ANALYSIS 2
RECITATION SESSION OF WEEK 7

JACOB SHAPIRO

1. THE INVERSE FUNCTION THEOREM AND THE IMPLICIT FUNCTION THEOREM

Following [1]:
Recall the following definitions:

1.1. Definition. If E and F are two Banach spaces, then
L(EF) = { @ € FE ’ @ is linear and ¢ is continuous }
1.2. Definition. If E and F are two Banach spaces, then
Isom(E; F) = { eel(EF ‘ Jo~ '€ L(FE) }
1.3. Definition. If E and F are two Banach spaces, V € Open (E) and W € Open (F) then f : V — W is a Ck-diffeomorphism
iff:
o fis bijective.

o feCK(V;F).
o 1 e Ck(W;E).

1.4. Example. x — x3 is a homeomorphism R — R but not a diffeomorphism because x — x5 is not C' (at the origin).

1.5. Claim. (Inverse function theorem) Let E and F be two Banach spaces. Let U € Open (E). Let f € C T(U; F)and leta e U
be such that

f’ (a) € Isom (E; F)
then 3V € Open (E) such that a € V € U and 3W € Open (F) such that f (a) € W such that f € C' (V; W) is a surjective
C! -diffeomorphism.
1.6. Remark. When E and F are finite dimensional, then because they are isomorphic, they must be of the same dimension.

1.7. Claim. Let{E;}' ; and F be Banach spaces (recall that ||(e1, ..., en)|| = X" lleil). Let U € Open (Eq x --- x Ey) . Let
@ € C'(U; G). Then the partial derivatives of ¢ are given by 0;¢ = ¢’ ou; where u; : E; — Eq x -+ x Ey, is given by
e;—(0,0,...,e,0,...,0). Observe that @’ ou; : U — £ (E;; F) because ¢’ ((e1, ..., en)) ou; acts on E;.

1.8. Claim. (Implicit function theorem) Let E, F and G be Banach spaces. Let U € Open(E x F). Let ¢ < C!' (U; G). Let
(eo, fo) € U be given such that ¢ (ep, fop) = 0. Assume that the partial derivative is an isomorphism: (dr¢) (e, fo) €
Isom (F; G). Then 3V € Open (E x F) such that (eg, fo) € V C U, 3W € Open (E) such that ey € W and 3 € C' (W; F) such
that

(e, ) e VA (e f)=0] [ee WAT=1 (e)]
and
P’ (e0) = —[(3r ) (eo, fo)l " o (B @) (eo, fo)

1.9. Remark. Observe again that when F and G are finite dimensional, then because they are isomorphic, they are of the same
dimension.

1.10. Example. ([2]9.29) Let E = R3 and F = R? so that G ~ F = IR2. Define f : R® x R? — R? given by
~R5

X1 B 2e*1 +xpy1 —4yy +3
"%z - X7 COS (X1) — 6Xq +2y1 —vy3

. i 0 B 2¢0+1.3-4.2+43
- 711 ~ |1cos(0)—6-0+2-3—7
o
- |

Then observe that
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3
Compute f’ ( !2] , m) (from which we learn that f € C' (R>; R?)):

7
3 - 3
£ 2 [0:| _ ay1f1 ayzﬁ ay3f1 ax]ﬂ aXZﬁ] 2 |:O:|
2 "1 10y, T2 Oy,f2 Oy;fa Ox,f2 Ox,f2 . "1

o [x2 -4 0 2eX1 Y1 i
12 0 -1 —xpsin(xy)—6f; cos(x7) -

1 -4 0 2 3
T2 0 -1 -6 1
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or simply o¢ f (E] , M) - B N _OJ Furthermore,
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3
so that o¢f ([2] , {ﬂ) € Isom (R% R?). In terms of 1.8, we have U = RR®, and all the requirements to apply 1.8 are
7
3
fulfilled, so that we conclude that 3V € Open (R3 x R?) such that | |2

7

, {?]) €V CU=R3xR?and 3W € Open (R3)

3
such that [2] € Wand 3g € C' (W; R?) such that

] Bl v (e B ol -+ ()
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and we even can compute

2. SUBMANIFOLDS (UNTERMANNIGFALTIGKEIT)

2.1. Definition. Let (n,m) € IN\{0}such that m < nandletk € NU{0, co}. A subset M C R™ is called an m-dimensional
Ck-submanifold, iff Vp € M:

(1) 3U € Open (R™) such thatp e U
(2) 3V € Open (R™) such that 3¢ : U — V such that ¢ is a C*-diffeomorphism.

B)eUnM)=VNn|R™x<¢ (0,0,...,0)
———
n—m times

M %

V

in this example, n =2, m = 1.
This definition can fail in many different places.
2.2. Claim. Let (n,m) € IN\{0}such that m < nandletk € NU{0, oo} and let M C R™. Then the following two statements
are equivalent:

e M is an m-dimensional C¥-submanifold of R™.

e Vp € M3U € Open (R™) : p € Uand 3f : C* (U; R™* ™) such that:
oUNM={xelU|f(x)=0}=fT({0).
o f/(x): R™ — R™ ™ is surjective VYx € UN M.

2.3. Example. M :=S" C R™*! is a submanifold.

Proof. M =S" = {x e RH! ‘ Ix|>=1=0 },so take U = R™*! and f: R — Rby x + ||x|| — 1. Verify that f is C*, and

also f’' (x) = [2x1 2x2 ... 2xni1]:R™! — Ris surjective unless x = 0,but 0 ¢ UNM =M = S™. O
X1 X1
2.4. Example. M := x2| €R3|x3=0 pU x2| € R? [ x; =0Ax2 =0 » C R3 is not a manifold.
X3 X3
x—y plane z axis

Proof. This thing cannot be a manifold because on the plane it would have m = 2 and on the axis it would have m =1,
but m is fixed in the definition. a

3. HINTS FOR HOMEWORK SHEET NUMBER SEVEN
3.1. Question 1. See 1.10.



ANALYSIS 2 RECITATION SESSION OF WEEK 7 4

3.2. Question 2. Define F: Sym (n) x R(n) — Sym (n) by F(X, Y) := YTA (0) Y — X. Observe that
F(A(0), 1) = A(0)—A(0)
0

—

Compute oyF (X, Y): R(n) — Sym (n).

Evalute it at the point where F is zero: 0yF (A (0), 1) =?.

Show that 9yF (A (0), 1) € Isom (R(n); Sym (n)).

Thus the requirements for the implicit function theorem are fulfilled and we may employ it.

3.3. Question 5.

e (a): Use 2.2 with f(x1, x2) = x1x2. Is ' (0) surjective? Is 0 € f~! ({0}) at all? Proceed to show that no other f as
required by 2.2 can exist. This can be done by assuming that such an f exists, then removing the origin. In the
domain that would create 4-connected components whereas in the range it would create 2-connected componenets.

e (b): Same spiel. Find 4-connected components in the domain.
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