f \right)} \right) - \underbrace{ \partial_{t} |_{t=0} Y \left(\eta \left(-t \right) \left(p \right) \right) \left(f \right) }_{X \left(Y \left(f \right) \right)} \\ &= - \left(Y \left(X \left(f \right) \right) + X \left(Y \left(f \right) \right) \right) \left(p \right) \\ &\equiv & \left([X, Y] \left(p \right) \right) \left(f \right) \end{array}$$

Let us elaborate one what happened at *: Essentially we have a map $\mathbb{R}^2 \to \mathbb{R}$ given by

$$(s, t) \mapsto Y(\eta(s)(p))(f \circ \eta(t))$$

and we are trying to take the derivative of the map $\mathbb{R} \to \mathbb{R}$

$$t \mapsto (-t, t) \mapsto Y(\eta(-t)(p))(f \circ \eta(t))$$

Since this last map is a composition of two maps, the chain rule must be used. However here the derivative of the first map

merely gives us either +1 or -1 and then we take the usual derivative varying only the first or second factor, so that we get:

For the second factor we have

$$\begin{aligned} \partial_t|_{t=0} Y(p) \left(f \circ \eta \left(t \right) \right) &\equiv \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left(Y\left(p \right) \left(f \circ \eta \left(\varepsilon \right) \right) - Y\left(p \right) \left(f \right) \right) \\ & \left(Y\left(p \right) \text{ is linear and continuous} \right) \end{aligned} \\ &= Y\left(p \right) \left(\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left(f \circ \eta \left(\varepsilon \right) - f \right) \right) \end{aligned} \\ &\equiv Y\left(p \right) \left(\partial_t|_{t=0} f \circ \eta \left(t \right) \right) \end{aligned}$$

For the first factor, we recognize that it is $X \equiv \partial_t|_{t=0} \cdot \circ \eta(t)$ working on the map $\mathcal{M} \ni q \mapsto Y(q)(f) \in \mathbb{R}$, which is an element of $\mathcal{F}(\mathcal{M})$ itself.

8 Claim. If $\mu \in T^*\mathcal{M}$ then $\mathcal{L}_X \mu = X(\mu(\cdot)) - \mu([X, \cdot])$

Proof. Let $w \in T\mathcal{M}$. Then $\mu(w) \in \mathcal{F}(\mathcal{M})$. So

$$\left(\mathcal{L}_X\mu\left(w\right)\right) = X\left(\mu\left(w\right)\right)$$

But one can also view $\mu(w)$ as contraction of the (1, 1) tensor $w \otimes \mu$: $\mu(w) =: \mathcal{C}(w \otimes \mu)$. It turns out that \mathcal{L}_X commutes with contraction \mathcal{C} (left as an exercise to the reader) so that

$$\mathcal{L}_{X}\mu(w) = \mathcal{L}_{X}\mathcal{C}(w \otimes \mu)$$
$$= \mathcal{C}\mathcal{L}_{X}w \otimes \mu$$

It turns out (left as an exercise to the reader) that \mathcal{L}_X obeys the Leibniz rule $(\mathcal{L}_X S \otimes T = (\mathcal{L}_X S) \otimes T + S \otimes \mathcal{L}_X T)$. Thus we find

$$\mathcal{L}_{X}\mu(w) = \mathcal{C}\left((\mathcal{L}_{X}w) \otimes \mu + w \otimes \mathcal{L}_{X}\mu\right)$$
$$= \mathcal{C}\left([X, w] \otimes \mu + w \otimes \mathcal{L}_{X}\mu\right)$$
$$\equiv \mu\left([X, w]\right) + (\mathcal{L}_{X}\mu)(w)$$

We thus find the result since $w \in T\mathcal{M}$ was arbitrary.

9 Corollary. In this way we find an inductive formula for \mathcal{L}_X working on a general (k, l) tensor field:

$$(\mathcal{L}_X T) (\mu_1, \cdots, \mu_k, v_1, \cdots, v_l) = X (T (\mu_i, v_j)) - T (\mathcal{L}_X \mu_1, \mu_2, \cdots, \mu_k, v_j) - \cdots - T (\mu_1, \mu_2, \cdots, \mathcal{L}_X \mu_k, v_j) - T (\mu_i, \mathcal{L}_X v_1, v_2, \cdots, v_l) - \cdots T (\mu_i, v_1, v_2, \cdots, \mathcal{L}_X v_l)$$

for all $\{\mu_i\}_{i=1}^k \subseteq T^*\mathcal{M} \text{ and } \{v_j\}_{j=1}^l \subseteq T\mathcal{M}.$

Proof. Proceed as before inductively, again using the fact that \mathcal{C} and \mathcal{L}_X commute. See Wald appendix C for more details. \Box

10 Claim. The expansion coefficients of $\mathcal{L}_X T$ in the chart φ (using the notation as in the beginning of this document) are given by

$$(\mathcal{L}_X T)^{\varphi}_{i_1 \cdots i_k j_1 \cdots j_l} = X^{\varphi}_r T^{\varphi}_{i_1 \cdots i_k j_1 \cdots j_l, r} - X^{\varphi}_{i_1, r} T^{\varphi}_{r \cdots i_k j_1 \cdots j_l, r} - \dots - X^{\varphi}_{i_k, r} T^{\varphi}_{i_1 \cdots r j_1 \cdots j_l, r}$$
$$+ X^{\varphi}_{r, j_1} T^{\varphi}_{i_1 \cdots i_k r \cdots j_l} + \dots + X^{\varphi}_{r, j_l} T^{\varphi}_{i_1 \cdots i_k j_1 \cdots r}$$

Proof. Use the above inductive formula together with the explicit expressions for \mathcal{L}_X on scalars, vector fields and dual vector fields. Then use the definition of the expansion coefficients given in the beginning of the document.