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1 Abstract

The Riemann zeta-function ζ(s) is defined by

ζ(s) :=
∞∑

n=1

1
ns

(1)

for Re s > 1, but it is well known that there exists an analytic continuation onto
the whole s-plane with a simple pole at s = 1. We want do derive this result
using tools like the theta function

θ(t) :=
∞∑

n=−∞
e−πn2t, t > 0, (2)

its Mellin transform ∫ ∞

0

θ(t)ts
dt

t
, s ∈ C,

the Gamma function

Γ(s) :=
∫ ∞

0

e−tts
dt

t
, Re s > 0, (3)

and Fourier transformation.
This proof of the analytic continuation is known as the second Riemannian
proof.

2 Some tools

2.1 The Gamma function

Remark: The Gamma function has a large variety of properties. Most of
those we use are very well known, but we will provide all the proofs anyways.

Proposition 1: Γ(s) satisfies the functional equation

Γ(s + 1) = sΓ(s) (4)
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Proof:

Γ(s + 1) =
∫ ∞

0

e−tts+1 dt

t
= −e−tts

∣∣∞
0
−

∫ ∞

0

−e−t s ts
dt

t
= sΓ(s)

�

Corollary: Γ(s) has an analytic continuation on C with simple poles at s =
0,−1,−2, . . ..

Proof: Using (4) we can find values for −1 < Re s ≤ 0, except for s = 0.
These values give us an analytic continuation for Re s > −1 with a simple pole
at s = 0. Of course we can repeat this step infintely many times, with poles
showing up at s = 0,−1,−2, . . .. �

Proposition 2: Γ(s) satisfies the functional equation

Γ(s) Γ(1− s) =
π

sinπs

Proof: Γ(s) has an other representation which equals (3):

Γ(s) =
1
s

∞∏
n=1

(
1 + 1

n

)s

1 + s
n

With this representation and the Euler sine product we get

Γ(s)Γ(1− s) = −sΓ(s)Γ(−s)

=
−s

−s · s

∞∏
n=1

1
1− s2

n2

=
1
s
· πs

sinπs

=
π

sinπs

�

Corollary:
1

Γ(s)
=

sinπs

π
Γ(1− s) is entire.

Proof: Γ(1 − s) has simple poles at s = 1, 2, . . ., but there sin πs has simple
zeros, such that we get removable singularities. �

2.2 The Mellin transform

Definition: Let f : R≥0 → R be continuous. The Mellin transform g(s) of f
is defined by

g(s) :=
∫ ∞

0

f(t)ts
dt

t

for values s such that the integral converges.
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Example: The Mellin transform of e−t is Γ(s).

Example:
f(t) = e−ct ⇒ g(s) = c−s Γ(s) (5)

2.3 Fourier transform

Definition: Let S be the vector space of infinitely differentiable functions
f : R → C such that lim

x→±∞
|x|nf(x) → 0∀n ∈ N. For any f ∈ S we define the

Fourier transform
f̂(y) :=

∫ ∞

−∞
e−2πixyf(x)dx

and the integral converges for all y ∈ C, f ∈ S.

Example: Let f(x) := e−πx2
, then f̂ = f .

Proof: Differentiating under the integral sign gives

f̂ ′(y) =
d
dy

∫ ∞

−∞
e−2πixyf(x)dx = 2πi

∫ ∞

∞
e−2πixyxe−πx2

dx

Integrating by parts yields

f̂ ′(y) = −2πie−2πixy 1
−2π

e−πx2
∣∣∣∣∞
−∞

+ 2πi

∫ ∞

−∞
2πiye−2πixy e−πx2

−2π
dx

= 2πy

∫ ∞

−∞
2−2πixyf(x)dx = −2πyf̂(y)

Thus we have the differential equation

f̂ ′(y)

f̂ (y)
= −2π,

with the solution f̂(y) = Ce−πy2
. Setting y = 0 gives

C = f̂(0) =
∫ ∞

−∞
e−πx2

dx = 1

and thus f̂(y) = e−πy2
= f(y).

Lemma: Let f ∈ S and g(x) := f(ax) for some a > 0. Then ĝ(y) = 1
a f̂( 1

a ).

Proof:

ĝ(y) =
∫ ∞

−∞
e−2πixyf(ax)dx

=
∫ ∞

−∞
e−2πi x

a yf(x)
dx

a

=
1
a
f̂(

y

a
)

�
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Proposition (Poisson Summation): If g ∈ S, then

∞∑
m=−∞

g(m) =
∞∑

m=−∞
ĝ(m).

Proof: Define h(x) :=
∑∞

k=−∞ g(x + k). Clearly this has period 1. Write
down the Fourier series:

h(x) =
∞∑

m=−∞
cme2πimx

with

cm :=
∫ 1

0

h(x)e−2πimxdx

=
∫ 1

0

∞∑
k=−∞

g(x + k)e−2πimxdx

=
∞∑

k=−∞

∫ 1

0

g(x + k)e−2πimxdx

=
∫ ∞

−∞
g(x)e−2πimxdx

= ĝ(m)

Then
∞∑

k=−∞

g(k) = h(0) =
∞∑

m=−∞
cme−2πim·0 =

∞∑
m=−∞

cm =
∞∑

m=−∞
ĝ(m)

�

2.4 The theta function

Remark: Note that θ(t) can not only be written as in (2), but also as

θ(t) = 1 + 2
∞∑

n=1

e−πn2t

We will often make use of that fact.

Proposition 4: θ(t) satisfies the functional equation

θ(t) =
1√
t
θ(1/t)
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Proof: Let g(x) := e−πtx2
for a fixed t > 0 and f(x) := e−πx2

. Obviously
g(x) = f(

√
tx). Using the lemma and the example from the Fourier transform

we get

ĝ(y) =
1√
t
f̂(y/

√
t) =

1√
t
f(y/

√
t) =

1√
t
e−πy2/t

Using Poisson summation we finally find that

θ(t) :=
∞∑

n=−∞
e−πtn2

=
∞∑

n=−∞
g(n) =

∞∑
n=−∞

ĝ(n) =
1√
t

∞∑
n=−∞

e−πn2/t

=
1√
t
θ(1/t)

�

Remark: In this proof we only need θ(t) for real-valued t > 0. But actually
can also be looked at as a complex function for Re t > 0 by analytic continuation.
The functional equation still holds.

Proposition 5: As t goes to zero from above,∣∣∣∣θ(t)− 1√
t

∣∣∣∣ < e−C/t for some C > 0.

Proof: Using Proposition 4 and a rewrite of θ gives∣∣∣∣θ(t)− 1√
t

∣∣∣∣ =
∣∣∣∣ 1√

t
(θ(1/t)− 1)

∣∣∣∣ =
1√
t
· 2

∞∑
n=1

e−πn2/t

Suppose t is small enough such that
√

t > 4 · e−1/t and e−3π/t < 1/2. Then∣∣∣∣θ(t)− 1√
t

∣∣∣∣ <
1
2
e1/t

(
e−π/t + e−4π/t + · · ·

)
<

1
2
e−(π−1)/t

(
1 +

1
2

+
1
4

+ · · ·
)

= e−(π−1)/t

and we see that C = π − 1 satisfies the inequality. �

3 The Theorem and its proof

Theorem ζ(s), as defined by (1) extends analytically onto the whole s-plane,
except a simple pole at s = 1. Let

Λ(s) := π−s/2 Γ(
s

2
) ζ(s).

Then
Λ(s) = Λ(1− s).
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Proof: We want to consider the Mellin transform of the theta function,∫ ∞

0

θ(t)ts
dt

t

As t goes to infinity, θ(t) converges rapidly against 1, as all terms of the sum
fall to zero rapidly, except for n = 0. By proposition 5 we see that for small t,
θ(t) behaves like t−1/2. Thus, if we want convergence at both ends, we have to
introduce correction terms and define

φ(s) :=
∫ ∞

1

(θ(t)− 1)ts/2 dt

t
+

∫ 1

0

(
θ(t)− 1√

t

)
ts/2 dt

t
.

Note that we replaced s by s/2 in order to get ζ(s) instead of ζ(2s).
In the first integral, θ(t) − 1 → 0 extremely fast, such that the integral can be
evaluated term by term, for any s ∈ C. Similarly, θ(t)− 1√

t
is bounded above in

the interval (0, 1], such that the second integral converges for any s ∈ C. These
two statements together show that φ(s) is well-defined for all s ∈ C, and it even
is an entire function.
We now evalute the second integral, assuming Re s > 1:∫ 1

0

θ(t)ts/2 dt

t
−

∫ 1

0

t(s−1)/2 dt

t

=
∫ 1

0

∞∑
n=−∞

e−πn2tts/2 dt

t
− 2

s− 1

=
∫ 1

0

ts/2 dt

t
+ 2

∫ 1

0

∞∑
n=1

e−πn2tts/2 dt

t
+

2
1− s

= 2
∫ 1

0

∞∑
n=1

e−πn2tts/2 dt

t
+

2
s

+
2

1− s

Thus

φ(s) = 2
∫ ∞

1

∞∑
n=1

e−πn2tts/2 dt

t
+ 2

∫ 1

0

∞∑
n=1

e−πn2tts/2 dt

t
+

2
s

+
2

1− s

= 2
∞∑

n=1

∫ ∞

0

e−πn2tts/2 dt

t
+

2
s

+
2

1− s

for Re s > 1.
Using (5) we can evaluate the integral and we get

1
2
φ(s) =

∞∑
n=1

(πn2)−s/2Γ(
s

2
) +

1
s

+
1

1− s

= π−s/2Γ(
s

2
)ζ(s) +

1
s

+
1

1− s

⇒ ζ(s) =
πs/2

Γ( s
2 )

(
1
2
φ(s)− 1

s
− 1

1− s

)
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still for Re s > 1. The only possible poles on the right hand side of the last
equation are at s = 0 and s = 1, as 1/Γ(s) and φ(s) are entire functions. But
for s = 0, the pole is removable, as the term causing the trouble is in fact

πs/2

Γ( s
2 )

1
s

=
πs/2

2 · s
2Γ( s

2 )
=

πs/2

2Γ( s
2 + 1)

s→1−→ 1
2Γ 3

2

.

Thus we have found a meromorphic function on C with a (simple) pole at s = 1,
and which equals ζ(s) for Re s > 1. This is our analytic continuation.
It remains to prove that the functional equation

Λ(s) = Λ(1− s)

holds. Using

1
2
φ(s) = π−s/2Γ(

s

2
)ζ(s) +

1
s

+
1

1− s
= Λ(s) +

1
s

+
1

s− 1

we have

Λ(s) =
1
2
φ(s)− 1

s
− 1

1− s

Λ(1− s) =
1
2
φ(1− s)− 1

1− s
− 1

s

and we only have to prove φ(s) = φ(1− s):

φ(s) =
∫ ∞

1

(θ(t)− 1)ts/2 dt

t
+

∫ 1

0

(
θ(t)− 1√

t

)
ts/2 dt

t

t→ 1
t=

∫ 1

0

(
θ

(
1
t

)
− 1

)
t−s/2 dt

t
+

∫ ∞

1

(
θ

(
1
t

)
−
√

t

)
t−s/2 dt

t

=
∫ 1

0

(
√

tθ(t)− 1)t−s/2 dt

t
+

∫ ∞

1

(√
tθ(t)−

√
t
)

t−s/2 dt

t

=
∫ 1

0

(
θ(t)− 1√

t

)
t(1−s)/2 dt

t
+

∫ ∞

1

(θ(t)− 1) t(1−s)/2 dt

t

= φ(1− s)

�
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