Analysis 1
 Recitation Session of Week 8

Jacob Shapiro

November 7, 2014

1 Exercise Sheet Number Six

1.1 Question 1

- Cannot do $\lim \frac{\sqrt{1+a_{n}}-1}{a_{n}} \stackrel{?}{=} \frac{1}{2} \Longleftrightarrow \lim \sqrt{1+a_{n}}-1=\lim \frac{a_{n}}{2}$.

1.2 Question 2

- Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ converge to a.
- Define $s_{n}:=\frac{1}{n} \sum_{j=1}^{n} a_{j}$ for all $n \in \mathbb{N}$.
- Claim: $\left(s_{n}\right)_{n \in \mathbb{N}}$ converges to a.

Proof:

- Let $\varepsilon_{0}>0$ be given.
- $\left(a_{n}\right)_{n \in \mathbb{N}} \rightarrow a$ means that $\forall \varepsilon>0 \exists m(\varepsilon) \in \mathbb{N}$ such that if $n \geq m(\varepsilon)$ then $\left|a-a_{n}\right|<\varepsilon$.
- Then assume that $n \in \mathbb{N}$ is such that $n>m\left(\frac{\varepsilon_{0}}{2}\right)$, for some $\varepsilon>0$. Then,

$$
\begin{aligned}
\left|s_{n}-a\right| & =\left|\frac{1}{n} \sum_{j=1}^{n} a_{n}-a\right| \\
& =|\frac{1}{n} \sum_{j=1}^{n} a_{n}-\underbrace{\frac{1}{n} \sum_{j=1}^{n}}_{1} a| \\
& =\left|\frac{1}{n} \sum_{j=1}^{n}\left(a_{n}-a\right)\right| \\
& =\left|\frac{1}{n} \sum_{j=1}^{m\left(\frac{\varepsilon_{0}}{2}\right)}\left(a_{n}-a\right)+\frac{1}{n} \sum_{j=m\left(\frac{\varepsilon_{0}}{2}\right)+1}^{n}\left(a_{n}-a\right)\right| \\
& \leq \frac{1}{n}\left|\sum_{j=1}^{m\left(\frac{\varepsilon_{0}}{2}\right)}\left(a_{n}-a\right)\right|+\frac{1}{n} \sum_{j=m\left(\frac{\varepsilon_{0}}{2}\right)+1}^{n}\left|\left(a_{n}-a\right)\right| \\
& \leq \frac{1}{n}\left|\sum_{j=1}^{m\left(\frac{\varepsilon_{0}}{2}\right)}\left(a_{n}-a\right)\right|+\frac{1}{n} \sum_{j=m\left(\frac{\varepsilon_{0}}{2}\right)+1}^{n} \frac{\varepsilon_{0}}{2} \\
& =\frac{1}{n}\left|\sum_{j=1}^{m\left(\frac{\varepsilon_{0}}{2}\right)}\left(a_{n}-a\right)\right|+\underbrace{\frac{n-m\left(\frac{\varepsilon_{0}}{2}\right)-1}{n}}_{\leq 1} \frac{\varepsilon_{0}}{2} \\
& \leq \frac{1}{n}\left|\sum_{j=1}^{m\left(\frac{\varepsilon_{0}}{2}\right)}\left(a_{n}-a\right)\right|+\frac{\varepsilon_{0}}{2}
\end{aligned}
$$

- Then, can we pick some $n \in \mathbb{N}$ large enough such that $\frac{1}{n}\left|\sum_{j=1}^{m\left(\frac{\varepsilon_{0}}{2}\right)}\left(a_{n}-a\right)\right|+\frac{\varepsilon_{0}}{2}<\varepsilon_{0}$?
- Sure, define $m_{s}\left(\varepsilon_{0}\right):=1+2 \frac{\left|\sum_{j=1}^{m\left(\frac{\varepsilon_{0}}{1}\right)}\left(a_{n}-a\right)\right|}{\varepsilon_{0}}$. Note that $\left|\sum_{j=1}^{m\left(\frac{\varepsilon_{0}}{2}\right)}\left(a_{n}-a\right)\right|$ is just some finite fixed number.
- Then clearly if $n>m_{s}\left(\varepsilon_{0}\right)$ then $\left|s_{n}-a\right|<\varepsilon_{0}$.
- For part (b) consider $a_{n}=(-1)^{n}$ which diverges.

1.3 Question 3

- Merely Positive or merely monotone sequence is not enough in order for it to converge. Needs to be bounded as well.
- Counter examples:
- $\{1,2,1,2,1,2, \ldots\}$ is always positive but surely diverges.
$-\{1,2,3,4, \ldots\}$ is monotone increasing but diverges.
- If we have a monotone increasing sequence that is bounded above then it will converge.
- If we have a monotone decreasing sequence that is bounded below (for example, always positive) then it will converge.

1.4 Question 4

- Let $p \in \mathbb{P}$ be given. Define $d_{p}: \mathbb{Z}^{2} \rightarrow \mathbb{R}$ by: $d_{p}((m, n)):=\left\{\begin{array}{ll}0 & m=n \\ \min \left(\left\{p^{-k} \in \mathbb{Q}\left|k \in \mathbb{N} \wedge p^{k}\right|(m-n)\right\}\right) & m \neq n\end{array}\right.$. The minimum is taken over the set of all p^{-k} where k ranges over all natural numbers which satisfy $p^{k} \mid(m-n)$.
- Claim: $d_{p}(m, n) \leq d_{p}(m, l)+d_{p}(l, n)$ for all $l \in \mathbb{Z}$.

Proof:

- Case 1: $p=1$.
* When $p=1$, then every $p^{k}=1$ for all k. As a result, $d_{1}(m, n)=1$ for all $m \neq n$.
* Then we have $d_{1}(m, n)=1$ and indeed $1 \leq 1+0$ or $1 \leq 0+1$.
- Case 2: $p>1$.
* Let k_{1} be the largest power of p inside of $m-l: m-l=\alpha p^{k_{1}}$ and $d_{p}(m, l)=p^{-k_{1}}$.
* Let k_{2} be the largest power of p inside of $l-n: l-n=\beta p^{k_{2}}$ and $d_{p}(l, n)=p^{-k_{2}}$.
* Define $k_{0}:=\min \left(k_{1}, k_{2}\right)$.
* Then

$$
\begin{aligned}
m-n & =m-l+l-n \\
& =(m-l)+(l-n) \\
& =\alpha p^{k_{1}}+\beta p^{k_{2}} \\
& =p^{k_{0}}\left(\alpha p^{k_{1}-k_{0}}+\beta p^{k_{2}-k_{0}}\right)
\end{aligned}
$$

* As a result, $p^{k_{0}} \mid(m-n)$ and so $p^{-k_{0}} \geq d_{p}(m, n)$ (by definition of $\left.d_{p}\right)$.
* But becuase $k_{0} \equiv \min \left(k_{1}, k_{2}\right), k_{0}=k_{1}$ or $k_{0}=k_{2}$, and of course $p^{-k_{0}} \leq p^{-k_{0}}+$ something.
* Hence $p^{-k_{0}} \leq p^{-k_{1}}+p^{-k_{2}}$ necessarily.
* Hence our result follows.

1.5 Question 5

- Let (X, d) be a metric space, let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in X and let $x \in X$.
- Part (a): Claim: If $\left(x_{n}\right)_{n \in \mathbb{N}} \rightarrow x$ then $\left(x_{n}\right)_{n \in A} \rightarrow x$ for all $A \subseteq \mathbb{N}$ such that $|A|=|\mathbb{N}|$. Proof:
- Because $\left(x_{n}\right)_{n \in \mathbb{N}} \rightarrow x$, then $\forall \varepsilon>0 \exists m(\varepsilon) \in \mathbb{N}$ such that if $n \in \mathbb{N}$ is such that $n \geq m(\varepsilon)$ then $d\left(x_{n}, x\right)<\varepsilon$.
- To show that $\left(x_{n}\right)_{n \in A} \rightarrow x$, we need to show that $\forall \varepsilon>0 \exists m_{A}(\varepsilon) \in A$ such that if $n \in A$ is such that $n \geq m_{A}(\varepsilon)$ then $d\left(x_{n}, x\right)<\varepsilon$.
- So let $\varepsilon>0$ be given.
- If $m(\varepsilon)$ happens to be such that $m(\varepsilon) \in A$, define $m_{A}(\varepsilon):=m(\varepsilon)$.
- Otherwise, because $|A|=|\mathbb{N}|$, there must be some member of A, a such that $a>m(\varepsilon)$. So define $m_{A}(\varepsilon):=a$.
- Then we are done, because if $n \in A$ such that $n \geq m_{A}(\varepsilon)$, then
* Due to $A \subseteq \mathbb{N}, n \in \mathbb{N}$.
* Due to $m_{A}(\varepsilon) \geq m(\varepsilon), n \geq m(\varepsilon)$.
* Thus due to $\left(x_{n}\right)_{n \in \mathbb{N}} \rightarrow x$ we have that $d\left(x_{n}, x\right)<\varepsilon$.
- Part (b): Claim: If for every $A \subseteq \mathbb{N}$ such that $|A|=|\mathbb{N}|, \exists B \subseteq A$ such that $|B|=|\mathbb{N}|$ such that $\left(x_{n}\right)_{n \in B} \rightarrow x$, then $\left(x_{n}\right)_{n \in \mathbb{N}} \rightarrow x$. Proof:
- Assume the contrary, that is, assume that $\left(x_{n}\right)_{n \in \mathbb{N}}$ does not converge to x.
- That means that $\exists \varepsilon_{0}>0$ such that $\forall m \in \mathbb{N}, \exists n_{0}(m) \in \mathbb{N}$ such that $n_{0}(m)>m$ yet $d\left(x_{n_{0}(m)}, x\right) \geq \varepsilon_{0}$.
- Define a subset $A \subseteq \mathbb{N}$ such that $|A|=|\mathbb{N}|$ by the following rule:
* Define $a_{1}:=n_{0}(1)$.
* Define $a_{2}:=n_{0}(2)$.
* etc.
* Then $A:=\left\{a_{j} \mid j \in \mathbb{N}\right\}$.
- But then we have a contradiction with the fact that any subsequence B of A converges, because we can simply take $B=A$, and clearly, that subsequence $\left(x_{n}\right)_{n \in A}$ does not converge.

1.6 Question 6

- If $\left(a_{n}\right)_{n \in \mathbb{N}} \rightarrow 0$ then it doesn't necessarily mean that $\left(\sum a_{n}\right)$ converges!
- You may not manipualte limits as if they were numbers before you know that they actually converge!

2 Exercise Sheet Number Eight

2.1 Continuity of Complex Functions

- Claim: $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$ defined by $z \stackrel{f}{\mapsto} \frac{z^{2}}{|z|}$ is continuous.

Proof:

- Claim: If $f: X \rightarrow Y$ is continuous and $g: Y \rightarrow Z$ is continuous then so is $g \circ f: X \rightarrow Z$. Proof:
* Let $\varepsilon>0$ be given, and pick some $x_{0} \in X$. Then $f\left(x_{0}\right) \in Y$.
* Because g is continuous (in particular, continuous at $\left.f\left(x_{0}\right)\right), \exists \delta_{Y}\left(\varepsilon, f\left(x_{0}\right)\right)>0$ such that for all $y \in Y$ with $d_{Y}\left(y, f\left(x_{0}\right)\right)<\delta_{Y}\left(\varepsilon, f\left(x_{0}\right)\right)$ we have $d_{Z}\left(g(y), g \circ f\left(x_{0}\right)\right)<\varepsilon$.
* Because f is continuous (in particular, continuous at $\left.x_{0}\right) \exists \delta_{X}\left(\varepsilon, x_{0}\right)>0$ such that for all $x \in X$ with $d_{X}\left(x, x_{0}\right)<$ $\delta_{X}\left(\varepsilon, x_{0}\right)$ we have $d_{Y}\left(f(x), f\left(x_{0}\right)\right)<\varepsilon$.
* Apply continuity of f on the radius $\delta_{Y}\left(\varepsilon, f\left(x_{0}\right)\right)$ at x_{0} : there exists some $\delta_{X}\left(\delta_{Y}\left(\varepsilon, f\left(x_{0}\right)\right), x_{0}\right)>0$ such that:
- If $x \in X$ is such that $d_{X}\left(x, x_{0}\right)<\delta_{X}\left(\delta_{Y}\left(\varepsilon, f\left(x_{0}\right)\right), x_{0}\right)$ then $d_{Y}\left(f(x), f\left(x_{0}\right)\right)<\delta_{Y}\left(\varepsilon, f\left(x_{0}\right)\right)$.
* But $f(x) \in Y$ such that $d_{Y}\left(f(x), f\left(x_{0}\right)\right)<\delta_{Y}\left(\varepsilon, f\left(x_{0}\right)\right)$ implies that $d_{Z}\left(g(f(x)), g \circ f\left(x_{0}\right)\right)<\varepsilon$.
- Claim: Let $g: \mathbb{C} \rightarrow \mathbb{C} \backslash\{0\}$ be continuous. Then the map $h: \mathbb{C} \rightarrow \mathbb{C}$ defined by $q(z):=\frac{1}{g(z)}$ for all $z \in \mathbb{C}$ is continuous. Proof:
* Let $\varepsilon_{0}>0$ be given and take some $z_{0} \in \mathbb{C}$.
* Compute

$$
\begin{aligned}
\left|q\left(z_{0}\right)-q(z)\right| & \equiv\left|\frac{1}{g\left(z_{0}\right)}-\frac{1}{g(z)}\right| \\
& =\left|\frac{g(z)-g\left(z_{0}\right)}{g\left(z_{0}\right) g(z)}\right|
\end{aligned}
$$

* Because g is continuous at $g\left(z_{0}\right)$ then $\forall \varepsilon>0 \exists \delta\left(\varepsilon, z_{0}\right)>0$ such that if $\left|z-z_{0}\right|<\delta\left(\varepsilon, z_{0}\right)$ then $\left|g(z)-g\left(z_{0}\right)\right|<\varepsilon$.
* Using this last inequality we can also infer that $\left|g\left(z_{0}\right)\right|-|g(z)|<\varepsilon$ and so $|g(z)|>\left|g\left(z_{0}\right)\right|-\varepsilon$.
* Assume $\left|g\left(z_{0}\right)\right| \neq \varepsilon$ (otherwise pick ε slightly smaller for the same z_{0}).
* Then we have $\frac{1}{|g(z)|}<\frac{1}{\left|g\left(z_{0}\right)\right|-\varepsilon}$.
* As a result we find that

$$
\left|q\left(z_{0}\right)-q(z)\right| \leq \frac{\varepsilon}{\left|g\left(z_{0}\right)\right|\left[\left|g\left(z_{0}\right)\right|-\varepsilon\right]}
$$

* So take $\delta\left(\frac{\left|g\left(z_{0}\right)\right|^{2} \varepsilon_{0}}{1+\left|g\left(z_{0}\right)\right| \varepsilon_{0}}, z_{0}\right)$.
* Then

$$
\begin{aligned}
\left|q\left(z_{0}\right)-q(z)\right| & \leq \frac{\frac{\left|g\left(z_{0}\right)\right|^{2} \varepsilon_{0}}{1+\left|g\left(z_{0}\right)\right| \varepsilon_{0}}}{\left|g\left(z_{0}\right)\right|\left[\left|g\left(z_{0}\right)\right|-\frac{\left|g\left(z_{0}\right)\right|^{2} \varepsilon_{0}}{1+\left|g\left(z_{0}\right)\right| \varepsilon_{0}}\right]} \\
& =\frac{\frac{\left|g\left(z_{0}\right)\right|^{2} \varepsilon_{0}}{1+\left|g\left(z_{0}\right)\right| \varepsilon_{0}}}{\left|g\left(z_{0}\right)\right|^{2}} \\
& =\varepsilon_{0}^{1 g\left(z_{0}\right) \mid \varepsilon_{0}}
\end{aligned}
$$

- Claim: If $f: \mathbb{C} \rightarrow \mathbb{C}$ and $g: \mathbb{C} \rightarrow \mathbb{C}$ are continuous then $h: \mathbb{C} \rightarrow \mathbb{C}$ defined as $h(z):=f(z) g(z)$ for all $z \in \mathbb{C}$ is continuous. Proof:
* Let $\varepsilon_{0}>0$ be given and let $z_{0} \in \mathbb{C}$ be given.
* f is continuous so $\exists \delta_{f}\left(\varepsilon, z_{0}\right)>0$ such that $\left|z-z_{0}\right|<\delta_{f}\left(\varepsilon, z_{0}\right)$ leads to $\left|f-f\left(z_{0}\right)\right|<\varepsilon$.
* Same for g, denoted by $\delta_{g}\left(\varepsilon, z_{0}\right)$.
* Then

$$
\begin{aligned}
\left|h(z)-h\left(z_{0}\right)\right| & =\left|f(z) g(z)-f\left(z_{0}\right) g\left(z_{0}\right)\right| \\
& =\left|f(z) g(z)-g\left(z_{0}\right) f\left(z_{0}\right)+g\left(z_{0}\right) f\left(z_{0}\right)-f\left(z_{0}\right) g\left(z_{0}\right)\right| \\
& =\left|f(z)\left[g(z)-g\left(z_{0}\right)\right]+g\left(z_{0}\right)\left[f(z)-f\left(z_{0}\right)\right]\right| \\
& \leq|f(z)|\left|g(z)-g\left(z_{0}\right)\right|+\left|g\left(z_{0}\right)\right|\left|f(z)-f\left(z_{0}\right)\right|
\end{aligned}
$$

* Using the fact that f is continuous, we have $|f(z)|<\varepsilon+\left|f\left(z_{0}\right)\right|$ so some suitable selection of z.
* As a result we find that

$$
\begin{aligned}
\left|h(z)-h\left(z_{0}\right)\right| & \leq\left[\varepsilon+\left|f\left(z_{0}\right)\right|\right]\left|g(z)-g\left(z_{0}\right)\right|+\left|g\left(z_{0}\right)\right|\left|f(z)-f\left(z_{0}\right)\right| \\
& \leq\left[\varepsilon+\left|f\left(z_{0}\right)\right|\right] \varepsilon+\left|g\left(z_{0}\right)\right| \varepsilon \\
& =\varepsilon^{2}+\left[\left|f\left(z_{0}\right)+g\left(z_{0}\right)\right|\right] \varepsilon
\end{aligned}
$$

* So take

$$
\delta\left(\varepsilon_{0}, z_{0}\right):=\min \left(\left\{\begin{array}{c}
\delta_{f}\left(\frac{1}{2}\left(-\left[\left|f\left(z_{0}\right)\right|+\left|g\left(z_{0}\right)\right|\right]+\sqrt{\left[\left|f\left(z_{0}\right)\right|+\left|g\left(z_{0}\right)\right|\right]^{2}+4 \varepsilon_{0}}\right), z_{0}\right), \\
\delta_{g}\left(\frac{1}{2}\left(-\left[\left|f\left(z_{0}\right)\right|+\left|g\left(z_{0}\right)\right|\right]+\sqrt{\left[\left|f\left(z_{0}\right)\right|+\left|g\left(z_{0}\right)\right|\right]^{2}+4 \varepsilon_{0}}\right), z_{0}, z_{0}\right)
\end{array}\right\}\right)
$$

* Then we have $\left|h(z)-h\left(z_{0}\right)\right| \leq \varepsilon_{0}$.
- Then clearly $z \mapsto z^{2}$ which is just the multiplication of two identity maps is continuous.
- Claim: $\|: \mathbb{C} \rightarrow \mathbb{R}$ defined by $z \mapsto|z|$ is continuous.

Proof:

* Let $\varepsilon>0$ be given and let $z_{0} \in \mathbb{C}$ be given.
* Then we need

$$
\| z\left|-\left|z_{0}\right|\right| \leq\left|z-z_{0}\right|
$$

* So take $\delta\left(\varepsilon, z_{0}\right):=\varepsilon$.
* Then if $\left|z-z_{0}\right|<\delta\left(\varepsilon, z_{0}\right)$ then $\left||z|-\left|z_{0}\right|\right|<\varepsilon$ and we're done.
- Putting everything together, we have the following maps:
* $f_{1}: \mathbb{C} \rightarrow \mathbb{C}$ defined by $z \mapsto z^{2}$. This map is continuous.
* $f_{2}: \mathbb{C} \rightarrow \mathbb{C}$ defined by $z \mapsto|z|$. This map is continuous.
* $f_{3}: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$ defined by $z \mapsto \frac{1}{z}$. This map is continuous.
* Then $f=f_{1} \cdot\left(f_{3} \circ f_{2}\right)$. Since all the operations were proven to be continuous we have proven that our map is continuous.

2.2 Continuos Extensions

- Claim: $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$ defined by $x \stackrel{f}{\mapsto} \frac{\sin (x)}{x}$ is continuous. Proof:
- Even though the trigonometric functions have not officially been defined yet, we can think of them as being defined as a power series.
- For example, define $\exp : \mathbb{C} \rightarrow \mathbb{C}$ as:

$$
\exp (z) \equiv \sum_{n=0}^{\infty} \frac{z^{n}}{n!}
$$

Using the ratio test, we have that

$$
\left|\frac{\left[\frac{z^{n+1}}{(n+1)!}\right.}{\left(\frac{z^{n}}{n!}\right)}\right|=\left|\frac{z}{n+1}\right|
$$

and so $\lim \sup _{n \rightarrow \infty}\left|\frac{\left[\frac{z^{n+1}}{(n+1)}\right]}{\left(\frac{z n}{n!}\right)}\right|=\lim \sup _{n \rightarrow \infty}\left|\frac{z}{n+1}\right|=|z| \cdot 0<1$.

- As a result, $\exp (z)$ converges and so is well-defined.
- It is continuous on any bounded subset of \mathbb{C} because using the Weierstrass M-test with $\frac{R^{n}}{n!}$ (where R is the radius of the bounded set), we have uniform convergence. As each element $f_{n}(z) \equiv \frac{z^{n}}{n!}$ is continuous, $\exp (z)$ is continuous as well (there's a more rigorous way to show continuity).
- It may seem crazy but $\sin (z) \equiv \frac{1}{2 i}[\exp (i z)-\exp (-i z)]$. Due to the continuity of \exp and the theorems above we have that \sin is also continuous. One can show that if $z \in \mathbb{R}$ then $\sin (z) \in \mathbb{R}$ as well and so our initial function is well defined.
- Of course $x \mapsto x$ is also continuous.
- Of course, f is not defined at 0 .
- Here's a picture of f none the less:

- Claim: $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$.

Proof:

- Claim: We can use the fact that $\cos (x) \leq \frac{\sin (x)}{x} \leq 1$.

Proof: (proof using trigonometry).

* Consider the following radius-1 circle:

* Let the angle $H O K$ be denoted by x.
* The area of the triangle $\triangle K O A$ is equal to $\frac{\sin (x) \cdot 1}{2}$.
* The area of the sector $K O A$ is given by $\frac{x}{2 \pi \cdot 1} \pi(1)^{2}=\frac{x}{2}$.
* The area of the triangle $\triangle L O A$ is: $\frac{L A}{O A}=\tan (x)$ so that $L A=\tan (x)$. Then the area is $\frac{1}{2} L A=\frac{1}{2} \tan (x)$.
* But due to the different areas containing each other we have $\frac{1}{2} \sin (x) \leq \frac{1}{2} x \leq \frac{1}{2} \tan (x)$.
* Thus $1 \leq \frac{x}{\sin (x)} \leq \frac{1}{\cos (x)}$ and so $\cos (x) \leq \frac{\sin (x)}{x} \leq 1$.
- Now use the the fact that if $a_{n} \leq b_{n}$ then $\lim \sup a_{n} \leq \lim \sup b_{n}$ and same for $\lim \inf$, and the fact that $\cos (0)=1$ and that cos is continuous at 0 .
- As a result it makes sense to define f at 0 to be 1 .
- We have just shown that by employing this definition we make sin continuous at 0 .

2.3 Concrete Tips for Questions

- Question 2:
- Show uniform convergence of the series of functions $f_{n}(z) \equiv \frac{2 z}{z^{2}-n^{2}}$.
- You will not be able to show this for all $\mathbb{C} \backslash \mathbb{Z}$. Show it only for some bounded area of \mathbb{C}.
- Use the Weierstrass M-test we discussed in the last colloquium with a series built on top of the zeta-function.
- For periodicity use $\frac{2 z}{z^{2}-n^{2}}=\frac{1}{z+n}+\frac{1}{z-n}$.
- Question 3:
- For (a):
* Again the M-test with $M_{n}=s_{n}$.
- For (b):
* Show that $f\left(a_{n}{ }^{+}\right)-f\left(a_{n}\right)=s_{n}=f\left(a_{n}\right)-f\left(a_{n}{ }^{-}\right)$.
- Question 4:
- Define $h(x)=f(x)-f\left(x+\frac{1}{2}\right)$. See what you get.
- Question 5:
- For part (a):
* One direction of the proof is trivial. Which is it?
* The other direction:
- Use the fact that a finite union of closed sets is again closed.
- Question 6:
- We have done this in the colloquium on the Cantor set (except for the continuity property, which you can find in the corresponding exercise in Koenigsberger).

