Calculus I: Homework 11 solutions
Ziad Saade

Problem 1: Solve the following integrals
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Problem 2: This is more a review problem for the entire semester. Please explain briefly your
sketch. A sketch alone will not receive full credits.

Sketch the graph of the function f that has the following properties: Please label all asymptotes

e f(z) is continuous on its entire domain, which is all z except z = 2.

. IEIPx f(z) = —oo and Illxgc f(z) =3.

* /@)=

e f'(z) is continuous at all z except £ = —1, z = 2, and = = 5.

o fl(z)>0forz < —1landfor0<z<2andfor4<z<5andforz>5.
. f’(z)<0f0r—1<x<0andfor2<a:<4.

e lim f'(z)=3and hm f (z) =

T——1"

e lim f'(z) = 00

o ff(z)>0for -4<z < —1landfor -1 <z <2andfor2<z<5.
o f’(z) <0 for z < —4 and for z > 5.

o f(-4)=-1f(-1)=4, f(O) =2, f(4) = -2, and f(5) =0.
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Problem 3: Let’s find other ways of computing area

1- Is the following integral equality true or false?
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2- Use the equality above to compute the area of a circle of radius
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Problem 4: This problem is a good application of calculus in physics



Consider the following graph.

This is the graph of the velocity of a particle that we denote as v(t) in meters per second.
Let s(t) (graph not shown) be the function of the position of the particle.

We have s(0)=1m
Please answer all questions with a clear explanation.

BACKGROUND INFO: The velocity function is the derivative of the position and the
acceleration function is the derivative of the velocity vector
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a) What is the particle’s velocity at t=5?
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b) Is the acceleration of the particle at time t=5 positive or negative?
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c) What is the particle’s position at t=3?
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Approximately when is the acceleration zero?
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When is the particle moving toward the origin? Away from the origin?
On which side (positive or negative) of the origin does the particle lie at t= 9?
The integral of v(t) from 0 to 6 is 11.5
The integral of v(t) from 6 to 9 is -4.5
Find the total distance traveled by the particle the first 9 seconds.
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Problem 5: State whether the following statements are True or False. If you think a statement is
false, give a counter example. If it is true, you can just state it is. If you write a formal proof, you
will get extra credit!

If f is continuous on [a, b], then

H/{ff(a:)dz:/ab\/f(m_)dz

a)
FALSE: try f(x) =1
If f and g are continuous on [a, b], then
b b b
b [ 1@ £9@)ds= [ 1@)do [ g(a)as

TRUE

[3 points] ffl 2z — x2 dx represents the area between the curve
y=2z—a?

C) the z-axis, x = —1 and z = 3.

False: it’s the NET Area
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