
Calculus 1 – Spring 2019 Section 2
Midterm 1–Solutions

Jacob Shapiro

February 20th 2019

Instructions
• This exam consists of three parts and one extra-credit fourth part. The

first three parts involve five questions each and the fourth extra-credit part
involves three questions. The parts are organized by the type of answer
that is expected. For the three parts, each question weighs exactly seven
points, for a total of 105 (out of 100) points.

• In your blue notebook, in the first page, clearly make the following table,
noting your final answer corresponding to each question in each cell. For
the first part, write out the words “true” or “false” in their entirety (not
just “T” or “F”). The front page of your notebook should look as follows
before you start solving the exam:
Question number Part 1 Part 2 Part 3

1 FALSE ∞ cos (x)
2 TRUE 0 x
3 FALSE 0 5
4 FALSE 80 (5x+ 3) 2x

5 TRUE 10 x
In the rest of your notebook, try your best to give an explanation or
justification for your answer. Partial credit may be given if your final
answer is incorrect but the rest of your notebook contains some nonetheless
valid reasoning. If your answer is correct no further justification will be
required to get full points, i.e. your explanation cannot damage you.

• If you wish to solve the extra-credit problems use a separate new notebook
for that and attach it together to your first notebook.

• Write your UNI, without your name, clearly on each blue notebook you
use and submit all of them together. The actual exam sheet (i.e., these
very pages) are not to be handed in.

• Write clearly and legibly. Points will not be given if the grader cannot
read your final answer.
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1 Part 1–Questions whose answer is an element
of { true, false }

For each of the following statements, respond with “true” or “false”.

1. x ∈ ∅ for some x. FALSE: The empty set contains no elements, by its
very definition.

2. For the sequence N 3 n 7→ tan (2πn) ∈ R, limn→∞ tan (2πn) exists. (Re-
call tan ≡ sin

cos ). TRUE: Note that sin (2πn) = 0 and cos (2πn) = 1, so
that tan (2πn) = 0

1 = 0 for all n ∈ N. So this is just the constant sequence
(of constant zero) in disguise.

3. If f : R \ { x0 } → R has no limit at x0 ∈ R and g : R → R then
limx→x0 (g ◦ f) (x) necessarily does not exist. FALSE: Here is one possible
counter-example (there are many): Take g to be the constant function.
Then g ◦ f is also the constant function (regardless of what f is). Since
the constant function has a limit at all points (equal to that constant),
the limit of g ◦ f exists.

4. If a function f : R → R is discontinuous at some x0 then its limit at x0,
limx→x0 f (x), either does not exist or diverges to ±∞. FALSE: Here is

one possible counter-example (there are many): Take f (x) :=

{
1 x = 0

0 x 6= 0
.

Then limx→0 f (x) = 0 yet f is not continuous at zero (since f (0) = 1 so
that 0 = limx→0 f (x) 6= f (0) = 1.

5. Two sets A and B whose size is infinite are said to be of the same cardi-
nality iff there is a bijection A → B. Z and 2N ≡ { 2, 4, 6, 8, . . . } are of
the same cardinality. TRUE: See HW1Q7.

2 Part 2–Questions whose answer is an element
of { 0 } ∪ N ∪ {∞ }

For each of the following expressions or statements, respond with a single non-
negative integer, or ∞, i.e. an element of { 0 } ∪ N ∪ {∞ }.
Recall if A is a set |A| denotes its size, i.e. the (possibly infinite) number of
elements it contains.

1.
∣∣R2 ∩

{
(x, y) ∈ R2

∣∣ x2 + y2 = 1
}∣∣ = ∞. The first set, R2 is the whole

two-dimensional continuum plane. The second set is a subset of R2 (so
that the intersection is redundant) corresponding to all points on the unit
circle (the circle of radius 1 about the origin, the point (0, 0)). Since the
number of points on the circle is infinite, the size of this set is infinite.
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2. If a : N → R is given by a (n) =
(
− 2

3

)n for all n ∈ N, lim a = 0. We
can rewrite this sequence as a product

(
− 2

3

)n
= (−1)n

(
2
3

)n. Now, use
the squeeze theorem with the two outer sequences −

(
2
3

)n and
(
2
3

)n. Both
of them converge to zero (from below and from above respectively). One
possible way to see this is through Claim 6.16, number 4 in the lecture
notes (the basic limits). In that claim, take α = 0 and p = −1 + 3

2 . Then
nα

(1+p)n = 1

(1−1+ 3
2 )
n =

(
2
3

)n → 0.

3. Define f : R→ R by f (x) :=

{
sin
(
2π
9 x
)

x 6= 9

9 x = 9
.

What is limx→9 f (x) = 0. For the purpose of calculating the limit, the
piecewise definition is irrelevant since all that matters for the limit is what
happens near the destination x = 9, but not precisely at x = 9. So we
are really at the task of calculating limx→9 sin

(
2π
9 x
)
. Now since sin is

continuous we may push the limit through to get sin (2π) = 0.

4. What’s limx→1
x80−1
x−1 = 80 (You may find it useful to know that xn−yn =

(x− y)
∑n−1
k=0 x

kyn−k−1 ≡ (x− y)
(
yn−1 + xyn−2 + x2yn−3 + · · ·+ xn−1

)
).

We have using the hint

x80 − 1

x− 1
=

79∑
k=0

xk1n−k−1

=

79∑
k=0

xk

Since the function x 7→
∑79
k=0 x

k is comprised of basic arithmetic opera-
tions (addition, multiplication, raising to powers), it is continuous so that
when we calculate limx→1

∑79
k=0 x

k we may push the limit through to get∑79
k=0 1

k =
∑79
k=0 1 = 1+1+ · · ·+1 (adding together 80 terms, each term

equals to 1). The result is 80.

5. What’s limx→0
sin(10x)

x = 10 (You may find it useful to know that sin (y) ≤
y ≤ tan (y) for small y when using the squeeze theorem; also recall
tan ≡ sin

cos and cos (0) = 1 when massaging the inequalities). We have
limx→0

sin(10x)
x = limx→0 10

sin(10x)
10x = 10 limx→0

sin(10x)
10x . Now we can de-

fine a new function g (x) := 10x and recall that R \ { 0 } 3 x 7→ sin(x)
x

was called the sinc function which was presented in the lecture notes in
Example 6.32. There we saw that limy→0 sinc (y) = 1. In fact that meant
that sinc is continuous since we defined it to be equal to 1 at zero. Hence
we have limx→0

sin(10x)
x = 10 limx→0 sinc (10x) = 10sinc (limx→0 10x) =

10sinc (0) = 10× 1 = 10.
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3 Part 3–Questions whose answer is a function
For each of the following expressions or statements, respond with an expression
that may involve a variable x ∈ R, but doesn’t have to.

1. Evaluate the convergent limit, limε→0
1
ε (sin (x+ ε)− sin (x)) = cos (x).

(It might be useful to recall that sin (x)− sin (y) = 2 cos
(
x+y
2

)
sin
(
x−y
2

)
)

To see this, let us calculate using the hint

1

ε
(sin (x+ ε)− sin (x)) =

2

ε
cos

(
2x+ ε

2

)
sin
(ε
2

)
= cos

(
2x+ ε

2

)
sin
(
ε
2

)
ε
2

= cos

(
2x+ ε

2

)
sinc

(ε
2

)
Now we may use the algebraic laws of limits, using the fact that both cos
and sinc are continuous, and knowing that sinc (0) = 1 to get that this
converges to cos (x).

2. Evaluate limn→∞

(
limm→∞

xm
m+n

)
= x. The outer limit in n is there just

to confuse you, it doesn’t actually do anything. We first calculate the
inner limit:

lim
m→∞

xm

m+ n
= x lim

m→∞

m

m+ n
= x

The last line follows because, for fixed n, m
m+n → 1 as m → ∞, as was

discussed many times. Then the result is just x, which is independent of
n, so as far as n is concerned, this is the constant sequence of constant x.
When we now take the limit n → ∞ it doesn’t do anything and we get
back the same constant x.

3. If g : R→ R is the constant function of constant 5, what is g (f (x)) = 5.
As was already noted before, when g is a constant function, g (f (x)) is
that constant, regardless of what x or f are.

4. limy→x (5y + 3) 2y = (5x+ 3) 2x. This question just makes sure you know
that if the function involved is continuous (as it is) then you can just push
the limit through.

5. The following intersection set{
(a, b) ∈ R2

∣∣ a2 + b2 = x2
}
∩
{
(a, b) ∈ R2

∣∣ a = x
}

is a singleton containing a pair of numbers, the first of which equals?
Equals x. Indeed,

{
(a, b) ∈ R2

∣∣ a2 + b2 = x2
}
is the set of points on the
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circle of radius x about the origin in R2.
{
(a, b) ∈ R2

∣∣ a = x
}

is the
vertical line on the plane located at x away from the origin. Hence the
two meet at precisely one point, which is (x, 0) (indeed, x2 + 02 = x2 for
the circle). The first part of the tuple (x, 0) is just x.

4 Part 4–Extra credit
Recall the definition of a limit of a sequence:

4.1 Definition. The sequence a : N → R converges to some L ∈ R iff for any
ε > 0 there is some Nε ∈ N such that if n ∈ N obeys n ≥ Nε then |a (n)− L| < ε.

Find L and Nε such that given any ε > 0, the following sequence a : N→ R
fulfills the above criterion for its convergence. Note: for Nε (but not L) more
than one answer is possible.

1. For a (n) = 1
3
√
n
. The limit converges to L = 0. To find Nε, let us make

the following manipulations on |a (n)− L| < ε:

|a (n)− L| < ε

Plug in what’s a (n) and L∣∣∣∣ 1
3
√
n

∣∣∣∣ < ε

Use the fact that 1
3
√
n
> 0

1
3
√
n

< ε

Raise to the power 3
1

n
< ε3

Take reciprocal

n >
1

ε3

So Nε can be taken as any integer larger than 1
ε3 .

Recall the definition of a limit of a function:

4.2 Definition. The function f : R→ R converges to some L ∈ R at x0 ∈ R iff
for any ε > 0 there is some δε > 0 such that if x ∈ R obeys |x− x0| < δε then
|f (x)− L| < ε.

Find L and δε such that given any ε > 0, the following functions R → R
fulfill the above criterion for their convergence. Note: for δε more than one
answer is possible.

2. f (x) = 2
− 1

(x−5)2 with x0 = 5 (Recall log2 (the inverse of x 7→ 2x) is
monotone increasing). We have L = 0 and δε may be taken as δε =
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√
1

− log2(ε)
. Let us rewrite the goal inequality to see how this works

|f (x)− L| < ε

Plug in f and L∣∣∣2− 1
(x−5)2

∣∣∣ < ε

2y is always positive

2
− 1

(x−5)2 < ε

Take log2 and use monotone increasing property

− 1

(x− 5)
2 < log2 (ε)

Multiply by − 1
1

(x− 5)
2 > − log2 (ε)

Take reciprocal

(x− 5)
2

<
1

− log2 (ε)

Take square root

|x− 5| <

√
1

− log2 (ε)

and so we find the result can be δε :=
√

1
− log2(ε)

(Recall for ε < 1,
log2 (ε) < 0, so the square root makes sense).

3. f (x) = xx with x0 = 0. (You may use the following facts:
(1) |x− y| < ε iff y − ε < x < y + ε; (2) log is monotone increasing;
(3) log

(
ab
)
= b log (a); (4) log (x) ≥ 0 for x ≥ 1 and log (x) ≤ 0 for x ≤ 1;

(5) log (x) ≥ 2
(
1− 1√

x

)
for all x; (6)

√
x− 1 ≥ −1).

We have L = 1 and δε =
(
− 1

2 log (1− ε)
)2 can be taken as

|f (x)− 1| < ε

−ε < xx − 1 < ε

1− ε < xx < 1 + ε

Take log of inequalities
log (1− ε) < log (xx) < log (1 + ε)

Use the fact log
(
ab
)
= b log (a)

log (1− ε) < x log (x) < log (1 + ε)

Note that for x < 1 and ε > 0, log (1 + ε) is always positive and log (x) is
always negative, so the right inequality is always satisfied. For the second
inequality, we use the lower bound from the hint log (x) ≥ 2

(
1− 1√

x

)
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so that x log (x) ≥ 2x
(
1− 1√

x

)
= 2
√
x (
√
x− 1) ≥ −2

√
x. The last step

follows from the last hint. We hence find that we need x to satisfy only

log (1− ε) < −2
√
x

Multiply by − 1
2

−1

2
log (1− ε) >

√
x

Take square(
−1

2
log (1− ε)

)2

> |x|

So we can take δε := 1
4 (log (1− ε))

2.
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