Calculus 1 HW2 Solution

Donghan Kim

February 10, 2019

Functions

Exercise 1

Suppose that there is a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is strictly increasing but not injective. Because f is not injective, there must exist two numbers a, b in \mathbb{R} such that $a \neq b$ but $f(a)=f(b)$. If we assume $a<b$ without loss of generality, $f(a)<f(b)$ must hold as f is strictly increasing, which is a contradiction to the identity $f(a)=f(b)$ above. Therefore, there is no such function.

Exercise 2

Let x, y, z be 3 different elements in the domain A.

1. First we assume that f is injective, and also assume $|B|<3$.

Case 1: If $|B|=1$, then for all 3 elements x, y, z, the function values should be the same $f(x)=f(y)=f(z)$, as there is only one element in codomain. This violates the fact that f is injective.
Case 2: If $|B|=2$, similar situation happens; there must be at least two different elements in A which have the same function value. This is also a contradiction that f is injective.
Therefore, if f is injective, the number of elements of B should be greater than or equal to 3 .
2. We also prove by contradiction; we assume that f is surjective, as well as $|B|>4$. Then, the set $B-\{f(x), f(y), f(z)\}$ is not empty and α is an element in this set. Then, there is no element in A with the function value
equal to α, which means f cannot be surjective. Thus, if f is surjective, the inequality $|B| \leq 3$ must hold.
3. f is bijective when it is both injective and surjective. From part 1 and 2, two inequalities $|B| \geq 3$ and $|B| \leq 3$ must hold. Combining these two, we have $|B|=3$.

Exercise 3

1. First, the domain of f is $[-1, \infty)$, and the domain of g is \mathbb{R}.
$(f \circ g)(x)=\sqrt{\sin (x)+1}$ and the domain is \mathbb{R} (The range of sin function is $[-1,1]$, thus $(f \circ g)(x)$ is well-defined for all values $x \in \mathbb{R})$. $(g \circ f)(x)=\sin (\sqrt{x+1})$, and the domain is $[-1, \infty)$ (same as f).
2. The domains of f and g are both \mathbb{R}.
$(f \circ g)(x)=e^{-x^{2}+4 x}$, and $(g \circ f)(x)=-e^{2 x}+4 e^{x}$ and the domains are also \mathbb{R}.
3. Let $f(x)=\sin ^{2}(x)$ and $g(x)=\frac{1}{x}$. Then, $(f \circ g)(x)=\sin ^{2}\left(\frac{1}{x}\right)$.
4. Let $f(x)=\sqrt{x}$ and $g(x)=2|x|$. Then, $(f \circ g)(x)=\sqrt{2|x|}$.
5. Let $f(x)=5 x+6$ and $g(x)=\sin x$. Then, $(f \circ g)(x)=5 \sin (x)+6$.

Exercise 4

Graphs are on the last page.

1. The range is $(-\infty, 4] . f(x)=-(x-3)^{2}+4$
2. The range is $[-4,4] . f(x)=4 \sin \left(x-\frac{\pi}{2}\right)$
3. The range is $(5, \infty) . f(x)=e^{-x}+5$
4. $|x|+|y|=1$
5. $x y=0$
6. $x^{2}=y^{2}$

Limits

Exercise 5

1. $a(n)=\frac{1}{2 n}$ and the sequence converges to 0 .
2. By the 5 th statement in Claim 6.14 of Lecture note with $a=-\frac{1}{4}$, this sequence converges to 0 .
3. This sequence does not converge because it oscillates between 3 numbers $1,0,-1$.
4. $a(n)=\frac{n^{2}}{n+1}$ and the numerators grow much faster than the denominators. Thus, the limit diverges to ∞. (Actually, by setting the new sequence $b(n)=$ $n^{2}-1$, one can show that $a(n)=\frac{n^{2}}{n+1}>n^{2}-1=b(n)$. Try to show this! Then, it is also easy to show that $b(n)$ diverges to ∞, and the divergence of $a(n)$ follows.)

Exercise 6

1. $\lim _{x \rightarrow 0} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 0}(x+1)=1$
2. $\lim _{x \rightarrow \infty} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow \infty}(x+1)=\infty$ (Diverge)
3. $\lim _{x \rightarrow 0} 2^{2^{x}}=2^{\lim _{x \rightarrow 0} 2^{x}}=2^{1}=2$
4. The inequality $-\frac{1}{x} \leq \frac{\sin (5 x)}{x} \leq \frac{1}{x}$ holds for positive x and we know that $\lim _{x \rightarrow \infty}\left(-\frac{1}{x}\right)=\lim _{x \rightarrow \infty} \frac{1}{x}=0$. Thus, by the squeeze theorem, $\lim _{x \rightarrow \infty} \frac{\sin (5 x)}{x}=0$.
5. Because $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$ does not exist (it oscillates between the values in $[-1,1]), \lim _{x \rightarrow 0} \cos (3 x) \cdot \sin \left(\frac{1}{x}\right)$ also does not exist, even though we have $\lim _{x \rightarrow 0} \cos (3 x)=$ 1.

Figure 1: Exercise 4 Graphs

(a) Problem 1
$f(x)=-(x-3)^{2}+4$

(c) Problem 3
$f(x)=e^{-x}+5$

(e) Problem 5
$x y=0$

(b) Problem 2
$f(x)=4 \sin \left(x-\frac{\pi}{2}\right)$

(d) Problem 4 $|x|+|y|=1$

(f) Problem 6 $x^{2}=y^{2}$

