
ANALYSIS 2
RECITATION SESSION OF WEEK 4

JACOB SHAPIRO

1. CONTINUITY OF PRODUCT SPACES

1.1. Claim. Let f : Rn → R. Assume that for all i ∈ { 0, . . . , n− 1 } and for all z ∈ Rn−1, the map

R
gi(z)→ R

α 7→ f (z1, z2, . . . , zi, α, zi+1, . . . , zn−1)

is uniformly continuous (also in z). Then f is continuous.

Proof. First note that as Rn is a finite dimensional vector space, all norms on it are “equivalent” and we have proven
previously that equivalent norms generate the same topology. Thus, we could just as well work with the norm ‖x‖∞ ≡
max ({ |xi| | i ∈ { 1, . . . , n } }).

Next, for f to be continuous at x, we need that ∀ε > 0, ∃δ (ε) > 0 such that if ‖x− y‖∞ < δ (ε) then |f (x) − f (y)| < ε. We
know that the maps gi (z) : R → R are uniformly continuous (also in z), namely, ∀ε > 0 ∃δi (ε) > 0 such that ∀ (α, β) ∈ R2,
if |α−β| < δi (ε) then |f (z1, . . . , zi, α, zi+1, . . . , zn−1) − f (z1, z2, . . . , zi, β, zi+1, . . . , zn−1)| < ε (and this condition holds
z ∈ Rn−1, in such a way that δi (ε) does not depend on z).

Now for the actual proof:
Let ε > 0 be given. Define δ (ε) := min

({
δi
(
ε
n

) ∣∣ i ∈ { 1, . . . , n }
})

. Then if ‖x− y‖∞ < δ (ε), then the uniform continuity
condition on the gi functions are all fulfilled:

|xi − yi| 6 max
({

|xi ′ − yi ′ |
∣∣ i ′ ∈ { 1, . . . , n }

})
≡ ‖x− y‖∞
!
< δ (ε)

≡ min
({

δi ′
( ε
n

) ∣∣∣ i ′ ∈ { 1, . . . , n }
})

6 δi

( ε
n

)
and so we may conclude that

|f (z1, . . . , zi, yi, zi+1, . . . , zn−1) − f (z1, . . . , zi, xi, zi+1, . . . , zn−1)| <
ε

n

for all i ∈ { 1, . . . , n } and for all z ∈ Rn. But we have

|f (y) − f (x)| 6 |f (y) − f (x1, y2,y3, y4, . . . , yn)|+
+ |f (x1, y2, y3, y4 . . . , yn) − f (x1, x2,y3, y4, . . . , yn)|
+ |f (x1, x2,y3 , y4, . . . , yn) − f (x1, x2, x3, y4, . . . , yn)|
. . .

+ |f (x1, . . . , xn−1, yn) − f (x)|

6 n
ε

n
= ε

Note that in each term in the above expression, only one coordinate is different between x and y and all the rest are the
same (albeit mixed, but that’s fine since our uniform continuity condition holds for any z ∈ Rn−1. For example, in the
first row, z = (y2, . . . , yn), in the second row, z = (x1, y3, . . . , yn), in the third row, z = (x1, x2, y4, . . . , yn) and in the last
row, z = (x1, . . . , xn−1)). �

1.2. Remark. How can 1.1 claim be improved?

2. CONTINUITY OF DERIVATIVES IN BANACH SPACES

Note that if X and Y are Banach spaces, a map f : E → Y where E ∈ Open (X) is called differentiable at x0 ∈ X (see [2] pp.
6) iff there exists a continuous linear map f ′ (x0) : X → Y such that

lim
h→0X

‖f (x0 + h) − f (x0) − (f ′ (x0)) (h)‖Y
‖h‖X

= 0 (1)

2.1. Claim. If dim (X) < ∞ then any linear map A : X → Y is continuous.
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Proof. Let x0 ∈ X be given. Because dim (X) < ∞, X ∼= Rn for some n ∈ N. Thus, WLOG X = Rn with its standard
Euclidean norm (because all norms on Rn are equivalent and generate the same topology, as we have seen), and let
{ ei }

n
i=1 be the standard basis on Rn. Thus for each x ∈ X we may write xx =

∑n
i=1 x

iei.
Let ε > 0 be given. Then we need to find some δ (ε) > 0 such that for all x ∈ Rn such that ‖x0 − x‖Rn < δ (ε) we have

‖A (x) −A (x0)‖Y < ε. But A is linear and (αx+βy)i = αxi +βyi for any scalars (α, β) ∈ R2, so that

‖A (x) −A (x0)‖Y = ‖A (x− x0)‖Y

=

∥∥∥∥∥A
(

n∑
i=1

(x− x0)
i ei

)∥∥∥∥∥
Y

=

∥∥∥∥∥
n∑

i=1

(x− x0)
iA (ei)

∥∥∥∥∥
Y

6
n∑

i=1

∥∥∥(x− x0)
iA (ei)

∥∥∥
Y

=

n∑
i=1

∣∣∣(x− x0)
i
∣∣∣ ‖A (ei)‖Y

6 max
({ ∥∥A (ej)∥∥Y ∣∣ j ∈ { 1, . . . , n }

}) n∑
i=1

∣∣∣(x− x0)
i
∣∣∣

6 max
({ ∥∥A (ej)∥∥Y ∣∣ j ∈ { 1, . . . , n }

}) n∑
i=1

‖x− x0‖Rn

= max
({ ∥∥A (ej)∥∥Y ∣∣ j ∈ { 1, . . . , n }

})
‖x− x0‖Rn ·n

so that we see if we define δ (ε) := ε
n·max

({ ∥∥A(ej

)∥∥
Y

∣∣ j∈{ 1, ..., n }
}) we get the desired condition. Observe that it is impossible

for
∥∥A (ej)∥∥Y = ∞ because ‖‖Y is a map Y → R and ∞ /∈ R. �

Thus we see that if dim (X) < ∞ we don’t need to require the continuity of A, it comes automatically by linearity.
However, otherwise, it is part of the definition of the differentiability of f.

Observe that there is another map defined by this process, namely, the map E → L (X, Y) given by x 7→ f ′ (x), where
L (X, Y) is the set of all continuous linear maps from X to Y. Actually, L (X, Y) is a Banach space in and of itself, with the
norm on it defined as

‖A‖L(X, Y) := sup
({

‖A (x)‖Y
‖x‖X

∣∣∣∣ x ∈ X\ {0X}

})
which gives L (X, Y) its own topological structure and thus we may speak about whether the map X 3 x 7→ f ′ (x) ∈ L (X, Y)
is continuous. So, even though X 3 x 7→ (f ′ (x0)) (x) ∈ Y is always continuous (by definition) for any x0 ∈ E where f is
differentiable, X 3 x 7→ f ′ (x) ∈ L (X, Y) may fail to be continuous.

If X 3 x 7→ f ′ (x) ∈ L (X, Y) is continuous, we say f is continuously differentiable (see [3] definition 9.20) and is denoted by
f ∈ C1 (E, Y).

2.2. Claim. (Theorem 9.21 in [3]) f ∈ C1 (E, Y) at x0 ∈ E iff ∂hf exists at x0 ∈ E for all h ∈ X.

Question 1 in exercise sheet number 4 shows you a counter example of this. Here’s another example:

2.3. Claim. Let f : R → R be a differentiable function at x0 ∈ R such that f ′ : R → R is not continuous at x0 (for example,

x 7→ |x| with x0 = 0). Then the function g : R2 → R given by
[
x

y

]
7→ f (x) is not continuously differentiable, but is

differentiable, at
[
x0
y0

]
for any y0 ∈ R.

Proof. Using 2.2 we see that since

(∂xg)

([
x

y

])
≡ lim

t→0

g

([
x+ t

y

])
− g

([
x

y

])
t

= lim
t→0

f (x+ t) − f (x)

t

≡ f ′ (x)

then ∂xg is discontinuous at
[
x0
y

]
for any y ∈ R and in particular, that means g /∈ C1

(
R2, R

)
. Note that ∂yg = 0.

To see that g ′ exists at (x0, y0) for all y0 ∈ R and is equal

g ′
([

x0
y0

])
=

[
∂xg

([
x0
y0

])
∂yg

([
x0
y0

])]
=

[
f ′ (x0) 0

]
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we compute the limit from 1:

0
!
= lim(

hx, hy

)
→(0, 0)

∥∥∥∥g([x0y0
]
+

[
hx

hy

])
− g

([
x0
y0

])
− g ′

([
x0
y0

])[
hx

hy

]∥∥∥∥
R∥∥∥∥[hx

hy

]∥∥∥∥
R2

= lim(
hx, hy

)
→(0, 0)

∥∥∥∥f (x0 + hx) − f (x0) −
[
f ′ (x0) 0

] [hx

hy

]∥∥∥∥
R∥∥∥∥[hx

hy

]∥∥∥∥
R2

= lim(
hx, hy

)
→(0, 0)

‖f (x0 + hx) − f (x0) − f ′ (x0)hx‖R√
h2
x + h2

y

= lim
hx→0

|f (x0 + hx) − f (x0) − f ′ (x0)hx|

|hx|

which is indeed zero as
f ′ (x0) ≡ lim

hx→0

f (x0 + hx) − f (x0)

hx

�

3. DERIVATIVES IN BANACH ALGEBRAS

Let A be a Banach algebra.

3.1. Claim. Let n ∈ N be given. The derivative of the map f : A → A given by A 7→ An is

(
f ′ (A)

)
(B) =

n−1∑
k=0

AkBAn−k−1

Proof. We proceed by computing the limit of 1:

0
!
= lim

B→0

‖f (A+B) − f (A) − (f ′ (A)) (B)‖A
‖B‖A

= lim
B→0

∥∥∥(A+B)n −An −
∑n−1

k=0 AkBAn−k−1
∥∥∥
A

‖B‖A
but

(A+B)n = An +

n−1∑
k=0

AkBAn−k−1 +

n∑
k=2

gk (A)Bkhk (A)

where gk and hk are the non-commutative powers of A that will occur for every given pwoer of B (you can show this by
induction. The actual form of gk and hk is not important for the argument). Thus we have:

= lim
B→0

∥∥∥(A+B)n −An −
∑n−1

k=0 AkBAn−k−1
∥∥∥
A

‖B‖A

= lim
B→0

∥∥∥An +
∑n−1

k=0 AkBAn−k−1 +
∑n

k=2 gk (A)Bkhk (A) −An −
∑n−1

k=0 AkBAn−k−1
∥∥∥
A

‖B‖A

= lim
B→0

∥∥∑n
k=2 gk (A)Bkhk (A)

∥∥
A

‖B‖A

6 lim
B→0

n∑
k=2

∥∥gk (A)Bkhk (A)
∥∥
A

‖B‖A

6 lim
B→0

n∑
k=2

‖gk (A)‖A
∥∥Bk

∥∥
A
‖hk (A)‖A

‖B‖A

6 lim
B→0

n∑
k=2

‖gk (A)‖A [‖B‖A]k ‖hk (A)‖A
‖B‖A

= ‖gk (A)‖A‖hk (A)‖A lim
B→0

n∑
k=2

[‖B‖A]k−1

= 0

The map B 7→ (f ′ (A)) (B) =
∑n−1

k=0 AkBAn−k−1 is clearly linear and continuous. �
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As we have seen previously, any power series R 3 x 7→
∑

n∈N αnx
n ∈ R with {αn }n∈N ⊂ R which converges absolutely

defines a map on A by A 7→
∑

n∈N αnA
n. This map defines a sequence of maps

{
A

fN7→
∑N

n=0 αnA
n

}
N∈N

which converge

uniformly to A
f7→
∑

n∈N αnA
n:

Proof. Let ε > 0 be given. Then we need to find some m (ε) ∈ N such that if N > m (ε) then ‖fN (A) − f (A)‖ < ε for all
A ∈ A.

‖fN (A) − f (A)‖ =

∥∥∥∥∥∥
N∑

n=0

αnA
n −

∑
n∈N

αnA
n

∥∥∥∥∥∥
=

∥∥∥∥∥
∞∑

n=N+1

αnA
n

∥∥∥∥∥
≡

∥∥∥∥∥ lim
M→∞

M∑
n=N+1

αnA
n

∥∥∥∥∥
norm cont.

= lim
M→∞

∥∥∥∥∥
M∑

n=N+1

αnA
n

∥∥∥∥∥
6 lim

M→∞
M∑

n=N+1

|αn| ‖A‖n

which converges by the uniform convergence of
∑

n∈N αn‖A‖n, which follows from Rudin Theorems 7.10 and 8.1. �

and so, in particular, we may differentiate term by term of the power series (compare with theorem 7.17 in [3]). Thus we
have shown:

3.2. Claim. The derivative of A 7→
∑

n∈N αnA
n is

B 7→
∑
n∈N

αn

n−1∑
k=0

AkBAn−k−1

3.3. Exercise. What is the derivative of A∗ 3 A 7→ A−1?

4. TAYLOR POLYNOMIALS

5. HOMEWORK NUMBER 4 PREVIEW

5.1. Question 1.
• An example of a function that is differentiable, but not continuously differentiable. Part (a) is straight forward, need

to think separately about (0, 0) and elsewhere.
• The partial derivatives are not continuous at the origin, and so the total derivative is not continuous.

5.2. Question 3.
• Derivative of power series

6. HOMEWORK NUMBER 2 OVERVIEW

6.1. Question 1.
• Recall that it is not strictly necessary to have a multiplicative unit for an algebra (See [1] chapter 6 pp. 262).
• A matrix A is not a sum

∑n
i,j=1 ai,j! (basic linear algebra).

6.2. Question 2.
• Do (a), talk about exchanging limits.
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