ANALYSIS 2

RECITATION SESSION OF WEEK 7

JACOB SHAPIRO

1. The Inverse Function Theorem and the Implicit Function Theorem

Following [1]:
Recall the following definitions:
1.1. Definition. If E and F are two Banach spaces, then

$$
\mathcal{L}(\mathrm{E} ; \mathrm{F}) \equiv\left\{\varphi \in \mathrm{F}^{\mathrm{E}} \mid \varphi \text { is linear and } \varphi \text { is continuous }\right\}
$$

1.2. Definition. If E and F are two Banach spaces, then

$$
\operatorname{Isom}(E ; F) \equiv\left\{\varphi \in \mathcal{L}(E ; F) \mid \exists \varphi^{-1} \in \mathcal{L}(F ; E)\right\}
$$

1.3. Definition. If E and F are two Banach spaces, $V \in \operatorname{Open}(E)$ and $W \in \operatorname{Open}(F)$ then $f: V \rightarrow W$ is a C^{k}-diffeomorphism iff:

- f is bijective.
- $f \in C^{k}(V ; F)$.
- $f^{-1} \in C^{k}(W ; E)$.
1.4. Example. $x \mapsto x^{3}$ is a homeomorphism $\mathbb{R} \rightarrow \mathbb{R}$ but not a diffeomorphism because $x \mapsto x^{\frac{1}{3}}$ is not C^{1} (at the origin).
1.5. Claim. (Inverse function theorem) Let E and F be two Banach spaces. Let $U \in O p e n(E)$. Let $f \in C^{1}(U ; F)$ and let $a \in U$ be such that

$$
f^{\prime}(a) \in \operatorname{Isom}(E ; F)
$$

then $\exists V \in \operatorname{Open}(E)$ such that $a \in V \subseteq U$ and $\exists W \in \operatorname{Open}(F)$ such that $f(a) \in W$ such that $f \in C^{1}(V ; W)$ is a surjective C^{1}-diffeomorphism.
1.6. Remark. When E and F are finite dimensional, then because they are isomorphic, they must be of the same dimension.
1.7. Claim. Let $\left\{E_{i}\right\}_{i=1}^{n}$ and F be Banach spaces (recall that $\left.\left\|\left(e_{1}, \ldots, e_{n}\right)\right\| \equiv \sum_{i=1}^{n}\left\|e_{i}\right\|\right)$. Let $U \in \operatorname{Open}\left(E_{1} \times \cdots \times E_{n}\right)$. Let $\varphi \in C^{1}(U ; G)$. Then the partial derivatives of φ are given by $\partial_{i} \varphi=\varphi^{\prime} \circ u_{i}$ where $u_{i}: E_{i} \rightarrow E_{1} \times \cdots \times E_{n}$ is given by $e_{i} \mapsto\left(0,0, \ldots, e_{i}, 0, \ldots, 0\right)$. Observe that $\varphi^{\prime} \circ u_{i}: U \rightarrow \mathcal{L}\left(E_{i} ; F\right)$ because $\varphi^{\prime}\left(\left(e_{1}, \ldots, e_{n}\right)\right) \circ u_{i}$ acts on E_{i}.
1.8. Claim. (Implicit function theorem) Let E, F and G be Banach spaces. Let $U \in \operatorname{Open}(E \times F)$. Let $\varphi \in C^{1}(U ; G)$. Let $\left(e_{0}, f_{0}\right) \in U$ be given such that $\varphi\left(e_{0}, f_{0}\right)=0$. Assume that the partial derivative is an isomorphism: $\left(\partial_{F} \varphi\right)\left(e_{0}, f_{0}\right) \in$ Isom ($F ; G$). Then $\exists V \in \operatorname{Open}(E \times F)$ such that $\left(e_{0}, f_{0}\right) \in V \subseteq U, \exists W \in \operatorname{Open}(E)$ such that $e_{0} \in W$ and $\exists \psi \in C^{1}(W ; F)$ such that

$$
[(e, f) \in \mathrm{V} \wedge \varphi(e, f)=0] \quad \Leftrightarrow \quad[e \in \mathrm{~W} \wedge \mathrm{f}=\psi(e)]
$$

and

$$
\psi^{\prime}\left(e_{0}\right)=-\left[\left(\partial_{\mathrm{F}} \varphi\right)\left(e_{0}, f_{0}\right)\right]^{-1} \circ\left(\partial_{\mathrm{E}} \varphi\right)\left(e_{0}, f_{0}\right)
$$

1.9. Remark. Observe again that when F and G are finite dimensional, then because they are isomorphic, they are of the same dimension.
1.10. Example. ([2] 9.29) Let $E=\mathbb{R}^{3}$ and $F=\mathbb{R}^{2}$ so that $G \approx F=\mathbb{R}^{2}$. Define $f: \underbrace{\mathbb{R}^{3} \times \mathbb{R}^{2}}_{\approx \mathbb{R}^{5}} \rightarrow \mathbb{R}^{2}$ given by

$$
f\left(\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right],\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
2 e^{x_{1}}+x_{2} y_{1}-4 y_{2}+3 \\
x_{2} \cos \left(x_{1}\right)-6 x_{1}+2 y_{1}-y_{3}
\end{array}\right]
$$

Then observe that

$$
\begin{aligned}
\mathrm{f}\left(\left[\begin{array}{l}
3 \\
2 \\
7
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) & =\left[\begin{array}{c}
2 e^{0}+1 \cdot 3-4 \cdot 2+3 \\
1 \cos (0)-6 \cdot 0+2 \cdot 3-7
\end{array}\right] \\
& =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Compute $\mathrm{f}^{\prime}\left(\left[\begin{array}{l}3 \\ 2 \\ 7\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)\left(\right.$ from which we learn that $\mathrm{f} \in \mathrm{C}^{1}\left(\mathbb{R}^{5} ; \mathbb{R}^{2}\right)$):

$$
\begin{aligned}
f^{\prime}\left(\left[\begin{array}{l}
3 \\
2 \\
7
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) & =\left[\begin{array}{lllll}
\partial_{y_{1}} f_{1} & \partial_{y_{2}} f_{1} & \partial_{y_{3}} f_{1} & \partial_{x_{1}} f_{1} & \partial_{x_{2}} f_{1} \\
\partial_{y_{1}} f_{2} & \partial_{y_{2}} f_{2} & \partial_{y_{3}} f_{2} & \partial_{x_{1}} f_{2} & \partial_{x_{2}} f_{2}
\end{array}\right]\left(\left[\begin{array}{l}
3 \\
2 \\
7
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \\
& =\left[\begin{array}{ccccc}
x_{2} & -4 & 0 & 2 e^{x_{1}} & y_{1} \\
2 & 0 & -1 & -x_{2} \sin \left(x_{1}\right)-6 f_{1} & \cos \left(x_{1}\right)
\end{array}\right]\left(\left[\begin{array}{l}
3 \\
2 \\
7
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \\
& =\left[\begin{array}{ccccc}
1 & -4 & 0 & 2 & 3 \\
2 & 0 & -1 & -6 & 1
\end{array}\right]
\end{aligned}
$$

so that

$$
\begin{aligned}
\left(\partial_{\mathrm{F}}\left(\left[\begin{array}{l}
3 \\
2 \\
7
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)\right)\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] & \equiv\left(\mathrm{f}^{\prime}\left(\left[\begin{array}{l}
3 \\
2 \\
7
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)\right)\left(\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right) \\
& \equiv\left(f^{\prime}\left(\left[\begin{array}{l}
3 \\
2 \\
7
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)\right)\left[\begin{array}{l}
0 \\
0 \\
0 \\
x_{1} \\
x_{2}
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 3 \\
-6 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

or just $\partial_{F} f\left(\left[\begin{array}{l}3 \\ 2 \\ 7\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\left[\begin{array}{cc}2 & 3 \\ -6 & 1\end{array}\right]$ and

$$
\begin{aligned}
\left.\left(\partial_{\mathrm{E}} f\left(\left[\begin{array}{l}
3 \\
2 \\
7
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)\right)\right)\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right] & \equiv\left(f^{\prime}\left(\left[\begin{array}{l}
3 \\
2 \\
7
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)\right)\left(\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right],\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right) \\
& \equiv\left(f^{\prime}\left(\left[\begin{array}{l}
3 \\
2 \\
7
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)\right)\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
0 \\
0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & -4 & 0 \\
2 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]
\end{aligned}
$$

or simply $\partial_{E} f\left(\left[\begin{array}{l}3 \\ 2 \\ 7\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\left[\begin{array}{ccc}1 & -4 & 0 \\ 2 & 0 & -1\end{array}\right]$. Furthermore,

$$
\begin{aligned}
\operatorname{det}\left(\partial_{\mathrm{Ff}}\left(\left[\begin{array}{l}
3 \\
2 \\
7
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)\right) & =\operatorname{det}\left(\left[\begin{array}{cc}
2 & 3 \\
-6 & 1
\end{array}\right]\right) \\
& =2+18 \\
& =20 \\
& \neq 0
\end{aligned}
$$

so that $\partial_{F} f\left(\left[\begin{array}{l}3 \\ 2 \\ 7\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right) \in \operatorname{Isom}\left(\mathbb{R}^{2} ; \mathbb{R}^{2}\right)$. In terms of 1.8 , we have $U=\mathbb{R}^{5}$, and all the requirements to apply 1.8 are fulfilled, so that we conclude that $\exists \mathrm{V} \in \operatorname{Open}\left(\mathbb{R}^{3} \times \mathbb{R}^{2}\right)$ such that $\left(\left[\begin{array}{l}3 \\ 2 \\ 7\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right) \in \mathrm{V} \subseteq \mathrm{U}=\mathbb{R}^{3} \times \mathbb{R}^{2}$ and $\exists W \in \operatorname{Open}\left(\mathbb{R}^{3}\right)$ such that $\left[\begin{array}{l}3 \\ 2 \\ 7\end{array}\right] \in W$ and $\exists g \in C^{1}\left(W ; \mathbb{R}^{2}\right)$ such that

$$
\left[\left(\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right],\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right) \in V \wedge f\left(\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right],\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=0\right] \Leftrightarrow\left[\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right] \in W \wedge\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=g\left(\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]\right)\right]
$$

and we even can compute

$$
\left.\begin{array}{rl}
g^{\prime}\left(\left[\begin{array}{l}
3 \\
2 \\
7
\end{array}\right]\right) & =\left[\begin{array}{ll}
\partial_{y_{1}} g_{1}\left(\left[\begin{array}{l}
3 \\
2 \\
7
\end{array}\right]\right) & \partial_{y_{2}} g_{1}\left(\left[\begin{array}{l}
3 \\
2 \\
7
\end{array}\right]\right)
\end{array} \partial_{\partial_{y_{3}} g_{1}\left(\left[\begin{array}{l}
3 \\
2 \\
7
\end{array}\right]\right)}^{\partial_{y_{1}} g_{2}\left(\left[\begin{array}{l}
3 \\
2 \\
7
\end{array}\right]\right)} \begin{array}{l}
\partial_{y_{2}} g_{2}\left(\left[\begin{array}{l}
3 \\
2 \\
7
\end{array}\right]\right)
\end{array}\right) \\
& \partial_{y_{3}} g_{2}\left(\left[\begin{array}{l}
3 \\
2 \\
7
\end{array}\right]\right)
\end{array}\right]
$$

2. SUBMANIFOLDS (UNTERMANNIGFALTIGKEIT)

2.1. Definition. Let $(n, m) \in \mathbb{N} \backslash\{0\}$ such that $m \leqslant n$ and let $k \in \mathbb{N} \cup\{0, \infty\}$. A subset $M \subseteq \mathbb{R}^{n}$ is called an m-dimensional C^{k}-submanifold, iff $\forall p \in M$:
(1) $\exists \mathrm{U} \in \operatorname{Open}\left(\mathbb{R}^{n}\right)$ such that $p \in U$
(2) $\exists V \in \operatorname{Open}\left(\mathbb{R}^{\mathfrak{n}}\right)$ such that $\exists \varphi: U \rightarrow V$ such that φ is a C^{k}-diffeomorphism.
(3) $\varphi(\mathrm{U} \cap M)=\mathrm{V} \cap(\mathbb{R}^{\mathrm{m}} \times\{\underbrace{(0,0, \ldots, 0)}_{\mathrm{n}-\mathrm{m} \text { times }}\})$

in this example, $\mathrm{n}=2, \mathrm{~m}=1$.
This definition can fail in many different places.
2.2. Claim. Let $(n, m) \in \mathbb{N} \backslash\{0\}$ such that $m \leqslant n$ and let $k \in \mathbb{N} \cup\{0, \infty\}$ and let $M \subseteq \mathbb{R}^{n}$. Then the following two statements are equivalent:

- M is an m-dimensional C^{k}-submanifold of \mathbb{R}^{n}.
- $\forall p \in M \exists U \in \operatorname{Open}\left(\mathbb{R}^{n}\right): p \in U$ and $\exists f: C^{k}\left(U ; \mathbb{R}^{n-m}\right)$ such that:
- $U \cap M=\{x \in U \mid f(x)=0\} \equiv f^{-1}(\{0\})$.
- $f^{\prime}(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-m}$ is surjective $\forall x \in U \cap M$.
2.3. Example. $M:=S^{n} \subseteq \mathbb{R}^{n+1}$ is a submanifold.

Proof. $M=S^{n} \equiv\left\{x \in \mathbb{R}^{n+1} \mid\|x\|^{2}-1=0\right\}$, so take $U=\mathbb{R}^{n+1}$ and $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ by $x \mapsto\|x\|-1$. Verify that f is C^{∞}, and also $f^{\prime}(x)=\left[\begin{array}{llll}2 x_{1} & 2 x_{2} & \ldots & 2 x_{n+1}\end{array}\right]: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ is surjective unless $x=0$, but $0 \notin U \cap M=M=S^{n}$.
2.4. Example. $M:=\underbrace{\left\{\left.\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \in \mathbb{R}^{3} \right\rvert\, x_{3}=0\right\}}_{x-y \text { plane }} \cup \underbrace{\left\{\left.\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \in \mathbb{R}^{3} \right\rvert\, x_{1}=0 \wedge x_{2}=0\right\}}_{z \text { axis }} \subseteq \mathbb{R}^{3}$ is not a manifold.

Proof. This thing cannot be a manifold because on the plane it would have $m=2$ and on the axis it would have $m=1$, but m is fixed in the definition.
3.2. Question 2. Define $F: \operatorname{Sym}(n) \times R(n) \rightarrow \operatorname{Sym}(n)$ by $F(X, Y):=Y^{\top} A(0) Y-X$. Observe that

$$
\begin{aligned}
F(A(0), \mathbb{1}) & =A(0)-A(0) \\
& =0
\end{aligned}
$$

- Compute $\partial_{Y} F(X, Y): R(n) \rightarrow \operatorname{Sym}(n)$.
- Evalute it at the point where F is zero: $\partial_{\gamma} F(A(0), \mathbb{1})=$?.
- Show that $\partial_{Y} F(A(0), \mathbb{1}) \in \operatorname{Isom}(R(n) ; \operatorname{Sym}(n))$.
- Thus the requirements for the implicit function theorem are fulfilled and we may employ it.

3.3. Question 5.

- (a): Use 2.2 with $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$. Is $f^{\prime}(0)$ surjective? Is $0 \in f^{-1}(\{0\})$ at all? Proceed to show that no other f as required by 2.2 can exist. This can be done by assuming that such an f exists, then removing the origin. In the domain that would create 4-connected components whereas in the range it would create 2 -connected componenets.
- (b): Same spiel. Find 4-connected components in the domain.

References

[1] H. Cartan. Differential Calculus. Houghton Mifflin Co, 1971.
[2] Walter Rudin. Principles of Mathematical Analysis (International Series in Pure and Applied Mathematics). McGraw-Hill Science/Engineering/Math, 1976.

