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1 Review
Exercise 1. Simplify the following expressions:

1. x, y ∈ R:
y
x −

x
y

1
y −

1
x

=

y2

xy −
x2

xy
x
xy −

y
xy

=
y2 − x2

x− y

=
(y − x) (y + x)

x− y
= −x− y .

2. α, β ∈ R: (
α4β−3

)2
α3β5

=
α8β−6

α3β5

= α5β−11 ,

and
1
β2 + α2

1
α2 + β2

=

1
β2 + α2β2

β2

1
α2 + β2α2

α2

=

(
1 + α2β2

)
α2

β2 (1 + α2β2)

=
α2

β2
.

Exercise 2. Solve for x ∈ R:

log10 (x− 1) = 2 .

We have the follow chain of equivalent equations, the first step results by applying exp10 on both sides of the equation and using
the fact that exp10 ◦ log10 = 1:

log10 (x− 1) = 2

x− 1 = 102

x = 101

Exercise 3. Factorize or complete the square for the following expressions for ε, δ ∈ R:

ε4δ − δ4ε = εδ
(
ε3 − δ3

)
(Use the formula in the lecture notes in Example 6.34)

= εδ (ε− δ)
(
ε2 + εδ + δ2

)
= εδ (ε− δ)

(
(ε+ δ)

2 − εδ
)
.
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Note: it is not unequivocal which of these expressions is the “final” one that should be given as an answer, as the question stands
now.

Exercise 4. For each of the following inequalities, provide an interval, open or closed, such that if x belongs to that interval, it
satisfies the respective inequality:

1. x (x− 1) (x+ 2) > 0.
To satisfy this inequality, we need to have the product of three terms strictly positive. This happens if x ∈ (−2, 0)∪ (1,∞).
Indeed:

(a) All are positive, i.e. x > 0 and x > 1 and x > −2 which all together implies that x > 1 (since 1 > 0 > −2), which is
the set (1,∞).

(b) Two are negative and one is positive, which happens in three different cases:

i. x > 0, x < 1 and x < −2, i.e. (0, 1) ∩ (−∞,−2) = ∅, the empty set, i.e., this never happens.
ii. x < 0, x > 1 and x < −2 i.e. (−∞,−2) ∩ (1,∞) = ∅, the empty set, i.e., this also never happens.
iii. x < 0, x < 1 and x > −2, i.e. (−2, 0).

2. |x− 3| < 4.
As we know, this inequality is equivalent to (Claim 6.1 in the lecture notes)

−4 < x− 3 < 4

3− 4 < x < 3 + 4

−1 < x < 7

i.e., this happens if x ∈ (−1, 7).

3. x2 < 3x+ 8.
R 3 x 7→ x2− 3x− 8 is an upwards parabola, so we need to find out where it intersects the horizontal axis, possibly at two
points, and our interval will be all points between these two. The solution to the equation

x2 − 3x− 8 = 0

is given by

x12 =
1

2

(
3±
√
9 + 4 · 8

)
=

3

2
±
√
41

2

so that the interval is x ∈
(

3
2 −

√
41
2 , 32 +

√
41
2

)
.

4. 2x−3
x+1 ≤ 1.
We assume that x 6= −1 (for otherwise the denominator becomes zero). Let us rewrite 2x − 3 = x + 1 + x − 4 so that
2x−3
x+1 = 1 + x−4

x+1 and our inequality is equivalent to

x− 4

x+ 1
≤ 0

which may happen if either numerator or denominator are negative, but not both. In other words, if (x ≥ 4 and x < −1)
or (x ≤ 4 and x > −1). Since the first possibility is the empty set, we are left only with the second possibility, which is
the interval (−1, 4].

Exercise 5. What equation is satisfied by all points on the plane (x, y) ∈ R2 which lie on the circle centered at the point
(a, b) ∈ R2 and passing through the point (c, d) ∈ R2?

Solution. We don’t know the radius of the circle. Let us give it a name none the less, r ∈ (0,∞). The equation for a circle of
radius r centered at the point (a, b) ∈ R2 is given by the equation

(x− a)2 + (y − b)2 = r2
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(since it is the collection of all points whose distance from (a, b) is precisely r, and the equation above is merely the Pythagoras
theorem. Now we find r via the constraint that the circle passes through the point (c, d) ∈ R2. Indeed, we plug in (x, y) = (c, d)
into the equation above to find that r must satisfy

(c− a)2 + (d− b)2 = r2 .

Hence the equation we seek is

(x− a)2 + (y − b)2 = (c− a)2 + (d− b)2

Exercise 6. Sketch the region of R2 corresponding to all points (x, y) ∈ R2 which satisfy the following equalities or inequalities
in x, y:

1. −2 ≤ y < 4.
This corresponds to the (infinite) horizontal strip between height −2 and height 4.

2. x2 + y2 > 9.
This is the exterior of a circle of radius 3 about the origin:
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3. |x| < 2 and |y| < 8.
The two inequalities are equivalent respectively to −2 < x < 2 and −8 < y < 8 which corresponds to the following
rectangular area
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4. x2

2 + y2

3 < 4.
This is the interior of an ellipse.
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5. |x|+ |y| = 1 and x > 0.
The equation |x|+ |y| = 1 actually corresponds to a rhombus about the origin. To see this, assume that we are considering
only the first quadrant for example (so x, y ≥ 0). Then the absolute values become redundant and we get x+y = 1 which is
just the line y = 1− x. One then sees the picture in the other three quadrants on a case by case basis. Now the restriction
x > 0 merely means that we only look on the first and fourth quadrants, to finally obtain only half the rhombus:
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6. sin (2x) = sin (x) and x ∈ [0, 2π].
To solve this equation we need to rewrite sin (2x) = 2 sin (x) cos (x). Within [0, 2π], sin (x) = 0 if x = 0, π, 2π. If
x ∈ (0, 2π) \ { π }, then we get 2 cos (x) = 1, or cos (x) = 1

2 . This happens for x ∈ [0, 2π] precisely at x = π
3 .

We conclude that the equation is satisfied either if x = 0, π3 , 2π. Since the constraints are independent of y, we get three
vertical lines at these locations:

Exercise 7. Sketch the graph of the functions, clearly marking where they pass through the horizontal or vertical axes (if they
do), and what happens at ±∞ (when relevant):

1. log2 : (0,∞)→ R.
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We have limx→0 log2 (x) = −∞, limx→∞ log2 (x) = +∞, log2 (1) = 0. Note log2 (2) = 1.

2. exp2 : R→ (0,∞).

We have limx→−∞ exp2 (x) = 0, limx→∞ exp2 (x) = +∞, exp2 (0) = 1 and exp2 (x) > 0 for all x ∈ R.

3. R 3 x 7→ 1 + sin (2x) ∈ R.
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There are no limits at ±∞. The curve touches the horizontal axis whenever sin (2x) = −1, i.e. whenever x = 1
2

(
−π2 + 2πn

)
for any n ∈ Z. We note that at x = 0, we have height 1.

4. (0,∞) 3 x 7→
√
x ∈ R.

We have
√
0 = 0, limx→∞

√
x =∞, and

√
x > 0 for all x > 0.

5. (0,∞) 3 x 7→ 2
√
x ∈ R.
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This is essentially the same graph, albeit somewhat stretched, but the same conclusions hold.

6. R \ { 0 } 3 x 7→ 1 + 1
x ∈ R.

We have limx→−∞ 1 + 1
x = 1, limx→∞ 1 + 1

x = 1, limx→0− 1 + 1
x = −∞, limx→0+ 1 + 1

x = +∞.
The curve crosses the horizontal axis at x = −1.
So this is a weird function (discontinuous at x = 0) where the height is decreasing from 1 on the left all the time, jumping
at zero from −∞ to +∞, and then still going down all the time still always being above one.

Exercise 8. What are all values of x ∈ [−10, 10] where the following expressions are zero? (restrict x when necessary)

1. loge (x)? (Recall e ≈ 2.718 from the appendix of the lecture notes)
The solution for log (x) = 0 is x = 1.

2. sin (3x)?
To have sin (y) = 0 we need y ∈ πZ, so we have 3x = πn for any n ∈ Z in general, so x = π

3n for n ∈ Z and we just
must make sure that π

3n ∈ [−10, 10], which means n ∈
[
− 30
π ,

30
π

]
≈ [−9.54, 9.54]. Since n has to be an integer, we get

n = −9,−8, . . . , 8, 9. Hence x = −9π3 ,−8
π
3 , . . . , 8

π
3 , 9

π
3 .

3. tan (x) + sin (x)?
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The solution for

tan (x) + sin (x) = 0

sin (x)

(
1

cos (x)
+ 1

)
= 0

sin (x)
1 + cos (x)

cos (x)
= 0

So either sin (x) = 0 or cos (x) = −1 (and we must make sure that cos (x) 6= 0).
sin (x) = 0 implies x ∈ πZ and cos (x) = −1 implies x ∈ π + 2πZ and cos (x) 6= 0 implies x /∈ π

2 + πZ. Hence the final
answer is x ∈ πZ (since π + 2πZ ⊆ πZ), in which case sin (x) = 0 always cos (x) is sometimes 1 and sometimes −1, but
that doesn’t matter.
When restricting to x ∈ [−10, 10], we find x = −3π,−2π,−π, 0, π, 2π, 3π.

Exercise 9. Solve the following limits (possibly diverging to ±∞), or write “does not exist”. Note you do not need to prove the
existence from the definition.

1. limn→∞ (limm→∞ α) for some α ∈ R.
The answer is α, since this is a constant in both m and n. The two limits may look intimidating but actually have no
effect since nothing depends on the variables m or n.

2. limn→∞ sin
(
π
2n
)
. Note this is the limit of a sequence, i.e. n ∈ N here.

When n = 1, 2, 3, 4, 5, . . . we have π
2n = π

2 , π, 3
π
2 , 2π, 5

π
2 , . . . so that sin

(
nπ2
)
= 1, 0,−1, 0, 1, . . . and due to these oscilla-

tions, the limit does not exist.

3. limx→−∞ expa (x) for a > 1.
As we saw earlier, limx→−∞ expa (x) = 0. Recall expa (x) ≡ ax. When x < 0, this equals 1

a|x|
, i.e., as x → −∞, we are

taking larger and larger powers of a number, a, which is larger than 1, so a|x| becomes larger and larger, and hence 1
a|x|

becomes smaller and smaller.

4. limm→∞

(
limn→∞

m
m+n

)
.

When we have double limits, we need to proceed according evaluate the inner limit first, as if the variable of the outer
limit is a constant, and only afterwards evaluate the outer limit. Hence,

lim
n→∞

m

m+ n
= 0

since

lim
n→∞

m

m+ n
= m lim

n→∞

1

m+ n
= m · 0
= 0

and then when we take the limit m→∞, there is already no m dependence and we are just left with zero.

5. limn→∞

(
limm→∞

m
m+n

)
.

We do the same thing, but now the order of the limits is reversed, so that

lim
m→∞

m

m+ n
= lim

m→∞

(
m+ n

m+ n
− n

m+ n

)
= lim

m→∞

(
1− n

m+ n

)
= 1− lim

m→∞

n

m+ n
= 1− 0

= 1

and now again there is no n dependence, so that the result is just 1.
This and the previous double limit together show that the order in which we take limits matters!
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6. limn→∞
∑n
k=0 ar

k for a ∈ R and r < 1. You may consult the appendix in the lecture notes if you find the symbol
∑

unfamiliar; use the formula
∑n
k=1 r

k−1 = 1−rn
1−r .

We have
n∑
k=0

ark = a

n∑
k=0

rk

(Rename variable m := k + 1)

= a

n+1∑
m=1

rm−1

= a

(
n∑
k=1

rk−1 + rn

)
(Use formula from hint)

= a

(
1− rn

1− r
+ rn

)
Now we are in a position to take the n→∞ limit. Crucially, we use the fact that r < 1, so that limn→∞ rn = 0 (see Claim
6.16 in the lecture notes) and we find

lim
n→∞

n∑
k=0

ark =
a

1− r
.

7. limn→∞
∑n
k=0 ar

k for a ∈ R and r > 1.
Following the same procedure, we find

n∑
k=0

ark = a

(
1− rn

1− r
+ rn

)
= a

(
1− rn + rn − rn+1

1− r

)
= a

(
1− rn+1

1− r

)
However, now, since r > 1, limn→∞ rn+1 =∞, so that the limit diverges to −∞.

2 Exercises pertaining to new material
Exercise 10. Calculate the derivative of the following functions (no proof necessary) and restrict the domain of the derivative
if necessary:
In the various exercises one has to restrict the domain so that one never divides by zero and so on. We don’t include this
discussion here.

1. x 7→ sec(x)
1+tan(x) .

We have using the quotient rule (
sec

1 + tan

)′
=

sec′ (1 + tan)− sec (1 + tan)
′

(1 + tan)
2

Now we need

sec′ ≡
(

1

cos

)′
(Use chain rule)

= − 1

cos2
cos′

=
1

cos2
sin

=
tan

cos
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and we already know from the lecture that tan′ = 1
cos2 ≡ sec2. Hence(

sec

1 + tan

)′
=

sec′ (1 + tan)− sec (1 + tan)
′

(1 + tan)
2

=
tan
cos (1 + tan)− sec sec2

(1 + tan)
2

=
tan sec (1 + tan)− sec3

(1 + tan)
2

=
sec
(
tan (1 + tan)− sec2

)
(1 + tan)

2

and

tan (1 + tan)− sec2 = sin sec (1 + sin sec)− sec2

= sin sec+ sin2 sec2− sec2

= sec2
(
sin2−1

)
+ sin sec

= sec2
(
− cos2

)
+ sin sec

= −1 + sin sec

= tan−1

So the final answer is (
sec

1 + tan

)′
=

sec (tan−1)
(1 + tan)

2 .

2. x 7→ (cos (x))
2, x 7→ cos

(
x2
)
and x 7→ cos (cos (x)).

We proceed in steps

(a) We have using the power rule and the chain rule(
x 7→ cos (x)

2
)′

= 2 cos (x) cos′ (x)

= −2 cos (x) sin (x)
= − sin (2x) .

(b) Now we use the chain rule first and then the power rule(
x 7→ cos

(
x2
))′

= − sin
(
x2
) (
x 7→ x2

)′
= − sin

(
x2
)
2x

= −2x sin
(
x2
)
.

(c) Finally, one could interpret two applications of cos (via composition) as cos2 too, which is why this is the third option
given. Hence using the chain rule alone we get

(cos ◦ cos)′ = (cos′ ◦ cos) cos′

= (− sin ◦ cos) (− sin)

= (sin ◦ cos) sin

which can also be written as

(x 7→ cos (cos (x)))
′

= sin (cos (x))× sin (x) .

3. tan.
We saw in the lecture (Example 8.30) that this is equal to sec.
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4. cot.
We have

cot ≡ cos

sin

=
1

tan

and so we may use the previous result plus the chain rule to get

cot′ = − 1

tan2
tan′

= − 1

tan2
sec

= −cos2

sin2
1

cos

= − 1

sin2
.

5. R 3 x 7→ (ex)
2.

We re-write this as (ex)2 ≡ exp (x)
2
= exp (x) exp (x) = exp2. Hence the chain rule and the power rule gives(

exp2
)′
≡ 2 exp exp′

= 2 exp exp

= 2 exp2 .

Another way to view this result is using the rules of exponents, which tell us that (ex)2 = e2x so that
(
e2x
)′

= e2x2.

6. R 3 x 7→ ee
ee

x

.
This exercise is just really annoying, what is going on here? Just many many applications of the chain rule. Let us count:

ee
ee

x

= exp (exp (exp (exp (x))))

= (exp ◦ exp ◦ exp ◦ exp) (x)

and so using the chain rule four times we get

(exp ◦ exp ◦ exp ◦ exp)′ = (exp′ ◦ exp ◦ exp ◦ exp) (exp ◦ exp ◦ exp)′

= (exp ◦ exp ◦ exp ◦ exp) (exp′ ◦ exp ◦ exp) (exp ◦ exp)′

= (exp ◦ exp ◦ exp ◦ exp) (exp ◦ exp ◦ exp) (exp′ ◦ exp) exp
= (exp ◦ exp ◦ exp ◦ exp) (exp ◦ exp ◦ exp) (exp ◦ exp) exp

Rewritten with the argument, this becomes (
ee

ee
x
)′

= ee
ee

x

ee
ex

ee
x

ex

(Factor together)

= ex+ex+ee
x
+ee

ex

.

7. R 3 x 7→ 5.
The derivative of any constant function is zero.

8. (0,∞) 3 x 7→ 3
√
x.

This is solved in the lecture notes in Example 8.25.
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9. R \ { 0 } 3 x 7→ 5x2+10x+20
80x100 .

We apply the quotient rule to get(
x 7→ 5x2 + 10x+ 20

80x100

)′
=

(
x 7→ 5x2 + 10x+ 20

)′ (
x 7→ 80x100

)
−
(
x 7→ 5x2 + 10x+ 20

) (
x 7→ 80x100

)′
(x 7→ 80x100)

2

= x 7→
(10x+ 10) 80x100 −

(
5x2 + 10x+ 20

)
8000x99

6400x200

= x 7→
(
10x+ 10

80x100
− 25

x2 + 2x+ 4

4x101

)
.

10. R \ { 0 } 3 x 7→ 1
|x| whenever possible.

With r (x) := 1
x and a (x) := |x| we have x 7→ 1

|x| = r ◦ a, and so

(r ◦ a)′ = (r′ ◦ a) a′

and recall r′ = −r2 and a′ = s where

s (x) ≡

{
1 x > 0

−1 x < 0
.

Hence

(r ◦ a)′ = − s

a2

with the argument this becomes (
x 7→ 1

|x|

)′
= −s (x)

|x|2(
Rewrite s (x) =

|x|
x

for all x 6= 0

)
= − |x|

x |x|2

= − 1

x |x|
.

11. exp ◦ cos.
This is an easy application of the chain rule

(exp ◦ cos)′ = (exp′ ◦ cos) cos′

= (exp ◦ cos) (− sin)

= − (exp ◦ cos) sin .

Exercise 11. If f is differentiable then f ′ is a new function, on which we may yet again ask whether f ′ itself differentiable. If
it is, then we can calculate in turn its own derivative, (f ′)′ which is called the second derivative (denoted by f ′′) of f . Calculate
the second derivative of the following functions:

1. R 3 x 7→ x.
Since 1′ = 1, 1′′ = 1′ = 0.

2. R 3 x 7→ x2.
We have

(
x 7→ x2

)′
= x 7→ 2x whose derivative is just x 7→ 2.

3. R \ { 0 } 3 x 7→ 1
x .

We know that, with r (x) ≡ 1
x , r

′ = −r2, so that r′′ =
(
−r2

)
= −2rr′ = −2r

(
−r2

)
= 2r3. I.e.(

x 7→ 1

x

)′′
= x 7→ 2

x3
.
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Exercise 12. Determine whether the following functions are increasing or decreasing by examining the sign of their derivative.
Recall that if the derivative was positive at some point, then the function was increasing and if it was negative the function was
decreasing.

1. exp.
Since exp′ = exp and exp > 0, the function exp is always increasing.

2. log.
We have log′ = r with r (x) ≡ 1

x for all x > 0. Since im (r) ⊆ (0,∞), i.e., r (x) > 0 for all x > 0, we have log increasing on
(0,∞).

3. x 7→ x3.(
x 7→ x3

)
= 3x2 which is always positive since x2 is always positive. Hence x 7→ x3 is always increasing.

4. (0,∞) 3 x 7→
√
x.

We have (x 7→
√
x)
′
= x 7→ 1

2
√
x
which is itself always positive, so the square root is always increasing.

Exercise 13. Use the so-called the hospital rule, when appropriate (sometimes you can just proceed directly) in order to evaluate
the following limits.

1. For any n ∈ N, limx→∞
xn

ex .
We have, by the algebra of the limits, limx→∞ xn = (limx→∞ x)

n
=∞. For the denominator, we have limx→∞ ex =∞, so

the limit is of the form ∞
∞ , and perhaps we can apply l’Hospital’s rule, if the limit of the quotient of the derivatives exists.

This corresponds to

lim
x→∞

(xn)
′

(ex)
′ = lim

x→∞

nxn−1

ex

This is still of the form ∞
∞ , unless n = 1, in which case xn−1 = 1, and we get limx→∞

n
ex = n limx→∞

1
ex = n · 0 = 0. This

suggests we can apply l’Hospital’s rule iteratively n-times until we get x-dependence in the numerator of the form x0 = 1.
In the denominator we’ll always get the same thing, since exp′ = exp. Hence the result is zero, after n-applications of the
l’Hospital rule.
If one wants to avoid l’Hospital rule, then one could also have concluded this directly, by appealing to the intuitive fact
that x 7→ xn grows much slower than x 7→ ex as x→∞. To see this, we need to study bounds on the logarithm:

xn

exp (x)
=

1

x−n exp (x)

=
1

exp (x+ log (x−n))

=
1

exp (x− n log (x))

Now when we take limx→∞, we use the continuity of exp to push the limit through, and get

lim
x→∞

xn

exp (x)
=

1

exp (limx→∞ (x− n log (x)))

and now we can use the bound on the logarithm we established before (from the practice midterm 1)

log (y) ≤ y − 1

If we plug in y = x
2n then we find

log (x) = log
(
2n

x

2n

)
= log (2n) + log

( x
2n

)
≤ log (2n) +

x

2n
− 1

≤ log (2n) +
x

2n
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and hence

x− n log (x) ≥ x− n
(
log (2n) +

x

2n

)
= x− 1

2
x− n log (2n)

=
1

2
x− n log (2n)

Hence when we take limx→∞ of both sides of this inequality (lecture notes Remark 6.15) we find

lim
x→∞

(x− n log (x)) ≥ lim
x→∞

(
1

2
x− n log (2n)

)
=

(
lim
x→∞

1

2
x

)
− n log (2n)

= ∞− n log (2n)
= ∞ .

Now exp (∞)→∞ and 1
∞ → 0, so we find the same result as with l’Hospital’s rule, but we had to work much harder with

the estimates on log!

2. limx→3
cos(x) log(x−3)

log(ex−e3) .

The cos is just a distraction, we can ignore it first. Then the limit is of the form log(0)
log(0) ∼

−∞
−∞ , so maybe we can use the

Hospital rule. Let us consider the quotient of the derivatives:

lim
x→3

log (x− 3)

log (ex − e3)

?
= lim

x→3

1
x−3
1

ex−e3 e
x

= lim
x→3

e−x
ex − e3

x− 3

= e−3 lim
x→3

ex − e3

x− 3

this last limit is again of the form 0
0 , so we try l’Hospital on it again

lim
x→3

ex − e3

x− 3

?
= lim

x→3

ex

1

= e3

this last limit exists, so we find all together that the two applications of l’Hospital’s rule were justified and

lim
x→3

cos (x) log (x− 3)

log (ex − e3)
=

 lim
x→3

cos (x)︸ ︷︷ ︸
=cos(3)

×
 lim
x→3

log (x− 3)

log (ex − e3)︸ ︷︷ ︸
=1


= cos (3) .

3. limx→0
ex−1
sin(x) .

This limit is of the form 0
0 , so maybe we can apply l’Hospital’s rule on it.

lim
x→0

ex − 1

sin (x)

?
= lim

x→0

ex

cos (x)

=
1

1
= 1 .

4. limx→0
tan(px)
tan(qx) for two constants p, q ∈ R.

We have tan (0) = 0 so that the limit is of the form 0
0 and maybe we can apply l’Hospital rule. Note that

(x 7→ tan (px))
′

= x 7→ p

cos (px)
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so that

lim
x→0

tan (px)

tan (qx)

?
= lim

x→0

p
cos(px)

q
cos(qx)

but now cos (0) = 1, so we have the limit indeed exists and equals p
q :

lim
x→0

tan (px)

tan (qx)
=

p

q
.

5. limx→0
log(x)
x (restrict x as necessary to make the logarithm make sense).

We have log (0)→ −∞ and x→ 0, so the limit is of the form −∞
0 which is not appropriate for l’Hospital’s rule. We have

the bounds (see the practice midterm or the midterm 1; Definition 10.2 in the lecture notes)

1− 1

x
≤ log (x) ≤ x− 1

Hence we have

1

x
− 1

x2
≤ log(x)

x ≤ 1− 1

x

where we note 1
x −

1
x2 = 1

x

(
1− 1

x

)
. When we now send x→ 0 (but only positive values of x, so that the logarithm makes

sense) then

1

x

(
1− 1

x

)
→ −∞

and

1− 1

x
→ −∞

hence by the squeeze theorem we find that

log (x)

x
→ −∞ .

Exercise 14. Determine the set where the following functions are differentiable and find the derivative on that set. No proof
is necessary.

1. R 3 x 7→ x.
This is just the identity function which is differentiable everywhere, and its derivative is the constant function x 7→ 1.

2. R 3 x 7→ |x|.
As we saw in class (lecture notes Example 8.8), x 7→ |x| is differentiable on R \ { 0 }, and its derivative is equal

(R \ { 0 } 3 x 7→ |x|)′ =

{
1 x > 0

−1 x < 0
.

3. R 3 x 7→

{
1 x ≥ 1

x x < 1
.

The graph of this function looks like

18



and we can differentiate the two regions separately, from which we get x 7→ 1 on (−∞, 1) and x 7→ 0 on (1,∞). The
question is whether the function (let’s call it f) is differentiable at 1 (it is not) and the way to see this is to evaluate the
limit

f ′ (1)
?
= lim

ε→0

1

ε
(f (1 + ε)− f (1))

(Use f (1) = 1)

= lim
ε→0

1

ε
(f (1 + ε)− 1)

=

{
limε→0+

1
ε (f (1 + ε)− 1)

limε→0−
1
ε (f (1 + ε)− f (1))

=

{
limε→0+

1
ε (1− 1)

limε→0−
1
ε (1 + ε− 1)

=

{
limε→0+ 0

limε→0− 1

Since the limits from either side of 1 are not equal, we conclude that the general limit does not exist, and hence, f is not
differentiable at 1.

Exercise 15. Find a function f : R→ R such that f ′ (x) = 5f (x) for all x ∈ R and such that f (0) = 1.

Solution. For us, the way to solve such problems is to guess. Once one has acquired familiarity with several examples (there are
actually very few which can be explicitly solved) one tries to combine them together to find a solution to a particular problem
at hand.

The point is we know that exp′ = exp, and this is the basic building block in many such problems. So let us try a function
similar to this with the chain rule:

(x 7→ exp (5x))
′

= (x 7→ exp (5x)) (x 7→ 5x)
′

= (x 7→ exp (5x)) 5

= x 7→ 5 exp (5x)

In addition,

exp (5 · 0) = exp (0)

= 1

So the function f (x) := exp (5x) for all x ∈ R does the job.
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