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1 Notation

Let ¢ : U, — R"™ and v : Uy — R™ be two charts near some p € M.

Then we define basis vectors of T, M corresponding to these charts as df := [61' ( o 4,0_1)] ow. Note that this is really a vector
field defined in a neighborhoud of p. In a point ¢ € M it is a tangent vector: d! at ¢ is 8i|¢(q) ( o go_l). There are analogous
definitions for ¢. We define the expansion coefficients of a vector field X in the basis corresponding to ¢ as X/

X = XPdf

so that X = X (p;) with ¢; := m; 0 p and m; : R® — R is the natural projection. The transition rule (going from ¢ to 1) for
the expansion coeflicients may be derived easily as

X;b = X ()
= X[d7 (¢i)
so that we define
P _ P
Mijw - dj (wz)
and get
v P
X, = Mij“’X f
Similarly, we can move the basis vectors themselves:
i = df () df
_ P
SR
_. P
= Nij“"df

We also have a natural basis for (7,M)", given by the dual of df. Explicitly it is given by

el = (o)
That is, given any tangent vector X, ef (X) = X (¢;) = X. The expansion coefficients of a 1-form w are given by
of = w(df)
so that
w = wlel

and the transformation rule for the expansion coefficients is

w;p = w(df’)

But ¥ (d;b) =d’ (p;) = N;ﬁ‘p so that we get

wzp = N;é’-“’wf
and of course the dual basis vectors transform again in the opposite way compared to the expansion coefficients:
el = e (d?) ey
= dy (¥i)ef
- e
We find that the expansion coefficients of a general (k, [) tensor T transform as

T = MY% .. MY NY¢ .. NVeTY

i1 i1 indf R I A [ s R e



2 Properties of the Transition Matrices
1 Claim. We have N;ﬁ“’Mﬁf = ;5 and N;ﬁ“”M]g’j‘p = ;.
Proof. We start by plugging in the definitions
NEPMGE = d} (5) df ()

14

y and e;p respectively, because it is more transparent then that these are dual vectors to the d’s.

we swap out ¢; and 1; for e
We get

NyeMy = dy (ef) df (<))
= a7 () " (af)

= (o) (o)

= (&7, d! @ di"af)

n
Now we use the fact that df ® d;p* = 1 because { d:;/’ } is an ONB of T, M for each p in the domain of that basis. Thus

NEPMR? = (d7, df)

and again using the fact that { df }?:1 is a basis one obtains the proper result. The other result is obtained by repeating the
argument with ¢ < . O

2 Corollary. We have df (N;éf“o) Mﬁ’f = —NZéf‘odf (M;’,Df).

Proof. Apply df on the foregoing equation. Since d;; is a constant scalar function, we get zero on the left hand side (as a
tangent vector working on any scalar function is zero). On the right hand side we use the Leibniz property of df. O

3 Claim. We have df (M) = df (M),

Proof. If we expand out the definitions we will find that this boils down to the fact that [df, df] = 0, which is always true for
basis tangent vectors which correspond to charts, which is what df is. Indeed,

Mii’,k - ]\/[ik,i’ = df (]\/[ii’) - df (Mzk)

di; (df (i) = dii (di. (1)
= [dF, 7] (¥)

and [df, df] = 0 because

d2d? f — (i j)
(01 (45 0 p)] 0= (i 5 J)

= [0:([0; (foe™)] opop )] op— (i)
[0:(9; (fow™))] o= (i )

- 0

([df, 71) (£)

as 81(9_7 = 8]81 O

3 Some short hand notation to make the calculation lighter

From this point onwards, since the charts ¢ and v are fixed, we omit them from the notation. Thus ¢ is considered the “original”
chart and 1 the “new” chart. Consequently, all expansion coeflicients in the original chart ¢ will have ¢ simply dropped expansion
coefficients in the new chart ¢ will be denoted by a bar above. We also abbreviate MZéf‘o simply as M;; and the same for V.
Finally we also abbreviate df (O) = O,; for any object O (typically O is an expansion coefficient in ¢ or 1 carrying itself some
indices, but the application of d always will be noted with a comma after all other indices).



Hence the transformation law for a vector’s expansion coefficients

X, = MyX;
The transformation law for a dual vector’s expansion coefficients

= N
Transformation law for a (1, 1) tensor’s expansion coefficients

Tij = MyNjjTyy

Transformation law for a basis vector

d; = Nyjd;
In the exercise, we “define” the Lie derivative along a vector field X of the (1, 1) tensor T via its components as

(LxT);; = TijeXe — Ty Xi ko + T X, 5

To see how it transforms, we must see how its constituent parts transform:

Xij = d; (X))
= Njjdjy (Mg Xy)

So that X; ; does not transform like a (1, 1) tensor, due to the extra first term (the second term alone is how it should have
transformed had it been a (1, 1) tensor).
We have also

Tijr = i (Ts)

So that T';;, 1, does not transform like a (1, 2) tensor, due to the extra first two terms (the third term alone is how a (1, 2) tensor
should have transformed).
We check however the transformation law of (LxT),;:

(LXT)Z-J- = Tij,kyk—Tkjyi,k+TikYk,j

Regroup to terms containing derivatives of N and M and those that don’t)

We know what the answer should be:

(LxT); = MiwNjy (LxT)

il§!

= My NjjTirjr kX — My Njjr Ty Xir i + Mg Ny Ty X, g0

So we identify those terms in (LxT),; as C (for “correct”, the last two lines) and R (for “rest”, the first two lines):

)

C =

and



We want to show that
?
C = Mii/ijlTilj/’ ka — Mii/ijlTkj/Xink + Mii'ij’Ti’ka,j’ (1)

and that R = 0.
We start with the first task. In order to do that we must we must “cancel out” factors of M and N. Take for instance the
first term in C:

Nkk/Mii/ijlek//TZL'/]‘/7k/Xk// = (MZZIN]]/T‘;/lek/)(Nkklek//Xk/I)
Using 1 we find for that term

Nkkﬁ’M’i’i'ij’Mkk”Ti’j',k’Xk” =

so we get the first term on the RHS of (1) correctly. We proceed similarly using 1 twice more to find that (1) is correct.
We go on to prove that R = 0: We use 1 three more times to find:

R

for the first line, in the second term we relabel as i’ <+ k to get

— 1

But now use 3 so the first line of our most recent expression for R is zero.
We go on to the next line. We relabel in the second term j’ <+ k' and k <+ k" to get

Now we deal with the term Ny Njp My . In fact we can rewrite it as

Nk”j'Njk:'Mk”k:, k!

so that we really get zero. In the last expression, used again the fact that M;; , = My, ; (in 3) as proven above already, as well
as 2. The proof is finally complete.



