Calculus 1 HW2 Solution

Donghan Kim

February 10, 2019

Functions

Exercise 1

Suppose that there is a function $f : \mathbb{R} \to \mathbb{R}$ which is strictly increasing but not injective. Because f is not injective, there must exist two numbers a, bin \mathbb{R} such that $a \neq b$ but f(a) = f(b). If we assume a < b without loss of generality, f(a) < f(b) must hold as f is strictly increasing, which is a contradiction to the identity f(a) = f(b) above. Therefore, there is no such function.

Exercise 2

Let x, y, z be 3 different elements in the domain A.

1. First we assume that f is injective, and also assume |B| < 3.

Case 1 : If |B| = 1, then for all 3 elements x, y, z, the function values should be the same f(x) = f(y) = f(z), as there is only one element in codomain. This violates the fact that f is injective.

Case 2 : If |B| = 2, similar situation happens; there must be at least two different elements in A which have the same function value. This is also a contradiction that f is injective.

Therefore, if f is injective, the number of elements of B should be greater than or equal to 3.

2. We also prove by contradiction; we assume that f is surjective, as well as |B| > 4. Then, the set $B - \{f(x), f(y), f(z)\}$ is not empty and α is an element in this set. Then, there is no element in A with the function value

equal to α , which means f cannot be surjective. Thus, if f is surjective, the inequality $|B| \leq 3$ must hold.

3. f is bijective when it is both injective and surjective. From part 1 and 2, two inequalities $|B| \ge 3$ and $|B| \le 3$ must hold. Combining these two, we have |B| = 3.

Exercise 3

First, the domain of f is [-1,∞), and the domain of g is R.
(f ∘ g)(x) = √sin(x) + 1 and the domain is R (The range of sin function is [-1, 1], thus (f ∘ g)(x) is well-defined for all values x ∈ R).
(g ∘ f)(x) = sin(√x + 1), and the domain is [-1,∞) (same as f).
The domains of f and g are both R.
(f ∘ g)(x) = e^{-x²+4x}, and (g ∘ f)(x) = -e^{2x} + 4e^x and the domains are also R.
Let f(x) = sin²(x) and g(x) = ¹/_x. Then, (f ∘ g)(x) = sin²(¹/_x).
Let f(x) = √x and g(x) = 2|x|. Then, (f ∘ g)(x) = √2|x|.
Let f(x) = 5x + 6 and g(x) = sin x. Then, (f ∘ g)(x) = 5sin(x) + 6.

Exercise 4

Graphs are on the last page.

- 1. The range is $(-\infty, 4]$. $f(x) = -(x-3)^2 + 4$
- 2. The range is [-4, 4]. $f(x) = 4\sin(x \frac{\pi}{2})$
- 3. The range is $(5, \infty)$. $f(x) = e^{-x} + 5$
- 4. |x| + |y| = 1
- 5. xy = 0
- 6. $x^2 = y^2$

Limits

Exercise 5

1. $a(n) = \frac{1}{2n}$ and the sequence converges to 0.

2. By the 5th statement in Claim 6.14 of Lecture note with $a = -\frac{1}{4}$, this sequence converges to 0.

3. This sequence does not converge because it oscillates between 3 numbers 1, 0, -1.

4. $a(n) = \frac{n^2}{n+1}$ and the numerators grow much faster than the denominators. Thus, the limit diverges to ∞ . (Actually, by setting the new sequence $b(n) = n^2 - 1$, one can show that $a(n) = \frac{n^2}{n+1} > n^2 - 1 = b(n)$. Try to show this! Then, it is also easy to show that b(n) diverges to ∞ , and the divergence of a(n) follows.)

Exercise 6

- 1. $\lim_{x \to 0} \frac{x^2 1}{x 1} = \lim_{x \to 0} (x + 1) = 1$
- 2. $\lim_{x \to \infty} \frac{x^2 1}{x 1} = \lim_{x \to \infty} (x + 1) = \infty$ (Diverge)
- 3. $\lim_{x \to 0} 2^{2^x} = 2^{\lim_{x \to 0} 2^x} = 2^1 = 2$

4. The inequality $-\frac{1}{x} \leq \frac{\sin(5x)}{x} \leq \frac{1}{x}$ holds for positive x and we know that $\lim_{x \to \infty} (-\frac{1}{x}) = \lim_{x \to \infty} \frac{1}{x} = 0$. Thus, by the squeeze theorem, $\lim_{x \to \infty} \frac{\sin(5x)}{x} = 0$. 5. Because $\lim_{x \to 0} \sin(\frac{1}{x})$ does not exist (it oscillates between the values in [-1, 1]), $\lim_{x \to 0} \cos(3x) \cdot \sin(\frac{1}{x})$ also does not exist, even though we have $\lim_{x \to 0} \cos(3x) = 1$.

Figure 1: Exercise 4 Graphs