ANALYSIS 2

RECITATION SESSION OF WEEK 5

JACOB SHAPIRO

1. Exercise Sheet Number 5

1.1. Convex Sets and Convex Functions. Let X be a vector space.
1.1. Definition. A convex set is a set $U \subseteq X$ such that if $\left(x_{1}, x_{2}\right) \in U^{2}$ then $\left[t x_{1}+(1-t) x_{2}\right] \in U$ for all $t \in[0,1]$.

The picture you should have in mind is that the straight line between each two points in U is entirely inside of U.
1.2. Example. \mathbb{R}^{n} is convex.
1.3. Example. A set in \mathbb{R}^{2} which looks like a horse hoove is not convex.
1.4. Definition. Let U be a convex subset of a vector space. Then a map $f: U \rightarrow \mathbb{R}$ is convex iff $f(t x+(1-t) y) \leqslant t f(x)+$ $(1-t) f(y)$ for all $t \in[0,1]$ and $(x, y) \in U^{2}$.
1.5. Example. Let $\|\cdot\|: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a norm on \mathbb{R}^{n}. Then $\|$.$\| is convex.$

Proof. Let $\mathrm{t} \in[0,1]$ be given, and let $(x, y) \in\left[\mathbb{R}^{n}\right]^{2}$ be given. Then

$$
\begin{aligned}
\|t x+(1-t) y\| & \leqslant\|t x\|+\|(1-t) y\| \\
& =|t|\|x\|+|1-t|\|y\| \\
& =t\|x\|+(1-t)\|y\|
\end{aligned}
$$

1.6. Example. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $x \mapsto x_{1} x_{2}$. Then f is not convex.

Proof. Let $\mathrm{t} \in[0,1]$ be given, and let $(x, y) \in\left[\mathbb{R}^{2}\right]^{2}$ be given. Then

$$
\begin{aligned}
\mathrm{f}(\mathrm{tx}+(1-\mathrm{t}) \mathrm{y}) & =\mathrm{f}\left(\left[\begin{array}{l}
\mathrm{tx} x_{1}+(1-\mathrm{t}) \mathrm{y}_{1} \\
\mathrm{t} x_{2}+(1-\mathrm{t}) \mathrm{y}_{2}
\end{array}\right]\right) \\
& =\left(\mathrm{t} x_{1}+(1-\mathrm{t}) \mathrm{y}_{1}\right)\left(\mathrm{t} x_{2}+(1-\mathrm{t}) \mathrm{y}_{2}\right) \\
& =\mathrm{t}^{2} x_{1} x_{2}+(1-\mathrm{t})^{2} y_{1} y_{2}+\mathrm{t}(1-\mathrm{t})\left(x_{1} y_{2}+y_{1} x_{2}\right) \\
& =\mathrm{t}^{2} f(x)+(1-t)^{2} f(y)+t(1-t)\left(x_{1} y_{2}+y_{1} x_{2}\right)
\end{aligned}
$$

Pick $x=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and $y=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ then we have

$$
\mathrm{f}(\mathrm{tx}+(1-\mathrm{t}) \mathrm{y})=\mathrm{t}(1-\mathrm{t}) \forall \mathrm{t}
$$

whereas

$$
\mathrm{tf}(\mathrm{x})+(1-\mathrm{t}) \mathrm{f}(\mathrm{y})=0 \forall \mathrm{t}
$$

and so any $t \in[0,1]$ violates the convexivity condition.
1.2. Critical Points, Saddle Points Local Minima and Maxima. Let X and Y be Banach spaces, $E \in$ Open (X), and let $f \in C^{3}(E, Y)$.
1.7. Definition. A critical point of f is a point $x_{0} \in E$ such that either $\partial_{\nu} f\left(x_{0}\right)=0 \forall v \in X$ or $\nexists \partial_{v} f\left(x_{0}\right)$ for some $v \in X$.
(Think of $x \mapsto|x|$ when at 0 this map is not differentiable).
Now assume X and Y are finite dimensional. Recall that we may approximate f near an extremum point via

$$
f\left(x_{0}+x\right) \approx f\left(x_{0}\right)+\frac{1}{2}\left\langle x, H\left(x_{0}\right) x\right\rangle
$$

1.8. Claim. If the Hessian matrix $\left(\partial_{i} \partial_{j} f\right)$ of f is positive definite at an extremum point x_{0} then x_{0} is a local minimum. If the matrix is negative definite then x_{0} is a local maximum. Otherwise it is a saddle point.

Observe that a matrix M is positive definite iff $\langle v, M v\rangle>0$ for all vectors v. That means iff $v^{\top} M v>0$. If we write $M=\mathrm{PDP}^{-1}$ where D is diagonal, then, this is equivalent to requiring that $v^{\top} \mathrm{D} v>0$ for all vectors v, which means

$$
\sum_{i=1}^{n}\left(v_{i}\right)^{2}(D)_{i i}
$$

so that if all the entries of D are positive, then we get a positive result no matter which v we pick. If there are mixed signs then that is no longer the case.

[^0]1.9. Exercise. Let $\mathrm{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $\mathrm{x} \mapsto\left(\mathrm{x}_{1}\right)^{4}-8\left(\mathrm{x}_{1}\right)^{2}+\left(\mathrm{x}_{2}\right)^{4}-18\left(\mathrm{x}_{2}\right)^{2}$. Find the extrema of f .

Proof. We first compute the Jacobian and matrix:

$$
\begin{gathered}
\partial_{1} f(x)=4 x_{1}^{3}-16 x_{1}=4 x_{1}\left(x_{1}^{2}-4\right) \\
\partial_{2} f(x)=4 x_{2}^{3}-36 x_{2}=4 x_{2}\left(x_{2}^{2}-9\right)
\end{gathered}
$$

clearly these partial derivatives always exist, and so we need to find points where they are all zero: $\begin{cases}4 x_{1}\left(x_{1}^{2}-4\right) & =0 \\ 4 x_{2}\left(x_{2}^{2}-9\right) & =0\end{cases}$ and so the we have $\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ \pm 3\end{array}\right],\left[\begin{array}{c} \pm 2 \\ 0\end{array}\right],\left[\begin{array}{l} \pm 2 \\ \pm 3\end{array}\right]\right\}$, all together nine points.

Now compute the second partial derivatives to be able to compute the Hessian matrix:

$$
\begin{aligned}
& \partial_{1}^{2} f(x)=12 x_{1}^{2}-16=4\left(3 x_{1}^{2}-4\right) \\
& \partial_{2} \partial_{1} f(x)=0 \\
& \partial_{2}^{2} f(x)= 12 x_{2}^{2}-36=12\left(x_{2}^{2}-3\right)
\end{aligned}
$$

and so we have $H(x)=\left[\begin{array}{cc}12 x_{1}^{2}-16 & 0 \\ 0 & 12 x_{2}^{2}-36\end{array}\right]$ and at the extremum points we have:
(1) $\left[\begin{array}{l}0 \\ 0\end{array}\right]: \mathrm{H}\left(\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)=\left[\begin{array}{cc}-16 & 0 \\ 0 & -36\end{array}\right]$ which is negative definite and so $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is a local maximum.
(2) $\left[\begin{array}{c}0 \\ \pm 3\end{array}\right]: \mathrm{H}\left(\left[\begin{array}{c}0 \\ \pm 3\end{array}\right]\right)=\left[\begin{array}{cc}-16 & 0 \\ 0 & 72\end{array}\right]$ which is indefinite and so $\left[\begin{array}{c}0 \\ \pm 3\end{array}\right]$ are saddle points.
(3) $\left[\begin{array}{c} \pm 2 \\ 0\end{array}\right]: \mathrm{H}\left(\left[\begin{array}{c} \pm 2 \\ 0\end{array}\right]\right)=\left[\begin{array}{cc}32 & 0 \\ 0 & -36\end{array}\right]$ which is indefinite and so $\left[\begin{array}{c} \pm 2 \\ 0\end{array}\right]$ are saddle points.
(4) $\left[\begin{array}{l} \pm 2 \\ \pm 3\end{array}\right]: \mathrm{H}\left(\left[\begin{array}{l} \pm 2 \\ \pm 3\end{array}\right]\right)=\left[\begin{array}{cc}32 & 0 \\ 0 & 72\end{array}\right]$ which is positive definite and so $\left[\begin{array}{l} \pm 2 \\ \pm 3\end{array}\right]$ are local minima.
1.3. Multi-Index Notation. Let $n \in \mathbb{N} \backslash\{0\}$. Let $(\alpha, \beta) \in\left[[\mathbb{N} \cup\{0\}]^{n}\right]^{2}$ and $x \in \mathbb{R}^{n}$. Define

$$
\begin{aligned}
\|\alpha\| & :=\sum_{i=1}^{n} \alpha_{i} \\
\alpha! & :=\prod_{i=1}^{n} \alpha_{i}! \\
\binom{\alpha}{\beta} & :=\prod_{i=1}^{n}\binom{\alpha_{i}}{\beta_{i}} \\
\binom{\|\alpha\|}{\alpha} & :=\frac{\|\alpha\|!}{\prod_{i=1}^{n} \alpha_{i}!} \\
x^{\alpha} & :=\prod_{i=1}^{n}\left(x_{i}\right)^{\alpha_{i}} \\
\partial^{\alpha} & :=\prod_{i=1}^{n} \partial_{i}^{\alpha_{i}}
\end{aligned}
$$

This makes certain notations much easier. For example, for Taylor approximations:

$$
f(x+h)=\sum_{\alpha \in[\mathbb{N} \cup\{0\}]^{n}} \frac{1}{\alpha!}\left(\partial^{\alpha} f(x)\right) h^{\alpha}
$$

[^0]: Date: 15 March 2015.

