Q1) The Jacobi Identity, (Wald Ch. 2 Ex, 3)
Let $A, B, C$ be vector pills on the maniple $M$.
That means they are sections in the tangent bundle $T \mathcal{M}$. Let $f \in \mathcal{F}(\mu)$. for any $p \in \mu, A(p) \in T p \mu$, so A $p): \mathcal{F}(\mu) \rightarrow \mathbb{R}$. Hence $(A(p))(p) \in \mathbb{R}$. Thus $p \longmapsto(A(p))(\rho)$ is again in $\mathcal{F}(\mu)$.
Thus it makes sense to compose vector fields logether, as $A \circ B=A(p \mapsto(B(p))(\cdot)) \quad[A$ act on the map where]
However note that A०B is not a tangent file since it doesnit have The Leimilz property:

$$
\begin{aligned}
& \begin{aligned}
(A B)(f g) & \equiv A(p \mapsto(B(p))(\rho g))^{\prime} \\
& =A(p \mapsto(B(p))(p) g(p)+f(p)(B(p))(g))^{2} \\
& =A(p \text { Leibite }
\end{aligned} \\
& \begin{array}{l}
=A((\rho \mapsto(B(p))(\rho) g(\rho))+(p \mapsto p(\rho)(B(\rho))(g))) A^{A} \text { line } \\
=A(\rho \mapsto(B(p))(\rho)(\rho))+A(p \mapsto P(\rho)(B(\rho))(g)))
\end{array} \\
& =A(p \mapsto(B(p))(p) g(p))+A(p \mapsto f(p)(B(p))(g)) \\
& \equiv A((B(\cdot))(\rho) g)+A(f(B(\rho))(g)) \\
& =((A B)(\cdot))(p) g(\cdot)+(B(\cdot))(f)(A(\cdot))(g)+(A(\cdot))(p)(B(\cdot))(g) \\
& +f()((A B)(\cdot))(g)
\end{aligned}
$$

However the commutator, $[n, B] \equiv A B-B A$, does:

$$
\begin{aligned}
{[A, B](\rho g)=} & (A B)(p) g+B(\rho) A(g)+A(p)+(g)+f(A B)(g) \\
& -(B A)(p) g-A(p) B(g)-B(p) A(g)-f(B A)(g) \\
& =([A, B])(p) g+f([A, B])(g))
\end{aligned}
$$

[2](i) Clio $[A,[B, C]]+($ cyclic permutations $)=0$
Pf: $[A,[B, C]] \equiv[A, B C-C B]=A B C-A C B-B C A+C B A$

$$
\begin{aligned}
& [A,[B, C]]+(\text { gcc }, \operatorname{prcm}) \equiv[A,[B, C]]+[B,[C, A]]+[C,[A, B]]] \\
& =A B C-A C B-B C A+C B A \\
& +B C A-B A C-C A B+A C B \\
& +C A B-C B A-A B C+B A C=0
\end{aligned}
$$

(ii) Let $\left\{Y_{i}\right\}_{i=1}^{n} \subseteq \Gamma(\mu)$ be n-vector fields sit. Vperl, $\left\{Y_{i}(p)\right\}_{i=1}^{n}$ is a basis of $T p \mathcal{M}$.
Note $\left[Y_{i}, Y_{j}\right] \in \Pi\left(\mu_{l}\right)$, so we may expand it at each point $p \in \mu$ using the Basis $\left\{Y_{i}(p)\right\}_{i=1}^{n}$ :
$\left[Y_{i}, Y_{j}\right]=: G_{k}^{i j} Y_{k}$ (this eq-n defines the expansion coefficients ( $(\vec{k})$ ).

$$
\begin{aligned}
C_{10}^{0} C_{k}^{i j} & =-C_{k}^{j i} \\
P_{R}: C_{k}^{i j} & \equiv\left[Y_{i}, Y_{j}\right]_{k}=\left(-\left[I_{j}, I_{i}\right]\right) k \stackrel{\text { Composer map }}{=}-\left[I_{j}, Y_{i}\right]_{k} \\
& \equiv-C_{k}^{j i}
\end{aligned}
$$

Note that since everything is a function of the point perl, $C_{R}^{i j}$ are also $p$-dependent and so they are maps $H \rightarrow R$. Chin $C_{k}^{i j} C+C \cdot C:+C:=Z^{\prime} \cdot C \cdot+Y \cdot C:+Y^{\top} \cdot C^{\prime}:$
Pp:- By the Jacobi identity we have for any (i,jk) in $\{1, \ldots, n\}$ :

$$
\left[Y_{i},\left[Y_{i}, Y_{h}\right]\right]+\left(\text { cache }_{c} h_{i c} \text { perm. }\right)=0
$$

$$
\begin{aligned}
& \Leftrightarrow \underbrace{\left[I_{i}, C_{l}^{j k} Y_{l}\right]}+\text { caa }_{a} \text { perm of }(i, j, k)=0 \\
& Y_{i}\left(G_{e}^{j k} Y_{e}\right)-G_{l}^{j k} Y_{l} Y_{i} \\
& I_{i}\left(C_{l}^{j k}\right) I_{l}+C_{l}^{j k} I_{i} I_{e} \\
& \text { So }\left[Y_{i}, C_{e}^{i^{k}} Y_{e}\right]=Y_{i}\left(Q_{e}^{i k}\right) Y_{e}+C_{l e}^{c^{\prime k}}\left[Y_{i} Y_{e}\right] \\
& \begin{array}{l}
\left.=I_{i}\left(C_{e}^{j k}\right) Y_{e}+C_{i}^{i j e} C_{m}^{i l} Y_{m}\right)_{m \rightarrow l}^{\text {relabel }} \\
=Y\left(a^{j k}\right) Y_{e}+c_{i k}^{j i k} c^{i m} Y_{l}{ }_{0}
\end{array} \\
& =Y_{i}\left(G_{e}^{j k}\right) Y_{e}+c_{i m}^{i^{j k}} C_{e}^{i m} Y_{e} \\
& =\left(Y_{i}\left(C_{l}^{i k}\right)+C_{m}^{i k} C_{l}^{i m}\right) Y_{l}
\end{aligned}
$$

Since $\{I e(p)\}_{e}$ forms a basis, we find

$$
\left.I_{i}\left(C_{e}^{j k}\right)+C_{i}^{j k} C_{e}^{i m}+\operatorname{gchic} \text { perm. of }(i), k\right)=0 \forall l
$$

(Q2) About the Lie Derrieative 2
Let If be a smooth maniple of dim $n \in \mathbb{N} \geqslant 1$. Let X $\mathcal{F}^{\prime}(\mathcal{H})$ (a vector field; a section on $T M$ ).
 with $X$ as pillowsis

Note That the L.ATS. of the first equation is a tangent veebrer at $((\varphi(x)(t))(\varphi)$ indeed. Also note that we

## HW2 Q2

September 29, 2017

## 1 Notation

Let $\varphi: U_{\varphi} \rightarrow \mathbb{R}^{n}$ and $\psi: U_{\psi} \rightarrow \mathbb{R}^{n}$ be two charts near some $p \in \mathcal{M}$.
Then we define basis vectors of $T_{p} \mathcal{M}$ corresponding to these charts as $d_{i}^{\varphi}:=\left[\partial_{i}\left(\cdot \circ \varphi^{-1}\right)\right] \circ \varphi$. Note that this is really a vector field defined in a neighborhoud of $p$. In a point $q \in \mathcal{M}$ it is a tangent vector: $d_{i}^{\varphi}$ at $q$ is $\left.\partial_{i}\right|_{\varphi(q)}\left(\cdot \circ \varphi^{-1}\right)$. There are analogous definitions for $\psi$. We define the expansion coefficients of a vector field $X$ in the basis corresponding to $\varphi$ as $X_{i}^{\varphi}$ :

$$
X=X_{i}^{\varphi} d_{i}^{\varphi}
$$

so that $X_{i}^{\varphi} \equiv X\left(\varphi_{i}\right)$ with $\varphi_{i}:=\pi_{i} \circ \varphi$ and $\pi_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the natural projection. The transition rule (going from $\varphi$ to $\psi$ ) for the expansion coefficients may be derived easily as

$$
\begin{aligned}
X_{i}^{\psi} & \equiv X\left(d_{i}^{\psi}\right) \\
& =X_{j}^{\varphi} d_{j}^{\varphi}\left(\psi_{i}\right)
\end{aligned}
$$

so that we define

$$
M_{i j}^{\psi \varphi}:=d_{j}^{\varphi}\left(\psi_{i}\right)
$$

and get

$$
X_{i}^{\psi}=M_{i j}^{\psi \varphi} X_{j}^{\varphi}
$$

Similarly, we can move the basis vectors themselves:

$$
\begin{aligned}
d_{i}^{\psi} & =d_{i}^{\psi}\left(\varphi_{j}\right) d_{j}^{\varphi} \\
& =M_{j i}^{\varphi \psi} d_{j}^{\varphi} \\
& =: N_{i j}^{\psi \varphi} d_{j}^{\varphi}
\end{aligned}
$$

We also have a natural basis for $\left(T_{p} \mathcal{M}\right)^{*}$, given by the dual of $d_{i}^{\varphi}$. Explicitly it is given by

$$
e_{i}^{\varphi}:=\cdot\left(\varphi_{i}\right)
$$

That is, given any tangent vector $X, e_{i}^{\varphi}(X) \equiv X\left(\varphi_{i}\right)=X_{i}^{\varphi}$. The expansion coefficients of a 1-form $\omega$ are given by

$$
\omega_{i}^{\varphi}=\omega\left(d_{i}^{\varphi}\right)
$$

so that

$$
\omega=\omega_{i}^{\varphi} e_{i}^{\varphi}
$$

and the transformation rule for the expansion coefficients is

$$
\begin{aligned}
\omega_{i}^{\psi} & \equiv \omega\left(d_{i}^{\psi}\right) \\
& =\omega_{j}^{\varphi} e_{j}^{\varphi}\left(d_{i}^{\psi}\right)
\end{aligned}
$$

$\operatorname{But} e_{j}^{\varphi}\left(d_{i}^{\psi}\right) \equiv d_{i}^{\psi}\left(\varphi_{j}\right)=N_{i j}^{\psi \varphi}$ so that we get

$$
\omega_{i}^{\psi}=N_{i j}^{\psi \varphi} \omega_{j}^{\varphi}
$$

and of course the dual basis vectors transform again in the opposite way compared to the expansion coefficients:

$$
\begin{aligned}
e_{i}^{\psi} & =e_{i}^{\psi}\left(d_{j}^{\varphi}\right) e_{j}^{\varphi} \\
& =d_{j}^{\varphi}\left(\psi_{i}\right) e_{j}^{\varphi} \\
& =M_{i j}^{\psi \varphi} e_{j}^{\varphi}
\end{aligned}
$$

We find that the expansion coefficients of a general $(k, l)$ tensor $T$ transform as

$$
T_{i_{1} \cdots i_{k} j_{1} \cdots j_{l}}^{\psi}=M_{i_{1} i_{1}^{\prime}}^{\psi \varphi} \cdots M_{i_{k} i_{k}^{\prime}}^{\psi \varphi} N_{j_{1} j_{1}^{\prime}}^{\psi \varphi} \cdots N_{j_{l} j_{l}^{\prime}}^{\psi \varphi} T_{i_{1}^{\prime} \cdots i_{k}^{\prime} j_{1}^{\prime} \cdots j_{l}^{\prime}}^{\varphi}
$$

## 2 Properties of the Transition Matrices

1 Claim. We have $N_{i j}^{\psi \varphi} M_{i k}^{\psi \varphi}=\delta_{j k}$ and $N_{i j}^{\psi \varphi} M_{k j}^{\psi \varphi}=\delta_{i k}$.
Proof. We start by plugging in the definitions

$$
N_{i j}^{\psi \varphi} M_{i k}^{\psi \varphi} \equiv d_{i}^{\psi}\left(\varphi_{j}\right) d_{k}^{\varphi}\left(\psi_{i}\right)
$$

we swap out $\varphi_{j}$ and $\psi_{i}$ for $e_{j}^{\varphi}$ and $e_{i}^{\psi}$ respectively, because it is more transparent then that these are dual vectors to the $d$ 's. We get

$$
\begin{aligned}
N_{i j}^{\psi \varphi} M_{i k}^{\psi \varphi} & =d_{i}^{\psi}\left(e_{j}^{\varphi}\right) d_{k}^{\varphi}\left(e_{i}^{\psi}\right) \\
& =d_{j}^{\varphi *}\left(d_{i}^{\psi}\right) d_{i}^{\psi *}\left(d_{k}^{\varphi}\right) \\
& =\left\langle d_{j}^{\varphi}, d_{i}^{\psi}\right\rangle\left\langle d_{i}^{\psi}, d_{k}^{\varphi}\right\rangle \\
& =\left\langle d_{j}^{\varphi}, d_{i}^{\psi} \otimes d_{i}^{\psi *} d_{k}^{\varphi}\right\rangle
\end{aligned}
$$

Now we use the fact that $d_{i}^{\psi} \otimes d_{i}^{\psi *}=\mathbb{1}$ because $\left\{d_{i}^{\psi}\right\}_{i=1}^{n}$ is an ONB of $T_{p} \mathcal{M}$ for each $p$ in the domain of that basis. Thus

$$
N_{i j}^{\psi \varphi} M_{i k}^{\psi \varphi}=\left\langle d_{j}^{\varphi}, d_{k}^{\varphi}\right\rangle
$$

and again using the fact that $\left\{d_{i}^{\varphi}\right\}_{i=1}^{n}$ is a basis one obtains the proper result. The other result is obtained by repeating the argument with $\varphi \leftrightarrow \psi$.

2 Corollary. We have $d_{l}^{\varphi}\left(N_{i j}^{\psi \varphi}\right) M_{i k}^{\psi \varphi}=-N_{i j}^{\psi \varphi} d_{l}^{\varphi}\left(M_{i k}^{\psi \varphi}\right)$.
Proof. Apply $d_{l}^{\varphi}$ on the foregoing equation. Since $\delta_{i k}$ is a constant scalar function, we get zero on the left hand side (as a tangent vector working on any scalar function is zero). On the right hand side we use the Leibniz property of $d_{l}^{\varphi}$.

3 Claim. We have $d_{k}^{\varphi}\left(M_{i i^{\prime}}^{\psi \varphi}\right)=d_{i^{\prime}}^{\varphi}\left(M_{i k}^{\psi \varphi}\right)$.
Proof. If we expand out the definitions we will find that this boils down to the fact that $\left[d_{i}^{\varphi}, d_{k}^{\varphi}\right]=0$, which is always true for basis tangent vectors which correspond to charts, which is what $d_{i}^{\varphi}$ is. Indeed,

$$
\begin{aligned}
M_{i i^{\prime}, k}-M_{i k, i^{\prime}} & \equiv d_{k}^{\varphi}\left(M_{i i^{\prime}}\right)-d_{i^{\prime}}^{\varphi}\left(M_{i k}\right) \\
& =d_{k}^{\varphi}\left(d_{i^{\prime}}^{\varphi}\left(\psi_{i}\right)\right)-d_{i^{\prime}}^{\varphi}\left(d_{k}^{\varphi}\left(\psi_{i}\right)\right) \\
& =\left[d_{k}^{\varphi}, d_{i^{\prime}}^{\varphi}\right]\left(\psi_{i}\right)
\end{aligned}
$$

and $\left[d_{i}^{\varphi}, d_{j}^{\varphi}\right]=0$ because

$$
\begin{aligned}
\left(\left[d_{i}^{\varphi}, d_{j}^{\varphi}\right]\right)(f) & \equiv d_{i}^{\varphi} d_{j}^{\varphi} f-(i \leftrightarrow j) \\
& =\left[\partial_{i}\left(d_{j}^{\varphi} f \circ \varphi^{-1}\right)\right] \circ \varphi-(i \leftrightarrow j) \\
& =\left[\partial_{i}\left(\left[\partial_{j}\left(f \circ \varphi^{-1}\right)\right] \circ \varphi \circ \varphi^{-1}\right)\right] \circ \varphi-(i \leftrightarrow j) \\
& =\left[\partial_{i}\left(\partial_{j}\left(f \circ \varphi^{-1}\right)\right)\right] \circ \varphi-(i \leftrightarrow j) \\
& =0
\end{aligned}
$$

as $\partial_{i} \partial_{j}=\partial_{j} \partial_{i}$.

## 3 Some short hand notation to make the calculation lighter

From this point onwards, since the charts $\varphi$ and $\psi$ are fixed, we omit them from the notation. Thus $\varphi$ is considered the "original" chart and $\psi$ the "new" chart. Consequently, all expansion coefficients in the original chart $\varphi$ will have $\varphi$ simply dropped expansion coefficients in the new chart $\psi$ will be denoted by a bar above. We also abbreviate $M_{i j}^{\psi \varphi}$ simply as $M_{i j}$ and the same for $N$. Finally we also abbreviate $d_{i}^{\varphi}(O) \equiv O, i$ for any object $O$ (typically $O$ is an expansion coefficient in $\varphi$ or $\psi$ carrying itself some indices, but the application of $d_{i}^{\varphi}$ always will be noted with a comma after all other indices).

Hence the transformation law for a vector's expansion coefficients

$$
\bar{X}_{i}=M_{i j} X_{i}
$$

The transformation law for a dual vector's expansion coefficients

$$
\bar{\mu}_{i}=N_{i j} \mu_{i}
$$

Transformation law for a $(1,1)$ tensor's expansion coefficients

$$
\bar{T}_{i j}=M_{i i^{\prime}} N_{j j^{\prime}} T_{i^{\prime} j^{\prime}}
$$

Transformation law for a basis vector

$$
\bar{d}_{i}=N_{i j} d_{j}
$$

In the exercise, we "define" the Lie derivative along a vector field $X$ of the $(1,1)$ tensor $T$ via its components as

$$
\left(L_{X} T\right)_{i j}=T_{i j, k} X_{k}-T_{k j} X_{i, k}+T_{i k} X_{k, j}
$$

To see how it transforms, we must see how its constituent parts transform:

$$
\begin{aligned}
\bar{X}_{i, j} & \equiv \bar{d}_{j}\left(\bar{X}_{i}\right) \\
& =N_{j j^{\prime}} d_{j^{\prime}}\left(M_{i i^{\prime}} X_{i^{\prime}}\right) \\
& =N_{j j^{\prime}} d_{j^{\prime}}\left(M_{i i^{\prime}}\right) X_{i^{\prime}}+N_{j j^{\prime}} M_{i i^{\prime}} d_{j^{\prime}}\left(X_{i^{\prime}}\right) \\
& =N_{j j^{\prime}} M_{i i^{\prime}, j^{\prime}} X_{i^{\prime}}+N_{j j^{\prime}} M_{i i^{\prime}} X_{i^{\prime}, j^{\prime}}
\end{aligned}
$$

So that $\bar{X}_{i, j}$ does not transform like a $(1,1)$ tensor, due to the extra first term (the second term alone is how it should have transformed had it been a $(1,1)$ tensor).

We have also

$$
\begin{aligned}
\bar{T}_{i j, k} & \equiv \bar{d}_{k}\left(\bar{T}_{i j}\right) \\
& =N_{k k^{\prime}} d_{k^{\prime}}\left(M_{i i^{\prime}} N_{j j^{\prime}} T_{i^{\prime} j^{\prime}}\right) \\
& =N_{k k^{\prime}} M_{i i^{\prime}, k^{\prime}} N_{j j^{\prime}} T_{i^{\prime} j^{\prime}}+N_{k k^{\prime}} M_{i i^{\prime}} N_{j j^{\prime}, k^{\prime}} T_{i^{\prime} j^{\prime}}+N_{k k^{\prime}} M_{i i^{\prime}} N_{j j^{\prime}} T_{i^{\prime} j^{\prime}, k^{\prime}}
\end{aligned}
$$

So that $\bar{T}_{i j, k}$ does not transform like a $(1,2)$ tensor, due to the extra first two terms (the third term alone is how a $(1,2)$ tensor should have transformed).

We check however the transformation law of ${\overline{\left(L_{X} T\right)}}_{i j}$ :

$$
\begin{aligned}
{\overline{\left(L_{X} T\right)}}_{i j}= & \bar{T}_{i j, k} \bar{X}_{k}-\bar{T}_{k j} \bar{X}_{i, k}+\bar{T}_{i k} \bar{X}_{k, j} \\
= & \left(N_{k k^{\prime}} M_{i i^{\prime}, k^{\prime}} N_{j j^{\prime}} T_{i^{\prime} j^{\prime}}+N_{k k^{\prime}} M_{i i^{\prime}} N_{j j^{\prime}, k^{\prime}} T_{i^{\prime} j^{\prime}}+N_{k k^{\prime}} M_{i i^{\prime}} N_{j j^{\prime}} T_{i^{\prime} j^{\prime}, k^{\prime}}\right) M_{k k^{\prime \prime}} X_{k^{\prime \prime}} \\
& -M_{k k^{\prime}} N_{j j^{\prime}} T_{k^{\prime} j^{\prime}}\left(N_{k k^{\prime \prime}} M_{i i^{\prime}, k^{\prime \prime}} X_{i^{\prime}}+N_{k k^{\prime \prime}} M_{i i^{\prime}} X_{i^{\prime}, k^{\prime \prime}}\right) \\
& +M_{i i^{\prime}} N_{k k^{\prime}} T_{i^{\prime} k^{\prime}}\left(N_{j j^{\prime}} M_{k k^{\prime \prime}, j^{\prime}} X_{k^{\prime \prime}}+N_{j j^{\prime}} M_{k k^{\prime \prime}} X_{k^{\prime \prime}, j^{\prime}}\right)
\end{aligned}
$$

(Regroup to terms containing derivatives of N and M and those that don't)
$=N_{k k^{\prime}} M_{i i^{\prime}, k^{\prime}} N_{j j^{\prime}} M_{k k^{\prime \prime}} T_{i^{\prime} j^{\prime}} X_{k^{\prime \prime}}+N_{k k^{\prime}} M_{i i^{\prime}} N_{j j^{\prime}, k^{\prime}} M_{k k^{\prime \prime}} T_{i^{\prime} j^{\prime}} X_{k^{\prime \prime}}$
$-M_{k k^{\prime}} N_{j j^{\prime}} N_{k k^{\prime \prime}} M_{i i^{\prime}, k^{\prime \prime}} T_{k^{\prime} j^{\prime}} X_{i^{\prime}}+M_{i i^{\prime}} N_{k k^{\prime}} N_{j j^{\prime}} M_{k k^{\prime \prime}, j^{\prime}} T_{i^{\prime} k^{\prime}} X_{k^{\prime \prime}}$
$-M_{k k^{\prime}} N_{j j^{\prime}} N_{k k^{\prime \prime}} M_{i i^{\prime}} T_{k^{\prime} j^{\prime}} X_{i^{\prime}, k^{\prime \prime}}$
$+N_{k k^{\prime}} M_{i i^{\prime}} N_{j j^{\prime}} M_{k k^{\prime \prime}} T_{i^{\prime} j^{\prime}, k^{\prime}} X_{k^{\prime \prime}}+M_{i i^{\prime}} N_{k k^{\prime}} N_{j j^{\prime}} M_{k k^{\prime \prime}} T_{i^{\prime} k^{\prime}} X_{k^{\prime \prime}, j^{\prime}}$
We know what the answer should be:

$$
\begin{aligned}
{\overline{\left(L_{X} T\right)}}_{i j} & \stackrel{?}{=} M_{i i^{\prime}} N_{j j^{\prime}}\left(L_{X} T\right)_{i^{\prime} j^{\prime}} \\
& =M_{i i^{\prime}} N_{j j^{\prime}} T_{i^{\prime} j^{\prime}, k} X_{k}-M_{i i^{\prime}} N_{j j^{\prime}} T_{k j^{\prime}} X_{i^{\prime}, k}+M_{i i^{\prime}} N_{j j^{\prime}} T_{i^{\prime} k} X_{k, j^{\prime}}
\end{aligned}
$$

So we identify those terms in ${\overline{\left(L_{X} T\right)}}_{i j}$ as $C$ (for "correct", the last two lines) and $R$ (for "rest", the first two lines):

$$
\begin{aligned}
C:= & N_{k k^{\prime}} M_{i i^{\prime}} N_{j j^{\prime}} M_{k k^{\prime \prime}} T_{i^{\prime} j^{\prime}, k^{\prime}} X_{k^{\prime \prime}}-M_{k k^{\prime}} N_{j j^{\prime}} N_{k k^{\prime \prime}} M_{i i^{\prime}} T_{k^{\prime} j^{\prime}} X_{i^{\prime}, k^{\prime \prime}} \\
& +M_{i i^{\prime}} N_{k k^{\prime}} N_{j j^{\prime}} M_{k k^{\prime \prime}} T_{i^{\prime} k^{\prime}} X_{k^{\prime \prime}, j^{\prime}}
\end{aligned}
$$

and

$$
\begin{aligned}
R:= & N_{k k^{\prime}} M_{i i^{\prime}, k^{\prime}} N_{j j^{\prime}} M_{k k^{\prime \prime}} T_{i^{\prime} j^{\prime}} X_{k^{\prime \prime}}+N_{k k^{\prime}} M_{i i^{\prime}} N_{j j^{\prime}, k^{\prime}} M_{k k^{\prime \prime}} T_{i^{\prime} j^{\prime}} X_{k^{\prime \prime}} \\
& -M_{k k^{\prime}} N_{j j^{\prime}} N_{k k^{\prime \prime}} M_{i i^{\prime}, k^{\prime \prime}} T_{k^{\prime} j^{\prime}} X_{i^{\prime}}+M_{i i^{\prime}} N_{k k^{\prime}} N_{j j^{\prime}} M_{k k^{\prime \prime}, j^{\prime}} T_{i^{\prime} k^{\prime}} X_{k^{\prime \prime}}
\end{aligned}
$$

We want to show that

$$
\begin{equation*}
C \stackrel{?}{=} M_{i i^{\prime}} N_{j j^{\prime}} T_{i^{\prime} j^{\prime}, k} X_{k}-M_{i i^{\prime}} N_{j j^{\prime}} T_{k j^{\prime}} X_{i^{\prime}, k}+M_{i i^{\prime}} N_{j j^{\prime}} T_{i^{\prime} k} X_{k, j^{\prime}} \tag{1}
\end{equation*}
$$

and that $R=0$.
We start with the first task. In order to do that we must we must "cancel out" factors of $M$ and $N$. Take for instance the first term in $C$ :

$$
N_{k k^{\prime}} M_{i i^{\prime}} N_{j j^{\prime}} M_{k k^{\prime \prime}} T_{i^{\prime} j^{\prime}, k^{\prime}} X_{k^{\prime \prime}}=\left(M_{i i^{\prime}} N_{j j^{\prime}} T_{i^{\prime} j^{\prime}, k^{\prime}}\right)\left(N_{k k^{\prime}} M_{k k^{\prime \prime}} X_{k^{\prime \prime}}\right)
$$

Using 1 we find for that term

$$
\begin{aligned}
N_{k k^{\prime}} M_{i i^{\prime}} N_{j j^{\prime}} M_{k k^{\prime \prime}} T_{i^{\prime} j^{\prime}, k^{\prime}} X_{k^{\prime \prime}} & =\left(M_{i i^{\prime}} N_{j j^{\prime}} T_{i^{\prime} j^{\prime}, k^{\prime}}\right)\left(N_{k k^{\prime}} M_{k k^{\prime \prime}} X_{k^{\prime \prime}}\right) \\
& =\left(M_{i i^{\prime}} N_{j j^{\prime}} T_{i^{\prime} j^{\prime}, k^{\prime}}\right)\left(\delta_{k^{\prime} k^{\prime \prime}} X_{k^{\prime \prime}}\right) \\
& =\left(M_{i i^{\prime}} N_{j j^{\prime}} T_{i^{\prime} j^{\prime}, k^{\prime}}\right) X_{k^{\prime}}
\end{aligned}
$$

so we get the first term on the RHS of (1) correctly. We proceed similarly using 1 twice more to find that (1) is correct.
We go on to prove that $R=0$ : We use 1 three more times to find:

$$
\begin{aligned}
R \equiv & N_{k k^{\prime}} M_{i i^{\prime}, k^{\prime}} N_{j j^{\prime}} M_{k k^{\prime \prime}} T_{i^{\prime} j^{\prime}} X_{k^{\prime \prime}}+N_{k k^{\prime}} M_{i i^{\prime}} N_{j j^{\prime}, k^{\prime}} M_{k k^{\prime \prime}} T_{i^{\prime} j^{\prime}} X_{k^{\prime \prime}} \\
& -M_{k k^{\prime}} N_{j j^{\prime}} N_{k k^{\prime \prime}} M_{i i^{\prime}, k^{\prime \prime}} T_{k^{\prime} j^{\prime}} X_{i^{\prime}}+M_{i i^{\prime}} N_{k k^{\prime}} N_{j j^{\prime}} M_{k k^{\prime \prime}, j^{\prime}} T_{i^{\prime} k^{\prime}} X_{k^{\prime \prime}} \\
= & M_{i i^{\prime}, k} N_{j j^{\prime}} T_{i^{\prime} j^{\prime}} X_{k}-N_{j j^{\prime}} M_{i i^{\prime}, k} T_{k j^{\prime}} X_{i^{\prime}} \\
& +M_{i i^{\prime}} N_{j j^{\prime}, k} T_{i^{\prime} j^{\prime}} X_{k}+M_{i i^{\prime}} N_{k k^{\prime}} N_{j j^{\prime}} M_{k k^{\prime \prime}, j^{\prime}} T_{i^{\prime} k^{\prime}} X_{k^{\prime \prime}}
\end{aligned}
$$

for the first line, in the second term we relabel as $i^{\prime} \leftrightarrow k$ to get

$$
M_{i i^{\prime}, k} N_{j j^{\prime}} T_{i^{\prime} j^{\prime}} X_{k}-N_{j j^{\prime}} M_{i i^{\prime}, k} T_{k j^{\prime}} X_{i^{\prime}}=M_{i i^{\prime}, k} N_{j j^{\prime}} T_{i^{\prime} j^{\prime}} X_{k}-N_{j j^{\prime}} M_{i k, i^{\prime}} T_{i^{\prime} j^{\prime}} X_{k}
$$

But now use 3 so the first line of our most recent expression for $R$ is zero.
We go on to the next line. We relabel in the second term $j^{\prime} \leftrightarrow k^{\prime}$ and $k \leftrightarrow k^{\prime \prime}$ to get

$$
M_{i i^{\prime}} N_{j j^{\prime}, k} T_{i^{\prime} j^{\prime}} X_{k}+M_{i i^{\prime}} N_{k k^{\prime}} N_{j j^{\prime}} M_{k k^{\prime \prime}, j^{\prime}} T_{i^{\prime} k^{\prime}} X_{k^{\prime \prime}}=M_{i i^{\prime}}\left(N_{j j^{\prime}, k}+N_{k^{\prime \prime} j^{\prime}} N_{j k^{\prime}} M_{k^{\prime \prime} k, k^{\prime}}\right) T_{i^{\prime} j^{\prime}} X_{k}
$$

Now we deal with the term $N_{k^{\prime \prime} j^{\prime}} N_{j k^{\prime}} M_{k^{\prime \prime} k, k^{\prime}}$. In fact we can rewrite it as

$$
\begin{aligned}
N_{k^{\prime \prime} j^{\prime}} N_{j k^{\prime}} M_{k^{\prime \prime} k, k^{\prime}} & =N_{k^{\prime \prime} j^{\prime}} N_{j k^{\prime}} M_{k^{\prime \prime} k^{\prime}, k} \\
& =-N_{k^{\prime \prime} j^{\prime}, k} N_{j k^{\prime}} M_{k^{\prime \prime} k^{\prime}} \\
& =-N_{k^{\prime \prime} j^{\prime}, k} \delta_{j k^{\prime \prime}} \\
& =-N_{j j^{\prime}, k}
\end{aligned}
$$

so that we really get zero. In the last expression, used again the fact that $M_{i j, k}=M_{i k, j}$ (in 3) as proven above already, as well as 2 . The proof is finally complete.

