
ANALYSIS 2
RECITATION SESSION OF WEEK 7

JACOB SHAPIRO

1. THE INVERSE FUNCTION THEOREM AND THE IMPLICIT FUNCTION THEOREM

Following [1]:
Recall the following definitions:

1.1. Definition. If E and F are two Banach spaces, then

L (E; F) ≡
{
ϕ ∈ FE

∣∣∣ ϕ is linear and ϕ is continuous
}

1.2. Definition. If E and F are two Banach spaces, then

Isom (E; F) ≡
{
ϕ ∈ L (E; F)

∣∣∣ ∃ϕ−1 ∈ L (F; E)
}

1.3. Definition. If E and F are two Banach spaces, V ∈ Open (E) and W ∈ Open (F) then f : V → W is a Ck-diffeomorphism
iff:

• f is bijective.
• f ∈ Ck (V ; F).
• f−1 ∈ Ck (W; E).

1.4. Example. x 7→ x3 is a homeomorphism R → R but not a diffeomorphism because x 7→ x
1
3 is not C1 (at the origin).

1.5. Claim. (Inverse function theorem) Let E and F be two Banach spaces. Let U ∈ Open (E). Let f ∈ C1 (U; F) and let a ∈ U
be such that

f ′ (a) ∈ Isom (E; F)

then ∃V ∈ Open (E) such that a ∈ V ⊆ U and ∃W ∈ Open (F) such that f (a) ∈ W such that f ∈ C1 (V ; W) is a surjective
C1-diffeomorphism.

1.6. Remark. When E and F are finite dimensional, then because they are isomorphic, they must be of the same dimension.

1.7. Claim. Let { Ei }ni=1 and F be Banach spaces (recall that ‖(e1, . . . , en)‖ ≡
∑n

i=1‖ei‖). Let U ∈ Open (E1 × · · · × En) . Let
ϕ ∈ C1 (U; G). Then the partial derivatives of ϕ are given by ∂iϕ = ϕ ′ ◦ ui where ui : Ei → E1 × · · · × En is given by
ei 7→ (0, 0, . . . , ei, 0, . . . , 0). Observe that ϕ ′ ◦ ui : U→ L (Ei; F) because ϕ ′ ((e1, . . . , en)) ◦ ui acts on Ei.

1.8. Claim. (Implicit function theorem) Let E, F and G be Banach spaces. Let U ∈ Open (E× F). Let ϕ ∈ C1 (U; G). Let
(e0, f0) ∈ U be given such that ϕ (e0, f0) = 0. Assume that the partial derivative is an isomorphism: (∂Fϕ) (e0, f0) ∈
Isom (F; G). Then ∃V ∈ Open (E× F) such that (e0, f0) ∈ V ⊆ U, ∃W ∈ Open (E) such that e0 ∈ W and ∃ψ ∈ C1 (W; F) such
that

[(e, f) ∈ V ∧ϕ (e, f) = 0] ⇔ [e ∈W ∧ f = ψ (e)]

and
ψ ′ (e0) = − [(∂Fϕ) (e0, f0)]−1 ◦ (∂Eϕ) (e0, f0)

1.9. Remark. Observe again that when F andG are finite dimensional, then because they are isomorphic, they are of the same
dimension.

1.10. Example. ([2] 9.29) Let E = R3 and F = R2 so that G ≈ F = R2. Define f : R3 × R2︸ ︷︷ ︸
≈R5

→ R2 given by

f

y1y2
y3

 ,
[
x1
x2

] =

[
2ex1 + x2y1 − 4y2 + 3

x2 cos (x1) − 6x1 + 2y1 − y3

]
Then observe that

f

32
7

 ,
[
0

1

] =

[
2e0 + 1 · 3− 4 · 2+ 3

1 cos (0) − 6 · 0+ 2 · 3− 7

]

=

[
0

0

]

Date: April 2nd, 2015.
1



ANALYSIS 2 RECITATION SESSION OF WEEK 7 2

Compute f ′

32
7

 ,
[
0

1

] (from which we learn that f ∈ C1
(
R5; R2

)
):

f ′

32
7

 ,
[
0

1

] =

[
∂y1

f1 ∂y2
f1 ∂y3

f1 ∂x1
f1 ∂x2

f1
∂y1

f2 ∂y2
f2 ∂y3

f2 ∂x1
f2 ∂x2

f2

]32
7

 ,
[
0

1

]
=

[
x2 −4 0 2ex1 y1
2 0 −1 −x2 sin (x1) − 6f1 cos (x1)

]32
7

 ,
[
0

1

]
=

[
1 −4 0 2 3

2 0 −1 −6 1

]
so that ∂Ff

32
7

 ,
[
0

1

][
x1
x2

]
≡

f ′
32

7

 ,
[
0

1

]00
0

 ,
[
x1
x2

]

≡

f ′
32

7

 ,
[
0

1

]

0

0

0

x1
x2


=

[
2 3

−6 1

] [
x1
x2

]

or just ∂Ff

32
7

 ,
[
0

1

] =

[
2 3

−6 1

]
and

∂Ef
32

7

 ,
[
0

1

]y1y2
y3

 ≡

f ′
32

7

 ,
[
0

1

]y1y2
y3

 ,
[
0

0

]

≡

f ′
32

7

 ,
[
0

1

]

y1
y2
y3
0

0


=

[
1 −4 0

2 0 −1

]y1y2
y3



or simply ∂Ef

32
7

 ,
[
0

1

] =

[
1 −4 0

2 0 −1

]
. Furthermore,

det

∂Ff
32

7

 ,
[
0

1

] = det
([

2 3

−6 1

])
= 2+ 18

= 20

6= 0

so that ∂Ff

32
7

 ,
[
0

1

] ∈ Isom
(
R2; R2

)
. In terms of 1.8, we have U = R5, and all the requirements to apply 1.8 are

fulfilled, so that we conclude that ∃V ∈ Open
(
R3 × R2

)
such that

32
7

 ,
[
0

1

] ∈ V ⊆ U = R3 × R2 and ∃W ∈ Open
(
R3

)

such that

32
7

 ∈W and ∃g ∈ C1
(
W; R2

)
such that

y1y2
y3

 ,
[
x1
x2

] ∈ V ∧ f

y1y2
y3

 ,
[
x1
x2

] = 0

 ⇔

y1y2
y3

 ∈W ∧

[
x1
x2

]
= g

y1y2
y3


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and we even can compute

g ′

32
7

 =


∂y1

g1

32
7

 ∂y2
g1

32
7

 ∂y3
g1

32
7


∂y1

g2

32
7

 ∂y2
g2

32
7

 ∂y3
g2

32
7





= −

(∂Ff)
32

7

 ,
[
0

1

]−1

(∂Ef)

32
7

 ,
[
0

1

]
= −

[
2 3

−6 1

]−1 [
1 −4 0

2 0 −1

]
= −

1

20

[
1 −3

3 1

] [
1 −4 0

2 0 −1

]
=

[
1
4

1
5 − 3

20

−1
2

6
5

1
10

]
2. SUBMANIFOLDS (UNTERMANNIGFALTIGKEIT)

2.1. Definition. Let (n,m) ∈ N\ { 0 } such that m 6 n and let k ∈ N ∪ { 0, ∞ }. A subset M ⊆ Rn is called an m-dimensional
Ck-submanifold, iff ∀p ∈M:

(1) ∃U ∈ Open (Rn) such that p ∈ U
(2) ∃V ∈ Open (Rn) such that ∃ϕ : U→ V such that ϕ is a Ck-diffeomorphism.

(3) ϕ (U∩M) = V ∩

Rm ×

 (0, 0, . . . , 0)︸ ︷︷ ︸
n−m times




in this example, n = 2, m = 1.
This definition can fail in many different places.

2.2. Claim. Let (n,m) ∈ N\ { 0 } such that m 6 n and let k ∈ N∪ { 0, ∞ } and let M ⊆ Rn. Then the following two statements
are equivalent:

• M is an m-dimensional Ck-submanifold of Rn.
• ∀p ∈M∃U ∈ Open (Rn) : p ∈ U and ∃f : Ck (U; Rn−m) such that:

◦ U∩M = { x ∈ U | f (x) = 0 } ≡ f−1 ({ 0 }).
◦ f ′ (x) : Rn → Rn−m is surjective ∀x ∈ U∩M.

2.3. Example. M := Sn ⊆ Rn+1 is a submanifold.

Proof. M = Sn ≡
{
x ∈ Rn+1

∣∣∣ ‖x‖2 − 1 = 0
}

, so take U = Rn+1 and f : Rn+1 → R by x 7→ ‖x‖− 1. Verify that f is C∞, and

also f ′ (x) =
[
2x1 2x2 . . . 2xn+1

]
: Rn+1 → R is surjective unless x = 0, but 0 /∈ U∩M =M = Sn. �

2.4. Example. M :=


x1x2
x3

 ∈ R3

∣∣∣∣∣∣ x3 = 0

︸ ︷︷ ︸
x−y plane

∪


x1x2
x3

 ∈ R3

∣∣∣∣∣∣ x1 = 0∧ x2 = 0

︸ ︷︷ ︸
z axis

⊆ R3 is not a manifold.

Proof. This thing cannot be a manifold because on the plane it would have m = 2 and on the axis it would have m = 1,
but m is fixed in the definition. �

3. HINTS FOR HOMEWORK SHEET NUMBER SEVEN

3.1. Question 1. See 1.10.
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3.2. Question 2. Define F : Sym (n)× R (n) → Sym (n) by F (X, Y) := YTA (0) Y −X. Observe that

F (A (0) , 1) = A (0) −A (0)

= 0

• Compute ∂YF (X, Y) : R (n) → Sym (n).
• Evalute it at the point where F is zero: ∂YF (A (0) , 1) =?.
• Show that ∂YF (A (0) , 1) ∈ Isom (R (n) ; Sym (n)).
• Thus the requirements for the implicit function theorem are fulfilled and we may employ it.

3.3. Question 5.
• (a): Use 2.2 with f (x1, x2) = x1x2. Is f ′ (0) surjective? Is 0 ∈ f−1 ({ 0 }) at all? Proceed to show that no other f as

required by 2.2 can exist. This can be done by assuming that such an f exists, then removing the origin. In the
domain that would create 4-connected components whereas in the range it would create 2-connected componenets.

• (b): Same spiel. Find 4-connected components in the domain.
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