Calculus 1-Section 2-Spring 2019-HW3 Solutions

Mat Hillman

February $11^{\text {th }}, 2019$

Exercise 1

Exercise 2

(1) For $f(x)=\log \left(\tan ^{3}(2 x)\right)$ to be well-defined, we need $\tan ^{3}(2 x)>0$. This is equivalent to $\tan (2 x)>0$, so $2 x \in\left(n \pi,\left(n+\frac{1}{2}\right) \pi\right)$ for some integer n. Therefore, the domain of f is

$$
\left\{\left(\frac{n \pi}{2},\left(\frac{n}{2}+\frac{1}{4}\right) \pi\right): n \text { is any integer }\right\} .
$$

On this domain, $\tan ^{3}(2 x)$ is positive and continuous. Since the composition of continuous functions is continuous, $f(x)=\log \left(\tan ^{3}(2 x)\right)$ is continuous on the entire domain (described above).
(2) If $x \neq 1,-1$, then $|x|-1$ is nonzero, so the quotient $\frac{x^{2}-1}{|x|-1}$ is continuous.

For $x=1$, we check that

$$
\begin{aligned}
\lim _{x \rightarrow 1} f(x) & =\lim _{x \rightarrow 1} \frac{x^{2}-1}{|x|-1} \\
& =\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1} \quad[\text { for } x \text { close to } 1, x \text { is positive so }|x|=x] \\
& =\lim _{x \rightarrow 1} \frac{(x+1)(x-1)}{x-1} \\
& =\lim _{x \rightarrow 1}(x+1) \\
& =2 .
\end{aligned}
$$

Since this is equal to $f(1), f$ is continuous at 1 .
Similarly,

$$
\begin{aligned}
\lim _{x \rightarrow-1} f(x) & =\lim _{x \rightarrow-1} \frac{x^{2}-1}{|x|-1} \\
& =\lim _{x \rightarrow-1} \frac{x^{2}-1}{-x-1} \quad[\text { for } x \text { close to }-1, x \text { is negative so }|x|=-x] \\
& =\lim _{x \rightarrow-1} \frac{(x+1)(x-1)}{-(x+1)} \\
& =\lim _{x \rightarrow-1}-(x-1) \\
& =2 .
\end{aligned}
$$

Since this is equal to $f(-1), f$ is continuous at -1 .
Therefore, f is continuous on all of \mathbb{R}.

Exercise 3

(1)

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\tan \left(\frac{1}{2} x^{2}\right)}{x} & =\lim _{x \rightarrow 0} \frac{\sin \left(\frac{1}{2} x^{2}\right)}{x \cos \left(\frac{1}{2} x^{2}\right)} \\
& =\lim _{x \rightarrow 0}\left(\frac{\frac{1}{2} x^{2}}{x \cos \left(\frac{1}{2} x^{2}\right)} \cdot \frac{\sin \left(\frac{1}{2} x^{2}\right)}{\frac{1}{2} x^{2}}\right) \\
& =\lim _{x \rightarrow 0}\left(\frac{x}{2 \cos \left(\frac{1}{2} x^{2}\right)} \cdot \frac{\sin \left(\frac{1}{2} x^{2}\right)}{\frac{1}{2} x^{2}}\right) .
\end{aligned}
$$

As $x \rightarrow 0, \frac{1}{2} x^{2} \rightarrow 0$ as well, so $\lim _{x \rightarrow 0} \frac{x}{2 \cos \left(\frac{1}{2} x^{2}\right)}=\frac{0}{2 \cos (0)}=0$ and $\lim _{x \rightarrow 0} \frac{\sin \left(\frac{1}{2} x^{2}\right)}{\frac{1}{2} x^{2}}=\lim _{t \rightarrow 0} \frac{\sin t}{t}=1$.
Therefore,

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{\tan \left(\frac{1}{2} x^{2}\right)}{x}=\left(\lim _{x \rightarrow 0} \frac{x}{2 \cos \left(\frac{1}{2} x^{2}\right)}\right) \cdot\left(\lim _{x \rightarrow 0} \frac{\sin \left(\frac{1}{2} x^{2}\right)}{\frac{1}{2} x^{2}}\right)=0 \cdot 1=0 . \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} \frac{(\sqrt{x}+x)(x-2)}{1+x \sqrt{x}} & =\lim _{x \rightarrow+\infty} \frac{(\sqrt{x}+x)(x-2) \cdot \frac{1}{x \sqrt{x}}}{(1+x \sqrt{x}) \cdot \frac{1}{x \sqrt{x}}} \\
& =\lim _{x \rightarrow+\infty} \frac{\frac{\sqrt{x}+x}{\sqrt{x}} \cdot \frac{x-2}{x}}{\frac{1}{x \sqrt{x}}+1} \\
& =\lim _{x \rightarrow+\infty} \frac{(1+\sqrt{x})\left(1-\frac{2}{x}\right)}{\frac{1}{x \sqrt{x}}+1} .
\end{aligned}
$$

As $x \rightarrow+\infty$, the term $1+\sqrt{x} \rightarrow+\infty$ as well, whereas $1-\frac{2}{x} \rightarrow 1$ and $\frac{1}{x \sqrt{x}}+1 \rightarrow 1$. Therefore,

$$
\lim _{x \rightarrow+\infty} \frac{(\sqrt{x}+x)(x-2)}{1+x \sqrt{x}}=+\infty .
$$

(3) Since sin takes values between -1 and 1 , we have

$$
2^{-1} \leq 2^{\sin x} \leq 2^{1} \Longrightarrow \frac{1}{2} e^{-x^{2}} \leq e^{-x^{2}} 2^{\sin x} \leq 2 e^{-x^{2}}
$$

for all x. Note that $\lim _{x \rightarrow+\infty} \frac{1}{2} e^{-x^{2}}=0$ and $\lim _{x \rightarrow+\infty} 2 e^{-x^{2}}=0$, so the Squeeze Theorem implies that $\lim _{x \rightarrow+\infty} e^{-x^{2}} 2^{\sin x}=0$ and hence

$$
\lim _{x \rightarrow+\infty} \cos \left(e^{-x^{2}} 2^{\sin x}\right)=\cos (0)=1
$$

(4)

$$
\lim _{x \rightarrow 1^{-}}\left(\frac{x^{3}+2}{(x-1)(x-2)}-x\right)=\lim _{x \rightarrow 1^{-}}\left(\frac{1}{x-1} \cdot \frac{x^{3}+2}{x-2}\right)-1
$$

As $x \rightarrow 1^{-}, \frac{1}{x-1} \rightarrow-\infty$, whereas $\frac{x^{3}+2}{x-2} \rightarrow \frac{1+2}{1-2}=-3$. Therefore,

$$
\lim _{x \rightarrow 1^{-}}\left(\frac{x^{3}+2}{(x-1)(x-2)}-x\right)=+\infty .
$$

(5)

$$
\begin{aligned}
\lim _{x \rightarrow 5^{+}}\left(\frac{x-5}{x} \cdot \frac{e^{x}}{x^{2}-6 x+5}\right) & =\lim _{x \rightarrow 5^{+}}\left(\frac{x-5}{x} \cdot \frac{e^{x}}{(x-1)(x-5)}\right) \\
& =\lim _{x \rightarrow 5^{+}}\left(\frac{1}{x} \cdot \frac{e^{x}}{x-1}\right) \\
& =\frac{1}{5} \cdot \frac{e^{5}}{5-1} \\
& =\frac{e^{5}}{20}
\end{aligned}
$$

(6)

$$
\begin{aligned}
\lim _{x \rightarrow+\infty}\left(\sqrt{x^{2}+8 x}-x\right) & =\lim _{x \rightarrow+\infty}\left(\sqrt{x^{2}+8 x}-x\right) \cdot \frac{\sqrt{x^{2}+8 x}+x}{\sqrt{x^{2}+8 x}+x} \\
& =\lim _{x \rightarrow+\infty} \frac{\left(x^{2}+8 x\right)-x^{2}}{\sqrt{x^{2}+8 x}+x} \\
& =\lim _{x \rightarrow+\infty} \frac{8 x}{\sqrt{x^{2}+8 x}+x} \\
& =\lim _{x \rightarrow+\infty} \frac{8}{\frac{1}{x}\left(\sqrt{x^{2}+8 x}+x\right)} \\
& =\lim _{x \rightarrow+\infty} \frac{8}{\sqrt{1+\frac{8}{x}}+1} \\
& =\frac{8}{\sqrt{1+0}+1} \\
& =4 .
\end{aligned}
$$

(7) As x approaches 0 , $\sin \frac{\pi}{x}$ fluctuates between -1 and 1 infinitely often $\Longrightarrow \sin ^{2} \frac{\pi}{x}$ fluctuates between 0 and $1 \Longrightarrow \log _{2}\left(\sin ^{2} \frac{x}{x}+1\right)$ fluctuates between $\log _{2}(0+1)=0$ and $\log _{2}(1+1)=1$. Therefore, $\lim _{x \rightarrow 0} \log _{2}\left(\sin ^{2} \frac{\pi}{x}+1\right)$ does not exist.
(8) Since cos takes values between -1 and 1 , we have

$$
-1 \leq \cos \left(\sin \frac{1}{x}\right) \leq 1 \Longrightarrow-\sqrt{x} \leq \sqrt{x} \cos \left(\sin \frac{1}{x}\right) \leq \sqrt{x}
$$

for all x. Note that $\lim _{x \rightarrow 0^{+}}-\sqrt{x}=0$ and $\lim _{x \rightarrow 0^{+}} \sqrt{x}=0$, so the Squeeze Theorem implies that

$$
\lim _{x \rightarrow 0^{+}} \sqrt{x} \cos \left(\sin \frac{1}{x}\right)=0
$$

(9)

$$
\begin{gather*}
\lim _{x \rightarrow-1} \sin \left(\frac{\pi(x-1)}{x^{2}+1}\right)=\sin \left(\frac{\pi(-1-1)}{(-1)^{2}+1}\right)=\sin \left(\frac{-2 \pi}{2}\right)=\sin (-\pi)=0 . \\
\lim _{x \rightarrow \pi} \frac{\cos x+\sin x+1}{x-3 \pi}=\frac{\cos \pi+\sin \pi+1}{\pi-3 \pi}=\frac{-1+0+1}{-2 \pi}=0 . \tag{10}
\end{gather*}
$$

Exercise 4

Recall the definition:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

(1) For $f(x)=x^{2}$,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x^{2}+2 x h+h^{2}\right)-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(2 x+h) \\
& =2 x
\end{aligned}
$$

(2) For $f(x)=\frac{x}{x^{2}-4}$,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \cdot\left(\frac{x+h}{(x+h)^{2}-4}-\frac{x}{x^{2}-4}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \cdot \frac{(x+h)\left(x^{2}-4\right)-x\left[(x+h)^{2}-4\right]}{\left[(x+h)^{2}-4\right]\left(x^{2}-4\right)} \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \cdot \frac{\left(x^{3}+h x^{2}-4 x-4 h\right)-x\left[x^{2}+2 x h+h^{2}-4\right]}{\left[(x+h)^{2}-4\right]\left(x^{2}-4\right)} \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \cdot \frac{-h x^{2}-4 h-x h^{2}}{\left[(x+h)^{2}-4\right]\left(x^{2}-4\right)} \\
& =\lim _{h \rightarrow 0} \frac{-x^{2}-4-x h}{\left[(x+h)^{2}-4\right]\left(x^{2}-4\right)} \\
& =\frac{-x^{2}-4-0}{\left[(x+0)^{2}-4\right]\left(x^{2}-4\right)} \\
& =-\frac{x^{2}+4}{\left(x^{2}-4\right)^{2}} .
\end{aligned}
$$

(3) For $f(x)=x+\sqrt{x}$,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h+\sqrt{x+h})-(x+\sqrt{x})}{h} \\
& =\lim _{h \rightarrow 0} \frac{h+\sqrt{x+h}-\sqrt{x}}{h} \\
& =\lim _{h \rightarrow 0}\left(1+\frac{\sqrt{x+h}-\sqrt{x}}{h}\right) \\
& =1+\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h} \\
& =1+\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}} \\
& =1+\lim _{h \rightarrow 0} \frac{(x+h)-x}{h(\sqrt{x+h}+\sqrt{x})} \\
& =1+\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h}+\sqrt{x})} \\
& =1+\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h}+\sqrt{x}} \\
& =1+\frac{1}{\sqrt{x+0}+\sqrt{x}} \\
& =1+\frac{1}{2 \sqrt{x}} .
\end{aligned}
$$

Exercise 5

There are many possible answers, and one example is:
(a) $f(x)=2+\sin \frac{1}{x}, g(x)=\frac{1}{2+\sin \frac{1}{x}}$, so that $f(x) g(x)$ is identically 1 .
(b) $f(x)=\frac{1}{x}, g(x)=-\frac{1}{x}$, so that $f(x)+g(x)$ is identically 0 .

