
ANALYSIS 2
RECITATION SESSION OF WEEK 10

JACOB SHAPIRO

1. INTERIOR, CLOSURE AND BOUNDARY

Let X be a general topological space, and A ⊆ X.

1.1. Example. ∂∂A 6= ∂A.

Proof. Recall the example where A = Q and X = R. Then ∂A = R, and so ∂∂A = ∂R = ∅. So we have ∅ 6= R. �

1.2. Example. ∂
(
A
)
6= ∂A.

Proof. Again with the example where A = Q and X = R, we have A = R and so ∂
(
A
)
= ∅ yet ∂A = R! �

1.3. Example. A =
{
x ∈ R2

∣∣ (x)2 = 0
}

and X = R2. Note that A ∈ Closed (X) (see this by drawing open balls in the
complement). Thus A = A. Also note that A◦ = ∅ (see this by drawing open balls). As a result, ∂A = A.

1.4. Example. A =
{
x ∈ R2

∣∣ (x)2 > 0
}

and X = R2. Then A ∈ Open (X) (draw open balls) so that A◦ = A. A ={
x ∈ R2

∣∣ (x)2 > 0
}

(A ⊇ A and every point on the line (x)2 = 0 also belongs to the closure because every open ball
around any point in it intersects A). Thus ∂A =

{
x ∈ R2

∣∣ (x)2 = 0
}

.

1.5. Example. (A, B) ∈ [Open (X)]2 such that A∩B = ∅. Then A∩B 6= ∅.

Proof. Take X = R and A =
(
0, 1

2

)
and B =

(
1
2 , 1

)
. Then A∩B = ∅ yet A∩B =

{
1
2

}
. �

1.6. Example. (A◦) 6= A.

Proof. Take A = (0, 1) ∪ { 2 } and X = R. Then A◦ = (0, 1) (to see this, try to find an open interval around 2 which is
contained in A), and so (A◦) = [0, 1]. �

2. INTEGRALS

2.1. Multi-Dimensional Integrals. We follow [1] Chapter 10. This allows a somewhat shorter and more compact presen-
tation of a multi-dimensional integral than with the Jordan measure, which is anyway obsoleted by the Lebesgue measure.

• Let Ik be the closed k-cell in Rk. That means Ik =
∏

j∈Jk

[
aj, bj

]
where (a, b) ∈

[
Rk
]2 such that aj 6 bj for all j ∈ Jk.

• For every j ∈ Jk, define Ij to be the j-cell in Rj defined by
∏

l∈Jj
[al, bl].

• Let f ∈ C0
(
Ik, R

)
.

• Define fk := f and fk−1 : Ik−1 → R by

fk−1 (x) :=

∫bk

ak

fk (x, y)dy ∀x ∈ Ik−1

where the integral is the orindary one-dimensional Riemann integral encountered in the last semester.

2.1. Claim. fk−1 is continuous on Ik−1.

Proof. Observe that fk is uniformly continuous on Ik because Ik is compact (being closed and bounded). Let x ∈ Ik−1 be
given, and let ε > 0 be given. By uniform continuity, ∃δ > 0 such that if z ∈ Ik−1 is such that ‖(x, y) − (z, y)‖ < δ then
|fk (x, y) − fk (z, y)| < ε

bk−ak
.
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Then for such z ∈ Ik−1 we have

|fk−1 (x) − fk−1 (z)| =

∣∣∣∣∣
∫bk

ak

fk (x, y)dy−

∫bk

ak

fk (z, y)dy

∣∣∣∣∣
=

∣∣∣∣∣
∫bk

ak

[fk (x, y) − fk (z, y)]dy

∣∣∣∣∣
6

∫bk

ak

|fk (x, y) − fk (z, y)|dy

6
ε

bk − ak

∫bk

ak

dy

= ε

but

‖(x, y) − (z, y)‖ =

√ ∑
j∈Jk−1

(
xj − zj

)2
= ‖x− z‖

�

• As a result, we may repeat this process again and again, to obtain functions fj ∈ C0
(
Ij, R

)
for all j ∈ Jk and such

that fj−1 is the integral of fj with respect to xj over
[
aj, bj

]
.

• After k steps we arrive at a number f0 which we define as the integral of f over Ik:∫
Ik

f (x)dx :=

∫bk

ak

(∫bk−1

ak−1

(
. . .

(∫b1

a1

f (x)dx1

)
. . .

)
dxk−1

)
dxk (1)

2.2. Claim. The left hand side of (1) is independent of the order in which the integrations are made. (Theorem 10.2).

2.3. Definition. The support of a function f : Rk → R is

supp (f) := f−1 (R\ { 0 })

=
{
x ∈ Rk

∣∣ f (x) 6= 0
}

2.4. Example. Let f : R → R be given by f (x) = 1. Then supp (f) = R = R.

2.5. Example. Let f : R → R be given by χQ (x) ≡

{
1 x ∈ Q

0 x /∈ Q
. Then supp (f) = Q = R.

2.6. Example. Let f : R2 → R be given by χB1(0)
(x) ≡

{
1 ‖x‖ < 1

0 ‖x‖ > 1
. Then supp (f) = B1 (0) =

{
x ∈ R2

∣∣ ‖x‖ 6 1
}

.

2.7. Remark. Observe that for the support of a function to be compact, all that is necessary is that it is bounded, due to the
fact that it is always closed by definition.

2.8. Definition. If f ∈ C1
(
Rk, R

)
is such that supp (f) is compact, then∫

Rk
f :=

∫
Ik

f (x)dx (2)

where Ik is any k-cell such that Ik ⊇ supp (f).

2.9. Remark. The defintion in (2) is well defined, that is, it is independent of Ik. This is due to the fact that if Ik ⊇ supp (f),
then of course outside of supp (f), f = 0 and so it does not matter which Ik is picked.

2.10. Example. Going back to example 2.6, we have supp (f) compact, and so for example, I2 := [−1, 1]2 ⊇ B1 (0). Thus we
have ∫

R2
f =

∫
[−1, 1]2

f (x)dx

=

∫1
−1

∫1
−1

χB1(0)
(x1, x2)dx1dx2

=

∫1
−1

∫√1−x2
2

−
√
1−x2

2

dx1dx2

=

∫1
−1

2

√
1− x22dx2

= π

• For all i ∈ N, assume that ϕi ∈ C0 (R, R) such that supp (ϕi) ⊆
(
2−i, 2−(i−1)

)
and

∫
R ϕi = 1.

◦ Then supp (ϕ1) ⊆
(
1
2 , 1

)
, supp (ϕ2) ⊆

(
1
4 , 1

2

)
, supp (ϕ3) ⊆

(
1
8 , 1

4

)
and so on.

◦ Define f : R2 → R by f (x, y) :=
∑

i∈N [ϕi (x) −ϕi+1 (x)]ϕi (y).
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2.11. Claim. supp (f) is compact in R2, f is continuous except at (0, 0), and
∫
dy

∫
f (x, y)dx = 0 yet

∫
dx

∫
f (x, y)dy =

1. Note that f is unbounded in every neighborhoud of (0, 0).

Proof. We first try ∫
f (x, y)dx =

∫ ∑
i∈N

[ϕi (x) −ϕi+1 (x)]ϕi (y)dx

=
∑
i∈N

[1− 1]ϕi (y)

= 0

Observe that this integration is valid because for each fixed y,
∑

i∈N [ϕi (x) −ϕi+1 (x)]ϕi (y) is a finite sum:
ϕi (y) = 0 if 2−i > y or if i > − log2 (y) (where y > 0). On the other side,∫

f (x, y)dy =

∫ ∑
i∈N

[ϕi (x) −ϕi+1 (x)]ϕi (y)dy

=
∑
i∈N

[ϕi (x) −ϕi+1 (x)]

= ϕ1 (x)

amd again the sum is finite for fixed x for the same reason. Because
∫

R ϕi (x)dx = 1 for each i ∈ N yet the length
of supp (ϕi) is 2−i so that ϕi must get bigger and bigger to maintain the integral condition. As a result, f cannot
be bounded near the origin. �

2.2. Fubini’s Theorem. According to Fubini’s theorem,∫
X×Y

f (x, y)d (x, y) =

∫
X

(∫
Y
f (x, y)dy

)
dx

=

∫
Y

(∫
X
f (x, y)dx

)
dy

if f|y is Riemann integrable as a function of x alone and f|x as a function of y alone, and f is Riemann integrable.
Using this theorem we may reduce many double and triple integrals to eventually ordinary one dimensional integrals.

2.12. Exercise. Define C =
{
x ∈ R3

∣∣∣ (x1)2 + (x2)
2 6 1∧ x3 ∈ [0, 1]

}
. We are interested in the volume of C, which we claim

is given by π.

Proof. We start by computing

vol (C) =

∫
C
1dxdydz

=

∫1
0

∫1
−1

∫√1−x2

−
√
1−x2

1dydxdz

Now we may use Fubini’s theorem to write

vol (C) =

∫1
0

∫1
−1

∫√1−x2

−
√
1−x2

1dydxdz

=

∫1
0

(∫1
−1

∫√1−x2

−
√
1−x2

1dydx

)
dz

=

(∫1
−1

∫√1−x2

−
√
1−x2

1dydx

)(
z|10

)
=

∫1
−1

(
y|

√
1−x2

−
√

1−x2

)
dx

=

∫1
−1

(
2
√
1− x2

)
dx

and now we have an ordinary one dimensional integral (equal to π). �

2.13. Exercise. Evaluate
∫3
0

∫x3

0 x2ydydx.
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Proof. We proceed by ∫3
0

∫x3

0
x2ydydx =

∫x=3

x=0

∫y=x3

y=0
x2ydydx

=

∫x=3

x=0

(∫y=x3

y=0
x2ydy

)
dx

=

∫x=3

x=0

(
x2

∫y=x3

y=0
ydy

)
dx

=

∫x=3

x=0

(
x2

1

2
y2
∣∣∣∣x3

0

)
dx

=

∫x=3

x=0

(
x2

1

2
y2
∣∣∣∣x3

0

)
dx

=
1

2

∫x=3

x=0
x8dx

=
1

2

1

9
x9
∣∣∣∣3
0

=
1

18
39

=
2187

2

�

2.14. Exercise. Evaluate
∫
[0, π]3 exp (x+ y+ z)dxdydz.

Proof. We start by ∫
[0, π]3

exp (x+ y+ z)dxdydz =

∫π
0

∫π
0

∫π
0

exp (x+ y+ z)dxdydz

=

∫π
0

∫π
0

exp (y+ z) (eπ − 1)dydz

=

∫π
0

exp (z) (eπ − 1)2 dz

= (eπ − 1)3

�

2.3. Changing the Limits of Integration.

2.15. Example. Change the order of
∫1
y=0

∫ey

x=1 f (x, y)dxdy to
∫e
x=1

∫1
y=log(x) f (x, y)dydx.

Proof.
As the max value of y is 1, we have to integrate x from 1 to ey = e1 = e. But now y goes from log (x) to 1. �

2.16. Example. Reverse the order of integration from
∫5π/2
π/2

∫1
sin(x) f (x, y)dydx to

∫1
−1

∫arcsin(y)+2π

π−arcsin(y) f (x, y)dxdy.
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Proof.
Now we must be careful about the lower line, because writing simply x = arcsin (y) will not work as arcsin (y) has

range
[
−π

2 , π
2

]
and is always increasing. Thus we must separate the lower curve y = sin (x) into the two curves x =

π− arcsin (y) (on the left) and x = arcsin (y) + 2π. �

3. HOMEWORK NUMBER 8

3.1. Question 1.
• Let U ∈ Open (Rn)

• Let f : U → Rn be a continuously differentiable vector field on U.
• Let I (x) ⊆ R be the maximal interval at x ∈ Rn for which a solution for the differential equation equation{

γ ′
x (t) = f (γx (t))

γx (0) = x
γx ∈ C1 (R, Rn) (3)

exists uniquely.
• Define Ω := { (t, x) ∈ R ×U | t ∈ I (x0) }.
• Define φ : Ω → Rn as the flow of the vector field, that means,

φ (t, x) := γx (t)

where γx is the solution to (3), for all (t, x) ∈ I (x)×U. That is, we know that{
(∂tφ) (t, x) = f (φ (t, x))
φ (0, x) = x

∀x ∈ Rn,∀t ∈ R

• Assume φ is continuously differentiable.
• Let ξ0 ∈ Rn and x0 ∈ Rn be given.
• Define ξ : I (x0) → Rn by

ξ (t) : = ((∂xφ) (t, x0)) (ξ0) (4)

=
∑
i∈Jn

(((∂xφ) (t, x0)) (ξ0))i êi (5)

=
∑
i∈Jn

∑
j∈Jn

(((∂xφ) (t, x0)))ij (ξ0)j êi (6)

=
∑

(i, j)∈J2n

((
∂xj

φi

)
(t, x0)

)
(ξ0)j êi (7)

3.1. Claim. ξ fulfills the differential equation equation

{
ξ ′ (t) = f ′ (φ (t, x0))
ξ (0) = ξ0

.

Proof. Plug in 0 into (4) to obtain

ξ (0) = ((∂xφ) (0, x0)) (ξ0)
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but observe that

((∂xφ) (0, x0)) =
∑

(i,j)∈J2n

((
∂xi

φj

)
(0, x0)

)
Êji

≡
∑

(i,j)∈J2n

Êji lim
t→0

φj (0, x0 + têi) −φj (0, x0)
t

=
∑

(i,j)∈J2n

Êji lim
t→0

(x0 + têi)j − (x0)j
t

=
∑

(i,j)∈J2n

Êjiδij

=
∑
i∈Jn

Êii

= 1

where Êji is the unit vector of the matrix with 1 on the jth row and ith column, and zero otherwise.
• Thus, indeed ξ (0) = ξ0.
• Next,

ξ ′ (t) ≡
∑
i∈Jn

êi [(∂tξi) (t)]

=
∑
i∈Jn

êi

∂t
∑
j∈Jn

((
∂xj

φi

)
(t, x0)

)
(ξ0)j


=

∑
(i,j)∈J2n

êi

(
∂t∂xj

φi (t, x0)
)
(ξ0)j

∗
=

∑
(i,j)∈J2n

êi

(
∂xj

∂tφi (t, x0)
)
(ξ0)j

=
∑

(i,j)∈J2n

êi

((
∂xj

fi ◦φ
)
(t, x0)

)
(ξ0)j

=
∑

(i,j)∈J2n

êi

∑
l∈Jn

((
∂xl

fi
)
◦φ
) (

∂xj
φl

) (t, x0) (ξ0)j

=
∑

(i,j,l)∈J3n

êi
((
∂xl

fi
)
◦φ
)
(t, x0)︸ ︷︷ ︸

(f ′(φ(t, x0)))il

(
∂xj

φl

)
(t, x0) (ξ0)j︸ ︷︷ ︸
ξl(t)

where in ∗ we have used theorem 9.40 in [1] which states that if ∂tφ, ∂xj
φ and ∂xj

∂tφ exist on all point of Ω and

∂xj
∂tφ is continuous at some (t0, x0) ∈ Ω. Then there exists

(
∂t∂xj

φ
)
(t0, x0) which is equal to:(

∂t∂xj
φ
)
(t0, x0) =

(
∂xj

∂tφ
)
(t0, x0)

• Now, As φ is assumed to be continuously differentiable, ∂tφ and ∂xj
φ exist. By definition, (∂tφ) (t, x) ≡ f (φ (t, x))

so that (
∂xj

∂tφ
)
(t, x) = ∂xj

f (φ (t, x))

=
∑
l∈Jn

(
∂xl

f
)
(φ (t, x))

(
∂xj

φl (t, x)
)

because φ is continuously differentiable, f is continuously differentiable, then
(
∂xj

∂tφ
)
(t, x) exists and is contin-

uous.
�

3.2. Question 3.

• Observe it is not necessary to write down what the solution for x would be. Don’t make life harder than what it has
to be.

• Need to prove [exp (A)]T = exp
(
AT
)
, and

[
A, AT

]
= 0. Both are easy.

3.3. Question 5.
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• Observe that if A =

[
1 −1

1 1

]
then the eigenvalues are 1± i and the eigenvectors are

[
i

1

]
and

[
−i

1

]
so that

exp (At) = exp
([

1 −1

1 1

]
t

)
= exp

([
i i

1 −1

] [
1+ i 0

0 1− i

]
t

[
i i

1 −1

]−1
)

=

[
i i

1 −1

]
exp

([
1+ i 0

0 1− i

]
t

)[
i i

1 −1

]−1

=

[
i i

1 −1

] [
exp ((1+ i) t) 0

0 exp ((1− i) t)

] [
i i

1 −1

]−1

︸ ︷︷ ︸
− 1

2

[
i −1

i 1

]

= −
1

2
et
[
i i

1 −1

] [
exp (it) 0

0 exp (−it)

] [
i −1

i 1

]
= −

1

2
et
[
i i

1 −1

] [
i exp (it) − exp (it)

i exp (−it) exp (−it)

]
= −

1

2
et
[
− exp (it) − exp (−it) −i exp (it) + i exp (−it)

i exp (it) − i exp (−it) − exp (it) − exp (−it)

]
= et

[
cos (t) − sin (t)

sin (t) cos (t)

]
This is a rotation by t radians counter-clockwise and a dilation by et.
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