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1 Exercise Sheet Number Six

1.1 Question 1

• Cannot do lim
√
1+an−1
an

?
= 1

2 ⇐⇒lim
√
1 + an − 1 = lim an

2 .

1.2 Question 2
• Let (an)n∈N converge to a.

• Define sn := 1
n

∑n
j=1 aj for all n ∈ N.

• Claim: (sn)n∈N converges to a.
Proof :

– Let ε0 > 0 be given.

– (an)n∈N → a means that ∀ε > 0∃m (ε) ∈ N such that if n ≥ m (ε) then |a− an| < ε .

– Then assume that n ∈ N is such that n > m
(
ε0
2

)
, for some ε > 0. Then,

|sn − a| =

∣∣∣∣∣∣ 1n
n∑

j=1

an − a

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
1

n

n∑
j=1

an − 1

n

n∑
j=1︸ ︷︷ ︸
1

a

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1n
n∑

j=1

(an − a)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1n
m

( ε0
2

)∑
j=1

(an − a) +
1

n

n∑
j=m

( ε0
2

)
+1

(an − a)

∣∣∣∣∣∣
≤ 1

n

∣∣∣∣∣∣
m

( ε0
2

)∑
j=1

(an − a)

∣∣∣∣∣∣+ 1

n

n∑
j=m

( ε0
2

)
+1

|(an − a)|

≤ 1

n

∣∣∣∣∣∣
m

( ε0
2

)∑
j=1

(an − a)

∣∣∣∣∣∣+ 1

n

n∑
j=m

( ε0
2

)
+1

ε0
2

=
1

n

∣∣∣∣∣∣
m

( ε0
2

)∑
j=1

(an − a)

∣∣∣∣∣∣+ n−m
(
ε0
2

)
− 1

n︸ ︷︷ ︸
≤1

ε0
2

≤ 1

n

∣∣∣∣∣∣
m

( ε0
2

)∑
j=1

(an − a)

∣∣∣∣∣∣+ ε0
2

– Then, can we pick some n ∈ N large enough such that 1
n

∣∣∣∑m
( ε0

2

)
j=1 (an − a)

∣∣∣+ ε0
2 < ε0?
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– Sure, define ms (ε0) := 1 + 2

∣∣∣∣∣∑m
( ε0

2

)
j=1 (an−a)

∣∣∣∣∣
ε0

. Note that
∣∣∣∑m

( ε0
2

)
j=1 (an − a)

∣∣∣ is just some finite fixed number.

– Then clearly if n > ms (ε0) then |sn − a| < ε0.

�

• For part (b) consider an = (−1)
n which diverges.

1.3 Question 3
• Merely Positive or merely monotone sequence is not enough in order for it to converge. Needs to be bounded as well.

• Counter examples:

– { 1, 2, 1, 2, 1, 2, . . . } is always positive but surely diverges.

– { 1, 2, 3, 4, . . . } is monotone increasing but diverges.

• If we have a monotone increasing sequence that is bounded above then it will converge.

• If we have a monotone decreasing sequence that is bounded below (for example, always positive) then it will converge.

1.4 Question 4

• Let p ∈ P be given. Define dp : Z2 → R by: dp ((m, n)) :=

{
0 m = n

min
({

p−k ∈ Q
∣∣ k ∈ N ∧ pk| (m− n)

})
m 6= n

. The minimum is

taken over the set of all p−k where k ranges over all natural numbers which satisfy pk| (m− n).

• Claim: dp (m, n) ≤ dp (m, l) + dp (l, n) for all l ∈ Z.
Proof :

– Case 1 : p = 1.

∗ When p = 1, then every pk = 1 for all k. As a result, d1 (m, n) = 1 for all m 6= n.
∗ Then we have d1 (m, n) = 1 and indeed 1 ≤ 1 + 0 or 1 ≤ 0 + 1.

– Case 2: p > 1.

∗ Let k1 be the largest power of p inside of m− l: m− l = αpk1 and dp (m, l) = p−k1 .
∗ Let k2 be the largest power of p inside of l − n: l − n = βpk2 and dp (l, n) = p−k2 .
∗ Define k0 := min (k1, k2).
∗ Then

m− n = m− l + l − n

= (m− l) + (l − n)

= αpk1 + βpk2

= pk0
(
αpk1−k0 + βpk2−k0

)
∗ As a result, pk0 | (m− n) and so p−k0 ≥ dp (m, n) (by definition of dp).
∗ But becuase k0 ≡ min (k1, k2), k0 = k1 or k0 = k2, and of course p−k0 ≤ p−k0 + something.
∗ Hence p−k0 ≤ p−k1 + p−k2 necessarily.
∗ Hence our result follows.

�

1.5 Question 5
• Let (X, d) be a metric space, let (xn)n∈N be a sequence in X and let x ∈ X.

• Part (a): Claim: If (xn)n∈N → x then (xn)n∈A → x for all A ⊆ N such that |A| = |N|.
Proof :

– Because (xn)n∈N → x, then ∀ε > 0∃m (ε) ∈ N such that if n ∈ N is such that n ≥ m (ε) then d (xn, x) < ε.

– To show that (xn)n∈A → x, we need to show that ∀ε > 0∃mA (ε) ∈ A such that if n ∈ A is such that n ≥ mA (ε) then
d (xn, x) < ε.

– So let ε > 0 be given.

– If m (ε) happens to be such that m (ε) ∈ A, define mA (ε) := m (ε).
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– Otherwise, because |A| = |N|, there must be some member of A, a such that a > m (ε). So define mA (ε) := a.

– Then we are done, because if n ∈ A such that n ≥ mA (ε), then

∗ Due to A ⊆ N, n ∈ N.
∗ Due to mA (ε) ≥ m (ε), n ≥ m (ε).
∗ Thus due to (xn)n∈N → x we have that d (xn, x) < ε.

�

• Part (b): Claim: If for every A ⊆ N such that |A| = |N|, ∃B ⊆ A such that |B| = |N| such that (xn)n∈B → x, then (xn)n∈N → x.
Proof :

– Assume the contrary, that is, assume that (xn)n∈N does not converge to x.

– That means that ∃ε0 > 0 such that ∀m ∈ N, ∃n0 (m) ∈ N such that n0 (m) > m yet d
(
xn0(m), x

)
≥ ε0.

– Define a subset A ⊆ N such that |A| = |N| by the following rule:

∗ Define a1 := n0 (1).
∗ Define a2 := n0 (2).
∗ etc.
∗ Then A := { aj | j ∈ N }.

– But then we have a contradiction with the fact that any subsequence B of A converges, because we can simply take B = A,
and clearly, that subsequence (xn)n∈A does not converge.

1.6 Question 6
• If (an)n∈N → 0 then it doesn’t necessarily mean that (

∑
an) converges!

• You may not manipualte limits as if they were numbers before you know that they actually converge!

2 Exercise Sheet Number Eight

2.1 Continuity of Complex Functions

• Claim: f : C\ {0} → C defined by z
f7→ z2

|z| is continuous.
Proof :

– Claim: If f : X → Y is continuous and g : Y → Z is continuous then so is g ◦ f : X → Z.
Proof :

∗ Let ε > 0 be given, and pick some x0 ∈ X. Then f (x0) ∈ Y .
∗ Because g is continuous (in particular, continuous at f (x0)), ∃δY (ε, f (x0)) > 0 such that for all y ∈ Y with
dY (y, f (x0)) < δY (ε, f (x0)) we have dZ (g (y) , g ◦ f (x0)) < ε.

∗ Because f is continuous (in particular, continuous at x0) ∃δX (ε, x0) > 0 such that for all x ∈ X with dX (x, x0) <
δX (ε, x0) we have dY (f (x) , f (x0)) < ε.

∗ Apply continuity of f on the radius δY (ε, f (x0)) at x0: there exists some δX (δY (ε, f (x0)) , x0) > 0 such that:
· If x ∈ X is such that dX (x, x0) < δX (δY (ε, f (x0)) , x0) then dY (f (x) , f (x0)) < δY (ε, f (x0)).

∗ But f (x) ∈ Y such that dY (f (x) , f (x0)) < δY (ε, f (x0)) implies that dZ (g (f (x)) , g ◦ f (x0)) < ε.

�

– Claim: Let g : C → C\ {0} be continuous. Then the map h : C → C defined by q (z) := 1
g(z) for all z ∈ C is continuous.

Proof :

∗ Let ε0 > 0 be given and take some z0 ∈ C.
∗ Compute

|q (z0)− q (z)| ≡
∣∣∣∣ 1

g (z0)
− 1

g (z)

∣∣∣∣
=

∣∣∣∣g (z)− g (z0)

g (z0) g (z)

∣∣∣∣
∗ Because g is continuous at g (z0) then ∀ε > 0 ∃δ (ε, z0) > 0 such that if |z − z0| < δ (ε, z0) then |g (z)− g (z0)| < ε.
∗ Using this last inequality we can also infer that |g (z0)| − |g (z)| < ε and so |g (z)| > |g (z0)| − ε.
∗ Assume |g (z0)| 6= ε (otherwise pick ε slightly smaller for the same z0).
∗ Then we have 1

|g(z)| <
1

|g(z0)|−ε .
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∗ As a result we find that

|q (z0)− q (z)| ≤ ε

|g (z0)| [|g (z0)| − ε]

∗ So take δ
(

|g(z0)|2ε0
1+|g(z0)|ε0 , z0

)
.

∗ Then

|q (z0)− q (z)| ≤
|g(z0)|2ε0
1+|g(z0)|ε0

|g (z0)|
[
|g (z0)| − |g(z0)|2ε0

1+|g(z0)|ε0

]
=

|g(z0)|2ε0
1+|g(z0)|ε0
|g(z0)|2

1+|g(z0)|ε0
= ε0

�

– Claim: If f : C → C and g : C → C are continuous then h : C → C defined as h (z) := f (z) g (z) for all z ∈ C is continuous.
Proof :

∗ Let ε0 > 0 be given and let z0 ∈ C be given.
∗ f is continuous so ∃δf (ε, z0) > 0 such that |z − z0| < δf (ε, z0) leads to |f − f (z0)| < ε.
∗ Same for g, denoted by δg (ε, z0).
∗ Then

|h (z)− h (z0)| = |f (z) g (z)− f (z0) g (z0)|
= |f (z) g (z)− g (z0) f (z0) + g (z0) f (z0)− f (z0) g (z0)|
= |f (z) [g (z)− g (z0)] + g (z0) [f (z)− f (z0)]|
≤ |f (z)| |g (z)− g (z0)|+ |g (z0)| |f (z)− f (z0)|

∗ Using the fact that f is continuous, we have |f (z)| < ε+ |f (z0)| so some suitable selection of z.
∗ As a result we find that

|h (z)− h (z0)| ≤ [ε+ |f (z0)|] |g (z)− g (z0)|+ |g (z0)| |f (z)− f (z0)|
≤ [ε+ |f (z0)|] ε+ |g (z0)| ε
= ε2 + [|f (z0) + g (z0)|] ε

∗ So take

δ (ε0, z0) := min




δf

(
1
2

(
− [|f (z0)|+ |g (z0)|] +

√
[|f (z0)|+ |g (z0)|]2 + 4ε0

)
, z0

)
,

δg

(
1
2

(
− [|f (z0)|+ |g (z0)|] +

√
[|f (z0)|+ |g (z0)|]2 + 4ε0

)
, z0, z0

)



∗ Then we have |h (z)− h (z0)| ≤ ε0.

�

– Then clearly z 7→ z2 which is just the multiplication of two identity maps is continuous.

– Claim: || : C → R defined by z 7→ |z| is continuous.
Proof :

∗ Let ε > 0 be given and let z0 ∈ C be given.
∗ Then we need

||z| − |z0|| ≤ |z − z0|

∗ So take δ (ε, z0) := ε.
∗ Then if |z − z0| < δ (ε, z0) then ||z| − |z0|| < ε and we’re done.

�

– Putting everything together, we have the following maps:

∗ f1 : C → C defined by z 7→ z2. This map is continuous.
∗ f2 : C → C defined by z 7→ |z|. This map is continuous.
∗ f3 : C\ {0} → C defined by z 7→ 1

z . This map is continuous.
∗ Then f = f1 ·(f3 ◦ f2). Since all the operations were proven to be continuous we have proven that our map is continuous.
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2.2 Continuos Extensions

• Claim: f : R\ {0} → R defined by x
f7→ sin(x)

x is continuous.
Proof :

– Even though the trigonometric functions have not officially been defined yet, we can think of them as being defined as a
power series.

– For example, define exp : C → C as:

exp (z) ≡
∞∑

n=0

zn

n!

Using the ratio test, we have that ∣∣∣∣∣∣
[

zn+1

(n+1)!

]
(
zn

n!

)
∣∣∣∣∣∣ =

∣∣∣∣ z

n+ 1

∣∣∣∣
and so lim supn→∞

∣∣∣∣
[

zn+1

(n+1)!

]
(
zn

n!

)
∣∣∣∣ = lim supn→∞

∣∣∣ z
n+1

∣∣∣ = |z| · 0 < 1.

– As a result, exp (z) converges and so is well-defined.

– It is continuous on any bounded subset of C because using the Weierstrass M -test with Rn

n! (where R is the radius of the
bounded set), we have uniform convergence. As each element fn (z) ≡ zn

n! is continuous, exp (z) is continuous as well (there’s
a more rigorous way to show continuity).

– It may seem crazy but sin (z) ≡ 1
2i [exp (iz)− exp (−iz)]. Due to the continuity of exp and the theorems above we have that

sin is also continuous. One can show that if z ∈ R then sin (z) ∈ R as well and so our initial function is well defined.

– Of course x 7→ x is also continuous.

�

• Of course, f is not defined at 0.

• Here’s a picture of f none the less:

• Claim: limx→0
sin(x)

x = 1.
Proof :

– Claim: We can use the fact that cos (x) ≤ sin(x)
x ≤ 1.

Proof : (proof using trigonometry).

∗ Consider the following radius-1 circle:

∗ Let the angle HOK be denoted by x.
∗ The area of the triangle ∆KOA is equal to sin(x)·1

2 .

∗ The area of the sector KOA is given by x
2π·1π (1)

2
= x

2 .
∗ The area of the triangle ∆LOA is: LA

OA = tan (x) so that LA = tan (x). Then the area is 1
2LA = 1

2 tan (x).
∗ But due to the different areas containing each other we have 1

2 sin (x) ≤
1
2x ≤ 1

2 tan (x).
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∗ Thus 1 ≤ x
sin(x) ≤

1
cos(x) and so cos (x) ≤ sin(x)

x ≤ 1.

– Now use the the fact that if an ≤ bn then lim sup an ≤ lim sup bn and same for lim inf, and the fact that cos (0) = 1 and that
cos is continuous at 0.

�

• As a result it makes sense to define f at 0 to be 1.

• We have just shown that by employing this definition we make sin continuous at 0.

2.3 Concrete Tips for Questions
• Question 2:

– Show uniform convergence of the series of functions fn (z) ≡ 2z
z2−n2 .

– You will not be able to show this for all C\Z. Show it only for some bounded area of C.

– Use the Weierstrass M-test we discussed in the last colloquium with a series built on top of the zeta-function.

– For periodicity use 2z
z2−n2 = 1

z+n + 1
z−n .

• Question 3:

– For (a):

∗ Again the M -test with Mn = sn.

– For (b):

∗ Show that f (an
+)− f (an) = sn = f (an)− f (an

−).

• Question 4:

– Define h (x) = f (x)− f
(
x+ 1

2

)
. See what you get.

• Question 5:

– For part (a):

∗ One direction of the proof is trivial. Which is it?
∗ The other direction:

· Use the fact that a finite union of closed sets is again closed.

• Question 6:

– We have done this in the colloquium on the Cantor set (except for the continuity property, which you can find in the
corresponding exercise in Koenigsberger).
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