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1 General Remarks
• Notation:

– A ≡ B means A is always defined as B (the writer is trying to say that this definition is standard and she is merely following
conventions).

∗ Example: |x+ iy| ≡
√
x2 + y2

∗ Use when you want to recall a definition that the book / professor / someone else made or makes.
– A := B means A is right now defiend as B (the writer is making an ad-hoc definition which will make her analysis shorter

or more convenient, but this definition’s scope is limited to the document in which its written).
∗ Example: M := M1 ∪M2 (M is defined an auxilliary symbol instead of having to write M1 ∪M2 all the time).
∗ Use when you want to abbreviate operations by a one-letter symbol instead of carrying around repetetively composite

objects or definitions.

• For the 1,000,000th time: be careful about the difference between sets and logical statements:

– A statement is a determination about whether a certain fact is true or false. x ∈ A is a statement, which can be true or false.
When written just like that, as x ∈ A, with no other accompanying text, interpret this as the writer meaning to express:
“The fact x ∈ A is true.”
∗ To indicate that two statements are equivalent, use the symbol ⇐⇒ . For example: [x ∈ (A ∪B)] ⇐⇒ [(x ∈ A) ∨ (x ∈ B)].

See how a set-theoretic operation (union) turned into a logical operation (or). There is a close connection between the
two, but you must be careful with how you combine these operations. Never write, for example,

{
x ∈ R

∣∣ x2 = 4
}
∧

{ x ∈ R | x > 0 } because that doesn’t make any sense!
∗ To indicate that one statement follows from the one before, use the symbol =⇒ . For example, x ∈ A ∩B =⇒ x ∈ A.

– A set is anything that goes inside curly-brakets { } or otherwise abbreviated by a letter (or letters).
∗ Do not use logical operations on sets (as in the example above).

2 Exercise Sheet Number 5

2.1 Metric Spaces
Let X be a set. A metric d on X is a map d : X ×X → R such that ∀ (p, q) ∈ X2:

1. p 6= q =⇒ d (p, q) > 0

2. d (p, p) = 0

3. d (p, q) = d (q, p)

4. d (p, q) ≤ d (p, r) + d (r, q) for any r ∈ X.

• Example:
Claim: If ‖·‖ is the Euclidean norm on Rn (that is, ‖v‖ ≡

√∑n
j=1 |vj |

2) then d (u, v) := ‖u− v‖ is a metric on Rn.
Proof: homework.

2.1.1 Open Balls

Let X be a set with a metric d defined on it, let x ∈ X and ε > 0. An open ball at x with radius ε, denoted by Bε (x), is defined as

Bε (x) := { y ∈ X | d (x, y) < ε }

for Euclidean spaces you can really think of this as the geometric ball, and drawing this for many situations will help your intutition.
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2.1.2 Open Sets in a Metric Space

Let X be a set with a metric d defined on it. We define a new property on subsets of metric spaces called being open. The set U ⊆ X
is open iff ∀x ∈ U∃ε > 0Bε (x) ⊆ U . Denote the set of all open sets on X as Open (X). Thus we have

Open (X) ≡ { U ⊆ X | ∀x ∈ U (∃ε > 0 : Bε (x) ⊆ U) }

• Clearly, you can see that X itself is always open and ∅ is also always open, no matter what X is.

• Homework: prove that arbitrary unions of open sets are open.

• Homework: prove that finite intersections of open sets are open.

• Example:
Claim: The set (a, b) is open in R with its usual metric.
Proof:

– Let x ∈ (a, b) be given.

– Then a < x < b.

– So take the ball around x with ε := 1
2 min ({x− a, b− x}).

– This ball is clearly wholy (a, b).

�

• Example:
Claim: The set [a, b] is not open in R with its usual metric.
Proof:

– The condition for openness actually only fails at the end points. So take a ∈ [a, b].

– It is the case that no matter what ball we take around a, it will always “spill” out of [a, b].

– Let any ε > 0 be given. Then

Bε (a) ≡ { y ∈ R | |y − a| < ε }
= { y ∈ R | −ε < y − a < ε }
= { y ∈ R | a− ε < y < a+ ε }

– So we see that
(
a− 1

2ε
)
∈ Bε (a) but

(
a− 1

2ε
)
/∈ [a, b] obviously for any ε > 0. So we cannot find any ball around a which

is wholly contained in [a, b].

2.2 Sequences
Let X be a metric space. A sequence, denoted by (an)n∈N, is a map from N → X such that n 7→ an

1.

• Repetition and comparison with sets: Note that it’s perfectly possible that there would be a repetition of the value of this sequence
for different values of n. In this sense, the order does matter, as opposed to sets. For sets, { 1, 1, 1, . . . } = { 1 }, that is a set
with merely one element, and so we need to retain information about only one 1 and forget that someone crazy once wrote the
set with infinite number of 1’s. On the other hand, for sequences, we really need the information that 1 appears infinitely many
times: this is the information encoded in the sequences.

2.2.1 Convergence of Sequences

Definition: Let a sequence (an)n∈N be given in a metric space X. (an)n∈N is said to converge iff ∃a ∈ X such that ∀U ∈ Open (X)
such that a ∈ U , ∃mU ∈ N such that [(n ≥ mU ) =⇒ an ∈ U ].

In this case we say that that (an)n∈N converges to a, or that a is the limit of (an)n∈N, and sometimes write ∃ limn→∞ an and
limn→∞ an = a.

• Claim: This definition is equivalent to the older definition epsilon-defintion.
Proof: homework.

– The older definition style is: ∀ε > 0 ∃mε ∈ N such that [(n ≥ mε) =⇒ |a− an| < ε].

But it is better to already get used to this definition because it is how we usually do mathematics.
1You should observe that (an)n∈N is special notation and if we were to follow our usual notation for maps then we would simply write a ∈ XN for the

sequence and a (n) the value of the sequence at n. However, as is usual in math (and physics) we sometimes use some notation that is not strictly necessary
just in order to help our memory. If we see the letter a in the middle of a text somewhere, how should we know if it’s a set, a map, a group, a vector space, or
whatever? However if we see (an)n∈N in the middle of the text we immediately know it is indeed a map, and not just any map, but a special map from N.
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• Examples:

1. Claim: limn→∞ n−r = 0 for all r ∈ Q such that r > 0.
Proof:

– Let U ∈ Open (R) be given. Our goal is to find this special number, mU ∈ N which would give us the special condition,
[(n ≥ mU ) =⇒ n−r ∈ U ].

– The first thing to do is work with open balls, because they are much handier than open sets: because U ∈ Open (R),
we know that ∃εU > 0 such that BεU (0) ⊆ U . Thus, if we were to show that n−r ∈ BεU (0), then we will have shown
that n−r ∈ U .

– n−r ∈ BεU (0) means, by definition, that |n−r − 0| < εU or that n−r < εU (because n−r will always be positive).

– We can work our way backwards: mU
−r < εU means that mU > ε

− 1
r

U . Thus pick mU := ceil
(
ε
− 1

r

U

)
+ 1.

– As a result we get that really, if n ≥ ceil
(
ε
− 1

r

U

)
+ 1 then n > ε

− 1
r

U and so n−r < εU and so n−r ∈ U .

�

2. More examples in Koenigsberger page 42, along with the actual proofs.

3. Claim: an = in does not converge.
Proof:

– To prove that a sequence does not converge we usually use proof by contradiction.
– First of all observe that an = i, −1, −i, 1, i, −1, −i, 1, . . . and so on.
– As a result we see that |al − al+1| =

√
2 for all l ∈ N.

– Assume that an did converged to some a ∈ C.
– Then surely B√

2 (a) ∈ Open (C) and a ∈ B√
2

2

(a).

– In that case, we should have that ∃m√
2

2

∈ N such that an ∈ B√
2

2

(a) for all n ≥ m√
2

2

.

– This is clearly impossible, because if am√
2

2

∈ B√
2

2

(a), then
∣∣∣∣a− am√

2
2

∣∣∣∣ < √
2
2 . But then, we have

∣∣∣∣a− am√
2

2
+1

∣∣∣∣ =

∣∣∣∣a− am√
2

2

+ am√
2

2

− am√
2

2

+1

∣∣∣∣
=

∣∣∣∣(a− am√
2

2

)
−

(
am√

2
2

+1 − am√
2

2

)∣∣∣∣
≥

∣∣∣∣∣∣∣∣a− am√
2

2

∣∣∣∣− ∣∣∣∣am√
2

2

+1 − am√
2

2

∣∣∣∣∣∣∣∣
≥

∣∣∣∣am√
2

2

+1 − am√
2

2

∣∣∣∣︸ ︷︷ ︸√
2

−
∣∣∣∣a− am√

2
2

∣∣∣∣︸ ︷︷ ︸
≤

√
2

2

≥
√
2−

√
2

2

=

√
2

2

that is,
∣∣∣∣a− am√

2
2

+1

∣∣∣∣ ≥ √
2
2 which means that am√

2
2

+1
/∈ B√

2
2

(a) and so we have a contradiction.

�

2.3 Vector Spaces
2.3.1 Normed Vector Spaces

A normed vector space is tuple (V, ‖·‖) such that V is a vector space (over a field F2) and ‖·‖ is a norm on V .

• We assume the reader is familiar with “groups” and “fields”. In case this is false, please follow up on the definitions in Herstein’s
“Topics in Algebra” 2nd edition chapters two and five.

• A vector space over a field F is a tuple3 V = (Vset, c, s) such that (Vset, c) is a commutative group (a group where c ((v1, v2)) =
c ((v2, v1)) and s ∈ Vset

F×Vset is a map which obeys the following conditions:
2For now think of F as being C in the most general case. We will not care about “exotic” fields until a year from now.
3V is the object “vector space”, Vset is its underlying set; we two different symbols to avoid confusion
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1. s◦c = c◦(s× s) as an equality of maps4. Slightly more explicitly this means s ((α, c ((v1, v2)))) = c ((s ((α, v1)) , s ((α, v2))))
for all α ∈ F and for all (v1, v2) ∈ Vset

2.

2. s ◦ (aF × 1Vset
) = c ◦ ((s ◦ (π1 × π3))× (s ◦ ((π2 × π3)))) where πi is the projection map5 and aF ∈ FF2

is the addition map
on F. More explicitly, we require that s ((aF (α, β) , v))

!
= c ((s ((α, v))) , s ((β, v))) for all (α, β, v) ∈ F2 × Vset.

3. s ◦ (π2 × s ◦ (π1 × π3)) = s ◦ (mF × 1Vset
) where mF is the multiplication map in F or more explicitly s ((α, s ((β, v)))) =

s ((mF ((α, β)) , v)) for all (α, β, v) ∈ F2 × Vset.

4. s (1F, v) = v for all v ∈ Vset where 1F is the unit element in F.

• A norm ‖·‖ on a vector space V is a map Vset → R such that :

1. ‖s ((α, v))‖ = |α| ‖v‖ for all (α, v) ∈ F× Vset.

2. ‖c ((v1, v2))‖ ≤ ‖v1‖+ ‖v2‖ for all (v1, v2) ∈ Vset
2.

3. ‖v‖ = 0 =⇒ v = 0V .

• For the sake of brevity from now on we will write αv instead of s ((α, v)) and v+ v′ instead of c ((v, v′)), as well as α+ β instead
of aF ((α, β)) and αβ instead of mF ((α, β)), hoping that no confusion will arise.

2.3.2 Inner Product Space

An inner product space is a tuple (V, 〈·, ·〉) where V is a vector space over a field F and 〈·, ·〉 is a map from Vset
2 → F such that:

1. 〈u, v〉 = 〈v, u〉 where α is conjugation in F (if it exists, otherwise it is the identity) for all (u, v) ∈ Vset
2.

2. 〈u, u〉 ≥ 0 for all u ∈ Vset.

3. 〈u, u〉 = 0 ⇐⇒ u = 0V .

4. 〈αu+ βv, ω〉 = α 〈u, w〉+ β 〈v, w〉 for all (α, β, u, v, w) ∈ F2 × Vset
3.

Cauchy–Schwarz inequality

• Claim: |〈x, y〉| ≤
√
〈x, x〉 〈y, y〉 for all (x, y) ∈ Vset

2.
Proof:

– Case 1: x = 0

∗ 〈x, y〉 = 〈0, y〉 = 〈y − y, y〉 = 〈y, y〉 − 〈y, y〉 = 0 and clearly 〈0, 0〉 = 0.

– Case 2: x 6= 0 and y 6= 0

∗ Define z := y − 〈x, y〉
〈x, x〉x.

∗ Calculate

〈x, z〉 =

〈
x, y − 〈x, y〉

〈x, x〉
x

〉
= 〈x, y〉 − 〈x, y〉

〈x, x〉
〈x, x〉

= 0

4If s is a map s ∈ BA and s′ ∈ B′A′
then the map s × s′ is naturally defined as an element in B × B′A×A′

via (s× s′) ((a, a′)) ≡ (s (a) , s′ (a′)) for all
(a, a′) ∈ A×A′.

5The projection map πi ∈ Ai
A1×A2×···×An is defined as πi ((a1, a2, . . . , an)) ≡ ai.
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∗ Thus we can calculate

〈y, y〉 =

〈
z +

〈x, y〉
〈x, x〉

x, z +
〈x, y〉
〈x, x〉

x

〉
= 〈z, z〉+

〈
z,

〈x, y〉
〈x, x〉

x

〉
+

〈
〈x, y〉
〈x, x〉

x, z

〉
+

〈
〈x, y〉
〈x, x〉

x,
〈x, y〉
〈x, x〉

x

〉
= 〈z, z〉+ 〈x, y〉

〈x, x〉
〈z, x〉︸ ︷︷ ︸

0

+
〈x, y〉
〈x, x〉

〈x, z〉︸ ︷︷ ︸
0

+
〈x, y〉
〈x, x〉

〈
x,

〈x, y〉
〈x, x〉

x

〉

= 〈z, z〉+ 〈x, y〉
〈x, x〉

〈
〈x, y〉
〈x, x〉

x, x

〉
= 〈z, z〉+ 〈x, y〉

〈x, x〉
〈x, y〉
〈x, x〉

〈x, x〉

= 〈z, z〉+ 〈x, y〉
〈x, x〉

〈x, y〉

≥ 〈x, y〉
〈x, x〉

〈x, y〉

=
|〈x, y〉|2

〈x, x〉

∗ As a result we find that 〈y, y〉 〈x, x〉 ≥ |〈x, y〉|2 and so the result follows by taking the square root of both sides.

2.3.3 Norm out of Inner Product

Given an inner product space, we can easily define a norm out of it in a natural (that is, minimum choices) way:

• Define ‖v‖ :=
√

〈v, v〉.

• This makes sense because 〈v, v〉 ≥ 0 and so
√

〈v, v〉 ∈ R indeed.

• We can verify that all the conditions on this new induced norm are indeed satisfied (given the axioms of the inner product):

1. For the homegeneity condition, let (α, v) ∈ F× Vset be given. Then

‖αv‖ ≡
√
〈αv, αv〉

=
√
α2 〈v, v〉

= |α|
√

〈v, v〉
≡ |α| ‖v‖

as desired.

2. For the triangle inequality condition, let (v1, v2) ∈ Vset
2 be given. Then

‖v1 + v2‖ ≡
√
〈v1 + v2, v1 + v2〉

=
√
〈v1, v1〉+ 〈v1, v2〉+ 〈v2, v1〉+ 〈v2, v2〉

=
√
〈v1, v1〉+ 〈v1, v2〉+ 〈v1, v2〉︸ ︷︷ ︸

∈R

+ 〈v2, v2〉

=

√
‖v1‖2 + 2< (〈v1, v2〉) + ‖v2‖2

<(z)≤|z|
≤

√
‖v1‖2 + 2 |〈v1, v2〉|+ ‖v2‖2

C.S.
≤

√
‖v1‖2 + 2‖v1‖‖v2‖+ ‖v2‖2

= ‖v1‖+ ‖v2‖

3. For the definitiveness condition, assume for the moment that ‖v‖ = 0 for some v ∈ Vset. Our goal is to show that v must
be equal to 0V . But ‖v‖ ≡

√
〈v, v〉, and so we have

√
〈v, v〉 = 0 or 〈v, v〉 = 0. Thus, using the axioms of the inner product

we necessarily conclude that v = 0.

• As a result we see that every time we encounter an inner product vector space, we can define on top of it also a norm and make
it into a normed vector space for free.

• Is the converse also true? No, as we will see soon.
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2.3.4 Parallelogram Law

• A normed vector space is said to obey the parallelogram condition iff

‖u‖2 + ‖v‖2 =
1

2

(
‖u+ v‖2 + ‖u− v‖2

)
∀ (u, v) ∈ Vset

• An example for a normed vector space that does not obey the parallelogram condition:

– Let n ∈ N\ {0, 1}.
– Define a norm on Rn (which is a bonafide vector space!) by ‖v‖1 :=

∑n
j=1 |vj |.

– Claim: ‖·‖1 is indeed a norm.
Proof:

1. For the homegeneity condition, let (α, v) ∈ R× Rn be given. Then

‖αv‖1 ≡
n∑

j=1

|αvj |

=

n∑
j=1

|α| |vj |

= |α|
n∑

j=1

|vj |

= |α| ‖v‖1

as desired.
2. For the triangle inequality condition, let (u, v) ∈ (Rn) 2 be given. Then

‖u+ v‖1 ≡
n∑

j=1

|uj + vj |

≤
n∑

j=1

(|uj |+ |vj |)

=

n∑
j=1

|uj |+
n∑

j=1

|vj |

= ‖u‖1 + ‖v‖1

3. For the definitiveness condition, assume for the moment that ‖v‖1 = 0 for some v ∈ Rn. Our goal is to show that v must
be equal to 0V . But ‖v‖1 ≡

∑n
j=1 |vj |, and so we have

∑n
j=1 |vj | = 0. Because every term in the sum is never negative,

all the terms must be equal to zero separately: |vj | = 0∀j ∈ {1, . . . , n}. This is exactly the zero vector in Rn then.

�

– Claim: (Rn, ‖·‖1) does not obey the parallelogram condition.
Proof:

∗ Take u = (3, 0, . . . , 0) and v = (0, 4, 0, . . . , 0).
∗ Then

‖u‖1
2 + ‖v‖1

2 = (|3|+ |0|+ · · ·+ |0|)2 + (|0|+ |4|+ |0|+ · · ·+ |0|)2

= 9 + 16

= 25

∗ However,

1

2

(
‖u+ v‖1

2 + ‖u− v‖1
2
)

=
1

2

(
‖(3, 4, 0, . . . , 0)‖1

2 + ‖(3, −4, 0, . . . , 0)‖1
2
)

=
1

2

[
(|3|+ |4|+ |0|+ · · ·+ |0|)2 + (|3|+ |−4|+ |0|+ · · ·+ |0|)2

]
= (|3|+ |4|+ · · ·+ |0|)2

= 49

∗ Of course 25 6= 49 and so the parallelogram does not hold for any pair of vectors!
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• Claim: In an inner product space, the induced norm always obeys the parallelogram law.
Proof: homework! (just plug in the norm expressed in terms of the inner product as defined above and use the axioms of the
inner product (linearity)).

• Claim: In a normed vector space, if the parallelogram law holds, then there exists an inner product 〈·, ·〉 on the vector space such
that ‖v‖2 = 〈v, v〉 for all v ∈ Vset.
Proof:

– Define 〈u, v〉 := 1
4‖u+ v‖2 − 1

4‖u− v‖2.
– Now show that this is indeed an inner product, and that the norm induced from this inner product is exactly ‖·‖.
– To show additivity, you will need a few tricks, for instance, prove that ‖u+ v + w‖2 = ‖w + u‖2+ ‖w + v‖2+ ‖u‖2+ ‖v‖2−

‖u− v‖2 − ‖w‖2 using the parallelogram rule which we assume.

– To show homogeneity you will have to work a bit harder:

∗ First show it holds only for n ∈ N: 〈nu, v〉 = n 〈u, v〉 (using induction).
∗ Then show it holds for n ∈ Z using a trick: 0 = n+ (−n) for all n ∈ N.

∗ Then show it holds for r ∈ Q by writing r = p
q where p ∈ Z and q ∈ N\ {0}. Then calculate what’s q

〈
p
qu, v

〉
(you may

use the homogeneity of the previous steps becasue q ∈ N!
∗ To show it holds for any α ∈ R, take a sequence of rationals αn ∈ Q such that αn → α.

· Use the reverse triangle inequality of norms: Reverse triangle inequality: |‖x‖ − ‖y‖| ≤ ‖x− y‖. Proof:
1. ‖x‖ = ‖(x− y) + y‖ ≤ ‖x− y‖+ ‖y‖
2. ‖x‖ − ‖y‖ ≤ ‖x− y‖
3. By symmetry we have ‖y‖ − ‖x‖ ≤ ‖y − x‖ = ‖x− y‖, that is ‖x‖ − ‖y‖ ≥ −‖x− y‖

∗ Thus

|‖αnv + w‖ − ‖αv + w‖| ≤ ‖αnv + w − αv − w‖
= ‖αnv − αv‖
= ‖(αn − α) v‖

homogen
= |αn − α| ‖v‖

∗ Then try to compute 〈αu, v〉 = 〈(limn→∞ αn)u, v〉 using the definition of 〈·, ·〉.

2.4 Concrete Tips for the Questions
2.4.1 Question 2

• May be helpful to use the formula (a× b)i =
∑n

j=1

∑n
k=1 εijkajbk where εijk ≡


1 (i, j, k) ∈ An

−1 (i, j, k) ∈ Sn\An

0 (i, j, k) /∈ Sn

where Sn is the set of

all bijections on the set {1, . . . , n} (
{
(σ1, . . . , σn) ∈ {1, . . . , n}n

∣∣∣ σi 6= σj∀ (i, j) ∈ {1, . . . , n}2 such that i 6= j
}

) and An is the
set of all bijections on the set {1, . . . , n} which are even (which take an even number of transpositions to produce the ascending
order of {1, . . . , n}).

– Example: A3 = { (1, 2, 3) , (2, 3, 1) , (3, 1, 2) }, and S3 = { (1, 2, 3) , (2, 3, 1) , (3, 1, 2) , (3, 2, 1) , (1, 3, 2) , (2, 1, 3) }.

– Thus εijk =


+1 if (i, j, k) is (1, 2, 3), (2, 3, 1) or (3, 1, 2),

−1 if (i, j, k) is (3, 2, 1), (1, 3, 2) or (2, 1, 3),

0 if i = j or j = k or k = i

if n = 3.

– Why is this helpful? Because then:

[(a+ a′)× b]i =
∑
j, k

εijk (a+ a′)j bk

=
∑
j, k

εijkajbk +
∑
j, k

εijka
′
jbk

= [a× b]i + [a′ × b]i

due to the linearity of operations in the underlying field.

– To deduce the other properties you need to think about some facts about εijk:

1. What’s
∑3

i=1 εijkεimn? This will turn out to be useful.
2. Is εijk symmetric under exchange of any two indices?
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2.4.2 Question 3

• Try to make a proof of each of the questions, unless you think the statement is false, in which case give a counter example! This
question is really merely about plugging in the definitions and includes no creativity.

2.4.3 Question 4

• Draw a picture of the situation, use your geometric intutition to guess which vector v in E would minimize the set { ‖v − a‖ | v ∈ E }.
Prove that this particular vector indeed minimizes the set by picking another arbitrary vector v′ in E and showing that necessarily
‖v′ − a‖ ≥ ‖v − a‖.

3 Exercise Sheet Number 3

3.1 Question 1
• Claim: If f ∈ Y X and (A, B) ∈ 2Y then f−1 (A ∪B) = f−1 (A) ∪ f−1 (B).

Proof:

3.2 Question 3
• Claim:

∣∣{A ∈ 2N
∣∣ |A| ∈ N

}∣∣ = N.
Proof:

– Define ϕ :
{
A ∈ 2N

∣∣ |A| ∈ N
}
→ N by {n1, . . . , nk} 7→

∑k
i=1 2

ni and ∅ 7→ 0.

– This is a surjection, because any integer can be represented as a binary number, which is, in turn, taking taking the digits
present in the number and placing them in our set. Alternatively, it is injective because if two sets are equal, they will
necessarily define the same binary number (

∑k
i=1 2

ni is injective!)

�

8


