$$
\frac{\text { Analysis I }-H W \# 66}{6}
$$

QI

$$
\begin{aligned}
& \dot{L}(x)=\int_{0}^{1}(\dot{x}(t)-1)^{2} d t \\
& L(x)=\left(\dot{x}^{2}(t)-1\right)^{2}
\end{aligned}
$$

Euler-Lagrange eq-n: $\quad \frac{1}{d t} \frac{\partial L}{\partial \dot{x}}-\frac{\frac{\partial L}{\partial x}}{\stackrel{\rightharpoonup}{0}}=0$

$$
\begin{aligned}
& \frac{d}{d t} \frac{\partial L}{\partial \dot{x}}=\frac{d}{d t}\left(2\left(\dot{x}^{2}(t)-1\right) 2 \dot{x}(t)\right) \\
& =4\left(\dot{x}^{2}(t)-1\right) \ddot{x}(t)+4(2 \dot{x}(t) \ddot{x}(t)) \dot{x}(t) \\
& =4 \ddot{x}(t)\left[\dot{x}^{2}(t)-1+2 \dot{x}^{2}(t)\right] \\
& =4 \ddot{x}(t)\left[3 \dot{x}^{2}(t)-1\right] \stackrel{!}{=} 0 \\
& \ddot{x}(t)=0 \rightarrow x(t)=A t+B \\
& x(0)=0 \longrightarrow B=0, \quad x(1)=0 \rightarrow A=0 \\
& 3 \dot{x}^{2}(t)-1=0 \rightarrow \dot{x}(t)= \pm \frac{1}{\sqrt{3}} \longrightarrow x(t)= \pm \frac{1}{\sqrt{3}} t+C \\
& x(0)=0 m C=0 \\
& x(1)=0 \leadsto \sum \frac{1}{\sqrt{3}}=1 \cdots 1
\end{aligned}
$$

$\Rightarrow x(t)=0$ is an extremism of S.

$$
S^{\prime}(0)=1
$$

This extremum will NOT give you the infimum.
Think what non-differentiable function gives the actual minimum, and then think how to make this smooth with a parameter that will eventually be sent to zero.

Qa

$$
\begin{aligned}
& S(y)=\int_{a}^{b} \frac{\sqrt{1+j^{2}(x)}}{y(x)} d x \quad, y \in C^{2}([a, b],(0, \infty)), y(a)=y \cdot n y(b)=y, \\
& L(y)=\frac{\sqrt{1+\dot{y}^{2}(x)}}{y(x)} \quad \text { Enler-Lagrange equations: } \frac{d}{d x} \frac{\partial L}{\partial y}-\frac{\partial L}{\partial y}=0 \\
& \frac{\partial L}{\partial y}=
\end{aligned}
$$

Next, observe that L does not depend explicitly on x. As seen in the lecture, that means that the furntional $H \equiv \dot{j} \frac{\partial 1}{\partial \dot{y}}-1$ is a constant in x. Compute it: $H=$

Euler-Lagrange eq-h is:

$$
\ddot{y} y^{3}=-H^{2}
$$

$$
\begin{aligned}
&(\ddot{y})=(2 y \dot{y})=2\left(\dot{y}^{2}+y \ddot{y}\right)= \\
& \Rightarrow\left(y^{2}\right)=-2 x+A_{1} \\
& \Rightarrow y^{2}=-x^{2}+A_{1} x+A_{2}=-\left(x^{2}-A_{1} x\right)+A_{2} \\
&=-\left(x^{2}-2 \frac{A_{1}}{2} x+\left(\frac{A_{1}}{2}\right)^{2}-\left(\frac{A_{1}}{2}\right)^{2}\right) \cdot A_{2} \\
&=-\left(x-\frac{A_{1}}{2}\right)^{2}+\left(\frac{A_{1}}{2}\right)^{2}+A_{2} \\
& \Rightarrow y^{2}+\left(x-\frac{A_{1}}{2}\right)^{2}=\left(\frac{A_{1}}{2}\right)^{2}+A_{2}
\end{aligned}
$$

${ }^{2}$ non-negative.
Q3 $f \in C^{2}\left(\mathbb{R}^{n}, \mathbb{R}\right)$
A critical paint of f is non-legenerde iff $\operatorname{det}\left(f^{\prime \prime}(x)\right) \neq 0$, f^{\prime} is a a umap $\mathbb{R}^{n} \rightarrow \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}\right) \cong \operatorname{Mat}_{n+1}(\mathbb{R})$
$f^{\prime \prime}$ is is a map $\mathbb{R}^{n} \rightarrow \mathcal{L}\left(\mathbb{R}^{n} ; \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}\right)\right) \cong M_{a} t_{\operatorname{man}}(\mathbb{R})$

$$
\begin{aligned}
& f^{\prime}(x)=\left[\begin{array}{llll}
\left(\partial_{1} f(x)\right. & \left(\partial_{2} f\right)(x) & \ldots & \left(\partial_{n} f\right)(x)
\end{array}\right] \\
& f^{\prime \prime}(x)=\left[\begin{array}{ccc}
\left(\partial_{1} \partial_{1} f\right)(x) & \ldots & \left(\partial_{n} \partial_{1} f\right)(x) \\
\vdots & n & \ddots \\
\left(\partial_{1} \partial_{n} f\right)(x) & \cdots & \left(\partial_{n} \partial_{n} f\right)(x)
\end{array}\right]
\end{aligned}
$$

$$
\nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \quad x \stackrel{\mathbb{V F}^{(}}{\longrightarrow}\left[\begin{array}{c}
(\partial, f)(x) \\
\vdots \\
\left(\partial_{n} f\right)(x)
\end{array}\right]
$$

Claim: All non-degenerate critical points are zolutel.
Proof: Let $x \in \mathbb{R}^{h}$ be non-degenerate and critical.
That is, $f^{\prime}(x)=0$ and $\operatorname{det}\left(f^{\prime \prime}(x)\right) \neq 0$.
We neal to show $\exists r>0$ si, $\forall y \in B_{r}(x), f^{\prime}(y) \neq 0$.
Note $f^{\prime}(x)=0 \Leftrightarrow(\nabla F)(x)=0$.
Note $f^{\prime \prime}(x)=(\nabla f)^{\prime}(x) . \Longrightarrow \operatorname{det}\left(f^{\prime \prime}(x)\right) \neq 0 \Leftrightarrow \operatorname{det}\left((\nabla f)^{\prime}(x)\right)+\sigma$
॥
$(\bar{F})^{\prime}(x)$ invertible
Sse the inverse function theorem now on of at x to conclude that

QL $f_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \quad\left(r, \theta_{1}, \ldots, \theta_{n-1}\right) \mapsto n\left[\begin{array}{l}\cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right) \operatorname{cone} \cos \left(\theta_{n-1}\right) \\ \sin \left(\theta_{1}\right) \cos \left(\theta_{2}\right) \ldots \cos \left(\theta_{n-1}\right) \\ \sin \left(\theta_{n-1}\right)\end{array}\right]$
Example: $f_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}\left(r, \theta_{1}\right) \mapsto r\left[\begin{array}{c}\cos (\theta,) \\ \left.\operatorname{siv}, \theta_{1}\right)\end{array}\right]$ polar coordinates,

For (a), use induction.
for (b), use orthogonality rein $\left\langle\partial_{r} f_{n}, \partial \theta_{i} f_{n}\right\rangle=0$ or

$$
\left\langle\partial \theta_{i} f_{n}, \partial \partial_{j} f_{n}\right\rangle=0 .
$$

For (c): Diffeomorphism \equiv Bijective C^{∞} homeomorphism inverse asia. cont of inverse ant,
[4 Because the partial derivatives are orthogonal, the Jacobian matrix is invertible, \Rightarrow Using the inverse fandion Theorem, f_{n} is infective on U_{n}. Need to shows snjecctivity on the whole of V_{n}.
Q4 A is a Banach algebra.
$\psi \in C^{\prime}(A, A)$

$$
\begin{array}{r}
x_{0} \in A, \quad r>0, \alpha \in(0,1) \text { s.t. }\left\|\psi^{\prime}(x)-11\right\|_{z(1, A)} \leqslant \alpha \\
\forall x \in B_{r}\left(x_{0}\right)
\end{array}
$$

Then: (1) $\left.\psi\right|_{B_{r}\left(x_{0}\right)}$ is injective.
(2) $\psi\left(B_{r}\left(x_{0}\right)\right) \in \theta_{\text {pen }}(A)$
(3) $B_{r(1-\alpha)}\left(\psi\left(x_{0}\right)\right) \subseteq \psi\left(B_{r}\left(x_{0}\right)\right) \subseteq B_{r(1+\alpha)}\left(\psi\left(x_{0}\right)\right)$
(4) $\left[\psi^{-1}: \psi\left(B_{r}\left(x_{0}\right)\right) \rightarrow B_{r}\left(x_{0}\right)\right] \in C^{1}(\notin, A)$

Claim: $\forall y \in A ;\|y-1\|<\frac{1}{2} \exists!x \in A ;\|x-1\|<\frac{1}{2} \quad ; 1, y^{2}=x$.
That is, $\forall \operatorname{map}$ fo $A \rightarrow A \quad y \mapsto \sqrt{y}$
Subelain: $f \in C^{\prime}$
Proof: Define $\psi: A \rightarrow A \quad x \mapsto \frac{1}{2} x^{2}$

$$
\psi^{\prime}(x)=\frac{1}{2}\left\{x_{1}-\right\} \quad \text { (verify) }
$$

Use sentence above with $x_{0}=1, n=\frac{1}{2}, \alpha=1 / 2$

