ANALYSIS 2
RECITATION SESSION OF WEEK 4

JACOB SHAPIRO

1. CONTINUITY OF PRODUCT SPACES

1.1. Claim. Let f: R™ — R. Assume that foralli € {0, ..., n—1}and forall z € R, the map
R 9 R

x = f(Z1IZZI---/Zi/ Oclzi-'—]/"‘lzn—])

is uniformly continuous (also in z). Then f is continuous.

Proof. First note that as R™ is a finite dimensional vector space, all norms on it are “equivalent” and we have proven
previously that equivalent norms generate the same topology. Thus, we could just as well work with the norm ||x||., =
max ({|xi| [1e{T1,...,n}}.

Next, for f to be continuous at x, we need that Ve > 0, 35 (¢) > 0 such that if ||x —yl|,, < & (¢) then If (x) —f (y)| < e. We
know that the maps g; (z) : R — R are uniformly continuous (also in z), namely, Ve > 0 35; (¢) > O such that V (e, B) € R2,
if lo— Bl < 8; (¢) then |f (z1, ..., zi, &, zis1, oov, Zn1) — T (21, 22, .-+, 24, B, Zit1, -+ -, Zn—1)| < € (and this condition holds
ze R* 1 insucha way that §; (&) does not depend on z).

Now for the actual proof:

Let e > Obe given. Define 8 (¢) :==min ({ 8; (£) |i€{1,...,n}}). Thenif [x —y||o, < & (¢), then the uniform continuity
condition on the g; functions are all fulfilled:

i —yil < max ({xi/—yul|i"€{1,...,n}})
= Ix—ylw
o5
= min ({50 (5) [V €01, )
e

and so we may conclude that
€
|f(Z]/ ceer Zig Yis Zig 1y o vy Zn—])ff(z1/ cees Zig Xy Zig 1y ee ey Zn—])l < E
forallie{1, ..., n}and for all z € R™. But we have

|f(9)*f(x)| < |f(U)*f(X1/ Y2,Y3, Y4, ---, yn)|+
+‘f(X], 92/ 93/ 94 sy yﬂ)_f(x]/ XZ/HS/ '94, crcy Un”
+‘f(X1, X2,Y3, Y4, H«/yn)_f(x1/X2/X3/ Ya, .« Un”

+‘f(X1/ cees Xn—1, Un) 7f(X)|
< no
n
= ¢
Note that in each term in the above expression, only one coordinate is different between x and y and all the rest are the
same (albeit mixed, but that’s fine since our uniform continuity condition holds for any z € R™~'. For example, in the
first row, z = (y2, ..., Yn), in the second row, z = (x1, y3, ..., Yn), in the third row, z = (x4, x2, Y4, ..., yn) and in the last

TOW, Z = (X1, +++), Xn—1))- O

1.2. Remark. How can 1.1 claim be improved?

2. CONTINUITY OF DERIVATIVES IN BANACH SPACES

Note that if X and Y are Banach spaces, a map f: E — Y where E € Open (X) is called differentiable at xy € X (see [2] pp.
6) iff there exists a continuous linear map f’ (xo) : X — Y such that

e G0 1) = 7 (x0) — (£ (x0)) (W _
h—0x HhHX

0 1
2.1. Claim. If dim (X) < oo then any linear map A : X — Y is continuous.
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Proof. Let xo € X be given. Because dim (X) < oo, X = R™ for some n € IN. Thus, WLOG X = IR™ with its standard
Euclidean norm (because all norms on R™ are equivalent and generate the same topology, as we have seen), and let
{ei i1 be the standard basis on R™. Thus for each x € X we may write x, = Y i ; x'e;.

Let ¢ > 0 be given. Then we need to find some & (¢) > 0 such that for all x € R™ such that ||xo — x|[gn < & (¢) we have
A (x) — A (x0)|ly < e. But A is linear and (ox + By)* = ax® + Byt for any scalars («, ) € R, so that

[AG)=Axo)lly = [[AG=x0llly

= ‘ A (i (x —x0)" ei>
i=1

Y
= Z x—xo ei)
i=1 Y
< Y |x—xtacen)|,
i=1
= ) [0 IAtely
i=1
< max ({JA ()l 1€ (1w m) ) 3 Je—x0'

i=1

< max ({ ||A(¢)lly [7 € {1, “}});\X*XOHJRH
= max({||A(ej)|ly |i€{l, ..., n}}) IIx—xollgn -1

£
nemax({ [A(e;)]ly | i€l 1,

for ||A (e;)||y = oo because |||y 1samapY—>]Randoo§ZlR O

3

so that we see if we define & (¢) = —uy we get the desired condition. Observe that it is impossible

Thus we see that if dim (X) < oo we don’t need to require the continuity of A, it comes automatically by linearity.
However, otherwise, it is part of the definition of the differentiability of f.
Observe that there is another map defined by this process, namely, the map E — £ (X, Y) given by x — f’ (x), where
L (X, Y) is the set of all continuous linear maps from X to Y. Actually, £ (X, Y) is a Banach space in and of itself, with the
IA Gy

norm on it defined as
Al ¢ (x, vy =sup ({ x € X\{0x} })
lIxllx

which gives £ (X, Y) its own topological structure and thus we may speak about whether the map X 5 x — f’ (x) € £ (X, Y)
is continuous. So, even though X 3 x — (f’ (x0)) (x) € Y is always continuous (by definition) for any xo € E where f is
differentiable, X 3 x — ' (x) € £ (X, Y) may fail to be continuous.

If X5 x— ' (x) € £L(X,Y) is continuous, we say f is continuously differentiable (see [3] definition 9.20) and is denoted by
feCl(E Y).

2.2. Claim. (Theorem 9.21in [3]) f € C' (E, Y) at x¢ € E iff 01,f exists at xg € E forall h € X.

Question 1 in exercise sheet number 4 shows you a counter example of this. Here’s another example:
2.3. Claim. Let f : R — R be a differentiable function at xo € R such that f’ : R — R is not continuous at x¢ (for example,

x — |x] with xo = 0). Then the function g : R? — R given by [ﬂ — f(x) is not continuously differentiable, but is
differentiable, at BO} for any yo € R.
0

Proof. Using 2.2 we see that since

o) - (500D

~ lim fx+t)—~(x)
t—0 t
= f'(x)
then 04 g is discontinuous at [Xyo} for any y € R and in particular, that means g ¢ C' (R?, R). Note that 3,g = 0.

To see that g’ exists at (xo, yo) for all yo € R and is equal

o'([]) = PollE]) 2 (G2))]

= [f'(x0) 0]
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o GRS () )

(h-xzh-y)‘}(oro) h'X
h'y

we compute the limit from 1:

‘ R

R2
Hf(xo-i-hx)—f(xo)— [f’ (x0) 0] [hx]

hy
hy
hy ] ||
lim [f (xo +hx) — T (x0) —f (x0) hx|IR
(hx, hy)—(0,0) /h%+h§

—  lim If (xo 4+ ha) —f (x0) — f/ (x0) hyl
hy—0 [hl

‘ R

m
(hx, hy)—(0,0)

which is indeed zero as £ h) — £ (x)
. XO“F x) — XO
£/ =1
(xo) higlo hy

3. DERIVATIVES IN BANACH ALGEBRAS
Let A be a Banach algebra.
3.1. Claim. Letn € IN be given. The derivative of the map f: A — A givenby A — A™ is

n—1
(f'(A) (B) = ) AMBA™
k=0

Proof. We proceed by computing the limit of 1:
L g IFAHBI—F(A) — (£ (A) (Bl

0 =
B—0 I1B|.4
H(A+B)” — AN Y Ty AKBAN KT H
= lim A
B—0 1Bl
but
n—1 n
(A+B)" = A"+ ) AMBAMETT4 ) g (A)B hy (A)
k=0 k=2

where gy and hy are the non-commutative powers of A that will occur for every given pwoer of B (you can show this by
induction. The actual form of gy and hy is not important for the argument). Thus we have:

|(A+B)" —Am— Z =g ARBAN KT HA

= lim
B0 B
A DS ABAT TR g () B () - AT - ER AvBA
= m
B0 IBll4
—  lLim ||ZE:2 gk (A) Bkhk (A)HA
B0 IBl4

i 3 o VB
B0 — 1Bl 4

= lgic (A)l]a|[B*[] 4 Ma (A)]l 4

N
3

< lim
B—0 — Bl 4
= [lgi (A)]| [IBJl4J* v (A
< limZ EL3 A A K A
B—0.— IBIl4

. = k—1
= gk (A4l (Al 4 %lg}) ];2 [IBI| 4]

= 0
The map B — (' (A)) (B) = Y_R—d AKBA™ %~ is clearly linear and continuous. O
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As we have seen previously, any power series R 5 x — } | .y anx™ € Rwith{ an },,cy € R which converges absolutely

definesamap on Aby A — } .y anA™. This map defines a sequence of maps { ALY SN anAM } which converge
NelN

uniformly to A Hy 2 neN XnA™:

Proof. Let ¢ > 0 be given. Then we need to find some m (¢) € IN such that if N > m (e) then |fn (A) —f (A)|| < € for all
Ac A

N
I (A) —f (A)] = D anAT— ) anA"

n=0 nelN
o

Il
3
M
K
3
p
3

norm cont.

n=N+1
M
. n
< Jim el [IA]
n=N+1

which converges by the uniform convergence of }_, .y on [|A[|"™, which follows from Rudin Theorems 7.10 and 8.1. O

and so, in particular, we may differentiate term by term of the power series (compare with theorem 7.17 in [3]). Thus we
have shown:

3.2. Claim. The derivative of A — - nA™ is

n—1
B Z on Z AKBAN k-1
nelN k=0

3.3. Exercise. What is the derivative of A* 3 A — A~ 1?

4. TAYLOR POLYNOMIALS
5. HOMEWORK NUMBER 4 PREVIEW

5.1. Question 1.

e An example of a function that is differentiable, but not continuously differentiable. Part (a) is straight forward, need
to think separately about (0, 0) and elsewhere.
o The partial derivatives are not continuous at the origin, and so the total derivative is not continuous.

5.2. Question 3.
e Derivative of power series

6. HOMEWORK NUMBER 2 OVERVIEW

6.1. Question 1.

e Recall that it is not strictly necessary to have a multiplicative unit for an algebra (See [1] chapter 6 pp. 262).
o A matrix A isnotasum }_{_; ai;! (basic linear algebra).

6.2. Question 2.
¢ Do (a), talk about exchanging limits.
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