Riemann's second proof of the analytic continuation of the Riemann Zeta function

Andreas Steiger

Seminar on Modular Forms, Winter term 2006

1 Abstract

The Riemann zeta-function $\zeta(s)$ is defined by

$$
\begin{equation*}
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \tag{1}
\end{equation*}
$$

for $\operatorname{Re} s>1$, but it is well known that there exists an analytic continuation onto the whole s-plane with a simple pole at $s=1$. We want do derive this result using tools like the theta function

$$
\begin{equation*}
\theta(t):=\sum_{n=-\infty}^{\infty} e^{-\pi n^{2} t}, \quad t>0 \tag{2}
\end{equation*}
$$

its Mellin transform

$$
\int_{0}^{\infty} \theta(t) t^{s} \frac{\mathrm{~d} t}{t}, \quad s \in \mathbb{C}
$$

the Gamma function

$$
\begin{equation*}
\Gamma(s):=\int_{0}^{\infty} e^{-t} t^{s} \frac{\mathrm{~d} t}{t}, \quad \operatorname{Re} s>0 \tag{3}
\end{equation*}
$$

and Fourier transformation.
This proof of the analytic continuation is known as the second Riemannian proof.

2 Some tools

2.1 The Gamma function

Remark: The Gamma function has a large variety of properties. Most of those we use are very well known, but we will provide all the proofs anyways.

Proposition 1: $\Gamma(s)$ satisfies the functional equation

$$
\begin{equation*}
\Gamma(s+1)=s \Gamma(s) \tag{4}
\end{equation*}
$$

Proof:

$$
\Gamma(s+1)=\int_{0}^{\infty} e^{-t} t^{s+1} \frac{\mathrm{~d} t}{t}=-\left.e^{-t} t^{s}\right|_{0} ^{\infty}-\int_{0}^{\infty}-e^{-t} s t^{s} \frac{\mathrm{~d} t}{t}=s \Gamma(s)
$$

Corollary: $\Gamma(s)$ has an analytic continuation on \mathbb{C} with simple poles at $s=$ $0,-1,-2, \ldots$

Proof: Using (4) we can find values for $-1<\operatorname{Re} s \leq 0$, except for $s=0$. These values give us an analytic continuation for $\operatorname{Re} s>-1$ with a simple pole at $s=0$. Of course we can repeat this step infintely many times, with poles showing up at $s=0,-1,-2, \ldots$.

Proposition 2: $\Gamma(s)$ satisfies the functional equation

$$
\Gamma(s) \Gamma(1-s)=\frac{\pi}{\sin \pi s}
$$

Proof: $\Gamma(s)$ has an other representation which equals (3):

$$
\Gamma(s)=\frac{1}{s} \prod_{n=1}^{\infty} \frac{\left(1+\frac{1}{n}\right)^{s}}{1+\frac{s}{n}}
$$

With this representation and the Euler sine product we get

$$
\begin{aligned}
\Gamma(s) \Gamma(1-s) & =-s \Gamma(s) \Gamma(-s) \\
& =\frac{-s}{-s \cdot s} \prod_{n=1}^{\infty} \frac{1}{1-\frac{s^{2}}{n^{2}}} \\
& =\frac{1}{s} \cdot \frac{\pi s}{\sin \pi s} \\
& =\frac{\pi}{\sin \pi s}
\end{aligned}
$$

Corollary: $\quad \frac{1}{\Gamma(s)}=\frac{\sin \pi s}{\pi} \Gamma(1-s)$ is entire.
Proof: $\quad \Gamma(1-s)$ has simple poles at $s=1,2, \ldots$, but there $\sin \pi s$ has simple zeros, such that we get removable singularities.

2.2 The Mellin transform

Definition: Let $f: \mathbb{R} \geq 0 \rightarrow \mathbb{R}$ be continuous. The Mellin transform $g(s)$ of f is defined by

$$
g(s):=\int_{0}^{\infty} f(t) t^{s} \frac{\mathrm{~d} t}{t}
$$

for values s such that the integral converges.

Example: The Mellin transform of e^{-t} is $\Gamma(s)$.

Example:

$$
\begin{equation*}
f(t)=e^{-c t} \Rightarrow g(s)=c^{-s} \Gamma(s) \tag{5}
\end{equation*}
$$

2.3 Fourier transform

Definition: Let \mathcal{S} be the vector space of infinitely differentiable functions $f: \mathbb{R} \rightarrow \mathbb{C}$ such that $\lim _{x \rightarrow \pm \infty}|x|^{n} f(x) \rightarrow 0 \forall n \in \mathbb{N}$. For any $f \in \mathcal{S}$ we define the Fourier transform

$$
\hat{f}(y):=\int_{-\infty}^{\infty} e^{-2 \pi i x y} f(x) \mathrm{d} x
$$

and the integral converges for all $y \in \mathbb{C}, f \in \mathcal{S}$.
Example: Let $f(x):=e^{-\pi x^{2}}$, then $\hat{f}=f$.
Proof: Differentiating under the integral sign gives

$$
\hat{f}^{\prime}(y)=\frac{\mathrm{d}}{\mathrm{~d} y} \int_{-\infty}^{\infty} e^{-2 \pi i x y} f(x) \mathrm{d} x=2 \pi i \int_{\infty}^{\infty} e^{-2 \pi i x y} x e^{-\pi x^{2}} \mathrm{~d} x
$$

Integrating by parts yields

$$
\begin{aligned}
\hat{f}^{\prime}(y) & =-\left.2 \pi i e^{-2 \pi i x y} \frac{1}{-2 \pi} e^{-\pi x^{2}}\right|_{-\infty} ^{\infty}+2 \pi i \int_{-\infty}^{\infty} 2 \pi i y e^{-2 \pi i x y} \frac{e^{-\pi x^{2}}}{-2 \pi} \mathrm{~d} x \\
& =2 \pi y \int_{-\infty}^{\infty} 2^{-2 \pi i x y} f(x) \mathrm{d} x=-2 \pi y \hat{f}(y)
\end{aligned}
$$

Thus we have the differential equation

$$
\frac{\hat{f}^{\prime}(y)}{\hat{f}(y)}=-2 \pi
$$

with the solution $\hat{f}(y)=C e^{-\pi y^{2}}$. Setting $y=0$ gives

$$
C=\hat{f}(0)=\int_{-\infty}^{\infty} e^{-\pi x^{2}} \mathrm{~d} x=1
$$

and thus $\hat{f}(y)=e^{-\pi y^{2}}=f(y)$.
Lemma: Let $f \in \mathcal{S}$ and $g(x):=f(a x)$ for some $a>0$. Then $\hat{g}(y)=\frac{1}{a} \hat{f}\left(\frac{1}{a}\right)$.
Proof:

$$
\begin{aligned}
\hat{g}(y) & =\int_{-\infty}^{\infty} e^{-2 \pi i x y} f(a x) \mathrm{d} x \\
& =\int_{-\infty}^{\infty} e^{-2 \pi i \frac{x}{a} y} f(x) \frac{\mathrm{d} x}{a} \\
& =\frac{1}{a} \hat{f}\left(\frac{y}{a}\right)
\end{aligned}
$$

Proposition (Poisson Summation): If $g \in \mathcal{S}$, then

$$
\sum_{m=-\infty}^{\infty} g(m)=\sum_{m=-\infty}^{\infty} \hat{g}(m) .
$$

Proof: Define $h(x):=\sum_{k=-\infty}^{\infty} g(x+k)$. Clearly this has period 1. Write down the Fourier series:

$$
h(x)=\sum_{m=-\infty}^{\infty} c_{m} e^{2 \pi i m x}
$$

with

$$
\begin{aligned}
c_{m} & :=\int_{0}^{1} h(x) e^{-2 \pi i m x} \mathrm{~d} x \\
& =\int_{0}^{1} \sum_{k=-\infty}^{\infty} g(x+k) e^{-2 \pi i m x} \mathrm{~d} x \\
& =\sum_{k=-\infty}^{\infty} \int_{0}^{1} g(x+k) e^{-2 \pi i m x} \mathrm{~d} x \\
& =\int_{-\infty}^{\infty} g(x) e^{-2 \pi i m x} \mathrm{~d} x \\
& =\hat{g}(m)
\end{aligned}
$$

Then

$$
\sum_{k=-\infty}^{\infty} g(k)=h(0)=\sum_{m=-\infty}^{\infty} c_{m} e^{-2 \pi i m \cdot 0}=\sum_{m=-\infty}^{\infty} c_{m}=\sum_{m=-\infty}^{\infty} \hat{g}(m)
$$

2.4 The theta function

Remark: Note that $\theta(t)$ can not only be written as in (2), but also as

$$
\theta(t)=1+2 \sum_{n=1}^{\infty} e^{-\pi n^{2} t}
$$

We will often make use of that fact.

Proposition 4: $\quad \theta(t)$ satisfies the functional equation

$$
\theta(t)=\frac{1}{\sqrt{t}} \theta(1 / t)
$$

Proof: Let $g(x):=e^{-\pi t x^{2}}$ for a fixed $t>0$ and $f(x):=e^{-\pi x^{2}}$. Obviously $g(x)=f(\sqrt{t} x)$. Using the lemma and the example from the Fourier transform we get

$$
\hat{g}(y)=\frac{1}{\sqrt{t}} \hat{f}(y / \sqrt{t})=\frac{1}{\sqrt{t}} f(y / \sqrt{t})=\frac{1}{\sqrt{t}} e^{-\pi y^{2} / t}
$$

Using Poisson summation we finally find that

$$
\begin{aligned}
\theta(t) & :=\sum_{n=-\infty}^{\infty} e^{-\pi t n^{2}}=\sum_{n=-\infty}^{\infty} g(n)=\sum_{n=-\infty}^{\infty} \hat{g}(n)=\frac{1}{\sqrt{t}} \sum_{n=-\infty}^{\infty} e^{-\pi n^{2} / t} \\
& =\frac{1}{\sqrt{t}} \theta(1 / t)
\end{aligned}
$$

Remark: In this proof we only need $\theta(t)$ for real-valued $t>0$. But actually can also be looked at as a complex function for $\operatorname{Re} t>0$ by analytic continuation. The functional equation still holds.

Proposition 5: As t goes to zero from above,

$$
\left|\theta(t)-\frac{1}{\sqrt{t}}\right|<e^{-C / t} \quad \text { for some } C>0
$$

Proof: Using Proposition 4 and a rewrite of θ gives

$$
\left|\theta(t)-\frac{1}{\sqrt{t}}\right|=\left|\frac{1}{\sqrt{t}}(\theta(1 / t)-1)\right|=\frac{1}{\sqrt{t}} \cdot 2 \sum_{n=1}^{\infty} e^{-\pi n^{2} / t}
$$

Suppose t is small enough such that $\sqrt{t}>4 \cdot e^{-1 / t}$ and $e^{-3 \pi / t}<1 / 2$. Then

$$
\begin{aligned}
\left|\theta(t)-\frac{1}{\sqrt{ } t}\right| & <\frac{1}{2} e^{1 / t}\left(e^{-\pi / t}+e^{-4 \pi / t}+\cdots\right) \\
& <\frac{1}{2} e^{-(\pi-1) / t}\left(1+\frac{1}{2}+\frac{1}{4}+\cdots\right) \\
& =e^{-(\pi-1) / t}
\end{aligned}
$$

and we see that $C=\pi-1$ satisfies the inequality.

3 The Theorem and its proof

Theorem $\zeta(s)$, as defined by (1) extends analytically onto the whole s-plane, except a simple pole at $s=1$. Let

$$
\Lambda(s):=\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s) .
$$

Then

$$
\Lambda(s)=\Lambda(1-s)
$$

Proof: We want to consider the Mellin transform of the theta function,

$$
\int_{0}^{\infty} \theta(t) t^{s} \frac{\mathrm{~d} t}{t}
$$

As t goes to infinity, $\theta(t)$ converges rapidly against 1 , as all terms of the sum fall to zero rapidly, except for $n=0$. By proposition 5 we see that for small t, $\theta(t)$ behaves like $t^{-1 / 2}$. Thus, if we want convergence at both ends, we have to introduce correction terms and define

$$
\phi(s):=\int_{1}^{\infty}(\theta(t)-1) t^{s / 2} \frac{\mathrm{~d} t}{t}+\int_{0}^{1}\left(\theta(t)-\frac{1}{\sqrt{t}}\right) t^{s / 2} \frac{\mathrm{~d} t}{t} .
$$

Note that we replaced s by $s / 2$ in order to get $\zeta(s)$ instead of $\zeta(2 s)$.
In the first integral, $\theta(t)-1 \rightarrow 0$ extremely fast, such that the integral can be evaluated term by term, for any $s \in \mathbb{C}$. Similarly, $\theta(t)-\frac{1}{\sqrt{t}}$ is bounded above in the interval $(0,1]$, such that the second integral converges for any $s \in \mathbb{C}$. These two statements together show that $\phi(s)$ is well-defined for all $s \in \mathbb{C}$, and it even is an entire function.
We now evalute the second integral, assuming $\operatorname{Re} s>1$:

$$
\begin{aligned}
& \int_{0}^{1} \theta(t) t^{s / 2} \frac{\mathrm{~d} t}{t}-\int_{0}^{1} t^{(s-1) / 2} \frac{\mathrm{~d} t}{t} \\
= & \int_{0}^{1} \sum_{n=-\infty}^{\infty} e^{-\pi n^{2} t} t^{s / 2} \frac{\mathrm{~d} t}{t}-\frac{2}{s-1} \\
= & \int_{0}^{1} t^{s / 2} \frac{\mathrm{~d} t}{t}+2 \int_{0}^{1} \sum_{n=1}^{\infty} e^{-\pi n^{2} t} t^{s / 2} \frac{\mathrm{~d} t}{t}+\frac{2}{1-s} \\
= & 2 \int_{0}^{1} \sum_{n=1}^{\infty} e^{-\pi n^{2} t} t^{s / 2} \frac{\mathrm{~d} t}{t}+\frac{2}{s}+\frac{2}{1-s}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\phi(s) & =2 \int_{1}^{\infty} \sum_{n=1}^{\infty} e^{-\pi n^{2} t} t^{s / 2} \frac{\mathrm{~d} t}{t}+2 \int_{0}^{1} \sum_{n=1}^{\infty} e^{-\pi n^{2} t} t^{s / 2} \frac{\mathrm{~d} t}{t}+\frac{2}{s}+\frac{2}{1-s} \\
& =2 \sum_{n=1}^{\infty} \int_{0}^{\infty} e^{-\pi n^{2} t} t^{s / 2} \frac{\mathrm{~d} t}{t}+\frac{2}{s}+\frac{2}{1-s}
\end{aligned}
$$

for $\operatorname{Re} s>1$.
Using (5) we can evaluate the integral and we get

$$
\begin{aligned}
\frac{1}{2} \phi(s) & =\sum_{n=1}^{\infty}\left(\pi n^{2}\right)^{-s / 2} \Gamma\left(\frac{s}{2}\right)+\frac{1}{s}+\frac{1}{1-s} \\
& =\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s)+\frac{1}{s}+\frac{1}{1-s} \\
\Rightarrow \zeta(s) & =\frac{\pi^{s / 2}}{\Gamma\left(\frac{s}{2}\right)}\left(\frac{1}{2} \phi(s)-\frac{1}{s}-\frac{1}{1-s}\right)
\end{aligned}
$$

still for $\operatorname{Re} s>1$. The only possible poles on the right hand side of the last equation are at $s=0$ and $s=1$, as $1 / \Gamma(s)$ and $\phi(s)$ are entire functions. But for $s=0$, the pole is removable, as the term causing the trouble is in fact

$$
\frac{\pi^{s / 2}}{\Gamma\left(\frac{s}{2}\right)} \frac{1}{s}=\frac{\pi^{s / 2}}{2 \cdot \frac{s}{2} \Gamma\left(\frac{s}{2}\right)}=\frac{\pi^{s / 2}}{2 \Gamma\left(\frac{s}{2}+1\right)} \stackrel{s \rightarrow 1}{\longrightarrow} \frac{1}{2 \Gamma \frac{3}{2}} .
$$

Thus we have found a meromorphic function on \mathbb{C} with a (simple) pole at $s=1$, and which equals $\zeta(s)$ for $\operatorname{Re} s>1$. This is our analytic continuation.
It remains to prove that the functional equation

$$
\Lambda(s)=\Lambda(1-s)
$$

holds. Using

$$
\frac{1}{2} \phi(s)=\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s)+\frac{1}{s}+\frac{1}{1-s}=\Lambda(s)+\frac{1}{s}+\frac{1}{s-1}
$$

we have

$$
\begin{aligned}
\Lambda(s) & =\frac{1}{2} \phi(s)-\frac{1}{s}-\frac{1}{1-s} \\
\Lambda(1-s) & =\frac{1}{2} \phi(1-s)-\frac{1}{1-s}-\frac{1}{s}
\end{aligned}
$$

and we only have to prove $\phi(s)=\phi(1-s)$:

$$
\begin{aligned}
\phi(s) & =\int_{1}^{\infty}(\theta(t)-1) t^{s / 2} \frac{\mathrm{~d} t}{t}+\int_{0}^{1}\left(\theta(t)-\frac{1}{\sqrt{t}}\right) t^{s / 2} \frac{\mathrm{~d} t}{t} \\
& \stackrel{t \rightarrow \frac{1}{t}}{=} \int_{0}^{1}\left(\theta\left(\frac{1}{t}\right)-1\right) t^{-s / 2} \frac{\mathrm{~d} t}{t}+\int_{1}^{\infty}\left(\theta\left(\frac{1}{t}\right)-\sqrt{t}\right) t^{-s / 2} \frac{\mathrm{~d} t}{t} \\
& =\int_{0}^{1}(\sqrt{t} \theta(t)-1) t^{-s / 2} \frac{\mathrm{~d} t}{t}+\int_{1}^{\infty}(\sqrt{t} \theta(t)-\sqrt{t}) t^{-s / 2} \frac{\mathrm{~d} t}{t} \\
& =\int_{0}^{1}\left(\theta(t)-\frac{1}{\sqrt{t}}\right) t^{(1-s) / 2} \frac{\mathrm{~d} t}{t}+\int_{1}^{\infty}(\theta(t)-1) t^{(1-s) / 2} \frac{\mathrm{~d} t}{t} \\
& =\phi(1-s)
\end{aligned}
$$

