Analysis 1 Recitation Session of Week 8

Jacob Shapiro

November 7, 2014

1 Exercise Sheet Number Six

1.1 Question 1

• Cannot do $\lim \frac{\sqrt{1+a_n}-1}{a_n} \stackrel{?}{=} \frac{1}{2} \iff \lim \sqrt{1+a_n}-1 = \lim \frac{a_n}{2}.$

1.2 Question 2

- Let $(a_n)_{n \in \mathbb{N}}$ converge to a.
- Define $s_n := \frac{1}{n} \sum_{j=1}^n a_j$ for all $n \in \mathbb{N}$.
- Claim: (s_n)_{n∈ℕ} converges to a.
 Proof:
 - Let $\varepsilon_0 > 0$ be given.
 - $\ (a_{n})_{n \in \mathbb{N}} \to a \text{ means that } \forall \varepsilon > 0 \exists m \left(\varepsilon \right) \in \mathbb{N} \text{ such that if } n \geq m \left(\varepsilon \right) \text{ then } |a a_{n}| < \varepsilon \text{ .}$
 - Then assume that $n \in \mathbb{N}$ is such that $n > m\left(\frac{\varepsilon_0}{2}\right)$, for some $\varepsilon > 0$. Then,

 $|s_n|$

$$\begin{aligned} -a| &= \left| \frac{1}{n} \sum_{j=1}^{n} a_{n} - a \right| \\ &= \left| \frac{1}{n} \sum_{j=1}^{n} a_{n} - \frac{1}{n} \sum_{j=1}^{n} a \right| \\ &= \left| \frac{1}{n} \sum_{j=1}^{n} (a_{n} - a) \right| \\ &= \left| \frac{1}{n} \sum_{j=1}^{n} (a_{n} - a) \right| \\ &= \left| \frac{1}{n} \sum_{j=1}^{n} (a_{n} - a) + \frac{1}{n} \sum_{j=m(\frac{\varepsilon_{0}}{2})+1}^{n} (a_{n} - a) \right| \\ &\leq \frac{1}{n} \left| \sum_{j=1}^{m(\frac{\varepsilon_{0}}{2})} (a_{n} - a) \right| + \frac{1}{n} \sum_{j=m(\frac{\varepsilon_{0}}{2})+1}^{n} |(a_{n} - a)| \\ &\leq \frac{1}{n} \left| \sum_{j=1}^{m(\frac{\varepsilon_{0}}{2})} (a_{n} - a) \right| + \frac{1}{n} \sum_{j=m(\frac{\varepsilon_{0}}{2})+1}^{n} \frac{\varepsilon_{0}}{2} \\ &= \frac{1}{n} \left| \sum_{j=1}^{m(\frac{\varepsilon_{0}}{2})} (a_{n} - a) \right| + \frac{n - m(\frac{\varepsilon_{0}}{2}) - 1}{\frac{\varepsilon_{0}}{2}} \\ &\leq \frac{1}{n} \left| \sum_{j=1}^{m(\frac{\varepsilon_{0}}{2})} (a_{n} - a) \right| + \frac{\varepsilon_{0}}{2} \end{aligned}$$

- Then, can we pick some $n \in \mathbb{N}$ large enough such that $\frac{1}{n} \left| \sum_{j=1}^{m\left(\frac{\varepsilon_0}{2}\right)} (a_n - a) \right| + \frac{\varepsilon_0}{2} < \varepsilon_0$?

- Sure, define $m_s(\varepsilon_0) := 1 + 2 \frac{\left|\sum_{j=1}^{m\left(\frac{\varepsilon_0}{2}\right)}(a_n-a)\right|}{\varepsilon_0}$. Note that $\left|\sum_{j=1}^{m\left(\frac{\varepsilon_0}{2}\right)}(a_n-a)\right|$ is just some finite fixed number.

- Then clearly if $n > m_s(\varepsilon_0)$ then $|s_n - a| < \varepsilon_0$.

• For part (b) consider $a_n = (-1)^n$ which diverges.

1.3 Question 3

- Merely Positive or merely monotone sequence is not enough in order for it to converge. Needs to be bounded as well.
- Counter examples:
 - { 1, 2, 1, 2, 1, 2, ... } is always positive but surely diverges.
 - { 1, 2, 3, 4, ... } is monotone increasing but diverges.
- If we have a monotone increasing sequence that is bounded above then it will converge.
- If we have a monotone decreasing sequence that is bounded below (for example, always positive) then it will converge.

1.4 Question 4

- Let $p \in \mathbb{P}$ be given. Define $d_p : \mathbb{Z}^2 \to \mathbb{R}$ by: $d_p((m, n)) := \begin{cases} 0 & m = n \\ \min\left(\left\{ p^{-k} \in \mathbb{Q} \mid k \in \mathbb{N} \land p^k \mid (m n) \right\}\right) & m \neq n \end{cases}$. The minimum is taken over the set of all p^{-k} where k ranges over all natural numbers which satisfy $p^k \mid (m n)$.
- Claim: $d_p(m, n) \le d_p(m, l) + d_p(l, n)$ for all $l \in \mathbb{Z}$. Proof:
 - Case 1: p = 1.
 - * When p = 1, then every $p^k = 1$ for all k. As a result, $d_1(m, n) = 1$ for all $m \neq n$.
 - * Then we have $d_1(m, n) = 1$ and indeed $1 \le 1 + 0$ or $1 \le 0 + 1$.
 - Case 2: p > 1.
 - * Let k_1 be the largest power of p inside of m-l: $m-l=\alpha p^{k_1}$ and $d_p(m,l)=p^{-k_1}$.
 - * Let k_2 be the largest power of p inside of l n: $l n = \beta p^{k_2}$ and $d_p(l, n) = p^{-k_2}$.
 - * Define $k_0 := \min(k_1, k_2)$.
 - * Then

$$m-n = m-l+l-n = (m-l) + (l-n) = \alpha p^{k_1} + \beta p^{k_2} = p^{k_0} \left(\alpha p^{k_1-k_0} + \beta p^{k_2-k_0} \right)$$

- * As a result, $p^{k_0}|(m-n)$ and so $p^{-k_0} \ge d_p(m, n)$ (by definition of d_p).
- * But because $k_0 \equiv \min(k_1, k_2)$, $k_0 = k_1$ or $k_0 = k_2$, and of course $p^{-k_0} \leq p^{-k_0}$ + something.
- * Hence $p^{-k_0} \leq p^{-k_1} + p^{-k_2}$ necessarily.
- $\ast\,$ Hence our result follows.

1.5 Question 5

- Let (X, d) be a metric space, let $(x_n)_{n \in \mathbb{N}}$ be a sequence in X and let $x \in X$.
- Part (a): Claim: If $(x_n)_{n \in \mathbb{N}} \to x$ then $(x_n)_{n \in A} \to x$ for all $A \subseteq \mathbb{N}$ such that $|A| = |\mathbb{N}|$. Proof:
 - Because $(x_n)_{n \in \mathbb{N}} \to x$, then $\forall \varepsilon > 0 \exists m(\varepsilon) \in \mathbb{N}$ such that if $n \in \mathbb{N}$ is such that $n \ge m(\varepsilon)$ then $d(x_n, x) < \varepsilon$.
 - To show that $(x_n)_{n \in A} \to x$, we need to show that $\forall \varepsilon > 0 \exists m_A(\varepsilon) \in A$ such that if $n \in A$ is such that $n \ge m_A(\varepsilon)$ then $d(x_n, x) < \varepsilon$.
 - So let $\varepsilon > 0$ be given.
 - If $m(\varepsilon)$ happens to be such that $m(\varepsilon) \in A$, define $m_A(\varepsilon) := m(\varepsilon)$.

- Otherwise, because $|A| = |\mathbb{N}|$, there must be some member of A, a such that $a > m(\varepsilon)$. So define $m_A(\varepsilon) := a$.
- Then we are done, because if $n \in A$ such that $n \ge m_A(\varepsilon)$, then
 - * Due to $A \subseteq \mathbb{N}, n \in \mathbb{N}$.
 - * Due to $m_A(\varepsilon) \ge m(\varepsilon), n \ge m(\varepsilon)$.
 - * Thus due to $(x_n)_{n \in \mathbb{N}} \to x$ we have that $d(x_n, x) < \varepsilon$.
- Part (b): Claim: If for every $A \subseteq \mathbb{N}$ such that $|A| = |\mathbb{N}|, \exists B \subseteq A$ such that $|B| = |\mathbb{N}|$ such that $(x_n)_{n \in \mathbb{B}} \to x$, then $(x_n)_{n \in \mathbb{N}} \to x$. Proof:
 - Assume the contrary, that is, assume that $(x_n)_{n \in \mathbb{N}}$ does not converge to x.
 - That means that $\exists \varepsilon_0 > 0$ such that $\forall m \in \mathbb{N}, \exists n_0(m) \in \mathbb{N}$ such that $n_0(m) > m$ yet $d(x_{n_0(m)}, x) \ge \varepsilon_0$.
 - Define a subset $A \subseteq \mathbb{N}$ such that $|A| = |\mathbb{N}|$ by the following rule:
 - * Define $a_1 := n_0(1)$.
 - * Define $a_2 := n_0(2)$.
 - * etc.
 - * Then $A := \{ a_j \mid j \in \mathbb{N} \}.$
 - But then we have a contradiction with the fact that any subsequence B of A converges, because we can simply take B = A, and clearly, that subsequence $(x_n)_{n \in A}$ does not converge.

1.6 Question 6

- If $(a_n)_{n \in \mathbb{N}} \to 0$ then it doesn't necessarily mean that $(\sum a_n)$ converges!
- You may not manipualte limits as if they were numbers before you know that they actually converge!

2 Exercise Sheet Number Eight

2.1 Continuity of Complex Functions

- Claim: $f : \mathbb{C} \setminus \{0\} \to \mathbb{C}$ defined by $z \stackrel{f}{\mapsto} \frac{z^2}{|z|}$ is continuous. Proof:
 - Claim: If $f: X \to Y$ is continuous and $g: Y \to Z$ is continuous then so is $g \circ f: X \to Z$. *Proof*:
 - * Let $\varepsilon > 0$ be given, and pick some $x_0 \in X$. Then $f(x_0) \in Y$.
 - * Because g is continuous (in particular, continuous at $f(x_0)$), $\exists \delta_Y(\varepsilon, f(x_0)) > 0$ such that for all $y \in Y$ with $d_Y(y, f(x_0)) < \delta_Y(\varepsilon, f(x_0))$ we have $d_Z(g(y), g \circ f(x_0)) < \varepsilon$.
 - * Because f is continuous (in particular, continuous at x_0) $\exists \delta_X(\varepsilon, x_0) > 0$ such that for all $x \in X$ with $d_X(x, x_0) < \delta_X(\varepsilon, x_0)$ we have $d_Y(f(x), f(x_0)) < \varepsilon$.
 - * Apply continuity of f on the radius $\delta_Y(\varepsilon, f(x_0))$ at x_0 : there exists some $\delta_X(\delta_Y(\varepsilon, f(x_0)), x_0) > 0$ such that: \cdot If $x \in X$ is such that $d_X(x, x_0) < \delta_X(\delta_Y(\varepsilon, f(x_0)), x_0)$ then $d_Y(f(x), f(x_0)) < \delta_Y(\varepsilon, f(x_0))$.
 - * But $f(x) \in Y$ such that $d_Y(f(x), f(x_0)) < \delta_Y(\varepsilon, f(x_0))$ implies that $d_Z(g(f(x)), g \circ f(x_0)) < \varepsilon$.

- Claim: Let $g : \mathbb{C} \to \mathbb{C} \setminus \{0\}$ be continuous. Then the map $h : \mathbb{C} \to \mathbb{C}$ defined by $q(z) := \frac{1}{g(z)}$ for all $z \in \mathbb{C}$ is continuous. Proof:
 - * Let $\varepsilon_0 > 0$ be given and take some $z_0 \in \mathbb{C}$.
 - * Compute

$$|q(z_0) - q(z)| \equiv \left| \frac{1}{g(z_0)} - \frac{1}{g(z)} \right|$$
$$= \left| \frac{g(z) - g(z_0)}{g(z_0)g(z)} \right|$$

- * Because g is continuous at $g(z_0)$ then $\forall \varepsilon > 0 \ \exists \delta(\varepsilon, z_0) > 0$ such that if $|z z_0| < \delta(\varepsilon, z_0)$ then $|g(z) g(z_0)| < \varepsilon$.
- * Using this last inequality we can also infer that $|g(z_0)| |g(z)| < \varepsilon$ and so $|g(z)| > |g(z_0)| \varepsilon$.
- * Assume $|g(z_0)| \neq \varepsilon$ (otherwise pick ε slightly smaller for the same z_0).
- * Then we have $\frac{1}{|g(z)|} < \frac{1}{|g(z_0)|-\varepsilon}$.

* As a result we find that

$$|q(z_0) - q(z)| \leq \frac{\varepsilon}{|g(z_0)|[|g(z_0)| - \varepsilon]}$$

- * So take $\delta\left(\frac{|g(z_0)|^2\varepsilon_0}{1+|g(z_0)|\varepsilon_0}, z_0\right)$.
- * Then

$$\begin{aligned} |q(z_0) - q(z)| &\leq \frac{\frac{|g(z_0)|^2 \varepsilon_0}{1 + |g(z_0)| \varepsilon_0}}{|g(z_0)| \left[|g(z_0)| - \frac{|g(z_0)|^2 \varepsilon_0}{1 + |g(z_0)| \varepsilon_0} \right]} \\ &= \frac{\frac{|g(z_0)|^2 \varepsilon_0}{1 + |g(z_0)| \varepsilon_0}}{\frac{|g(z_0)|^2}{1 + |g(z_0)| \varepsilon_0}} \\ &= \varepsilon_0 \end{aligned}$$

- Claim: If $f : \mathbb{C} \to \mathbb{C}$ and $g : \mathbb{C} \to \mathbb{C}$ are continuous then $h : \mathbb{C} \to \mathbb{C}$ defined as h(z) := f(z)g(z) for all $z \in \mathbb{C}$ is continuous. Proof:

- * Let $\varepsilon_0 > 0$ be given and let $z_0 \in \mathbb{C}$ be given.
- * f is continuous so $\exists \delta_f(\varepsilon, z_0) > 0$ such that $|z z_0| < \delta_f(\varepsilon, z_0)$ leads to $|f f(z_0)| < \varepsilon$.
- * Same for g, denoted by $\delta_g(\varepsilon, z_0)$.
- * Then

$$\begin{aligned} |h(z) - h(z_0)| &= |f(z)g(z) - f(z_0)g(z_0)| \\ &= |f(z)g(z) - g(z_0)f(z_0) + g(z_0)f(z_0) - f(z_0)g(z_0)| \\ &= |f(z)[g(z) - g(z_0)] + g(z_0)[f(z) - f(z_0)]| \\ &\leq |f(z)||g(z) - g(z_0)| + |g(z_0)||f(z) - f(z_0)| \end{aligned}$$

- * Using the fact that f is continuous, we have $|f(z)| < \varepsilon + |f(z_0)|$ so some suitable selection of z.
- * As a result we find that

$$\begin{aligned} |h(z) - h(z_0)| &\leq [\varepsilon + |f(z_0)|] |g(z) - g(z_0)| + |g(z_0)| |f(z) - f(z_0)| \\ &\leq [\varepsilon + |f(z_0)|] \varepsilon + |g(z_0)| \varepsilon \\ &= \varepsilon^2 + [|f(z_0) + g(z_0)|] \varepsilon \end{aligned}$$

* So take

$$\delta(\varepsilon_{0}, z_{0}) := \min\left(\left\{ \begin{array}{l} \delta_{f}\left(\frac{1}{2}\left(-\left[|f(z_{0})| + |g(z_{0})|\right] + \sqrt{\left[|f(z_{0})| + |g(z_{0})|\right]^{2} + 4\varepsilon_{0}}\right), z_{0}\right), \\ \delta_{g}\left(\frac{1}{2}\left(-\left[|f(z_{0})| + |g(z_{0})|\right] + \sqrt{\left[|f(z_{0})| + |g(z_{0})|\right]^{2} + 4\varepsilon_{0}}\right), z_{0}, z_{0}, z_{0}\right) \right\}\right)$$

* Then we have $|h(z) - h(z_0)| \le \varepsilon_0$.

- Then clearly $z \mapsto z^2$ which is just the multiplication of two identity maps is continuous.

- Claim: $||: \mathbb{C} \to \mathbb{R}$ defined by $z \mapsto |z|$ is continuous. *Proof*:
 - * Let $\varepsilon > 0$ be given and let $z_0 \in \mathbb{C}$ be given.
 - * Then we need

$$||z| - |z_0|| \leq |z - z_0|$$

- * So take $\delta(\varepsilon, z_0) := \varepsilon$.
- * Then if $|z z_0| < \delta(\varepsilon, z_0)$ then $||z| |z_0|| < \varepsilon$ and we're done.

- Putting everything together, we have the following maps:

- * $f_1: \mathbb{C} \to \mathbb{C}$ defined by $z \mapsto z^2$. This map is continuous.
- * $f_2 : \mathbb{C} \to \mathbb{C}$ defined by $z \mapsto |z|$. This map is continuous.
- * $f_3: \mathbb{C} \setminus \{0\} \to \mathbb{C}$ defined by $z \mapsto \frac{1}{z}$. This map is continuous.
- * Then $f = f_1 \cdot (f_3 \circ f_2)$. Since all the operations were proven to be continuous we have proven that our map is continuous.

2.2 Continuos Extensions

- Claim: $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ defined by $x \stackrel{f}{\mapsto} \frac{\sin(x)}{x}$ is continuous. Proof:
 - Even though the trigonometric functions have not officially been defined yet, we can think of them as being defined as a
 power series.
 - For example, define $\exp : \mathbb{C} \to \mathbb{C}$ as:

$$\exp(z) \equiv \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

Using the ratio test, we have that

$$\left|\frac{\left[\frac{z^{n+1}}{(n+1)!}\right]}{\left(\frac{z^n}{n!}\right)}\right| = \left|\frac{z}{n+1}\right|$$

and so $\limsup_{n\to\infty}\left|\frac{\left\lfloor\frac{[z^{n+1}]}{(n+1)!}\right\rfloor}{[\frac{z^n}{n!}]}\right|=\limsup_{n\to\infty}\left|\frac{z}{n+1}\right|=|z|\cdot 0<1.$

- As a result, $\exp(z)$ converges and so is well-defined.
- It is continuous on any bounded subset of \mathbb{C} because using the Weierstrass *M*-test with $\frac{R^n}{n!}$ (where *R* is the radius of the bounded set), we have uniform convergence. As each element $f_n(z) \equiv \frac{z^n}{n!}$ is continuous, $\exp(z)$ is continuous as well (there's a more rigorous way to show continuity).
- It may seem crazy but $\sin(z) \equiv \frac{1}{2i} [\exp(iz) \exp(-iz)]$. Due to the continuity of exp and the theorems above we have that sin is also continuous. One can show that if $z \in \mathbb{R}$ then $\sin(z) \in \mathbb{R}$ as well and so our initial function is well defined.
- Of course $x \mapsto x$ is also continuous.

- Of course, f is not defined at 0.
- Here's a picture of f none the less:

- Claim: $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$. Proof:
 - Claim: We can use the fact that $\cos(x) \le \frac{\sin(x)}{x} \le 1$. Proof: (proof using trigonometry).
 - * Consider the following radius-1 circle:

- * Let the angle HOK be denoted by x.
- * The area of the triangle ΔKOA is equal to $\frac{\sin(x)\cdot 1}{2}$.
- * The area of the sector KOA is given by $\frac{x}{2\pi \cdot 1}\pi (1)^2 = \frac{x}{2}$.
- * The area of the triangle ΔLOA is: $\frac{LA}{OA} = \tan(x)$ so that $LA = \tan(x)$. Then the area is $\frac{1}{2}LA = \frac{1}{2}\tan(x)$.
- * But due to the different areas containing each other we have $\frac{1}{2}\sin(x) \le \frac{1}{2}x \le \frac{1}{2}\tan(x)$.

* Thus $1 \le \frac{x}{\sin(x)} \le \frac{1}{\cos(x)}$ and so $\cos(x) \le \frac{\sin(x)}{x} \le 1$.

- Now use the fact that if $a_n \leq b_n$ then $\limsup a_n \leq \limsup b_n$ and same for \liminf , and the fact that $\cos(0) = 1$ and that \cos is continuous at 0.

- As a result it makes sense to define f at 0 to be 1.
- We have just shown that by employing this definition we make sin continuous at 0.

2.3 Concrete Tips for Questions

- Question 2:
 - Show uniform convergence of the series of functions $f_n(z) \equiv \frac{2z}{z^2 n^2}$.
 - You will not be able to show this for all $\mathbb{C}\setminus\mathbb{Z}$. Show it only for some bounded area of \mathbb{C} .
 - Use the Weierstrass M-test we discussed in the last colloquium with a series built on top of the zeta-function.

- For periodicity use
$$\frac{2z}{z^2 - n^2} = \frac{1}{z + n} + \frac{1}{z - n}$$

- Question 3:
 - For (a):
 - * Again the *M*-test with $M_n = s_n$.
 - For (b):
 - * Show that $f(a_n^+) f(a_n) = s_n = f(a_n) f(a_n^-)$.
- Question 4:
 - Define $h(x) = f(x) f\left(x + \frac{1}{2}\right)$. See what you get.
- Question 5:
 - For part (a):
 - * One direction of the proof is trivial. Which is it?
 - * The other direction:
 - $\cdot\,$ Use the fact that a finite union of closed sets is again closed.
- Question 6:
 - We have done this in the colloquium on the Cantor set (except for the continuity property, which you can find in the corresponding exercise in Koenigsberger).