$$
\text { Calc-n-lose - } H \text { W4 -Part } 1 \text { - Solutions }
$$

1.

$$
\begin{aligned}
& 4 x^{2}-6 x+10=0 \Rightarrow x=\frac{1}{2 \cdot 4}\left(-(-6) \pm \sqrt{(-6)^{2}-4 \cdot 4 \cdot 10}\right) \\
&=\frac{1}{8}\left(6 \pm \frac{\sqrt{36-160}}{-124}\right) \\
& \sqrt{-124} \notin \mathbb{R}
\end{aligned}
$$

x which solves the eq-h does not lie within $\mathbb{R} \Leftrightarrow \nexists$ real solons,

3.

$$
\frac{\frac{x+1}{x^{2}-2 x-3}}{\frac{x-3}{x+1}}=
$$

$$
\text { Note } x^{2}-2 x-3=(x-\underbrace{\underbrace{\frac{1}{2}}_{6}\left(2+\frac{\sqrt{4+12}}{4}\right)}_{3})(x-\frac{1}{2} \underbrace{\left.\frac{(2-\sqrt{16}}{-2}\right)}_{-1})
$$

$$
=\frac{\frac{x+1}{(x-3)(x+1)}}{\frac{x-3}{x+1}}=\frac{x+1}{(x-3)^{2}}
$$

$$
=(x-3)(x+1)
$$

4. $(0, \infty) \equiv x \mapsto \sqrt{x^{\prime}}$ is the p^{n} whose graph shetchel as

$\left(90^{\circ}\right.$ rotated half parabola)
5. $\mathbb{R} \partial x \mapsto \frac{x}{3}+1=$ =y (x) is a line. Let us find two points on it:

When $x=0, \quad y(0)=1 \Rightarrow(0,1) \in \mathbb{R}^{2}$ one pt,
$x=3, y(3)=2 \rightarrow(3,2) \in \mathbb{R}^{2}$ anothor pt.

Its slope is equal to $\frac{1}{3}$
\Rightarrow angle α obeys $\operatorname{tg}(\alpha)=\frac{1}{3} \Rightarrow \alpha=\operatorname{arctg}(1 / 3)$. We seek a line with slope $\operatorname{tg}\left(\alpha+\frac{x}{2}\right)$ to that it's perpoulicular) passing through 13,2), so, a $f^{n} g$: $g(x)=\operatorname{tg}\left(\alpha+\frac{\pi}{2}\right) x+b$ for some $b \in \mathbb{R}$.
to ! find B, we plug in $(3,2)$:

$$
\begin{aligned}
& 2=\operatorname{tg}\left(\alpha+\frac{\pi}{2}\right) 3+b \Rightarrow b=2-3 \operatorname{tg}\left(\alpha+\frac{\pi}{2}\right) \\
& \begin{aligned}
\Rightarrow \quad g(x) & =\operatorname{tg}\left(\alpha+\frac{\pi}{2}\right) x+2-3 \operatorname{tg}\left(\alpha+\frac{\pi}{2}\right) \\
& =\operatorname{tg}\left(\alpha+\frac{\pi}{2}\right)(x-3)+2
\end{aligned}
\end{aligned}
$$

But what's $\operatorname{tg}\left(\alpha+\frac{\pi}{2}\right)=\operatorname{tg}(\operatorname{arctg}(1 / 3)+\pi / 2)=$?
Note $\operatorname{tg}\left(\beta+\frac{\pi}{2}\right) \equiv \frac{\sin (\beta+\pi / 2)}{\cos (\beta+\pi / 2)}=\frac{\cos (\beta)}{-\sin (\beta)} \equiv-\operatorname{tg}(\beta)$
What is $\operatorname{ctg}(\operatorname{arctg}(\gamma))=$?

$$
\begin{aligned}
& \operatorname{ctg}(\varepsilon) \equiv \frac{\cos (\varepsilon)}{\sin (\varepsilon)}=\frac{1}{\operatorname{tg}(\varepsilon)} \\
\Rightarrow & \operatorname{ctg}(\operatorname{arctg}(\gamma))=\frac{1}{\operatorname{tg}(\operatorname{arctg}(\gamma))} \equiv \frac{1}{\gamma} \equiv \operatorname{tg}
\end{aligned}
$$

We find $\operatorname{tg}\left(\alpha+\frac{\pi}{2}\right)=-\operatorname{ctg}(\operatorname{arctg}(1 / 3))$

$$
=-\frac{1}{1 / 3}=-5
$$

$$
\Rightarrow \quad g(x)=-3(x-3)+2=-3 x+9+2=-3 x+11
$$

6. Line passing ithragh $(1,1)$ and $(1,-1)$:

\Rightarrow vertical line © $x=1$ Coot represented as a f^{4} $\mathbb{R} 3 \times \mapsto a x+b$ since for each x there are many heights).
A vertical lime is perpendicular to any horizontal line, cog., $y=5$.
 $\Leftrightarrow \quad 3 x=-6$
$\Leftrightarrow x=-2$
8. $x=8$

$$
\begin{aligned}
& y^{2} x+y x^{2}+128=0 \\
& y^{2} 8+y_{6}^{64}+\frac{128}{8.88 .2}=0 \\
& y^{2}+8 y+16=0 \\
& y=\frac{1}{2}(-8 \pm \underbrace{\sqrt{64-4 \cdot 16}}_{=0})=-4
\end{aligned}
$$

9.

$$
\begin{array}{ll}
x^{3}+4 x^{2}+3 x=0 \\
x=0 & x \neq 0 \\
0=0 & x^{2}+4 x+3=0 \\
v & x=\frac{1}{2}(-4 \pm \sqrt{16-12})=\frac{1}{2}(-4 \pm 2)=-1
\end{array}
$$

\Rightarrow Largest soln is zeno.
10. $\log (x)=4 \quad \Rightarrow \log \left(x^{2}\right)=2 \log (x)=2 \cdot 4=8$.
11. $\log _{2}\left(3 x y^{2}\right)=\log _{2}(3)+\log _{2}(x)+2 \log _{2}(y)$.
12. $\quad \log \left(x^{2}-2 x+1\right)>\log (25)$ Lexp is monotone increasing

$$
\Rightarrow x<-4 \text { or } x>6 \text {. }
$$

13. $h(x):=x^{2}, g(x) i=x+1, f(x):=x+z$

$$
h(g(f(0)))=(g(f(0)))^{2}=(f(0)+1)^{2}=((0+3)+1)^{2}=16 .
$$

14. $h(x)=x^{3}, g(x)=x^{2}+1, f(x)=x+1$

$$
h(g(f(0)))+f(g(h(0)))=\left(1^{2}+1\right)^{3}+\left(\left(0^{2}+1\right)+1\right)=8+1+1=10 \text {. }
$$

15. $f(x):=3 x^{2}+3, \quad f(f(a))=3(f(a))^{2}+3=3\left(3 a^{2}+3\right)^{2}+3$

$$
=3\left(9 a^{4}+18 a^{2}+9\right)+3=27 a^{4}+54 a^{2}+30 .
$$

16. $-18<-6 x<12$
17. $x^{3}<2 x^{2}-x$

$$
3>x>-2
$$

$$
10-6^{-1}
$$

$$
\left\lceil 2 子_{0} \quad \begin{array}{l}
\sin (a+b)=1, \operatorname{tg}(a)=0 \\
\operatorname{tg}(b)=?
\end{array}\right.
$$

$$
\operatorname{tg}(b)=\text { ? }
$$

$$
b_{1}(a)=0 \Rightarrow \frac{\sin (a)}{\cos (a)}=0
$$

$$
\begin{aligned}
& x^{3}-2 x^{2}+x<0 \\
& x\left(x^{2}-2 x+1\right)<0
\end{aligned}
$$

$$
\Rightarrow \quad a=\pi n \exists n \in \mathbb{Z}
$$

$$
\begin{array}{ll}
\text { amen } & \Rightarrow b=\frac{\pi}{h}+2 \min -\pi n \\
\end{array}
$$

\Rightarrow either $x<0$ and $x^{2}-2 x+1>0$

$$
\operatorname{tg}(b)^{2}=
$$

$$
x>0 \text { and } x^{2}-2 x+1<0
$$

Solve $x^{2}-2 x+1=0 \Leftrightarrow(x-1)^{2}=0 \Rightarrow x=1$.
 $=\operatorname{tg}\left(\frac{1}{2}+\pi \pi n-\pi h\right)$
$=\operatorname{tg}\left(\frac{\pi}{2}-\pi h\right)$ $=\frac{\sin \left(\frac{\pi}{2}-\pi n\right)}{\cos \left(\frac{\pi}{2}-\pi n\right)}$

$$
=\frac{\sin (\pi / k)}{\cos (\pi / 2)}
$$

$$
=\lg (1 / 2)
$$

$$
=\infty .
$$

$\Rightarrow x^{2}-2 x+1>0$ if $x \neq 1$.
So we get $x<0$.
18. $(x+1)(x+2)>0 \Rightarrow x+1>0$ and $x+2>0$ or $x+1<0$ and $x+2<0$.
$\Leftrightarrow \quad \begin{array}{llll} & x>-1 & \text { and } & x>-2 \\ & x<-1 & \text { and } & x<-2\end{array} \quad$ or]

$$
x<-1 \text { and } x<-2 \text {. }
$$

19. $\{3 x+4 y=7 \Leftrightarrow \quad \Leftrightarrow \quad \Leftrightarrow \quad$ 居 $x<-2$.
20. $\begin{cases}3 x+4 y=7 & \Rightarrow 8 x=8 \Rightarrow x=1 \\ 5 x+4 y=1 & \Rightarrow 3+4 y=7 \Rightarrow y=1\end{cases}$
21. $\left\{\begin{aligned} x-y=4 \quad & \Rightarrow 3 x=-3 \Rightarrow x=-1 \Rightarrow y=-5 \\ 4 x-y=1 \quad & \Rightarrow 3 x y=3(-1)(-5)=15 .\end{aligned}\right.$
22. $\begin{cases}y+3 x+2=0 & \Rightarrow \\ y=x^{2}+3 x+2=0 \\ & x=\frac{1}{2}(-3 \pm \sqrt{9}\end{cases}$
$22 . \quad 60^{\circ} \rightarrow \frac{60^{\circ}}{360^{\circ}} \cdot 2 \pi=\frac{1}{6} \cdot 2 \pi=\pi / 3$.

Homework 4: Calculus 1 (SOLUTIONS)

Continuity and its properties, the intermediate value theorem, introduction to derivatives

Problem 1:

Part a:

a) The goal is to find a value of c in $[-2,4]$ such that:

$$
f(c)=0=M
$$

This is exactly the second conclusion of the Intermediate Value Theorem. So, let's check that the "requirements" of the theorem are met.

First, the function is a polynomial and so is continuous everywhere and in particular is continuous on the interval $[-2,4]$.

Second, Now all that we need to do is verify that MM is between the function values as the endpoints of the interval. So,

$$
f(-2)=1, f(4)=-167
$$

Therefore, we have,

$$
f(4)=-167<0<1=f(-2)
$$

So, by the Intermediate Value Theorem there must be a number cc such that,

$$
-2<c<4 \& f(c)=0
$$

b) The problem is then asking us to show that there is a cc in $[-2,4]$ so that:

$$
\mathrm{f}(\mathrm{c})=0=\mathrm{M}
$$

First, the function is a sum of a polynomial (which is continuous everywhere) and a natural logarithm (which is continuous on $\mathrm{w}>-25-i . e$. where the argument is positive) and so is continuous on the interval $[0,4]$. Now all that we need to do is verify that MM is between the function values as the endpoints of the interval. So,

$$
f(0)=-2.7726 \quad f(4)=3.6358
$$

Therefore, we have,

$$
f(0)=-2.7726<0<3.6358=f(4)
$$

So, by the Intermediate Value Theorem there must be a number cc such that,

$$
0<c<4 \& f(c)=0
$$

c) The problem is then asking us to show that there is a c in $[-2,4]$ so that,

$$
f(c)=0=M
$$

First, the function is a sum and difference of a polynomial and two exponentials (all of which are continuous everywhere) and so is continuous on the interval $[1,3]$.

Now all that we need to do is verify that MM is between the function values as the endpoints of the interval. So,

$$
f(1)=23.7938 \quad f(3)=-190.5734
$$

Therefore, we have, $f(3)=-190.5734<0<23.7938=f(1)$
So, by the Intermediate Value Theorem there must be a number cc such that, $1<\mathrm{c}<3 \& \mathrm{f}(\mathrm{c})=0$

Part b:

a) TRUE. It is an exact application of the intermediate value theorem (look at the previous problems)
b) FALSE: the intermediate value theorem indicates the existence of "at least" one real value of b that works. IT does not imply uniqueness
c) TRUE
d) FALSE
(c and d stem from questions a and b)

Problem 2:

This problem tests the thorough understanding of limits. Understanding what limits fundamentally are is necessary to understand continuity.

Please go back to the very definition of a limit to derive the solutions.
Propositions 2, 4, 5, 7 are true.

Problem 3:

There are multiple ways of proving the derivative of a product. (product rule). As long as the definition of a derivative is correctly used and the steps to get to the result are logical, give full credit. See the lecture notes Claim 8.14.

Problem 4:

a) Continuity has to be study for the value 0 . (it is obviously continuous for all real non zero values)
$\operatorname{Sqrt}(\mathrm{x})=|x|$
If $x<0$ then, $|x|=-\mathrm{x}$ and thus $f(x)=x-1$
Thus, $\lim _{x \rightarrow 0-} f(x)=-1$

If $x>0$ then $f(x)==x+1$,
Thus, $\lim _{x \rightarrow 0+} f(x)=1$

Therefore, the function is not continuous at zero (limits do not match)
b)
c) The limits when x goes to $0-$ and $0+$ match.

The limit of f when x goes to 0 - is the limit of $\sin (x) / x$ so it is 1
When $x=0, f(0)=1$
The limit of f when x goes to $0+$ is the limit of $\mathrm{x}^{2}+1$ so it is 1
All of these values match, f is continuous at 0 (so continuous for all real values)
d) There is continuity if the limits at both $0.5-$ and $0.5+$ match

The limit of f as x goes to 0.5 - is equal to $f(0.5)$ which is $2 / 3$
The limit of f as x goes to $0.5+$ is equal to $1+0.25 \mathrm{~m}$
Solve for m and get $\mathrm{m}=-4 / 3$

