ANALYSIS 2

RECITATION SESSION OF WEEK 3

JACOB SHAPIRO

1. Differentiation in Banach Spaces-The Fréchet and Gâteaux derivatives

Following [1] (which deals only with the Banach spaces \mathbb{R}^{n}, whereas we generalize the definitions), we define the concept of differentiability in Banach spaces. In what follows, X and Y denote two Banach spaces and $E \in O p e n(X)$. Furthermore, $f \in Y^{E}$ and $x \in E$.
1.1. Definition. (Fréchet derivative) f is called differentiable at x iff \exists a linear map $A \in Y^{X}$ such that

$$
\begin{equation*}
\lim _{h \rightarrow 0_{X}} \frac{\|f(x+h)-f(x)-A(h)\|_{Y}}{\|h\|_{X}}=0 \tag{1}
\end{equation*}
$$

in which case we write $f^{\prime}(x)=A$.
1.2. Example. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \mapsto\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}$. Then f is differentiable for every $x \in \mathbb{R}^{2}$ and $f^{\prime}(x): \mathbb{R}^{2} \rightarrow \mathbb{R}$ is given by $\left[\begin{array}{l}h_{1} \\ h_{2}\end{array}\right] \mapsto\left[\begin{array}{ll}2 x_{1} & 2 x_{2}\end{array}\right]\left[\begin{array}{l}h_{1} \\ h_{2}\end{array}\right]$ or simply $f^{\prime}(x)=\left[\begin{array}{ll}2 x_{1} & 2 x_{2}\end{array}\right]$. To see this, calculate the limit:

$$
\begin{aligned}
\lim _{h \rightarrow \mathbb{R}^{2}} \frac{\|f(x+h)-f(x)-A(h)\|_{\mathbb{R}}}{\|h\|_{\mathbb{R}^{2}}} & =\lim _{h \rightarrow 0_{\mathbb{R}^{2}}} \frac{\left\|\left(x_{1}+h_{1}\right)^{2}+\left(x_{2}+h_{2}\right)^{2}-\left(x_{1}\right)^{2}-\left(x_{2}\right)^{2}-\left[\begin{array}{ll}
2 x_{1} & 2 x_{2}
\end{array}\right]\left[\begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right]\right\|_{\mathbb{R}}}{\|h\|_{\mathbb{R}^{2}}} \\
& =\lim _{h \rightarrow 0_{\mathbb{R}^{2}}} \frac{\|h\|_{\mathbb{R}}}{\|h\|_{\mathbb{R}^{2}}} \\
& =0
\end{aligned}
$$

1.3. Remark. Observe that if equation (1) holds for both A and B then $A=B$ ([1] Theorem 9.12).
1.4. Remark. Observe that f^{\prime} defines a map from $E \rightarrow \mathcal{L}(X, Y), x \mapsto(h \mapsto A(h) \forall h \in X)$. As E and $\mathcal{L}(X, Y)$ are both Banach spaces, we may ask what is the derivative of this map. It turns out that the derivative is just A again:

$$
\lim _{h \rightarrow 0_{X}} \frac{\|A(x+h)-A(x)-A(h)\|_{Y}}{\|h\|_{X}}=0
$$

by linearity of A.
1.5. Claim. (Remark 9.13 (c) in [1]) If f is differentiable at x then f is continuous at x.
1.6. Definition. (Gâteaux derivative) If for some $h \in X$ and $t \in \mathbb{R}$ the limit

$$
\lim _{t \rightarrow 0} \frac{f(x+t h)-f(x)}{t}
$$

exists then we define $\left(\partial_{h} f\right)(x):=\lim _{t \rightarrow 0} \frac{f(x+t h)-f(x)}{t}$ and call it the partial (or Gâteaux) derivative of f at x in the direction defined by h. Note that $\left[\left(\partial_{h} f\right)(x)\right] \in Y$. We also say that f is Gâteaux differentiable in the direction of h at x.
1.7. Claim. If $f: X \rightarrow Y$ is differentiable at $x \in X$ then it is Gâteaux differentiable in any direction $h \in X$ and we have $\left(f^{\prime}(x)\right)(h)=\left(\partial_{h} f\right)(x)$. (Theorem 9.17 in [1]).

To be concrete, if $\mathrm{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ then

$$
f^{\prime}(x)=h \mapsto\left[\begin{array}{cccc}
\left(\partial_{\hat{e}_{1}}\left(f \cdot \hat{e}_{1}\right)\right)(x) & \ldots & \ldots & \left(\partial_{\hat{e}_{n}}\left(f \cdot \hat{e}_{1}\right)\right)(x) \\
\ldots & \ldots & \ldots & \ldots \\
\ldots & \cdots & \cdots & \ldots \\
\left(\partial_{\hat{e}_{1}}\left(f \cdot \hat{e}_{m}\right)\right)(x) & \cdots & \cdots & \left(\partial_{\hat{e}_{n}}\left(f \cdot \hat{e}_{m}\right)\right)(x)
\end{array}\right] h
$$

and in our example above 1.2, we can compute

$$
\begin{aligned}
f^{\prime}(x) & =\left[\left(\partial_{\hat{e}_{1}} f\right)(x) \quad\left(\partial_{\hat{e}_{2}} f\right)(x)\right] \\
& =\left[\begin{array}{ll}
2 x_{1} & 2 x_{2}
\end{array}\right]
\end{aligned}
$$

so that we see we can think of $\partial_{\hat{e}_{j}} f$ can be thought of as the ordinary derivative of f (from Analysis 1) as if it only depended on x_{j} and all other variables of it are constant. This also gives you a "recipe" to compute $f^{\prime}(x)$ using the partial derivatives, which you know how to compute, from methods of Analysis 1.
1.8. Example. (Problem 9.6 in [1]) Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $\left\{\begin{array}{ll}0 & {\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ \frac{x_{1} x_{2}}{\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}}\end{array}\right]} \\ x_{1} \\ x_{2}\end{array}\right] \neq\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
1.9. Claim. f is not continuous at $\left[\begin{array}{l}0 \\ 0\end{array}\right]$, and so, by 1.5 f is not differentiable.

Proof. For f to be continuous at $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ we need to have that $\forall \varepsilon>0 \exists$ some $\delta>0$ such that if $\|x\|_{\mathbb{R}^{2}}<\delta$ then $\|f(x)-f(0)\|_{\mathbb{R}^{1}}<$ ع. Explicitly, if $\sqrt{\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}}<\delta$ then $\left|\frac{x_{1} x_{2}}{\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}}\right|<\varepsilon$. This can be easily seen to be impossible because

$$
\begin{aligned}
\left|\frac{x_{1} x_{2}}{\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}}\right| & =\left|\frac{x_{1}}{\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}} \frac{x_{2}}{\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}}\right| \\
& =\left|\hat{x}_{1}\right|\left|\hat{x}_{2}\right|
\end{aligned}
$$

if we pick $\varepsilon=\frac{1}{4}$ because $\left|\hat{x}_{1}\right|\left|\hat{x}_{2}\right|=|\cos (\theta) \sin (\theta)|$ where θ is the angle between x and the \hat{e}_{1}, and, in general, $|\cos (\theta) \sin (\theta)| \in$ $\left[0, \frac{1}{2}\right]$.
1.10. Claim. $\partial_{1} f$ and $\partial_{2} f$ exist for every point $x \in \mathbb{R}^{2}$.

Proof. At any point $x \neq 0$ we have

$$
\begin{aligned}
\left(\partial_{1} f\right)(x) & =\partial_{1} \frac{x_{1} x_{2}}{\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}} \\
& =\frac{x_{2}\left[\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}\right]-\left[x_{1} x_{2}\right]\left[2 x_{1}\right]}{\left[\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}\right]^{2}} \\
& =x_{2} \frac{\left(x_{2}\right)^{2}-\left(x_{1}\right)^{2}}{\left[\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}\right]^{2}}
\end{aligned}
$$

and by symmetry $\left(\partial_{2} f\right)(x)=x_{1} \frac{\left(x_{1}\right)^{2}-\left(x_{2}\right)^{2}}{\left[\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}\right]^{2}}$. At $x=0$ we have

$$
\begin{aligned}
\left(\partial_{1} f\right)(0) & \equiv \lim _{t \rightarrow 0} \frac{f\left(0+t \hat{e}_{1}\right)-f(0)}{t} \\
& =\lim _{t \rightarrow 0} \frac{f\left(\left[\begin{array}{l}
t \\
0
\end{array}\right]\right)}{t} \\
& =\lim _{t \rightarrow 0} \frac{\frac{t 0}{t^{2}+0^{2}}}{t} \\
& =0
\end{aligned}
$$

and similarly by symmetry $\left(\partial_{2} f\right)(0)=0$.
1.11. Corollary. As a result we see that even though for this f the partial derivatives exist everywhere, f is not differentiable, and so it is clear that existence of partial derivatives do not necessarily imply that f is differentiable. Using Theorem 9.21 in [1] we see that we would need the partial derivatives to also be continuous for f to be differentiable, which, in this case, they are not (as you should verify).

2. Hints for Solving Homework Number 3

2.1. Question 1.

- There is nothing to this question other than computing many partial derivatives. You will need to use Theorem 9.21 in [1] to conclude from the partial derivatives that your maps are indeed differentiable.

2.2. Question 2.

- Problem 9.14 in [1]. Be careful of the derivative of f at 0 . Try a lucky guess and then verify that it is indeed the derivative at 0 .

2.3. Question 4.

- Problem 9.10 in [1]. Thus, try a condition on U, such as convexivity. Try to find a weaker condition on U.

2.4. Question 3.

- The "catch" here is that there is a product of two Banach spaces, and this defines a new Banach space with its corresponding norm, as defined on the page.
- Use the definition, together with the "guess" that $\beta^{\prime}\left(\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]\right)=\left[\begin{array}{ll}\beta\left(-y_{2}\right) & \beta\left(y_{1},-\right)\end{array}\right]$ so that $\left[\begin{array}{l}\tilde{y}_{1} \\ \tilde{y}_{2}\end{array}\right] \stackrel{\beta^{\prime}\left(\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]\right)}{\mapsto} \beta\left(\tilde{y}_{1}, y_{2}\right)+$ β (y_{1}, \tilde{y}_{2}). Then show that this adheres to 1.1.
- Use the chain rule ([1] Theorem 9.15):
2.1. Claim. Let $E \in \operatorname{Open}(X), Z$ be a Banach space, and $g: U \rightarrow Z$ where $U \in \operatorname{Open}(Y)$ such that $U \supseteq f(E)$. If f is differentiable at x and g is differentiable at $f(x)$ then the mapping $g \circ f: E \rightarrow Z$ defined by $(g \circ f)(x) \equiv g(f(x))$ is differentiable at x and $(g \circ f)^{\prime}(x)=\left[g^{\prime}(f(x))\right] \circ\left[f^{\prime}(x)\right]$.

Using this, $g=\beta \circ f$ and so $g^{\prime}(x)=\left[\beta^{\prime}(f(x))\right] \circ\left[f^{\prime}(x)\right]$, where $f: X_{1} \times X_{2} \rightarrow Y_{1} \times Y_{2}\left(x_{1}, x_{2}\right) \stackrel{f}{\mapsto}\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right)\right)$. Then $f^{\prime}\left(\left(x_{1}, x_{2}\right)\right)=\left[\begin{array}{ll}f_{1}^{\prime}\left(x_{1}\right) & f_{2}^{\prime}\left(x_{2}\right)\end{array}\right]$. Now use (a).

3. Review of Homework Number 1

- We will (hopefully) review question: 2 (partly), 5 (second part), and 3 and 4 (b) if there is time. You may find the full discussion in the solutions.

REFERENCES

[1] Walter Rudin. Principles of Mathematical Analysis (International Series in Pure and Applied Mathematics). McGraw-Hill Science/Engineering/Math, 1976.

- Use the definition, together with the "guess" that $\beta^{\prime}\left(\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]\right)=\left[\beta\left(-, y_{2}\right) \quad \beta\left(y_{1},-\right)\right]$ so that $\left[\begin{array}{l}\tilde{y}_{1} \\ \tilde{y}_{2}\end{array}\right] \xrightarrow{\beta^{\prime}\left(\begin{array}{l}\left.\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]\right) \\ \mapsto\end{array} \beta\left(\tilde{y}_{1}, y_{2}\right)+.\right.}$ $\beta\left(y_{1}, \tilde{y}_{2}\right)$. Then show that this adheres to 1.1.
- Use the chain rule ([1] Theorem 9.15):
2.1. Claim. Let $E \in \operatorname{Open}(X)$, Z be a Banach space, and $g: U \rightarrow Z$ where $U \in \operatorname{Open}(Y)$ such that $U \supseteq f(E)$. If f is differentiable at x and g is differentiable at $f(x)$ then the mapping $g \circ f: E \rightarrow Z$ defined by $(g \circ f)(x) \equiv g(f(x))$ is differentiable at x and $(g \circ f)^{\prime}(x)=\left[g^{\prime}(f(x))\right] \circ\left[f^{\prime}(x)\right]$.

Using this, $g=\beta \circ f$ and so $g^{\prime}(x)=\left[\beta^{\prime}(f(x))\right] \circ\left[f^{\prime}(x)\right]$, where $f: X_{1} \times X_{2} \rightarrow Y_{1} \times Y_{2}\left(x_{1}, x_{2}\right) \stackrel{f}{\mapsto}\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right)\right)$. Th:=1 $f^{\prime}\left(\left(x_{1}, x_{2}\right)\right)=\left[f_{1}^{\prime}\left(x_{1}\right) \quad f_{2}^{\prime}\left(x_{2}\right)\right]$. Now use (a).
3. Review of Homework Number 1

- We will (hopefully) review question: 2 (partly), 5 (second part), and 3 and 4 (b) if there is time. You may find the full discussion in the solutions.

REFERENCES
[1] Waiter Ruck. Principles of Mathematical Analysis (International Series in Pure and Applied Mathematics). McGraw-Hill Science/Engineering/Math, 1976.
Problem 9.24 in Ruching

$$
\begin{aligned}
& f: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R}^{2} \\
&(x, y) \longmapsto(\underbrace{\frac{x^{2}-y^{2}}{f^{2}}}_{x^{2}+y^{2}}, \underbrace{\left.\frac{x y}{x^{2}+y^{2}}\right)}_{f_{y}} \\
& \partial_{x} f_{x}= \frac{2 x\left(x^{2}+y^{2}\right)-\left(x^{2}-y^{2}\right) 2 x}{\left(x^{2}+y^{2}\right)^{2}}=\frac{4 x y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& \partial_{y} f_{x}=\frac{-2 y\left(x^{2}+y^{2}\right)-\left(x^{2}-y^{2}\right) 2 y}{\left(x^{2}+y^{2}\right)^{2}}=\frac{-4 x^{2} y}{\left(x^{2}+y^{2}\right)^{2}} \\
& \partial_{x} f_{y}=\frac{y\left(x^{2}+y^{2}\right)-x y^{2} x}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y\left(y^{2}-x^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \\
& \partial_{y} f_{y}=\frac{x\left(x^{2}+y^{2}\right)-x y^{2 y}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \\
& \Rightarrow f^{\prime}(x, y)=\left[\begin{array}{ll}
\partial x f_{x} & \left.\partial_{y} f_{x}\right]=\frac{1}{\left(x^{2}+y^{2}\right)^{2}}\left[4 x y^{2}\right. \\
\partial x f_{y} & \partial_{y} f_{y}
\end{array}\right] \quad-4 x^{2} y
\end{aligned}
$$

Observe that multiplying the first column by $-\frac{x}{y}$ gives the second column $\Rightarrow \operatorname{rank}\left(f^{\prime}(x, y)\right)=1$.
But rank of a bant is the dimension of its image.
(lain: $f_{x}^{2}+4 f_{y}^{2}=1$
$\Rightarrow \operatorname{im}(f) \subseteq$ ellipse $\equiv 1$-dim space
More details: Rubin TT 9,23 .

$\left(\partial_{x} \partial_{y} f \neq \partial_{y} \partial_{x} f\right.$ if these derivatives are not cont．（Rundin 国 9,44 ））
if $(x, y) \neq(0,0) \quad \partial_{x} f=0$ if $(x, y)=0$

Problem 29.27 in Ruction：

$$
\begin{aligned}
& f(x, y):= \begin{cases}0 & (x, y)=(0,0) \\
\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}} & \text { otherwise }\end{cases} \\
& (\partial x f)(x, y)= \begin{cases}\lim _{t \rightarrow 0} \frac{f(t, 0)-f(0,0)}{t}=0 & (x, y)=0 \\
\frac{y\left(x^{4}+4 x^{2} y^{2}-y^{4}\right)}{\left(x^{2}+y^{2}\right)^{2}} & (x, y) \neq 0\end{cases} \\
& \left(\partial_{y} \partial_{x} f\right)(x, y)=\left\{\begin{array}{l}
\lim _{t \rightarrow 0} \frac{(\partial x f)(0, t)-(\tilde{\partial x f})(0,0)}{t}=\lim _{t \rightarrow 0} \frac{-t}{t}=-1 \quad(x, y)=0 \\
\frac{\left(x^{2}-y^{2}\right)\left(x^{4}+10 x^{2} y^{2}+y^{4}\right)}{\left(x^{2}+y^{2}\right)^{3}} \quad(x, y) \neq 0
\end{array}\right. \\
& (\partial y f)(x, y)= \begin{cases}\lim _{t \rightarrow 0} \frac{f(0, t)-f(0,0)}{t}=0 & (x, y)=0 \\
\frac{x\left(x^{4}-4 x^{2} y^{2}-y^{4}\right)}{\left(x^{2}+y^{2}\right)^{2}} & (x, y) \neq 0\end{cases} \\
& \left(\partial_{x} \partial_{y} f\right)(x, y)=\left\{\begin{array}{ll}
\lim _{t \rightarrow 0} \frac{\left(\partial_{y} f\right)(t, 0)-(\partial y f)(0,0)}{t}=\lim _{t \rightarrow 0} \frac{t}{t}=1 \\
\frac{\left(x^{2}-y^{2}\right)\left(x^{4}+10 x^{2} y^{2}+y^{4}\right)}{\left(x^{2}+y^{2}\right)^{3}} & (x, y) \neq 0
\end{array} \quad(x, y)=0 .\right. \\
& \left(\partial_{y} \partial_{x} f\right)(0,0) \\
& \text { Reason: } \partial_{x} \partial_{y} f \text { and } \partial_{y} \partial_{x} F \\
& \text { are not continuous } \\
& \text { at }(0,0) \text { ! }
\end{aligned}
$$

