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1 Exercise Sheet Number 4

1.1 Complex Numbers
1.1.1 Solutions to Equations

• Claim: If anz
n + an−1z

n−1 + · · · + a1z + a0 = 0 is an equation where
ai ∈ R and α ∈ C solves the equation then so does α.
Proof:

– If anzn + an−1z
n−1 + · · ·+ a1z + a0 = 0 holds then so does

anzn + an−1zn−1 + · · ·+ a1z + a0 = 0

anzn + an−1zn−1 + · · ·+ a1z + a0 = 0

anzn + an−1zn−1 + · · ·+ a1z + a0 = 0

anz
n + an−1z

n−1 + · · ·+ a1z + a0 = 0

�

• As a result, given one solution of an equation with real coefficients, then
the complex conjugate of that solution is yet another solution (if the first
solution is not real, otherwise we have the same thing of course as the
complex conjugate of a real number is the same number again).

• Another way to find solutions to an equation is to make polynomial divi-
sion by known solutions, which then simplies the given equation.

• For example, assume anz
n + an−1z

n−1 + · · ·+ a1z+ a0 = 0 has a solution
α ∈ C.

• That means that (z − α) somehow can be factored out of this equation:
otherwise it would not be a solution!

• Divide anz
n + an−1z

n−1 + · · · + a1z + a0 by (z − α) to get bn−1z
n−1 +

· · ·+ b1z + b0.
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• Sometimes bn−1z
n−1 + · · · + b1z + b0 = 0 is easier to solve. Especially if

now n− 1 = 2.

• Example:

– x3 + x2 + x+ 1 = 0 has a solution: x = −1. (Check by plugging in)
– So try to factor (x+ 1) out of it: x3 + x2 + x+ 1 = (x+ 1)

(
x2 + 1

)
by guessing wisely.

– But we know how to solve x2 +1 = 0! So we can now write down all
solutions: x = −1, x = ±i.

1.1.2 Analytic Geometry

• Claim: The area of a rectangle with corners at z1 and z2 is given by
|< (z2)= (z2)−= (z1z2) + < (z1)= (z1)|.
Proof:

– Define xi := < (zi)∀i ∈ {1, 2}, yi := = (zi)∀i ∈ {1, 2}.
– Then the length of the edges of the rectangle are |x2 − x1| and

|y2 − y1|.
– Thus

A = |x2 − x1| × |y2 − y1|
= |< (z2)−< (z1)| |= (z2)−= (z1)|
= |< (z2)= (z2)−< (z2)= (z1)−< (z1)= (z2) + < (z1)= (z1)|
= |< (z2)= (z2)−= (z1z2) + < (z1)= (z1)|

because = (z1z2) = = ((x1x2 − y1y2) + i (x1y2 + x2y1)) = x1y2 +
x2y1.

�

• Example: The area of a triangle given by two complex numbers.

– We know that each complex number z = x+ iy has also a represen-
tation with a radius and an angle: radius is

√
x2 + y2 and angle is

arctan
(
y
x

)
defined up to 2π. Thus we can write z = (R, ϕ).

– We know that multiplying one complex (R1, ϕ1) number by another
(R2, ϕ2) means rotating z1 by angle ϕ2 counter-clockwise and scaling
the radius times R2.

– The complex conjugate has the same radius but minus the angle.
– Thus to find the angle between the two numbers, ϕ1 − ϕ2, we can

just rotate z1 by z2 and measure the angle of that: arctan
(

=(z1z2)
<(z1z2)

)
.

– We know that the area of a triangle with two edges a and b and an
angle between them α is given by A = 1

2ab sin (α).

– Recall that sin
(
arctan

(
y
x

))
=

y
x√

1+
( y
x

)2 = y√
x2+y2

.
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1.2 Tips for Specific Questions
1.2.1 Question 3

1. First step: Translate your triangle so that one of the vertices is at 0. A
translation of an equilateral triangle is still an equilateral triangle.

2. Secnd step: Scale your triangle by the length of one of the edges, so that
that edge will now have length 1, and rotate it so that the edge lies on the
x-axis. Such a scaled rotated equilateral triangle will still be an equilateral
triangle.

3. What is the condition now for this translated, scaled rotated trinagle to
be an equilateral?

4. Convert the condition you obtained back into a condition on z1, z2 and
z3.

1.2.2 Question 4

• Separate into cases according to the possible values of a to show that the
solutions of the equation necessarily describe straight lines or circles.

• Show that every given straight line or circle can be written using the
original equation.

1.2.3 Question 5

• Use trick: 0 = 0 + 0 and 0 = 1− 1.

2 Exercise Sheet Number 2

2.1 Question 1
Let A be a nonempty subset of R. Prove that:

• Claim: If A is bounded above, then −A is bounded below and inf (−A) =
− sup (A).
Proof:

– Because:
∗ R has the “supremum property” because we constructed it that

way.
∗ A 6= ∅
∗ A is bounded above.

Then we know that ∃ sup (A) ∈ R. Thus the claim makes sense.
– Because ∃ sup (A) ∈ R, we know that

1. ∀a ∈ A : a ≤ sup (A) and
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2. @x ∈ R such that
(a) x < sup (A).
(b) ∀a ∈ A : a ≤ x.

– This is equivalent (by multiplying all inequalities by −1) to saying
that:

1. ∀a ∈ A : −a ≥ − sup (A) and
2. @x ∈ R such that:

(a) −x > − sup (A).
(b) ∀a ∈ A : −a ≥ −x.

– Define α := − sup (A).

– This is equivalent (by renaming variables an) to saying that:

1. ∀a ∈ −A : a ≥ α and
2. @x ∈ Rsuch that:

(a) x > α

(b) ∀a ∈ −A : a ≥ x

– This is equivalent to saying that −A is bounded below (by α) and
(by the definition of the infimum) to saying that ∃ inf (−A) ∈ R and
that α = inf (−A).

�

• The second claim is done very similarly.

2.2 Question 2
Let |M | = |R| and |A| = |N| such that A ∩M = ∅.

• Claim: |M ∪A| = |R|.
Proof:

– |M | = |R| so that ∃f : M → R such that f is bijective.

– |A| = |N| so that ∃g : A → N such that g is bijective.

– Define h : M∪A → R by the following rule h (x) :=


f (x) x ∈ M ∧ f (x) /∈ N
2f (x) x ∈ M ∧ f (x) ∈ N
2g (x) + 1 x ∈ A

.

– Claim: h is well-defined.
Proof: For every value in the source set, M ∪A, we get only a single
value in R.

– Claim: h is surjective.
Proof:

∗ Let α ∈ R be given.
∗ If α /∈ N, then:
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· Recall that because f is bijective,
∣∣f−1 ({α})

∣∣ = 1.
· So call this value β ∈ M : h (β) = α and there must be only

one such β.
∗ If α ∈ 2N, then:

· Take f−1
({

1
2α
})

, which is also a set of a single element, call
this element β ∈ M .

· So we will have f (β) = 1
2α and so h (β) = α.

∗ If α ∈ 2N+ 1, then:
· Take g−1

({
α−1
2

})
. This will be a set of a single element

because g is injective.
· Call this element β ∈ A. Then we will have g (β) = α−1

2 and
so h (β) = α.

– Claim: h is injective.
Proof:

∗ Let (x, y) ∈ (M ∪A)
2 such that x 6= y. We need to show that

h (x) 6= h (y).
∗ Case 1 : x ∈ M and y ∈ A.

· Then h (x) is either a non-integer or an even number, whereas
h (y) is an odd number. In either case, we must have h (x) 6=
h (y).

∗ Case 2 : x ∈ A and y ∈ M is the same as above by replacing x
and y in the statement.

∗ Case 3: x ∈ A and y ∈ A.
· Assume otherwise that h (x) = h (y).
· Then 2g (x) + 1 = 2g (y) + 1.
· Then g (x) = g (y).
· But then we have x 6= y and g (x) = g (y), contradicting the

fact that g is injective.
· Thus our assumption is false.

∗ Case 4 : x ∈ M and y ∈ M .
· Case 4.1 : f (x) /∈ N and f (y) /∈ N. Then because f is

injective, f (x) 6= f (y) and so we cannot have that h (x) =
h (y).

· Case 4.2 : f (x) ∈ N and f (y) /∈ N. Then h (x) is an even
integer and h (y) is not an integer, which means that they
cannot be equal.

· Case 4.3 : f (x) /∈ N and f (y) ∈ N is the same argument as
Case 4.2 but with x and y interchanged.

�
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2.3 Question 4
• Recall that we are doing two-step induction! So you need to prove for the

first induction step both a0 and a1!

• Question: For which values of n is it true that
∣∣∣an+1

an
− φ

∣∣∣ ≤ ε where ε > 0,

φ = 1
2

(
1 +

√
5
)

and an = 1√
5

[(
1+

√
5

2

)n+1

−
(

1−
√
5

2

)n+1
]

for all n ∈ N.

Answer:

– We start by simplifying the absolute value first:

∣∣∣∣an+1

an
− φ

∣∣∣∣ =

∣∣∣∣∣∣∣∣
1√
5

[(
1+

√
5

2

)n+2

−
(

1−
√
5

2

)n+2
]

1√
5

[(
1+

√
5

2

)n+1

−
(

1−
√
5

2

)n+1
] − 1

2

(
1 +

√
5
)∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣
[
1
2

n+2 (
1 +

√
5
)n+2 − 1

2

n+2 (
1−

√
5
)n+2

]
[
1
2

n+1 (
1 +

√
5
)n+1 − 1

2

n+1 (
1−

√
5
)n+1

] − 1

2

(
1 +

√
5
)∣∣∣∣∣∣

=
1

2

∣∣∣∣∣∣
[(
1 +

√
5
)n+2 −

(
1−

√
5
)n+2

]
[(
1 +

√
5
)n+1 −

(
1−

√
5
)n+1

] − (1 +√
5
)∣∣∣∣∣∣

=
1

2

∣∣∣∣∣∣
[(
1 +

√
5
)n+2 −

(
1−

√
5
)n+2

]
[(
1 +

√
5
)n+1 −

(
1−

√
5
)n+1

] − (1 +√
5
)∣∣∣∣∣∣

=
1

2

∣∣∣1 +√
5
∣∣∣
∣∣∣∣∣∣∣∣∣∣

[(
1 +

√
5
)n+1 −

(
1−

√
5
)n+2

1+
√
5

]
[(
1 +

√
5
)n+1 −

(
1−

√
5
)n+1

] − 1

∣∣∣∣∣∣∣∣∣∣
=

1

2

∣∣∣1 +√
5
∣∣∣
∣∣∣∣∣∣∣∣
[(

1+
√
5

1−
√
5

)n+1

− 1−
√
5

1+
√
5

]
[(

1+
√
5

1−
√
5

)n+1

− 1

] − 1

∣∣∣∣∣∣∣∣
=

1

2

∣∣∣1 +√
5
∣∣∣
∣∣∣∣∣∣∣

− 1−
√
5

1+
√
5
+ 1(

1+
√
5

1−
√
5

)n+1

− 1

∣∣∣∣∣∣∣
=

√
5∣∣∣∣( 1+

√
5

1−
√
5

)n+1

− 1

∣∣∣∣
– Next use the fact that 1+

√
5

1−
√
5
≈ −2.618.
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– Claim: Reverse triangle inequality: |x− y| ≤ |x| − |y|.
Proof:

∗ |x| = |(x− y) + y| ≤ |x− y|+ |y|
∗ |x| − |y| ≤ |x− y|

– Claim: 1
|αn−1| ≤

1
|α|n−1 for all n ∈ N and α < −1.

Proof:

∗ By the reverse triangle inequality we have |αn − 1| ≥ |αn|−|1| =
|α|n − 1.

∗ Because |α| > 1, |α|n > 1∀n ∈ N and so |α|n − 1 > 0.
∗ Thus we may conclude that 1

|αn−1| ≤
1

|α|n−1 .

– As a result we have that
√
5∣∣∣∣( 1+

√
5

1−
√

5

)n+1
−1

∣∣∣∣ ≤
√
5∣∣∣ 1+

√
5

1−
√

5

∣∣∣n+1
−1

and so
∣∣∣an+1

an
− φ

∣∣∣ ≤
√
5∣∣∣ 1+

√
5

1−
√

5

∣∣∣n+1
−1

.

– So if we could make sure that
√
5∣∣∣ 1+

√
5

1−
√

5

∣∣∣n+1
−1

≤ ε for some n ∈ N then

of course
∣∣∣an+1

an
− φ

∣∣∣ ≤ ε as well for that same n ∈ N.

– This may not be the smallest such n because we have made an esti-
mate.

– So we are looking for
√
5∣∣∣ 1+√

5
1−

√
5

∣∣∣n+1

− 1
≤ ε

√
5

ε
+1 ≤

∣∣∣∣∣1 +
√
5

1−
√
5

∣∣∣∣∣
n+1

– Because log (x) is a monotonically increasing function (as you will
prove at some point in the future), x ≤ y means log (x) ≤ log (y).

– Thus we have

log

(√
5

ε

)
≤ log

∣∣∣∣∣1 +
√
5

1−
√
5

∣∣∣∣∣
n+1


log

(√
5

ε

)
≤ (n+ 1) log

(∣∣∣∣∣1 +
√
5

1−
√
5

∣∣∣∣∣
)

log
(√

5
ε

)
log
(∣∣∣ 1+√

5
1−

√
5

∣∣∣) − 1 ≤ n
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– Try out ε = 0.01: n ≥
log

( √
5

0.01

)
log

(∣∣∣ 1+
√

5

1−
√

5

∣∣∣) − 1 = 4.62.

– In fact,

2.4 Question 6

• Claim:
(
2n
n

)
=
∑n

k=1

(
n
k

)(
n

n− k

)
∀n ∈ N.

Proof:

–
(
n
k

)
means the number of possible ways to pick k balls out of a row

of n balls.
– To pick n balls out of a row of 2n balls, divide your selection process

into two stages:
1. Split the row in two: the first n balls from 1 to n and the second

half from n+ 1 to 2n.
2. Decide that you will pick k balls from the first half and n − k

balls from the second half, so that all together you still have n
balls from the entire row.

3. To pick k balls from the first half there are
(
n
k

)
possibilities.

4. To pick n− k balls from the second half there are
(

n
n− k

)
pos-

sibilities.

5. Thus all together for this procedure there are
(
n
k

)(
n

n− k

)
.
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– But there are in general, between k = 0 and k = n different ways to
do this split-selection process.

– We must sum up on all the different k possibilities, because they all
exist in parallel.

�
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