ANALYSIS 2
 HINTS FOR HOMEWORK NUMBER 12

1. Question 1

For this question I recommend reading [1] (A simple search on the web should lead you to a freely available digital version of this book from the various websites that make such files available-email me in doubt). In particular, on page 210 you will find Lemma 25.1 which states: "If the support of f can be covered a single coordinate patch, the integral $\int_{M} f$ is well-defined, independent of the choice coordinate patch."

Note that [1] is a very nice textbook for you in general, because it is a very clear presentation of manifolds in \mathbb{R}^{n} (that is, exactly the submnaifolds you have been talking abuot in this course).

2. Question 2

See Theorem 21.3 in [1].

3. Question 3

Work with $\rho: \mathbb{R} \rightarrow \mathbb{R}$ defined by $\rho(t):=\left\{\begin{array}{ll}\exp \left(-\frac{1}{1-t}\right) & t<1 \\ 0 & t \geqslant 1\end{array}\right.$ and use the chain rule. For ρ, note that for $t>1, \rho$ is a constant, and for $t<1$ use induction to prove a guess for $\rho^{(n)}(t)$.

4. Question 4

4.1. Part (a). Use the coordinate chart $\psi: U \rightarrow S_{+}^{2}$ where $U \equiv\left\{(u, v) \in \mathbb{R}^{2} \mid u^{2}+v^{2}<1\right\}$ given by

$$
\psi(u, v):=\left(u, v, \sqrt{1-u^{2}-v^{2}}\right)
$$

Then use the formula

$$
\int_{S_{+}^{2}}(x+y+z) d S=\int_{\bar{u}}\left(u+v+\sqrt{1-u^{2}-v^{2}}\right) \sqrt{\operatorname{det}\left(d \psi(u, v)^{\top} d \psi(u, v)\right)} d u d v
$$

Your result must be π.
4.2. Part (b). Use the same U and $\psi(u, v):=\left(u, v, u^{2}+v^{2}\right)$.

Your result must be $\frac{5 \sqrt{5}}{12} \pi$.

5. Question 5

5.1. Part (a). Use the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $f(x, y, z):=\left(\sqrt{x^{2}+y^{2}}-R\right)^{2}+z^{2}$. Note that $T_{R, a}=f^{-1}\left(\left\{a^{2}\right\}\right)$. Show that a^{2} is a regular value of f. Use the regular value theorem.
5.2. Part (b). Use the chart $\psi:(0,2 \pi) \times(0,2 \pi) \rightarrow T_{R, a}$ given by

$$
\psi(\alpha, \beta):=(\cos (\alpha)(R+a \cos (b)), \sin (\alpha)(R+a \cos (b)), a \sin (\beta))
$$

and the formula

$$
\begin{gathered}
\operatorname{vol}_{2}\left(\mathrm{~T}_{\mathrm{R}, \mathrm{a}}\right) \equiv \int_{\mathrm{T}_{\mathrm{R}, \mathrm{a}}} 1 \mathrm{dS}=\int_{(0,2 \pi)^{2}} \sqrt{\operatorname{det}\left(\mathrm{~d} \psi(u, v)^{\mathrm{T}} \mathrm{~d} \psi(u, v)\right)} \mathrm{d} \alpha \mathrm{~d} \beta \\
\text { REFERENCES }
\end{gathered}
$$

[1] James R. Munkres. Analysis On Manifolds (Advanced Books Classics). Westview Press, 1997.

