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1 Abstract

The Riemann zeta-function ((s) is defined by

()= (1)

for Re s > 1, but it is well known that there exists an analytic continuation onto
the whole s-plane with a simple pole at s = 1. We want do derive this result
using tools like the theta function

0(t):= > e ™" t>0, (2)

its Mellin transform - &
/ o sec,
0 t

the Gamma function
o0 dt
T'(s) ::/ e_ttéT, Res > 0, (3)
0

and Fourier transformation.
This proof of the analytic continuation is known as the second Riemannian
proof.

2 Some tools

2.1 The Gamma function

Remark: The Gamma function has a large variety of properties. Most of
those we use are very well known, but we will provide all the proofs anyways.

Proposition 1: T'(s) satisfies the functional equation

I'(s+1)=sT(s) (4)



Proof:

e dt 0o i dt
I(s+1) = / ettt = = fe*ttﬂo 7/ —e tst*— =5sT(s)
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Corollary: T'(s) has an analytic continuation on C with simple poles at s =
0,—1,-2,....

Proof: Using (4) we can find values for —1 < Res < 0, except for s = 0.
These values give us an analytic continuation for Re s > —1 with a simple pole
at s = 0. Of course we can repeat this step infintely many times, with poles
showing up at s =0,—1,-2,.... O

Proposition 2: I'(s) satisfies the functional equation

[(s)T(1—s) = —

sin s

Proof: TI'(s) has an other representation which equals (3):

[e'e) 1)\
=11 (11_:-72)

n=1

With this representation and the Euler sine product we get

L(s)I(1—s) = —sI'(s)I'(—s)
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Corollary: w = I'(1 — s) is entire.
™

Proof: T'(1 — s) has simple poles at s = 1,2,..., but there sin7s has simple
zeros, such that we get removable singularities. O

2.2 The Mellin transform

Definition: Let f: RZ% — R be continuous. The Mellin transform g(s) of f
is defined by

o) = [ ror

for values s such that the integral converges.



Example: The Mellin transform of e~ is T'(s).

Example:
flt) =e " = g(s) = c"I(s) ()

2.3 Fourier transform
Definition: Let S be the vector space of infinitely differentiable functions
f R — C such that liI:il |z|" f(z) — 0Vn € N. For any f € S we define the

Fourier transform -

f)= [ s

— 00

and the integral converges for all y € C, f € S.
Example: Let f(x):= e~ then f = f.

Proof: Differentiating under the integral sign gives

: d [~ . o
f/(y) = diy/ 6_27rmyf(x)dx - 27Ti/ e—QTrmyxe—Tmc?dx

Integrating by parts yields

2

£ . —2mix 1 —ra? - . > . —2mix e
f'ly) = —2mie Y—e + 27i 2miye Y—dx
—2m oo oo —2m
= 2my / 2727 f()de = =27y f (y)
Thus we have the differential equation
£
fA(y) = -2,
f ()

with the solution f(y) =Ce™ ™V, Setting y = 0 gives
C:f(O):/ e dr =1

and thus f(y) = e ™ = f(y).

Lemma: Let f € S and g(x) := f(ax) for some a > 0. Then §(y) = %f(

=

).
Proof:
e 2™ f(gx)da

6_27r13yf(.’£)i
a



Proposition (Poisson Summation): If g € S, then

o0 oo

> ogm)y= Y g(m).

m=—0o0 m=—0oo

Proof: Define h(z) := > ;= g(xz + k). Clearly this has period 1. Write
down the Fourier series:

h(z) = i e eI

m=—0oo

with

1
Cm = /h(m)e*%i’mdx
0

1 oo
/ Z g($+k)€72ﬂim$dl'
0

k=—o00

o0 1
Z / g(a: + k)e—QTrimacdx
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—27rimxdm
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= [ slae

= g(m)

Then

oo oo

D k) =h(0) = D7 emeO= BT em= 37 g(m)

k=—o00 m=—0oo m=—0o0 m=—0o0

2.4 The theta function

Remark: Note that 6(¢) can not only be written as in (2), but also as
e 2
O(t)=142) e ™"
n=1

We will often make use of that fact.

Proposition 4: 6(t) satisfies the functional equation

o(t) = %9(1/@



Proof: Let g(z) := —mt* for a fixed ¢t > 0 and f(z) = e=™" . Obviously
g(z) = f(Vtx). Using the lemma and the example from the Fourier transform
we get

ay) = \[(y/\f) \[

Using Poisson summation we finally find that

eyt
fly/Vt) = \[
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Remark: In this proof we only need 6(t) for real-valued ¢ > 0. But actually
can also be looked at as a complex function for Ret > 0 by analytic continuation.
The functional equation still holds.

Proposition 5: As ¢ goes to zero from above,

¢/t for some C > 0.

‘9(1&)—\}%‘ <e

Proof:  Using Proposition 4 and a rewrite of 8 gives

R

Suppose t is small enough such that v/t > 4-e~/* and e=37/* < 1/2. Then

1 1
ot)— —| < *61/t<67ﬂ/t+€74w/t+"')
-G < 3
1 1 1
e~ =D/t (142 42 4.
< 3¢ ( + 5 + 1 + )
1t
and we see that C' = 7 — 1 satisfies the inequality. O

3 The Theorem and its proof

Theorem ((s), as defined by (1) extends analytically onto the whole s-plane,
except a simple pole at s = 1. Let

A(s) = /2 r(%) C(s).

Then
A(s) = A1 —s).



Proof: We want to consider the Mellin transform of the theta function,

/ oy
0 t

As t goes to infinity, 6(¢) converges rapidly against 1, as all terms of the sum
fall to zero rapidly, except for n = 0. By proposition 5 we see that for small ¢,
0(t) behaves like ¢~/2. Thus, if we want convergence at both ends, we have to
introduce correction terms and define

o= [ o0 -0 [ 1 (ORI

Note that we replaced s by s/2 in order to get ((s) instead of ((2s).

In the first integral, 8(¢t) — 1 — 0 extremely fast, such that the integral can be
evaluated term by term, for any s € C. Similarly, 0(¢) — % is bounded above in
the interval (0, 1], such that the second integral converges for any s € C. These
two statements together show that ¢(s) is well-defined for all s € C, and it even
is an entire function.

We now evalute the second integral, assuming Re s > 1:

1 1
/ o2t / ps-n/24t
0 t 0 t
1 oo
/ Z e—ﬂn2tts/2ﬁ - 2
0 e — oo t s—1
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dt 2 dt 2
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/0 7 + /0 ,;:16 7 + 1=
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2 dt 2 2
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Thus
o 2, odt & 2 odt 2 2
- 9 —7n tts/27 2/ —mn tts/Qi “
9(s) /1 ;e t+ onZ::le t+s+1—s
o0
> 2 dt¢ 2 2
- 9 —7n tts/27 “
nz_:l/o ¢ t + s + 1-s
for Res > 1.

Using (5) we can evaluate the integral and we get
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still for Res > 1. The only possible poles on the right hand side of the last
equation are at s = 0 and s = 1, as 1/T'(s) and ¢(s) are entire functions. But
for s = 0, the pole is removable, as the term causing the trouble is in fact

7TS/2 1 7TS/2 7r5/2 o1 1
S\ o s s\ S 3"
I'(3)s 2-3I(5) 2l(3+1) 2rs

Thus we have found a meromorphic function on C with a (simple) pole at s = 1,
and which equals {(s) for Res > 1. This is our analytic continuation.
It remains to prove that the functional equation

A(s) = AL 9)
holds. Using
we have
M) = 30ls)— 1

and we only have to prove ¢(s) = ¢(1 — s):

os) = /100(9@) - 1%”% +/01 (G(t) - \2) tsﬂ%
S L)) [ (D))t

/ (o) - ey [ (it - va) et
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! 1 dt o dt
= _ ) (d=s)/2" _ (1—s)/2 9t
/O <9(t) \/%>t : +/1 0(t) — 1)t ;

= ¢(1—s)



