Homework 10 Solution

Part 1

1.

(a) Using the Test for Monotonic Functions we know that f is increasing on $(-2,0)$ and $(4, \infty)$ because $f^{\prime}>0$ on $(-2,0)$ and $(4, \infty)$, and that f is decreasing on $(-\infty,-2)$ and $(0,4)$ because $f^{\prime}<0$ on $(-\infty,-2)$ and $(0,4)$.
(b) Using the First Derivative Test, we know that f has a local maximum at $x=0$ because f^{\prime} changes from positive to negative at $x=0$, and that f has a local minimum at $x=4$ because f^{\prime} changes from negative to positive at $x=4$.
(c)

(d)

2.
$f(x)=x \sqrt{1-x},[-1,1] . \quad f^{\prime}(x)=x \cdot \frac{1}{2}(1-x)^{-1 / 2}(-1)+(1-x)^{1 / 2}(1)=(1-x)^{-1 / 2}\left[-\frac{1}{2} x+(1-x)\right]=\frac{1-\frac{3}{2} x}{\sqrt{1-x}}$.
$f^{\prime}(x)=0 \Rightarrow x=\frac{2}{3} . \quad f^{\prime}(x)$ does not exist $\Leftrightarrow x=1 . \quad f^{\prime}(x)>0$ for $-1<x<\frac{2}{3}$ and $f^{\prime}(x)<0$ for $\frac{2}{3}<x<1$, so $f\left(\frac{2}{3}\right)=\frac{2}{3} \sqrt{\frac{1}{3}}=\frac{2}{9} \sqrt{3}[\approx 0.38]$ is a local maximum value. Checking the endpoints, we find $f(-1)=-\sqrt{2}$ and $f(1)=0$.

Thus, $f(-1)=-\sqrt{2}$ is the absolute minimum value and $f\left(\frac{2}{3}\right)=\frac{2}{9} \sqrt{3}$ is the absolute maximum value.
$f(x)=\frac{3 x-4}{x^{2}+1},[-2,2] . \quad f^{\prime}(x)=\frac{\left(x^{2}+1\right)(3)-(3 x-4)(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{-\left(3 x^{2}-8 x-3\right)}{\left(x^{2}+1\right)^{2}}=\frac{-(3 x+1)(x-3)}{\left(x^{2}+1\right)^{2}}$.
$f^{\prime}(x)=0 \Rightarrow x=-\frac{1}{3}$ or $x=3$, but 3 is not in the interval. $f^{\prime}(x)>0$ for $-\frac{1}{3}<x<2$ and $f^{\prime}(x)<0$ for $-2<x<-\frac{1}{3}$, so $f\left(-\frac{1}{3}\right)=\frac{-5}{10 / 9}=-\frac{9}{2}$ is a local minimum value. Checking the endpoints, we find $f(-2)=-2$ and $f(2)=\frac{2}{5}$. Thus, $f\left(-\frac{1}{3}\right)=-\frac{9}{2}$ is the absolute minimum value and $f(2)=\frac{2}{5}$ is the absolute maximum value.
$f(x)=\sqrt{x^{2}+x+1},[-2,1] . \quad f^{\prime}(x)=\frac{1}{2}\left(x^{2}+x+1\right)^{-1 / 2}(2 x+1)=\frac{2 x+1}{2 \sqrt{x^{2}+x+1}} . \quad f^{\prime}(x)=0 \quad \Rightarrow \quad x=-\frac{1}{2}$.
$f^{\prime}(x)>0$ for $-\frac{1}{2}<x<1$ and $f^{\prime}(x)<0$ for $-2<x<-\frac{1}{2}$, so $f\left(-\frac{1}{2}\right)=\sqrt{3} / 2$ is a local minimum value. Checking the endpoints, we find $f(-2)=f(1)=\sqrt{3}$. Thus, $f\left(-\frac{1}{2}\right)=\sqrt{3} / 2$ is the absolute minimum value and $f(-2)=f(1)=\sqrt{3}$ is the absolute maximum value.

Part 2

2.

Let $u=1 / x$, so $d u=-1 / x^{2} d x$. When $x=1, u=1$; when $x=2, u=\frac{1}{2}$. Thus,
$\int_{1}^{2} \frac{e^{1 / x}}{x^{2}} d x=\int_{1}^{1 / 2} e^{u}(-d u)=-\left[e^{u}\right]_{1}^{1 / 2}=-\left(e^{1 / 2}-e\right)=e-\sqrt{e}$.

Let $u=-x^{2}$, so $d u=-2 x d x$. When $x=0, u=0$; when $x=1, u=-1$. Thus,
$\int_{0}^{1} x e^{-x^{2}} d x=\int_{0}^{-1} e^{u}\left(-\frac{1}{2} d u\right)=-\frac{1}{2}\left[e^{u}\right]_{0}^{-1}=-\frac{1}{2}\left(e^{-1}-e^{0}\right)=\frac{1}{2}(1-1 / e)$.
Let $u=1+2 x$, so $x=\frac{1}{2}(u-1)$ and $d u=2 d x$. When $x=0, u=1$; when $x=4, u=9$. Thus,

$$
\begin{aligned}
\int_{0}^{4} \frac{x d x}{\sqrt{1+2 x}} & =\int_{1}^{9} \frac{\frac{1}{2}(u-1)}{\sqrt{u}} \frac{d u}{2}=\frac{1}{4} \int_{1}^{9}\left(u^{1 / 2}-u^{-1 / 2}\right) d u=\frac{1}{4}\left[\frac{2}{3} u^{3 / 2}-2 u^{1 / 2}\right]_{1}^{9}=\frac{1}{4} \cdot \frac{2}{3}\left[u^{3 / 2}-3 u^{1 / 2}\right]_{1}^{9} \\
& =\frac{1}{6}[(27-9)-(1-3)]=\frac{20}{6}=\frac{10}{3}
\end{aligned}
$$

Let $u=\ln x$, so $d u=\frac{d x}{x}$. When $x=e, u=1$; when $x=e^{4} ; u=4$. Thus,
$\int_{e}^{e^{4}} \frac{d x}{x \sqrt{\ln x}}=\int_{1}^{4} u^{-1 / 2} d u=2\left[u^{1 / 2}\right]_{1}^{4}=2(2-1)=2$.
Let $u=\sin ^{-1} x$, so $d u=\frac{d x}{\sqrt{1-x^{2}}}$. When $x=0, u=0$; when $x=\frac{1}{2}, u=\frac{\pi}{6}$. Thus,
$\int_{0}^{1 / 2} \frac{\sin ^{-1} x}{\sqrt{1-x^{2}}} d x=\int_{0}^{\pi / 6} u d u=\left[\frac{u^{2}}{2}\right]_{0}^{\pi / 6}=\frac{\pi^{2}}{72}$.
Let $u=e^{z}+z$, so $d u=\left(e^{z}+1\right) d z$. When $z=0, u=1$; when $z=1, u=e+1$. Thus,
$\int_{0}^{1} \frac{e^{z}+1}{e^{z}+z} d z=\int_{1}^{e+1} \frac{1}{u} d u=[\ln |u|]_{1}^{e+1}=\ln |e+1|-\ln |1|=\ln (e+1)$.
3.

Let $u=x, d v=\cos \pi x d x \quad \Rightarrow \quad d u=d x, v=\frac{1}{\pi} \sin \pi x$. Then

$$
\begin{aligned}
\int_{0}^{1 / 2} x \cos \pi x d x & =\left[\frac{1}{\pi} x \sin \pi x\right]_{0}^{1 / 2}-\int_{0}^{1 / 2} \frac{1}{\pi} \sin \pi x d x=\frac{1}{2 \pi}-0-\frac{1}{\pi}\left[-\frac{1}{\pi} \cos \pi x\right]_{0}^{1 / 2} \\
& =\frac{1}{2 \pi}+\frac{1}{\pi^{2}}(0-1)=\frac{1}{2 \pi}-\frac{1}{\pi^{2}} \text { or } \frac{\pi-2}{2 \pi^{2}}
\end{aligned}
$$

First let $u=x^{2}+1, d v=e^{-x} d x \quad \Rightarrow \quad d u=2 x d x, v=-e^{-x}$. By (6),
$\int_{0}^{1}\left(x^{2}+1\right) e^{-x} d x=\left[-\left(x^{2}+1\right) e^{-x}\right]_{0}^{1}+\int_{0}^{1} 2 x e^{-x} d x=-2 e^{-1}+1+2 \int_{0}^{1} x e^{-x} d x$.
Next let $U=x, d V=e^{-x} d x \quad \Rightarrow \quad d U=d x, V=-e^{-x}$. By (6) again,
$\int_{0}^{1} x e^{-x} d x=\left[-x e^{-x}\right]_{0}^{1}+\int_{0}^{1} e^{-x} d x=-e^{-1}+\left[-e^{-x}\right]_{0}^{1}=-e^{-1}-e^{-1}+1=-2 e^{-1}+1$. So
$\int_{0}^{1}\left(x^{2}+1\right) e^{-x} d x=-2 e^{-1}+1+2\left(-2 e^{-1}+1\right)=-2 e^{-1}+1-4 e^{-1}+2=-6 e^{-1}+3$.
Let $u=t, d v=\cosh t d t \quad \Rightarrow \quad d u=d t, v=\sinh t$. Then

$$
\begin{aligned}
\int_{0}^{1} t \cosh t d t & =[t \sinh t]_{0}^{1}-\int_{0}^{1} \sinh t d t=(\sinh 1-\sinh 0)-[\cosh t]_{0}^{1}=\sinh 1-(\cosh 1-\cosh 0) \\
& =\sinh 1-\cosh 1+1
\end{aligned}
$$

We can use the definitions of sinh and cosh to write the answer in terms of e :
$\sinh 1-\cosh 1+1=\frac{1}{2}\left(e^{1}-e^{-1}\right)-\frac{1}{2}\left(e^{1}+e^{-1}\right)+1=-e^{-1}+1=1-1 / e$.
Let $u=\ln y, d v=\frac{1}{\sqrt{y}} d y=y^{-1 / 2} d y \quad \Rightarrow \quad d u=\frac{1}{y} d y, v=2 y^{1 / 2}$. Then
$\begin{aligned} \int_{4}^{9} \frac{\ln y}{\sqrt{y}} d y & =[2 \sqrt{y} \ln y]_{4}^{9}-\int_{4}^{9} 2 y^{-1 / 2} d y=(6 \ln 9-4 \ln 4)-[4 \sqrt{y}]_{4}^{9}=6 \ln 9-4 \ln 4-(12-8) \\ & =6 \ln 9-4 \ln 4-4\end{aligned}$

Let $u=\ln r, d v=r^{3} d r \quad \Rightarrow \quad d u=\frac{1}{r} d r, v=\frac{1}{4} r^{4}$. Then
$\int_{1}^{3} r^{3} \ln r d r=\left[\frac{1}{4} r^{4} \ln r\right]_{1}^{3}-\int_{1}^{3} \frac{1}{4} r^{3} d r=\frac{81}{4} \ln 3-0-\frac{1}{4}\left[\frac{1}{4} r^{4}\right]_{1}^{3}=\frac{81}{4} \ln 3-\frac{1}{16}(81-1)=\frac{81}{4} \ln 3-5$.
First let $u=t^{2}, d v=\sin 2 t d t \quad \Rightarrow \quad d u=2 t d t, v=-\frac{1}{2} \cos 2 t$. By (6),
$\int_{0}^{2 \pi} t^{2} \sin 2 t d t=\left[-\frac{1}{2} t^{2} \cos 2 t\right]_{0}^{2 \pi}+\int_{0}^{2 \pi} t \cos 2 t d t=-2 \pi^{2}+\int_{0}^{2 \pi} t \cos 2 t d t$. Next let $U=t, d V=\cos 2 t d t \quad \Rightarrow$ $d U=d t, V=\frac{1}{2} \sin 2 t$. By (6) again,
$\int_{0}^{2 \pi} t \cos 2 t d t=\left[\frac{1}{2} t \sin 2 t\right]_{0}^{2 \pi}-\int_{0}^{2 \pi} \frac{1}{2} \sin 2 t d t=0-\left[-\frac{1}{4} \cos 2 t\right]_{0}^{2 \pi}=\frac{1}{4}-\frac{1}{4}=0$. Thus, $\int_{0}^{2 \pi} t^{2} \sin 2 t d t=-2 \pi^{2}$.
4. The integral represents the sum of the area of a triangle with height 1 and width 1 and of a semi-circle with radius 1 , which is equal to

$$
\frac{1}{2}+\pi / 4
$$

