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Abstract

The topic for next week’s colloquium is “space filling curves”. The basis for this would be chapter 44 in James Munkres Topology
(2nd edition) pages 272-275.

1 Exercise Sheet Number 5

1.1 General Remarks
• Many people didn’t try the second part of question 1: Just beause I say something is hard doesn’t mean you shouldn’t try it!

• Define the cross product via levi-civita tensor and thus make life easier: (x× y)i ≡
∑3

j=1

∑3
k=1 εijkxjyk will give you all the

properties you want.

• Do not need to plug in z = x+ iy whenever you see a complex number! (especially for question 3).

• Always think about the “weird” cases, for example, when checking homogeneity, what about λ ∈ C? If you don’t care about
“weird” cases and you think this is just being fussy, then you’re in the wrong field of study! (question 3)

• Do not hand in solutions without proofs.

• Can only use the algebraic laws of limits IF constituent limits exist! Algebraic laws of limits do not include roots. For that you
need to show that the root function is continuous. Cannot do ∞−∞ = 0!

• A very useful too to prove convergence is an ≤ bn. Use it!

1.2 Question 1 (The Jordan von Neumann Theorem)

• Remember that inner product is not necessarily real! That means in the most general case you can only assume that 〈u, v〉 = 〈v, u〉
and not 〈u, v〉 = 〈v, u〉 (which holds only if the inner product is real).

– Linearity also follows then only in the first argument: 〈αu+ βv, ω〉 = α 〈u, w〉+β 〈v, w〉 for all (α, β, u, v, w) ∈ F2×Vset
3.

And for the second argument you have conjugate-linearity: 〈u, αv + βw〉 = α 〈u, v〉+ b 〈u, w〉.

• Need to define the inner product induced by the norm differently then for the complex case!

– 〈u, v〉 := 1
4‖u+ v‖2 − 1

4‖u− v‖2 only gives you a real inner product. There is a more general way to get a complex inner
product: 〈u, v〉 = 1

4

∑3
n=0 i

n‖u+ inv‖n. We will, however, ignore this for the sake of this exercise to simplify things a bit.

1.2.1 How the Heck to Show Additivity??

• Show 〈nu, v〉 = n 〈u, v〉 for all n ∈ N using induction.

• Show 〈nu, v〉 = n 〈u, v〉 for all n ∈ −N using:

– 0 = 〈0u, v〉 = 〈(n− n) u, v〉 = 〈nu, v〉+

〈
(−n)︸ ︷︷ ︸

positive

u, v

〉
= 〈nu, v〉+ (−n) 〈u, v〉 and so 〈nu, v〉 = n 〈u, v〉 for all n ∈ −N.

• Show 〈ru, v〉 = r 〈u, v〉 for all r ∈ Q by writing r = p
q where p ∈ Z and q ∈ N\ {0}. Then q 〈ru, v〉 = q

〈
p
qu, v

〉
= 〈pu, v〉 = p 〈u, v〉

and so 〈ru, v〉 = r 〈u, v〉.

• Show the Cauchy-Schwarz inequality holds still before we proved that 〈·, ·〉 is an inner product (usually the proof hinges on
additivity): |〈u, v〉| ≤ ‖u‖‖v‖.
Proof:
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– If 〈u, v〉 = 0 the theorem holds trivially and we are done. Otherwise, we may freely assume that u 6= 0 and v 6= 0.

– Let r ∈ Q be given.

– Then

0 ≤ ‖ru− v‖2

= 〈ru− v, ru− v〉
= 〈ru, ru− v〉 − 〈v, ru− v〉
= r 〈u, ru− v〉 − 〈v, ru− v〉
= r〈ru− v, u〉 − 〈ru− v, v〉
= r〈ru, u〉 − 〈v, u〉 − 〈ru, v〉 − 〈v, v〉
= rr 〈u, u〉 − r〈v, u〉 − r 〈u, v〉+ 〈v, v〉
= |r|2 ‖u‖2 − r 〈u, v〉 − r〈u, v〉+ ‖v‖2

= |r|2 ‖u‖2 − 2< (r 〈u, v〉) + ‖v‖2

for any r ∈ Q.

– Because for the scope of this discussion we have constructed a real inner product, we can safely write

0 ≤ r2‖u‖2 − 2r 〈u, v〉+ ‖v‖2

for any r ∈ Q.

– So take a sequence of rationals rn which converges to 〈u, v〉
‖v‖2 .

– Then we have

0 ≤

(
〈u, v〉
‖u‖2

)2

‖u‖2 − 2

(
〈u, v〉
‖u‖2

)
〈u, v〉+ ‖v‖2

0 ≤ |〈u, v〉|2 − 2 |〈u, v〉|2 + ‖v‖2‖u‖2

from which our result follows.

• Now finally show 〈αu, v〉 = α 〈u, v〉 for all α ∈ R by:

– Let (an)n∈N be a sequence of rational numbers converging to α (we can always find something like that, for instance, take
the decimal expansion of α and always truncate after a finite number of digits).

– Then what we want to show is 〈limn→∞ anu, v〉 = limn→∞ 〈anu, v〉 which would give our desired result immediately using
all the above steps because limn→∞ 〈anu, v〉 = limn→∞ an 〈u, v〉 = α 〈u, v〉.

– Recall the definition of continuity:

∗ Let (X, dX) and (Y, dY ) be two metric spaces and let f : X → Y .
∗ f is continuous at x0 ∈ X iff ∀ε > 0 ∃δ (ε, x0) > 0 such that dX (x0, x) < δ (ε, x0) =⇒ dY (f (x0) , f (x)) < ε for all
x ∈ X.

∗ Then if f is continuous at x0 ∈ X for all x0 ∈ X then f is continuous.

– If a = limn→∞ an exists, then it is generally true that limn→∞ f (an) = f (limn→∞ an) whenever f : R → R is a continuous
function:
Proof:

∗ We want to show that limn→∞ f (an) = f (a).
∗ But (f (an))n∈N defines a sequence in itself, and so what we need is to show that (f (an))n∈N → f (a).
∗ To that end, let ε > 0 be given. We need to find some m (ε) ∈ N such that if n > m (ε) then |f (an)− f (a)| < ε.
∗ However, we know that f is continuous at a, so that ∃δ (ε, a) > 0 such that if |an − a| < δ (ε, a) then indeed we will

have |f (an)− f (a)| < ε. But an → a, which means that ∃l (δ (ε, a)) ∈ N such that if n ≥ l then |an − a| < δ (ε, a).
∗ So take m (ε) := l (δ (ε, a)).

– So assume that u and v are fixed and define a funtion f : R → R by x
f7→ 〈xu, v〉. We want to show that f is continuous.

– Because for our f , the two metric spaces are just R with the Euclidean metric, we have to show that:

∗ Let x0 ∈ R be given.
∗ ∀ε > 0 ∃δ (ε, x0) > 0 such that if x ∈ R is such that |x− x0| < δ (ε) then |f (x0)− f (x)| < ε. For our f |f (x0)− f (x)| <
ε would mean |〈x0u, v〉 − 〈xu, v〉| < ε.
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∗ Estimate the following:

|〈x0u, v〉 − 〈xu, v〉| = |〈x0u− xu, v〉|
= |〈(x0 − x)u, v〉|
≤ ‖(x0 − x)u‖‖v‖
= |x0 − x| ‖u‖‖v‖

∗ So let ε > 0 be given. Pick δ (ε) = ε
‖u‖‖v‖ .

∗ Then if |x− x0| ≤ ε
‖u‖‖v‖ , then |〈x0u, v〉 − 〈xu, v〉| ≤ ε

‖u‖‖v‖‖u‖‖v‖ = ε and so f is continuous.

�

1.2.2 Question 4

• Pick the axes so that v =

00
1

. Can always do that.

• Then we know that the distance of a from E is just the z-component of a: a · ẑ. Thus we are finished, we just need to prove the
result.

• To prove it, define x0 := a− a · ẑ. It is clear that x0 lies in the x− y-plane (E) because we removed from a the z-component.

• Write a · ẑ = a− x0.

• Now we want to show that |a− x0| = inf ({ |a− x| | x ∈ E }).

• To that end, we need to show that |a− x0| is (1) a lower bound, and that it is (2) the highest lower bound.

1. Let x ∈ E be given.

2. Then |a− x|2 = |a− x0|2 + |x− x0|2 ≥ |a− x0|2. Thus |a− x0| is a lower bound.

3. Because x0 ∈ E then this lower bound is actually a minimum and as such it is also the infimum (whenever there is a
minimum, the infimum is equal to it).

�

1.2.3 Question 6

• Claim: limn→∞
√
n ( n

√
n− 1) = 0.

Proof:

– Define xn := n
√
n− 1. Then (xn + 1)

n
= n.

– But for all n ≥ 4 we have

n = (xn + 1)
n

=

n∑
j=0

(
n
j

)
(xn)

j
=

(
n
3

)
(xn)

3
+

∑
j∈{0, ..., n}\{3}

(
n
j

)
(xn)

j

≥
(
n
3

)
(xn)

3

=
n (n− 1) (n− 2) (n− 3) . . . 3 · 2 · 1

1 · 2 · 3 · (n− 3) . . . 3 · 2 · 1
(xn)

3

=
n (n− 1) (n− 2)

6
(xn)

3

∗
≥ n · n (n− 3)

6
(xn)

3

=
n3

6

n− 3

n
(xn)

3

∗∗
≥ n3

6

1

4
(xn)

3

=
n3

24
(xn)

3

where in ∗ we have used that (n− 1) (n− 2) ≥ n (n− 3) for all n ≥ 4 and in ∗∗ we have used that n−3
n ≥ 1

4 for all n ≥ 4
(both facts which you should prove with induction if you don’t agree with them).

– Thus we have xn ≤ 3
√
24n1−3 = 3

√
24n− 2

3 .
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– Thus we have
√
nxn ≤ 3

√
24n− 2

3+
1
2 = 3

√
24n− 1

6 .

– But
√
nxn ≥ 0. So taking the lim sup and lim inf of both sides, using the fact that limn→∞ n− 1

6 = 0 we get the desired
result.

�

2 Exercise Sheet Number 7

2.1 Absolutely Converging Series
•
∑

an converges absolutely if
∑

|an| converges absolutely.

• For a series of positive terms of course there is no difference between the two notions.

• Clearly if
∑

an converges absolutely then
∑

an converges.

– The converse is false, for example, take
∑ (−1)n

n which converges, but not absolutely.

• The cool thing about series which converge absolutely is that we may rearrange the sum in any way we like and we’d still get the
same converging result:

– A rearrangement of a series
(∑n

j=1 aj

)
n∈N

is a new series specified by the bijection f : N → N as
(∑n

j=1 af(j)

)
n∈N

.

– For example, 1− 1
2 +

1
3 −

1
4 +

1
5 −

1
6 . . . converges to something (call it s). However, 1+ 1

3 −
1
2 +

1
5 +

1
7 −

1
4 +

1
9 +

1
11 −

1
6 + . . .

converges also, but to something else.

– However, if
∑

an converges absolutely, then any rearrangement of
∑

an converges to the same sum. (A fact I hope was
proven in class).

• You will have to use this fact extensively with the zeta function.

2.2 Power Series
• A power series is an infinite series of the form

(∑n
j=1 ajz

j
)
n∈N

where (aj)j∈N is some sequence and z ∈ C is some complex
number. Thus, if the series converges depends on the value of z, and of course also the sum to which it converges.

• We can find the “radius of convergence” by applying the root test:

–
∑

fn converges if lim supn→∞
n
√
|fn| < 1 and diverges if lim supn→∞

n
√
|fn| > 1. If lim supn→∞

n
√
|fn| = 1 the test gives no

information.

– Thus for our power series that would be lim supj→∞
j
√

|ajzj | = |z| lim supj→∞

(
j
√

|aj |
)

!
< 1 that is, |z| < 1

lim supj→∞

(
j
√

|aj |
)

and so the radius of convergence is 1

lim supj→∞

(
j
√

|aj |
) .

– The ratio test doesn’t say what happens on the radius!

• The convergence radius guarantees absolute convergence. Thus, inside the radius of convergence, we may rearrange the summation.

2.3 Concrete Tips for the Questions
2.3.1 Question 1

• For part (a): The series (the zeta function series) converges absolutely. That means we can sum term by term. add and remove∑
1

(2n)2
from the left hand side.

• For part (b): Use fraction decomposition: 1
n(n+1)(n+2) =

p1

n + p2

n+1 + p3

n+1 . Find p1, p2, and p3.

• For part (c): Prove 1
fnfn+2

= 1
fnfn+1

− 1
fn+1fn+2

. Then use homework 1 exercise 6 (b).

2.3.2 Question 2

• For part (a): Use the result for fn+1

fn
from homework 6, exercise 3 (c). Then use again the fact that for a power series, convergence

in the radius of convergence is absolute to conclude that you may sum up terms one by one. Then compute
(
1− z − z2

)
f (z).

• For part (b): Plug in the expression given for fn into
∑∞

n=0 fnz
n, use absolute convergence to sum term by term, and then use

the geometric series formula.
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2.3.3 Question 3

• Part (a): no hint as this should take you 3 lines (no induction please!).

• Part (b): Find the radius of convergence. Then the hard part is not what happens inside the radius or outside of it, but rather
what happens on the radius. Show that except for one point on the radius, all other points make the series converge. To that
end, use part (a) with bk = 1

k and ak = 1−zk

1−z . You will be able to decompose the series and show that each constituent converges.

2.3.4 Question 4

• Prove exp (x) ≥ 1 + x for all x ≥ 0.

• Prove exp (x) exp (y) = exp (x+ y) for all (x, y) ∈ C2.

• Prove that exp is a monotone increasing map.

• Define sn :=
∑n

j=1 aj and pn :=
∏n

j=1 (1 + aj).

• Show that limn→∞ sn exists ⇐⇒ limn→∞ pn exists.

• =⇒ is shown using the properties of the exp map.

• ⇐= is shown by “multiplying out”
∏n

j=1 (1 + aj) to show it’s bigger than
∑n

j=1 aj . Think what happens for the first few cases:
(1 + a1) (1 + a2) =? and so on and from there you’ll hopefully see a pattern.

2.3.5 Question 5

• JN ≡
{∏N

j=1 (pj)
αj

∣∣∣ aj ∈ N ∪ {0} ∀j ∈ {1, . . . , N}
}

.

• Use absolute convergence of the zeta function.

• Prove that
∑

(a1, ..., αN )∈(N∪{0})N
(∏N

k=1 (fk)
αk

)
=
∏N

k=1

(∑N
αk=1 (fk)

αk

)
for any sequence fk.

• Then use the geometric series.

2.3.6 Question 6

• Part (a): Use the definition of continuity.
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