
ANALYSIS 2
RECITATION SESSION OF WEEK 2

JACOB SHAPIRO

1. LOGISTICS

Fact 1.1. Recitation Sessions are held every Monday 13-15 at HG D 5.2. The goal of these sessions is to prepare you for solving the current
week’s homework, go over the solutions from the previous week’s homework, and perhaps clarify unresolved problems from the lecture.

Fact 1.2. Colloquium Sessions–either new material, review, or left over from recitation sessions–are held every Thursday 14-15 at LFW C
1.

Fact 1.3. The best way to reach me is via my email jshapiro@phys.ethz.ch. You can also find the summaries of the lessons on my website at
http://www.phys.ethz.ch/∼jshapiro/. You may inquire about any matter, including but not limited to: difficulties with the lecture, difficulties
with the recitation sessions, difficulties with the homework, and the meaning of life.

Fact 1.4. The most straight forward way to do well in this class is to do the homework every week. Another possibility is to do the homework
all at once just before the exam; you might still get a good grade, but you will have shortened your lifespan with heightened anxiety.

If you want to have you homework reviewed, hand it in by the end of the recitation session, on Monday, to me. You will get your work
back the following week. Your work will be reviewed, but not graded, and will not affect your credit or final mark.

2. CHRISTMAS EXERCISE SHEET REVIEW

2.1. Differential Equations. Recall that a differential equation is a condition where the unknown is not a number, but rather, a
map.

For example, find all maps that obey the condition

y ′′ − 5y ′ + 6y = 0 (2.1)

We can think of a lucky guess, y (x) := etx where now t is unknown. This approach seems random, but in fact it’s the usual
way to solve differential equations: guessing.

Plug in our guess, to get a relation on t (instead of on y):

t2 − 5t+ 6 = 0

so that t = 5±
√
25−24
2 =

{
2

3
. Thus both y = e2x and y = e3x solve equation (2.1).

Claim 2.1. x 7→ e2x and x 7→ e3x are linearly indepedent.

Proof. We say that they are linearly independent in exactly the same way two ordinary Rn vectors are independent: the solution
to the equation

αe2x +βe3x = 0∀x ∈ R (2.2)
with two reals α and β is necessarily α = 0 and β = 0. Let us see why. equation (2.2) implies α+ βex = 0∀x ∈ R, in particular,
plug in x = 0 to get α = −β so that we should have β (ex − 1) = 0∀x ∈ R, which is only possible when β = 0. �

Furthermore, equation (2.1) has an important property, called linearity: the operator C2
(
RR

)
3 y 7→ y ′′ − 5y ′ + 6y ∈ RR is

linear (it preserves addition and scalar multiplication) and as such its image is a vector subspace (the vectors being functions).
equation (2.1) is a second order differential equation (the highest derivative is a second derivative) and so it should have two
linearly independent solutions (for more information about this claim, see [1]). Thus the dimension of this vector space is 2

and as we have found two linearly indepedent solutions, we can write the most general element in the vector space as a linear
combination of these two:

ygeneric (x) = c1e
2x + c2e

3x

You should think of the solution space of equation (2.1) like R2, and to describe a general point in it, we need to specify “how
much we are going” in each direction (x̂ or ŷ). So a general vector in R2 is written as c1x̂ + c2ŷ. With differential equations,
geometric directions are replaced by “directions in an abstract function space specified by independent solutions: e2x and e3x.

Another property of equation (2.1) is that it is ordinary, in the sense that the function we are dealing with, y, is a function
only one variable x. However, there are also partial differential equations, where there are two or more variables to each map
(the unknown) and the derivatives can be with respect to any of these variables.
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In general, it might be helpful to keep in mind the following taxonomy of differential equations with example of each:
linaer non-linear

ordinary y ′′ (x) − y (x) = 0 y ′ (x) − sin [y (x)] = 0

partial ∂xy (x, t) + ∂ty (x, t) + y (x, t) = 0 ∂xy (x, t) + [∂ty (x, t)]2 = 0

2.1.1. Question 4. Let n ∈ N\ { 0 } and (a0, . . . , an−1) ∈ Rn be given. Then define the differential operator D : Cn → R given by

D (y) := y(n) +

0∑
j=n−1

ajy
(j)

Then

D (y) = 0 (2.3)

is a linear differential equation of order n. Define

L := { y ∈ Cn | D (y) = 0 }

as the space of all solutions of equation (2.3).

Claim 2.2. The n solutions
{
yj

}n
j=1

⊂ L are a basis of L iff the matrix defined by the components y
(i)
j (x) is in GLn (R) for some

x ∈ R; Furthermore, if y(i)j (x) ∈ GLn (R) for some x ∈ R then y
(i)
j (x) ∈ GLn (R) for all x ∈ R.

Proof. =⇒ ∀x ∈ R, define the map

L 3 y
Ax7→

(
y (x) , y ′ (x) , . . . , yn−1 (x)

)
∈ Rn

This map is clearly linear. Recall Koenigsberger 101. Satz 1:
Claim. ∀x ∈ R, the map Ax is injective.

We know that linear transformations which are injective preserve linear independence. As
{
yj

}n
j=1

is assumed to be a basis,

it is linearly indepdent. That means that all of the vectors Ax

(
yj
)

are linearly indepndent. But the matrix y
(i)
j (x) has as its

columns the vectors Ax

(
yj
)
. But a matrix with linearly indepdent columns is invertible. So y

(i)
j (x) is invertible.

=⇒ If for some x0 ∈ R, y(i)j (x0) is invertible, then its columns are linearly independent. Thus, by the injectivity of Ax0
, it

follows that
{
yj

}n
j=1

are linearly independent and so they are a basis of L. To complete the claim, use the opposite direction

now to show the invertibility of y(i)j (x) for any other x ∈ R. �

Claim 2.3. If the characteristic polynomial

pn (λ) ≡ λn +

0∑
j=n−1

ajλ
n−1 (2.4)

has n-different roots
{
λj

}n
j=1

, then
{
x 7→ eλjx

}n
j=1

is a basis for L.

Proof. First of all, plugging eλx into equation (2.3) gives the characteristic polyomial equation (2.4), so that D
(
x 7→ eλjx

)
= 0

indeed and so
(
x 7→ eλjx

)
∈ L. Secondly, for any two different λ nad λ̃, x 7→ eλx and x 7→ eλ̃x are linearly independent (similarly

to how we showed this above in the special case). Thus, a set of n different solutions to the characteristic polynomial gives a
set of n different linearly independent sollutions and thus a basis of L. �
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Claim 2.4. Let q ∈ RR,
{
yj

}n
j=1

be a basis of L, and let z (x) be the inverse of the matrix defined by the components y
(i)
j (x) for

every x ∈ R. (Small note: the index j runs from 1 to n and the index i runs from 0 to n− 1, just for convenience, but this doesn’t
affect any of the matrix manipulations). Then

x 7→
n∑

j=1

[ˆ x

0

zj,n−1

(
x ′)q (

x ′)dx ′
]
yj (x) (2.5)

is a particular solution to the equation
D (y) = q (2.6)

Proof. Observe that by definition,
n∑

j=1

y
(i)
j (x)

[
zj,n−1 (x)q (x)

]
= 1i,n−1q (x)

= δi,n−1q (x)

Define

yp (x) :=

n∑
j=1

[ˆ x

0

zj,n−1

(
x ′)q (

x ′)dx ′
]
yj (x)

Claim 2.5. y
(k)
p (x) =

{∑n
j=1

[´ x
0 zj,n−1 (x

′)q (x ′)dx ′]y(k)j (x) k ∈ Zn∑n
j=1

[´ x
0 zj,n−1 (x

′)q (x ′)dx ′]y(n)
j (x) + q (x) k = n

.

Proof. Use induction on k. For k = 0 the statement is true by defintion of yp (x). Assume it is true for some k < n− 1, check
k+ 1: n∑

j=1

[ˆ x

0

zj,n−1

(
x ′)q (

x ′)dx ′
]
y
(k)
j (x)

 ′

=

n∑
j=1

{
zj,n−1 (x)q (x)y

(k)
j (x) +

[ˆ x

0

zj,n−1

(
x ′)q (

x ′)dx ′
]
y
(k+1)
j (x)

}

=

n∑
j=1

y
(k)
j (x) zj,n−1 (x)︸ ︷︷ ︸
δk,n−1=0

q (x) +

n∑
j=1

[ˆ x

0

zj,n−1

(
x ′)q (

x ′)dx ′
]
y
(k+1)
j (x)

=

n∑
j=1

[ˆ x

0

zj,n−1

(
x ′)q (

x ′)dx ′
]
y
(k+1)
j (x)

To obtain k = n we differentiate once more: n∑
j=1

[ˆ x

0

zj,n−1

(
x ′)q (

x ′)dx ′
]
y
(n−1)
j (x)

 ′

=

n∑
j=1

{
zj,n−1 (x)q (x)y

(n−1)
j (x) +

[ˆ x

0

zj,n−1

(
x ′)q (

x ′)dx ′
]
y
(n)
j (x)

}

= q (x) +

n∑
j=1

[ˆ x

0

zj,n−1

(
x ′)q (

x ′)dx ′
]
y
(n)
j (x)

�
Now apply D on yp to obtain:

D (yp) = y
(n)
p +

0∑
j=n−1

ajy
(j)
p

= q (x) +

n∑
j=1

[ˆ x

0

zj,n−1

(
x ′)q (

x ′)dx ′
]
y
(n)
j (x) +

+

n∑
j=1

[ˆ x

0

zl,j−1

(
x ′)q (

x ′)dx ′
]

= q (x) +

n∑
j=1

[ˆ x

0

zj,n−1

(
x ′)q (

x ′)dx ′
] [

y
(n)
j (x) +

0∑
r=n−1

ary
(r)
j (x)

]

= q (x) +

n∑
j=1

[ˆ x

0

zj,n−1

(
x ′)q (

x ′)dx ′
]D (

yj
)
(x)︸ ︷︷ ︸

0


= q (x)

�
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2.1.2. Question 5.
Claim 2.6. The general real solution to

y(4) (x) − y (x) = 0

is given by
c1e

x + c2e
−x + c3 cos (x) + c4 sin (x)

with all coefficients real.

Proof. Make the Ansatz y (x) = eλx to get the characteristic polynomial

λ4 − 1 = 0

which has the solution set { 1, −1, i, −i }. Thus the four linearly independent solutions are
{
ex, e−x, eix, e−ix

}
, and the most

general solution is given by
ygeneral (x) = c1e

x + c2e
−x + c3e

ix + c4e
−ix

where in general, cj ∈ C. If we want only real solutions then we insist on c4 = c3 and (c1, c2) ∈ R2 so

yreal
general (x) = c1e

x + c2e
−x + c3e

ix + c3e
−ix

= c1e
x + c2e

−x + c3 [cos (x) + i sin (x)] + c3 [cos (x) − i sin (x)]

= c1e
x + c2e

−x + 2<{c3}︸ ︷︷ ︸
c̃3

cos (x) + 2= {c3}︸ ︷︷ ︸
c̃4

sin (x)

= c1e
x + c2e

−x + c̃3 cos (x) + c̃4 sin (x)

with (c1, c2, c̃3, c̃4) ∈ R4. �

2.1.3. Question 6.
Claim 2.7. The general real solution for x > 0 to

x2∂2xy (x) − 3x∂xy (x) + 5y (x) = 0 (2.7)

is given by
y (x) = c1x

2 cos (log (x)) + c2x
2 sin (log (x))

Proof. Define h (t) := y
(
et
)

and make the change of variablessociation x = et. Then by the chain rule

∂th (t) = ∂ty
(
et
)

= [∂xy (x)]∂te
t

= [∂xy (x)] et

so that
∂xy (x) = e−t∂ty

(
et
)
= e−t∂th (t)

and

∂2th (t) = ∂2ty
(
et
)

= ∂t
[
et∂xy (x)

]
= et∂xy (x) + et∂2xy (x) et

= ∂th (t) + e2t∂2xy (x)

so that

∂2xy (x) = e−2t
[
∂2th (t) − ∂th (t)

]
= e−2t∂2th (t) − e−2t∂th (t)

We plug in these changes into equation (2.7) to get

e2te−2t
[
∂2th

(
et
)
− ∂th (t)

]
− 3ete−t∂th (t) + 5h (t) = 0

and so the differential equation to solve is
∂2th

(
et
)
− 4∂th (t) + 5h (t) = 0

which gives h (t) = c1e
2t cos (t) + c2e

2t sin (t) and so

y (x)
x>0
= h (log (x))

= c1x
2 cos (log (x)) + c2x

2 sin (log (x))

�
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2.1.4. Question 7.
Claim 2.8. The general solution to the equation

y ′ (t) = a (t)y (t) − b (t) (2.8)
is given by

y (t) = eA(t)

[
B−

ˆ
e−A(t)b (t)dt

]
where B is some constant and A (t) ≡

´
a (t)dt

Proof. Start out by finding the solution to the homogeneous equation:

y ′ (t) = a (t)y (t)

dy

y
= a (t)dt

log (|y|) =

ˆ
a (t)dt+C

|y| = eCe
´
a(t)dt

yhomo (t) = ±eC︸︷︷︸
A

e
´
a(t)dt

yhomo (t) = Ae
´
a(t)dt

yhomo (t) = AeA(t)

To find a particular solution, we use the method outlined above for the general case (now we have n = 1) and so

yparticular (t) =

{ˆ
−b (t)

AeA(t)
dt+ B̃

}
AeA(t)

One may verify that this is indeed a particular solution:

y ′
particular (t) =

−b (t)

AeA(t)
AeA(t) +

{ˆ
−b (t)

AeA(t)
dt+ B̃

}
AeA(t)A ′ (t)︸ ︷︷ ︸

a(t)

= −b (t) + yparticular (t)a (t)

which indeed fulfills equation (2.8). Thus, the most general solution is

ygeneral (t) = yhomo (t) + yparticular (t)

= AeA(t) +

{ˆ
−b (t)

AeA(t)
dt+ B̃

}
AeA(t)

= eA(t)

A
(
1+ B̃

)︸ ︷︷ ︸
B

−

ˆ
e−A(t)b (t)dt


= eA(t)

[
B−

ˆ
e−A(t)b (t)dt

]
�

3. EXERCISE SHEET NUMBER 1 PREPARATION

3.1. Question 1.
• Recall the notion of equivalence relation (three conditions must hold).

3.2. Question 4.
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