ANALYSIS 2 RECITATION SESSION OF WEEK 10

JACOB SHAPIRO

1. Interior, Closure and Boundary

Let X be a general topological space, and $A \subseteq X$.
1.1. Example. $\partial \partial A \neq \partial A$.

Proof. Recall the example where $A=Q$ and $X=\mathbb{R}$. Then $\partial A=\mathbb{R}$, and so $\partial \partial A=\partial \mathbb{R}=\varnothing$. So we have $\varnothing \neq \mathbb{R}$.
1.2. Example. $\partial(\bar{A}) \neq \partial A$.

Proof. Again with the example where $A=\mathbb{Q}$ and $X=\mathbb{R}$, we have $\bar{A}=\mathbb{R}$ and so $\partial(\bar{A})=\varnothing$ yet $\partial A=\mathbb{R}$!
1.3. Example. $A=\left\{x \in \mathbb{R}^{2} \mid(x)_{2}=0\right\}$ and $X=\mathbb{R}^{2}$. Note that $A \in \operatorname{Closed}(X)$ (see this by drawing open balls in the complement). Thus $\bar{A}=A$. Also note that $A^{\circ}=\varnothing$ (see this by drawing open balls). As a result, $\partial A=A$.
1.4. Example. $A=\left\{x \in \mathbb{R}^{2} \mid(x)_{2}>0\right\}$ and $X=\mathbb{R}^{2}$. Then $A \in \operatorname{Open}(X)$ (draw open balls) so that $A^{\circ}=A$. $\bar{A}=$ $\left\{x \in \mathbb{R}^{2} \mid(x)_{2} \geqslant 0\right\}\left(\bar{A} \supseteq A\right.$ and every point on the line $(x)_{2}=0$ also belongs to the closure because every open ball around any point in it intersects A). Thus $\partial A=\left\{x \in \mathbb{R}^{2} \mid(x)_{2}=0\right\}$.
1.5. Example. $(A, B) \in[\operatorname{Open}(X)]^{2}$ such that $A \cap B=\varnothing$. Then $\bar{A} \cap \bar{B} \neq \varnothing$.

Proof. Take $X=\mathbb{R}$ and $A=\left(0, \frac{1}{2}\right)$ and $B=\left(\frac{1}{2}, 1\right)$. Then $A \cap B=\varnothing$ yet $\bar{A} \cap \bar{B}=\left\{\frac{1}{2}\right\}$.
1.6. Example. $\overline{\left(A^{\circ}\right)} \neq A$.

Proof. Take $A=(0,1) \cup\{2\}$ and $X=\mathbb{R}$. Then $A^{\circ}=(0,1)$ (to see this, try to find an open interval around 2 which is contained in $A)$, and so $\overline{\left(A^{\circ}\right)}=[0,1]$.

2. Integrals

2.1. Multi-Dimensional Integrals. We follow [1] Chapter 10. This allows a somewhat shorter and more compact presentation of a multi-dimensional integral than with the Jordan measure, which is anyway obsoleted by the Lebesgue measure.

- Let I^{k} be the closed k-cell in \mathbb{R}^{k}. That means $I^{k}=\prod_{j \in J_{k}}\left[a_{j}, b_{j}\right]$ where $(a, b) \in\left[\mathbb{R}^{k}\right]^{2}$ such that $a_{j} \leqslant b_{j}$ for all $j \in J_{k}$.
- For every $j \in J_{k}$, define I^{j} to be the j-cell in \mathbb{R}^{j} defined by $\prod_{l \in J_{j}}\left[a_{l}, b_{l}\right]$.
- Let $f \in C^{0}\left(I^{k}, \mathbb{R}\right)$.
- Define $\mathrm{f}_{\mathrm{k}}:=\mathrm{f}$ and $\mathrm{f}_{\mathrm{k}-1}: \mathrm{I}^{\mathrm{k}-1} \rightarrow \mathbb{R}$ by

$$
f_{k-1}(x):=\int_{a_{k}}^{b_{k}} f_{k}(x, y) d y \quad \forall x \in I^{k-1}
$$

where the integral is the orindary one-dimensional Riemann integral encountered in the last semester.
2.1. Claim. $\mathrm{f}_{\mathrm{k}-1}$ is continuous on $\mathrm{I}^{\mathrm{k}-1}$.

Proof. Observe that f_{k} is uniformly continuous on I^{k} because I^{k} is compact (being closed and bounded). Let $x \in I^{k-1}$ be given, and let $\varepsilon>0$ be given. By uniform continuity, $\exists \delta>0$ such that if $z \in I^{k-1}$ is such that $\|(x, y)-(z, y)\|<\delta$ then $\left|f_{k}(x, y)-f_{k}(z, y)\right|<\frac{\varepsilon}{b_{k}-a_{k}}$.

Then for such $z \in I^{k-1}$ we have

$$
\begin{aligned}
\left|f_{k-1}(x)-f_{k-1}(z)\right| & =\left|\int_{a_{k}}^{b_{k}} f_{k}(x, y) d y-\int_{a_{k}}^{b_{k}} f_{k}(z, y) d y\right| \\
& =\left|\int_{a_{k}}^{b_{k}}\left[f_{k}(x, y)-f_{k}(z, y)\right] d y\right| \\
& \leqslant \int_{a_{k}}^{b_{k}}\left|f_{k}(x, y)-f_{k}(z, y)\right| d y \\
& \leqslant \frac{\varepsilon}{b_{k}-a_{k}} \int_{a_{k}}^{b_{k}} d y \\
& =\varepsilon
\end{aligned}
$$

but

$$
\begin{aligned}
\|(x, y)-(z, y)\| & =\sqrt{\sum_{j \in J_{k-1}}\left(x_{j}-z_{j}\right)^{2}} \\
& =\|x-z\|
\end{aligned}
$$

- As a result, we may repeat this process again and again, to obtain functions $f_{j} \in C^{0}\left(I^{j}, \mathbb{R}\right)$ for all $\mathfrak{j} \in J_{k}$ and such that f_{j-1} is the integral of f_{j} with respect to x_{j} over $\left[a_{j}, b_{j}\right]$.
- After k steps we arrive at a number f_{0} which we define as the integral of f over I^{k} :

$$
\begin{equation*}
\int_{I^{k}} f(x) d x:=\int_{a_{k}}^{b_{k}}\left(\int_{a_{k-1}}^{b_{k-1}}\left(\ldots\left(\int_{a_{1}}^{b_{1}} f(x) d x_{1}\right) \ldots\right) d x_{k-1}\right) d x_{k} \tag{1}
\end{equation*}
$$

2.2. Claim. The left hand side of (1) is independent of the order in which the integrations are made. (Theorem 10.2).
2.3. Definition. The support of a function $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ is

$$
\begin{aligned}
\operatorname{supp}(f) & :=\overline{\mathbf{f}^{-1}(\mathbb{R} \backslash\{0\})} \\
& =\overline{\left\{x \in \mathbb{R}^{k} \mid f(x) \neq 0\right\}}
\end{aligned}
$$

2.4. Example. Let $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$ be given by $\mathrm{f}(\mathrm{x})=1$. Then $\operatorname{supp}(\mathrm{f})=\overline{\mathbb{R}}=\mathbb{R}$.
2.5. Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $\chi_{Q}(x) \equiv\left\{\begin{array}{ll}1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q}\end{array}\right.$. Then $\operatorname{supp}(f)=\overline{\mathbb{Q}}=\mathbb{R}$.
2.6. Example. Let $\mathrm{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $\chi_{\mathrm{B}_{1}(0)}(\mathrm{x}) \equiv\left\{\begin{array}{ll}1 & \|x\|<1 \\ 0 & \|x\| \geqslant 1\end{array}\right.$. Then supp $(\mathrm{f})=\overline{\mathrm{B}_{1}(0)}=\left\{x \in \mathbb{R}^{2} \mid\|x\| \leqslant 1\right\}$.
2.7. Remark. Observe that for the support of a function to be compact, all that is necessary is that it is bounded, due to the fact that it is always closed by definition.
2.8. Definition. If $f \in C^{1}\left(\mathbb{R}^{k}, \mathbb{R}\right)$ is such that $\operatorname{supp}(f)$ is compact, then

$$
\begin{equation*}
\int_{\mathbb{R}^{k}} f:=\int_{I^{k}} f(x) d x \tag{2}
\end{equation*}
$$

where I^{k} is any k-cell such that $I^{k} \supseteq \operatorname{supp}(f)$.
2.9. Remark. The defintion in (2) is well defined, that is, it is independent of I^{k}. This is due to the fact that if $I^{k} \supseteq \operatorname{supp}(f)$, then of course outside of $\operatorname{supp}(f), f=0$ and so it does not matter which I^{k} is picked.
2.10. Example. Going back to example 2.6 , we have $\operatorname{supp}(f)$ compact, and so for example, $I^{2}:=[-1,1]^{2} \supseteq \overline{B_{1}(0)}$. Thus we have

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} f & =\int_{[-1,1]^{2}} f(x) d x \\
& =\int_{-1}^{1} \int_{-1}^{1} \chi_{B_{1}(0)}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
& =\int_{-1}^{1} \int_{-\sqrt{1-x_{2}^{2}}}^{\sqrt{1-x_{2}^{2}}} d x_{1} d x_{2} \\
& =\int_{-1}^{1} 2 \sqrt{1-x_{2}^{2}} d x_{2} \\
& =\pi
\end{aligned}
$$

- For all $i \in \mathbb{N}$, assume that $\varphi_{i} \in C^{0}(\mathbb{R}, \mathbb{R})$ such that $\operatorname{supp}\left(\varphi_{i}\right) \subseteq\left(2^{-i}, 2^{-(i-1)}\right)$ and $\int_{\mathbb{R}} \varphi_{i}=1$.
- Then $\operatorname{supp}\left(\varphi_{1}\right) \subseteq\left(\frac{1}{2}, 1\right), \operatorname{supp}\left(\varphi_{2}\right) \subseteq\left(\frac{1}{4}, \frac{1}{2}\right), \operatorname{supp}\left(\varphi_{3}\right) \subseteq\left(\frac{1}{8}, \frac{1}{4}\right)$ and so on.
\circ Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f(x, y):=\sum_{i \in \mathbb{N}}\left[\varphi_{i}(x)-\varphi_{i+1}(x)\right] \varphi_{i}(y)$.
2.11. Claim. supp (f) is compact in \mathbb{R}^{2}, f is continuous except at $(0,0)$, and $\int d y \int f(x, y) d x=0$ yet $\int d x \int f(x, y) d y=$ 1. Note that f is unbounded in every neighborhoud of $(0,0)$.

Proof. We first try

$$
\begin{aligned}
\int f(x, y) d x & =\int \sum_{i \in \mathbb{N}}\left[\varphi_{i}(x)-\varphi_{i+1}(x)\right] \varphi_{i}(y) d x \\
& =\sum_{i \in \mathbb{N}}[1-1] \varphi_{i}(y) \\
& =0
\end{aligned}
$$

Observe that this integration is valid because for each fixed $y, \sum_{i \in \mathbb{N}}\left[\varphi_{i}(x)-\varphi_{i+1}(x)\right] \varphi_{i}(y)$ is a finite sum: $\varphi_{i}(y)=0$ if $2^{-i}>y$ or if $i>-\log _{2}(y)($ where $y>0)$. On the other side,

$$
\begin{aligned}
\int f(x, y) d y & =\int \sum_{i \in \mathbb{N}}\left[\varphi_{i}(x)-\varphi_{i+1}(x)\right] \varphi_{i}(y) d y \\
& =\sum_{i \in \mathbb{N}}\left[\varphi_{i}(x)-\varphi_{i+1}(x)\right] \\
& =\varphi_{1}(x)
\end{aligned}
$$

amd again the sum is finite for fixed x for the same reason. Because $\int_{\mathbb{R}} \varphi_{i}(x) d x=1$ for each $i \in \mathbb{N}$ yet the length of $\operatorname{supp}\left(\varphi_{i}\right)$ is 2^{-i} so that φ_{i} must get bigger and bigger to maintain the integral condition. As a result, f cannot be bounded near the origin.
2.2. Fubini's Theorem. According to Fubini's theorem,

$$
\begin{aligned}
\int_{X \times Y} f(x, y) d(x, y) & =\int_{X}\left(\int_{Y} f(x, y) d y\right) d x \\
& =\int_{Y}\left(\int_{X} f(x, y) d x\right) d y
\end{aligned}
$$

if $\left.f\right|_{y}$ is Riemann integrable as a function of x alone and $\left.f\right|_{x}$ as a function of y alone, and f is Riemann integrable.
Using this theorem we may reduce many double and triple integrals to eventually ordinary one dimensional integrals.
2.12. Exercise. Define $C=\left\{x \in \mathbb{R}^{3} \mid\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2} \leqslant 1 \wedge x_{3} \in[0,1]\right\}$. We are interested in the volume of C, which we claim is given by π.

Proof. We start by computing

$$
\begin{aligned}
\operatorname{vol}(C) & =\int_{C} 1 \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \\
& =\int_{0}^{1} \int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} 1 \mathrm{~d} y \mathrm{~d} x \mathrm{~d} z
\end{aligned}
$$

Now we may use Fubini's theorem to write

$$
\begin{aligned}
\operatorname{vol}(C) & =\int_{0}^{1} \int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} 1 d y d x d z \\
& =\int_{0}^{1}\left(\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} 1 d y d x\right) d z \\
& =\left(\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} 1 d y d x\right)\left(\left.z\right|_{0} ^{1}\right) \\
& =\int_{-1}^{1}\left(\left.y\right|_{-\sqrt{1-x^{2}}} ^{\sqrt{1-x^{2}}}\right) d x \\
& =\int_{-1}^{1}\left(2 \sqrt{1-x^{2}}\right) d x
\end{aligned}
$$

and now we have an ordinary one dimensional integral (equal to π).
2.13. Exercise. Evaluate $\int_{0}^{3} \int_{0}^{x^{3}} x^{2} y d y d x$.

Proof. We proceed by

$$
\begin{aligned}
\int_{0}^{3} \int_{0}^{x^{3}} x^{2} y d y d x & =\int_{x=0}^{x=3} \int_{y=0}^{y=x^{3}} x^{2} y d y d x \\
& =\int_{x=0}^{x=3}\left(\int_{y=0}^{y=x^{3}} x^{2} y d y\right) d x \\
& =\int_{x=0}^{x=3}\left(x^{2} \int_{y=0}^{y=x^{3}} y d y\right) d x \\
& =\int_{x=0}^{x=3}\left(\left.x^{2} \frac{1}{2} y^{2}\right|_{0} ^{x^{3}}\right) d x \\
& =\int_{x=0}^{x=3}\left(\left.x^{2} \frac{1}{2} y^{2}\right|_{0} ^{x^{3}}\right) d x \\
& =\frac{1}{2} \int_{x=0}^{x=3} x^{8} d x \\
& =\left.\frac{1}{2} \frac{1}{9} x^{9}\right|_{0} ^{3} \\
& =\frac{1}{18} 3^{9} \\
& =\frac{2187}{2}
\end{aligned}
$$

2.14. Exercise. Evaluate $\int_{[0, \pi]^{3}} \exp (x+y+z) d x d y d z$.

Proof. We start by

$$
\begin{aligned}
\int_{[0, \pi]^{3}} \exp (x+y+z) d x d y d z & =\int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{\pi} \exp (x+y+z) d x d y d z \\
& =\int_{0}^{\pi} \int_{0}^{\pi} \exp (y+z)\left(e^{\pi}-1\right) d y d z \\
& =\int_{0}^{\pi} \exp (z)\left(e^{\pi}-1\right)^{2} d z \\
& =\left(e^{\pi}-1\right)^{3}
\end{aligned}
$$

2.3. Changing the Limits of Integration.

2.15. Example. Change the order of $\int_{y=0}^{1} \int_{x=1}^{e^{y}} f(x, y) d x d y$ to $\int_{x=1}^{e} \int_{y=\log (x)}^{1} f(x, y) d y d x$.

As the max value of y is 1 , we have to integrate x from 1 to $e^{y}=e^{1}=e$. But now y goes from $\log (x)$ to 1 .
2.16. Example. Reverse the order of integration from $\int_{\pi / 2}^{5 \pi / 2} \int_{\sin (x)}^{1} f(x, y) d y d x$ to $\int_{-1}^{1} \int_{\pi-\arcsin (y)}^{\arcsin (y)+2 \pi} f(x, y) d x d y$.

Now we must be careful about the lower line, because writing simply $x=\arcsin (y)$ will not work as $\arcsin (y)$ has range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and is always increasing. Thus we must separate the lower curve $y=\sin (x)$ into the two curves $x=$ $\pi-\arcsin (y)$ (on the left) and $x=\arcsin (y)+2 \pi$.

3. Homework Number 8

3.1. Question 1.

- Let $U \in \operatorname{Open}\left(\mathbb{R}^{n}\right)$
- Let $\mathrm{f}: \mathrm{U} \rightarrow \mathbb{R}^{n}$ be a continuously differentiable vector field on U .
- Let $\mathrm{I}(x) \subseteq \mathbb{R}$ be the maximal interval at $x \in \mathbb{R}^{n}$ for which a solution for the differential equation equation

$$
\left\{\begin{array}{l}
\gamma_{x}^{\prime}(\mathrm{t})=\mathrm{f}\left(\gamma_{x}(\mathrm{t})\right) \tag{3}\\
\gamma_{x}(0)=x
\end{array} \quad \gamma_{x} \in \mathrm{C}^{1}\left(\mathbb{R}, \mathbb{R}^{n}\right)\right.
$$

exists uniquely.

- Define $\Omega:=\left\{(\mathrm{t}, \mathrm{x}) \in \mathbb{R} \times \mathrm{u} \mid \mathrm{t} \in \mathrm{I}\left(\mathrm{x}_{0}\right)\right\}$.
- Define $\phi: \Omega \rightarrow \mathbb{R}^{n}$ as the flow of the vector field, that means,

$$
\phi(t, x):=\gamma_{x}(t)
$$

where γ_{x} is the solution to (3), for all $(\mathrm{t}, \mathrm{x}) \in \mathrm{I}(\mathrm{x}) \times \mathrm{U}$. That is, we know that

$$
\left\{\begin{array}{ll}
\left(\partial_{\mathrm{t}} \phi\right)(\mathrm{t}, \mathrm{x}) & =\mathrm{f}(\phi(\mathrm{t}, \mathrm{x})) \\
\phi(0, x) & =x
\end{array} \quad \forall x \in \mathbb{R}^{n}, \forall t \in \mathbb{R}\right.
$$

- Assume ϕ is continuously differentiable.
- Let $\xi_{0} \in \mathbb{R}^{n}$ and $x_{0} \in \mathbb{R}^{n}$ be given.
- Define $\xi: I\left(x_{0}\right) \rightarrow \mathbb{R}^{n}$ by

$$
\begin{align*}
\xi(t): & =\left(\left(\partial_{x} \phi\right)\left(t, x_{0}\right)\right)\left(\xi_{0}\right) \tag{4}\\
& =\sum_{i \in J_{n}}\left(\left(\left(\partial_{x} \phi\right)\left(t, x_{0}\right)\right)\left(\xi_{0}\right)\right)_{i} \hat{e}_{i} \tag{5}\\
& =\sum_{i \in J_{n}} \sum_{j \in J_{n}}\left(\left(\left(\partial_{x} \phi\right)\left(t, x_{0}\right)\right)\right)_{i j}\left(\xi_{0}\right)_{j} \hat{e}_{i} \tag{6}\\
& =\sum_{(i, j) \in J_{n}^{2}}\left(\left(\partial_{x_{j}} \phi_{i}\right)\left(t, x_{0}\right)\right)\left(\xi_{0}\right)_{j} \hat{e}_{i} \tag{7}
\end{align*}
$$

3.1. Claim. ξ fulfills the differential equation equation $\left\{\begin{array}{ll}\xi^{\prime}(t) & =f^{\prime}\left(\phi\left(t, x_{0}\right)\right) \\ \xi(0) & =\xi_{0}\end{array}\right.$.

Proof. Plug in 0 into (4) to obtain

$$
\xi(0)=\left(\left(\partial_{x} \phi\right)\left(0, x_{0}\right)\right)\left(\xi_{0}\right)
$$

but observe that

$$
\begin{aligned}
\left(\left(\partial_{x} \phi\right)\left(0, x_{0}\right)\right) & =\sum_{(i, j) \in J_{n}^{2}}\left(\left(\partial_{x_{i}} \phi_{j}\right)\left(0, x_{0}\right)\right) \hat{E_{j i}} \\
& \equiv \sum_{(i, j) \in J_{n}^{2}} \hat{E_{j i}} \lim _{t \rightarrow 0} \frac{\phi_{j}\left(0, x_{0}+t \hat{e}_{i}\right)-\phi_{j}\left(0, x_{0}\right)}{t} \\
& =\sum_{(i, j) \in J_{n}^{2}} \hat{E_{j i}} \lim _{t \rightarrow 0} \frac{\left(x_{0}+t \hat{e}_{i}\right)_{j}-\left(x_{0}\right)_{j}}{t} \\
& =\sum_{(i, j) \in J_{n}^{2}} \hat{E_{j i}} \delta_{i j} \\
& =\sum_{i \in J_{n}} \hat{E_{i i}} \\
& =\mathbb{1}
\end{aligned}
$$

where $\hat{E_{j i}}$ is the unit vector of the matrix with 1 on the j th row and ith column, and zero otherwise.

- Thus, indeed $\xi(0)=\xi_{0}$.
- Next,

$$
\begin{aligned}
\xi^{\prime}(t) & \equiv \sum_{i \in J_{n}} \hat{e}_{i}\left[\left(\partial_{t} \xi_{i}\right)(t)\right] \\
& =\sum_{i \in J_{n}} \hat{e}_{i}\left[\left(\partial_{t} \sum_{j \in J_{n}}\left(\left(\partial_{x_{j}} \phi_{i}\right)\left(t, x_{0}\right)\right)\left(\xi_{0}\right)_{j}\right)\right] \\
& =\sum_{(i, j) \in J_{n}^{2}} \hat{e}_{i}\left(\partial_{t} \partial_{x_{j}} \phi_{i}\left(t, x_{0}\right)\right)\left(\xi_{0}\right)_{j} \\
& \stackrel{*}{=} \sum_{(i, j) \in J_{n}^{2}} \hat{e}_{i}\left(\partial_{x_{j}} \partial_{t} \phi_{i}\left(t, x_{0}\right)\right)\left(\xi_{0}\right)_{j} \\
& =\sum_{(i, j) \in J_{n}^{2}} \hat{e}_{i}\left(\left(\partial_{x_{j}} f_{i} \circ \phi\right)\left(t, x_{0}\right)\right)\left(\xi_{0}\right)_{j} \\
& =\sum_{(i, j) \in J_{n}^{2}} \hat{e}_{i}\left(\sum_{l \in J_{n}}\left(\left(\partial_{x_{l}} f_{i}\right) \circ \phi\right)\left(\partial_{x_{j}} \phi_{l}\right)\right)\left(t, x_{0}\right)\left(\xi_{0}\right)_{j} \\
& =\sum_{(i, j, l) \in J_{n}^{3}} \hat{e}_{i} \underbrace{\left(\left(\partial_{x_{l}} f_{i}\right) \circ \phi\right)\left(t, x_{0}\right)}_{\left(f^{\prime}\left(\phi\left(t, x_{0}\right)\right)\right)_{i l}} \underbrace{\left(\partial_{x_{j}} \phi_{l}\right)\left(t, x_{0}\right)\left(\xi_{0}\right)_{j}}_{\xi_{l}(t)}
\end{aligned}
$$

where in $*$ we have used theorem 9.40 in [1] which states that if $\partial_{t} \phi, \partial_{x_{j}} \phi$ and $\partial_{x_{j}} \partial_{t} \phi$ exist on all point of Ω and $\partial_{x_{j}} \partial_{t} \phi$ is continuous at some $\left(t_{0}, x_{0}\right) \in \Omega$. Then there exists $\left(\partial_{t} \partial_{x_{j}} \phi\right)\left(t_{0}, x_{0}\right)$ which is equal to:

$$
\left(\partial_{t} \partial_{x_{j}} \phi\right)\left(t_{0}, x_{0}\right)=\left(\partial_{x_{j}} \partial_{t} \phi\right)\left(t_{0}, x_{0}\right)
$$

- Now, As ϕ is assumed to be continuously differentiable, $\partial_{t} \phi$ and $\partial_{x_{j}} \phi$ exist. By definition, $\left(\partial_{t} \phi\right)(t, x) \equiv f(\phi(t, x))$ so that

$$
\begin{aligned}
\left(\partial_{x_{j}} \partial_{t} \phi\right)(t, x) & =\partial_{x_{j}} f(\phi(t, x)) \\
& =\sum_{l \in J_{n}}\left(\partial_{x_{l}} f\right)(\phi(t, x))\left(\partial_{x_{j}} \phi_{\mathfrak{l}}(t, x)\right)
\end{aligned}
$$

because ϕ is continuously differentiable, f is continuously differentiable, then $\left(\partial_{x_{j}} \partial_{t} \phi\right)(t, x)$ exists and is continuous.

3.2. Question 3.

- Observe it is not necessary to write down what the solution for x would be. Don't make life harder than what it has to be.
- Need to prove $[\exp (A)]^{\top}=\exp \left(A^{\top}\right)$, and $\left[A, A^{\top}\right]=0$. Both are easy.

3.3. Question 5.

- Observe that if $A=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$ then the eigenvalues are $1 \pm i$ and the eigenvectors are $\left[\begin{array}{l}i \\ 1\end{array}\right]$ and $\left[\begin{array}{c}-i \\ 1\end{array}\right]$ so that

$$
\begin{aligned}
& \exp (A t)=\exp \left(\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] t\right) \\
& =\exp \left(\left[\begin{array}{cc}
i & i \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
1+i & 0 \\
0 & 1-i
\end{array}\right] t\left[\begin{array}{cc}
i & i \\
1 & -1
\end{array}\right]^{-1}\right) \\
& =\left[\begin{array}{cc}
i & i \\
1 & -1
\end{array}\right] \exp \left(\left[\begin{array}{cc}
1+i & 0 \\
0 & 1-i
\end{array}\right] t\right)\left[\begin{array}{cc}
i & i \\
1 & -1
\end{array}\right]^{-1} \\
& =\left[\begin{array}{cc}
\mathfrak{i} & \mathfrak{i} \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
\exp ((1+\mathfrak{i}) t & 0 \\
0 & \exp ((1-\mathfrak{i}) t)
\end{array}\right] \underbrace{\left[\begin{array}{cc}
\mathfrak{i} & \mathfrak{i} \\
1 & -1
\end{array}\right]}_{-\frac{1}{2}\left[\begin{array}{ll}
i & -1 \\
i & 1
\end{array}\right]} \\
& =-\frac{1}{2} e^{t}\left[\begin{array}{cc}
i & i \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
\exp (i t) & 0 \\
0 & \exp (-i t)
\end{array}\right]\left[\begin{array}{cc}
i & -1 \\
i & 1
\end{array}\right] \\
& =-\frac{1}{2} e^{t}\left[\begin{array}{cc}
i & i \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
i \exp (i t) & -\exp (i t) \\
i \exp (-i t) & \exp (-i t)
\end{array}\right] \\
& =-\frac{1}{2} e^{t}\left[\begin{array}{ll}
-\exp (i t)-\exp (-i t) & -i \exp (i t)+i \exp (-i t) \\
i \exp (i t)-i \exp (-i t) & -\exp (i t)-\exp (-i t)
\end{array}\right] \\
& =e^{t}\left[\begin{array}{cc}
\cos (t) & -\sin (t) \\
\sin (t) & \cos (t)
\end{array}\right]
\end{aligned}
$$

This is a rotation by t radians counter-clockwise and a dilation by e^{t}.

References

[1] Walter Rudin. Principles of Mathematical Analysis (International Series in Pure and Applied Mathematics). McGraw-Hill Science/Engineering/Math, 1976.

