GR-Recitation Session of Week 2 Summary

October 22, 2017

Contents

1 The Basis of the Tangent Space induced by a Chart 1
2 Properties of the Transition Matrices 2
3 The Flow Generated by a Vector Field 3
4 The Pushforward and the Pullback 3
5 The Lie Derivative 4

1 The Basis of the Tangent Space induced by a Chart

Let $\varphi: U_{\varphi} \rightarrow \mathbb{R}^{n}$ and $\psi: U_{\psi} \rightarrow \mathbb{R}^{n}$ be two charts near some $p \in \mathcal{M}$.
Then we define basis vectors of $T_{p} \mathcal{M}$ corresponding to these charts as $d_{i}^{\varphi}:=\left[\partial_{i}\left(\cdot \circ \varphi^{-1}\right)\right] \circ \varphi$. Note that this is really a vector field defined in a neighborhoud of p. In a point $q \in \mathcal{M}$ it is a tangent vector: d_{i}^{φ} at q is $\left.\partial_{i}\right|_{\varphi(q)}\left(\cdot \circ \varphi^{-1}\right)$. There are analogous definitions for ψ. We define the expansion coefficients of a vector field X in the basis corresponding to φ as X_{i}^{φ} :

$$
X=X_{i}^{\varphi} d_{i}^{\varphi}
$$

so that $X_{i}^{\varphi} \equiv X\left(\varphi_{i}\right)$ with $\varphi_{i}:=\pi_{i} \circ \varphi$ and $\pi_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the natural projection. The transition rule (going from φ to ψ) for the expansion coefficients may be derived easily as

$$
\begin{aligned}
X_{i}^{\psi} & \equiv X\left(\psi_{i}\right) \\
& =X_{j}^{\varphi} d_{j}^{\varphi}\left(\psi_{i}\right)
\end{aligned}
$$

so that we define

$$
M_{i j}^{\psi \varphi}:=d_{j}^{\varphi}\left(\psi_{i}\right)
$$

and get

$$
X_{i}^{\psi}=M_{i j}^{\psi \varphi} X_{j}^{\varphi}
$$

Similarly, we can move the basis vectors themselves:

$$
\begin{aligned}
d_{i}^{\psi} & =d_{i}^{\psi}\left(\varphi_{j}\right) d_{j}^{\varphi} \\
& =M_{j i}^{\varphi \psi} d_{j}^{\varphi} \\
& =: N_{i j}^{\psi \varphi} d_{j}^{\varphi}
\end{aligned}
$$

We also have a natural basis for $\left(T_{p} \mathcal{M}\right)^{*}$, given by the dual of d_{i}^{φ}. Explicitly it is given by

$$
e_{i}^{\varphi}:=\cdot\left(\varphi_{i}\right)
$$

That is, given any tangent vector $X, e_{i}^{\varphi}(X) \equiv X\left(\varphi_{i}\right)=X_{i}^{\varphi}$. The expansion coefficients of a 1-form ω are given by

$$
\omega_{i}^{\varphi}=\omega\left(d_{i}^{\varphi}\right)
$$

so that

$$
\omega=\omega_{i}^{\varphi} e_{i}^{\varphi}
$$

and the transformation rule for the expansion coefficients is

$$
\begin{aligned}
\omega_{i}^{\psi} & \equiv \omega\left(d_{i}^{\psi}\right) \\
& =\omega_{j}^{\varphi} e_{j}^{\varphi}\left(d_{i}^{\psi}\right)
\end{aligned}
$$

$\operatorname{But} e_{j}^{\varphi}\left(d_{i}^{\psi}\right) \equiv d_{i}^{\psi}\left(\varphi_{j}\right)=N_{i j}^{\psi \varphi}$ so that we get

$$
\omega_{i}^{\psi}=N_{i j}^{\psi \varphi} \omega_{j}^{\varphi}
$$

and of course the dual basis vectors transform again in the opposite way compared to the expansion coefficients:

$$
\begin{aligned}
e_{i}^{\psi} & =e_{i}^{\psi}\left(d_{j}^{\varphi}\right) e_{j}^{\varphi} \\
& =d_{j}^{\varphi}\left(\psi_{i}\right) e_{j}^{\varphi} \\
& =M_{i j}^{\psi \varphi} e_{j}^{\varphi}
\end{aligned}
$$

We find that the expansion coefficients of a general (k, l) tensor T transform as

$$
T_{i_{1} \cdots i_{k} j_{1} \cdots j_{l}}^{\psi}=M_{i_{1} i_{1}^{\prime}}^{\psi \varphi} \cdots M_{i_{k} i_{k}^{\prime}}^{\psi \varphi} N_{j_{1} j_{1}^{\prime}}^{\psi \varphi} \cdots N_{j_{l} j_{l}^{\prime}}^{\psi \varphi} T_{i_{1}^{\prime} \cdots i_{k}^{\prime} j_{1}^{\prime} \cdots j_{l}^{\prime}}^{\varphi}
$$

2 Properties of the Transition Matrices

1 Claim. We have $N_{i j}^{\psi \varphi} M_{i k}^{\psi \varphi}=\delta_{j k}$ and $N_{i j}^{\psi \varphi} M_{k j}^{\psi \varphi}=\delta_{i k}$.
Proof. We start by plugging in the definitions

$$
N_{i j}^{\psi \varphi} M_{i k}^{\psi \varphi} \equiv d_{i}^{\psi}\left(\varphi_{j}\right) d_{k}^{\varphi}\left(\psi_{i}\right)
$$

we swap out φ_{j} and ψ_{i} for e_{j}^{φ} and e_{i}^{ψ} respectively, because it is more transparent then that these are dual vectors to the d 's. We get

$$
\begin{aligned}
N_{i j}^{\psi \varphi} M_{i k}^{\psi \varphi} & =d_{i}^{\psi}\left(e_{j}^{\varphi}\right) d_{k}^{\varphi}\left(e_{i}^{\psi}\right) \\
& =d_{j}^{\varphi *}\left(d_{i}^{\psi}\right) d_{i}^{\psi *}\left(d_{k}^{\varphi}\right) \\
& =\left\langle d_{j}^{\varphi}, d_{i}^{\psi}\right\rangle\left\langle d_{i}^{\psi}, d_{k}^{\varphi}\right\rangle \\
& =\left\langle d_{j}^{\varphi}, d_{i}^{\psi} \otimes d_{i}^{\psi *} d_{k}^{\varphi}\right\rangle
\end{aligned}
$$

Now we use the fact that $d_{i}^{\psi} \otimes d_{i}^{\psi *}=\mathbb{1}$ because $\left\{d_{i}^{\psi}\right\}_{i=1}^{n}$ is an ONB of $T_{p} \mathcal{M}$ for each p in the domain of that basis. Thus

$$
N_{i j}^{\psi \varphi} M_{i k}^{\psi \varphi}=\left\langle d_{j}^{\varphi}, d_{k}^{\varphi}\right\rangle
$$

and again using the fact that $\left\{d_{i}^{\varphi}\right\}_{i=1}^{n}$ is a basis one obtains the proper result. The other result is obtained by repeating the argument with $\varphi \leftrightarrow \psi$.

2 Corollary. We have $d_{l}^{\varphi}\left(N_{i j}^{\psi \varphi}\right) M_{i k}^{\psi \varphi}=-N_{i j}^{\psi \varphi} d_{l}^{\varphi}\left(M_{i k}^{\psi \varphi}\right)$.
Proof. Apply d_{l}^{φ} on the foregoing equation. Since $\delta_{i k}$ is a constant scalar function, we get zero on the left hand side (as a tangent vector working on any scalar function is zero). On the right hand side we use the Leibniz property of d_{l}^{φ}.

3 Claim. We have $d_{k}^{\varphi}\left(M_{i i^{\prime}}^{\psi \varphi}\right)=d_{i^{\prime}}^{\varphi}\left(M_{i k}^{\psi \varphi}\right)$.
Proof. If we expand out the definitions we will find that this boils down to the fact that $\left[d_{i}^{\varphi}, d_{k}^{\varphi}\right]=0$, which is always true for basis tangent vectors which correspond to charts, which is what d_{i}^{φ} is. Indeed,

$$
\begin{aligned}
M_{i i^{\prime}, k}-M_{i k, i^{\prime}} & \equiv d_{k}^{\varphi}\left(M_{i i^{\prime}}\right)-d_{i^{\prime}}^{\varphi}\left(M_{i k}\right) \\
& =d_{k}^{\varphi}\left(d_{i^{\prime}}^{\varphi}\left(\psi_{i}\right)\right)-d_{i^{\prime}}^{\varphi}\left(d_{k}^{\varphi}\left(\psi_{i}\right)\right) \\
& =\left[d_{k}^{\varphi}, d_{i^{\prime}}^{\varphi}\right]\left(\psi_{i}\right)
\end{aligned}
$$

and $\left[d_{i}^{\varphi}, d_{j}^{\varphi}\right]=0$ because

$$
\begin{aligned}
\left(\left[d_{i}^{\varphi}, d_{j}^{\varphi}\right]\right)(f) & \equiv d_{i}^{\varphi} d_{j}^{\varphi} f-(i \leftrightarrow j) \\
& =\left[\partial_{i}\left(d_{j}^{\varphi} f \circ \varphi^{-1}\right)\right] \circ \varphi-(i \leftrightarrow j) \\
& =\left[\partial_{i}\left(\left[\partial_{j}\left(f \circ \varphi^{-1}\right)\right] \circ \varphi \circ \varphi^{-1}\right)\right] \circ \varphi-(i \leftrightarrow j) \\
& =\left[\partial_{i}\left(\partial_{j}\left(f \circ \varphi^{-1}\right)\right)\right] \circ \varphi-(i \leftrightarrow j) \\
& =0
\end{aligned}
$$

as $\partial_{i} \partial_{j}=\partial_{j} \partial_{i}$.

3 The Flow Generated by a Vector Field

Let $X \in \Gamma(T \mathcal{M})$ (that is, X is a section on the tangent bundle $T \mathcal{M}$, or equivalently, X is a vector field on \mathcal{M}).
Recall that a flow η is a group morphism $\eta: \mathbb{R} \rightarrow \operatorname{Aut}(\mathcal{M})$, where $\operatorname{Aut}(\mathcal{M})$ is the group of automorphisms of \mathcal{M} considered as a smooth manifold, that is, the group of all diffeomorphisms $\mathcal{M} \rightarrow \mathcal{M}$. The flow η_{X} induced by a vector field X is the solution to the following differential equation

$$
\left\{\begin{aligned}
\partial_{t}\left(\cdot \circ\left(\eta_{X}(t)\right)(p)\right) & =X\left(\left(\eta_{X}(t)\right)(p)\right) \\
\eta_{X}(0) & =\mathbb{1}_{\mathcal{M}}
\end{aligned} \quad \forall p \in \mathcal{M}\right.
$$

Note what the first eqution actually means. Once we pick a scalar function $f \in \mathcal{F}_{p}(\mathcal{M})$, the map

$$
t \mapsto f \circ\left(\eta_{X}(t)\right)(p)
$$

is a function $\mathbb{R} \rightarrow \mathbb{R}$ so that the equation is a first order ordinary differential equation on that map.
By the Picard-Lindelöf theorem we know that there is a unique solution for such an ODE at least in a small enough neighborhoud. Thus in principle there is not a global flow $\eta_{X}: \mathbb{R} \rightarrow \operatorname{Aut}(\mathcal{M})$ associated to X but rather only a local flow $\eta_{X}^{\varepsilon}:(-\varepsilon, \varepsilon) \rightarrow \operatorname{Aut}(\mathcal{M})$ for $\varepsilon>0$ sufficiently small, near any give point $p \in \mathcal{M}$.

In class we looked at the following example which illustrates why the integration may not always be global:
4 Example. Let $\mathcal{M}:=\mathbb{R}$ and a vector field (given by its components) be given by $X(p):=p^{2}+1$. Then the flow $\gamma: \mathbb{R} \rightarrow \mathbb{R}$ must satisfy

$$
\gamma^{\prime}=\gamma^{2}+1
$$

so that $\gamma=\tan (-C)$ for some constant $C \in \mathbb{R}$. To find it we employ the boundary condition: at time 0 the flow should land at p, so that $\gamma(0) \stackrel{!}{=} p$ and thus $C=-\arctan (p)$ and $\gamma_{p}(t):=\tan (t+\arctan (p))$. Clearly this is not everywhere define, for example, if $p=0$ the map is not define at $t \in \frac{\pi}{2} \mathbb{Z}$. Please make sure you understand how we got the description of a vector field as a derivation on scalar maps (which is how we think of it in the abstract setting of smooth manifolds) to this concrete example where it is merely a map $\mathbb{R} \rightarrow \mathbb{R}$. This goes through the identification in this example of $T_{p} \mathcal{M} \equiv T_{p} \mathbb{R} \cong \mathbb{R}$, so that a vector field $\mathcal{M} \rightarrow T_{p} \mathcal{M}$ is just a map $\mathbb{R} \rightarrow \mathbb{R}$.

4 The Pushforward and the Pullback

Let $\eta \in \operatorname{Aut}(\mathcal{M})$ be given. Then given any point $p \in \mathcal{M}$ we have defined a map

$$
T_{p} \mathcal{M} \ni v \quad \mapsto \quad v(\cdot \circ \eta) \in T_{\eta(p)} \mathcal{M}
$$

Indeed, If $f \in \mathcal{F}_{p}(\mathcal{M})$ then $f \circ \eta \in \mathcal{F}_{\eta(p)}(\mathcal{M})$ so that the tangent vector at $T_{p} \mathcal{M}$ "learns" how to act on scalar fields at $\eta(p)$ and is thus transformed into a tangent field at $T_{\eta(p)} \mathcal{M}$. So we have a map called the differential

$$
\mathrm{d} \eta_{p}: T_{p} \mathcal{M} \quad \rightarrow \quad T_{\eta(p)} \mathcal{M}
$$

given by

$$
\mathrm{d} \eta_{p}(v):=v(\cdot \circ \eta)
$$

5 Claim. For any $p \in \mathcal{M}, \mathrm{~d} \eta_{p}: T_{p} \mathcal{M} \rightarrow T_{\eta(p)} \mathcal{M}$ is a well-defined linear map.
If now $X \in \Gamma(T \mathcal{M})$ (that is, a vector field rather than a tangent vector) then since η is a diffeomorphism (in particular it is bijective) then we may also see how η applies on X rather than just on $X(p) \in T_{p} \mathcal{M}$ pointwise in $p \in \mathcal{M}$ (in fact η applied on X will define a new vector field). The definition goes as follows:

$$
\eta_{*}: \Gamma(T \mathcal{M}) \rightarrow \Gamma(T \mathcal{M})
$$

is called the pushforward map and is given by

$$
\begin{aligned}
\left(\eta_{*}(X)\right)(p) & :=d \eta_{\eta^{-1}(p)}\left(X\left(\eta^{-1}(p)\right)\right) \quad \forall p \in \mathcal{M} \\
& =\mathcal{F}_{p}(\mathcal{M}) \ni f \mapsto\left(X\left(\eta^{-1}(p)\right)\right)(f \circ \eta) \in \mathbb{R}
\end{aligned}
$$

Indeed, $X\left(\eta^{-1}(p)\right) \in T_{\eta^{-1}(p)} \mathcal{M}$ so that $d \eta_{\eta^{-1}(p)}: T_{\eta^{-1}(p)} \mathcal{M} \rightarrow T_{p} \mathcal{M}$ and so the definition makes sense and gives back a tangent vector in $T_{p} \mathcal{M}$, which is what we were trying to obtain.

Similarly, given a 1 -form $\omega \in T^{*} \mathcal{M}$, for any point $p \in \mathcal{M}$ we get a dual tangent vector $\omega(p) \in T_{p}^{*} \mathcal{M}$ and so we may define a map

$$
\eta^{*}: T^{*} \mathcal{M} \quad \rightarrow \quad T^{*} \mathcal{M}
$$

via

$$
\left(\left(\eta^{*}(\omega)\right)(p)\right)(X) \quad:=\quad(\omega(\eta(p)))\left(\mathrm{d} \eta_{p}(X)\right) \quad \forall X \in T_{p} \mathcal{M}, \forall p \in \mathcal{M}
$$

Indeed, $\mathrm{d} \eta_{p}(X) \in T_{\eta(p)} \mathcal{M}$ so that it makes sense for $\omega(\eta(p)) \in T_{p}^{*} \mathcal{M}$ to act on it, and we get thus $\left(\eta^{*}(\omega)\right)(p) \in T_{p}^{*} \mathcal{M}$.
In this sense we can define how to move general (k, l) tensor field $T \in \underbrace{T \mathcal{M} \otimes \cdots \otimes T \mathcal{M}}_{k} \otimes \underbrace{T \mathcal{M}^{*} \otimes \cdots \otimes T \mathcal{M}^{*}}_{l}$:

$$
\eta_{*}(T):=T\left(\eta^{*-1} \cdot, \cdots, \eta^{*-1} \cdot, \eta_{*} \cdot, \cdots, \eta_{*} \cdot\right) \circ \eta
$$

5 The Lie Derivative

Let $X \in \Gamma(\mathcal{M})$ be given. The Lie derivative of a general (k, l) tensor field $T \in \underbrace{T \mathcal{M} \otimes \cdots \otimes T \mathcal{M}}_{k} \otimes \underbrace{T \mathcal{M}^{*} \otimes \cdots \otimes T \mathcal{M}^{*}}_{l}$ is defined to be again a (k, l) tensor field denoted by $\mathcal{L}_{X} T$ and given by the formula

$$
\mathcal{L}_{X} T:=\left.\partial_{t}\right|_{t=0} \eta(t)^{*}(T)
$$

where $\eta:(-\varepsilon, \varepsilon) \rightarrow$ Aut (\mathcal{M}) is the flow corresponding to X.
6 Claim. If $f \in \mathcal{F}(\mathcal{M})$ then $\mathcal{L}_{X} f=X(f)$.
Proof. We have $\eta(t)^{*}(f)=f \circ \eta(t)$ so that $\left.\partial_{t}\right|_{t=0} f \circ \eta(t)$ is just the definition of $X(f)$, since η is X 's flow.

7 Claim. If $Y \in \Gamma(\mathcal{M})$ then $\mathcal{L}_{X} Y=[X, Y]$.
Proof. We have $\left(\eta(t)^{*}(Y)\right)(p)=\left(\eta(-t)_{*}(Y)\right)(p)=d \eta(-t)_{\eta(-t)^{-1}(p)}\left(Y\left(\eta(-t)^{-1}(p)\right)\right)$ so that upon taking the derivative with time we should take into account the dependence on t coming from either $d \eta(-t)_{\eta(-t)^{-1}(p)}$ or $\eta(-t)^{-1}(p)$. Also note that because η is a group morphism $\eta(-t)^{-1}=\eta(t)$.

$$
\begin{aligned}
\left(\left(\mathcal{L}_{X} Y\right)(f)\right)(p) & \left.\equiv \partial_{t}\right|_{t=0}\left(\eta(-t)_{*}(Y)\right)(f) \\
& =-\left.\partial_{t}\right|_{t=0}\left(d \eta(t)_{\eta(t)^{-1}(p)}\left(Y\left(\eta(t)^{-1}(p)\right)\right)\right)(f) \\
& =-\left.\partial_{t}\right|_{t=0} Y\left(\eta(t)^{-1}(p)\right)(f \circ \eta(t)) \\
& =-\left.\partial_{t}\right|_{t=0} Y(\eta(-t)(p))(f \circ \eta(t)) \\
& \stackrel{*}{=}-Y(p)(\underbrace{\left.\partial_{t}\right|_{t=0} f \circ \eta(t)}_{=X(f)})-\underbrace{\partial_{t=0} Y(\eta(-t)(p))(f)}_{\underbrace{\left.\partial_{t}\right|_{t=0} Y(\cdot)(f) \circ \eta(-t)(p)}} \\
& =-(Y(X(f))+X(Y(f)))(p) \\
& \equiv([X, Y](p))(f)
\end{aligned}
$$

Let us elaborate one what happened at $*$: Essentially we have a map $\mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
(s, t) \mapsto Y(\eta(s)(p))(f \circ \eta(t))
$$

and we are trying to take the derivative of the map $\mathbb{R} \rightarrow \mathbb{R}$

$$
t \mapsto(-t, t) \mapsto Y(\eta(-t)(p))(f \circ \eta(t))
$$

Since this last map is a composition of two maps, the chain rule must be used. However here the derivative of the first map
merely gives us either +1 or -1 and then we take the usual derivative varying only the first or second factor, so that we get:

$$
\begin{aligned}
\left.\partial_{t}\right|_{t=0} Y(\eta(-t)(p))(f \circ \eta(t))= & -\left.\partial_{s}\right|_{s=0, t=0} Y(\eta(s)(p))(f \circ \eta(t))+\left.\partial_{t}\right|_{s=0, t=0} Y(\eta(s)(p))(f \circ \eta(t)) \\
& (\eta(0) \equiv \mathbb{1}) \\
= & -\left.\partial_{s}\right|_{s=0} Y(\eta(s)(p))(f)+\left.\partial_{t}\right|_{t=0} Y(p)(f \circ \eta(t))
\end{aligned}
$$

For the second factor we have

$$
\begin{aligned}
\left.\partial_{t}\right|_{t=0} Y(p)(f \circ \eta(t)) \equiv & \lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}(Y(p)(f \circ \eta(\varepsilon))-Y(p)(f)) \\
& (Y(p) \text { is linear and continuous }) \\
= & Y(p)\left(\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}(f \circ \eta(\varepsilon)-f)\right) \\
\equiv & Y(p)\left(\left.\partial_{t}\right|_{t=0} f \circ \eta(t)\right) \\
\equiv & Y(p)(X(f))
\end{aligned}
$$

For the first factor, we recognize that it is $\left.X \equiv \partial_{t}\right|_{t=0} \circ \circ \eta(t)$ working on the map $\mathcal{M} \ni q \mapsto Y(q)(f) \in \mathbb{R}$, which is an element of $\mathcal{F}(\mathcal{M})$ itself.

8 Claim. If $\mu \in T^{*} \mathcal{M}$ then $\mathcal{L}_{X} \mu=X(\mu(\cdot))-\mu([X, \cdot])$
Proof. Let $w \in T \mathcal{M}$. Then $\mu(w) \in \mathcal{F}(\mathcal{M})$. So

$$
\left(\mathcal{L}_{X} \mu(w)\right)=X(\mu(w))
$$

But one can also view $\mu(w)$ as contraction of the $(1,1)$ tensor $w \otimes \mu: \mu(w)=: \mathcal{C}(w \otimes \mu)$. It turns out that \mathcal{L}_{X} commutes with contraction \mathcal{C} (left as an exercise to the reader) so that

$$
\begin{aligned}
\mathcal{L}_{X} \mu(w) & =\mathcal{L}_{X} \mathcal{C}(w \otimes \mu) \\
& =\mathcal{C} \mathcal{L}_{X} w \otimes \mu
\end{aligned}
$$

It turns out (left as an exercise to the reader) that \mathcal{L}_{X} obeys the Leibniz rule $\left(\mathcal{L}_{X} S \otimes T=\left(\mathcal{L}_{X} S\right) \otimes T+S \otimes \mathcal{L}_{X} T\right)$. Thus we find

$$
\begin{aligned}
\mathcal{L}_{X} \mu(w) & =\mathcal{C}\left(\left(\mathcal{L}_{X} w\right) \otimes \mu+w \otimes \mathcal{L}_{X} \mu\right) \\
& =\mathcal{C}\left([X, w] \otimes \mu+w \otimes \mathcal{L}_{X} \mu\right) \\
& \equiv \mu([X, w])+\left(\mathcal{L}_{X} \mu\right)(w)
\end{aligned}
$$

We thus find the result since $w \in T \mathcal{M}$ was arbitrary.

9 Corollary. In this way we find an inductive formula for \mathcal{L}_{X} working on a general (k, l) tensor field:

$$
\begin{aligned}
\left(\mathcal{L}_{X} T\right)\left(\mu_{1}, \cdots, \mu_{k}, v_{1}, \cdots, v_{l}\right)= & X\left(T\left(\mu_{i}, v_{j}\right)\right)-T\left(\mathcal{L}_{X} \mu_{1}, \mu_{2}, \cdots, \mu_{k}, v_{j}\right)-\cdots-T\left(\mu_{1}, \mu_{2}, \cdots, \mathcal{L}_{X} \mu_{k}, v_{j}\right) \\
& -T\left(\mu_{i}, \mathcal{L}_{X} v_{1}, v_{2}, \cdots, v_{l}\right)-\cdots T\left(\mu_{i}, v_{1}, v_{2}, \cdots, \mathcal{L}_{X} v_{l}\right)
\end{aligned}
$$

for all $\left\{\mu_{i}\right\}_{i=1}^{k} \subseteq T^{*} \mathcal{M}$ and $\left\{v_{j}\right\}_{j=1}^{l} \subseteq T \mathcal{M}$.
Proof. Proceed as before inductively, again using the fact that \mathcal{C} and \mathcal{L}_{X} commute. See Wald appendix C for more details.

10 Claim. The expansion coefficients of $\mathcal{L}_{X} T$ in the chart φ (using the notation as in the beginning of this document) are given by

$$
\begin{aligned}
\left(\mathcal{L}_{X} T\right)_{i_{1} \cdots i_{k} j_{1} \cdots j_{l}}^{\varphi}= & X_{r}^{\varphi} T_{i_{1} \cdots i_{k} j_{1} \cdots j_{l}, r}^{\varphi}-X_{i_{1}, r}^{\varphi} T_{r \cdots i_{k} j_{1} \cdots j_{l}, r}^{\varphi}-\cdots-X_{i_{k}, r}^{\varphi} T_{i_{1} \cdots r j_{1} \cdots j_{l}, r}^{\varphi} \\
& +X_{r, j_{1}}^{\varphi} T_{i_{1} \cdots i_{k} r \cdots j_{l}}^{\varphi}+\cdots+X_{r, j_{l}}^{\varphi} T_{i_{1} \cdots i_{k} j_{1} \cdots r}^{\varphi}
\end{aligned}
$$

Proof. Use the above inductive formula together with the explicit expressions for \mathcal{L}_{X} on scalars, vector fields and dual vector fields. Then use the definition of the expansion coefficients given in the beginning of the document.

