Analysis 1 Recitation Session of Week 14

Jacob Shapiro

December 19, 2014

1 Exercise Sheet Number 12

1.1 Question 1

- For all $(f, g) \in ([a, b]^{\mathbb{R}})^2$ define $\langle f, g \rangle := \int_a^b f(x) g(x) dx$.
- *Claim*: C⁰ ([a, b], ℝ) together with ⟨·, ·⟩ defined above gives rise to a (real) inner product space.
 Proof:
 - *Claim*: C⁰ ([a, b], ℝ) is a (real) vector space.
 Proof:
 - * Define 'addition' as a map $(C^0([a, b], \mathbb{R}))^2 \rightarrow C^0([a, b], \mathbb{R})$ by: $\forall (f, g) \in [C^0([a, b], \mathbb{R})]^2$, $f + g := (x \mapsto f(x) + g(x) \forall x \in [a]$ This map is well defined because of the theorem that says that the sum of two continuous maps is again continuous.
 - * We must establish that this 'addition' operation endows $C^0([a, b], \mathbb{R})$ with the structure of a commutative group:
 - The identity element of the group is given by $(x \mapsto 0 \forall x \in [a, b]) \in C^0([a, b], \mathbb{R})$ because constant maps are continuous.
 - $\cdot \text{ The inverse element of } f \in C^0\left(\left[a, \ b\right], \mathbb{R}\right) \text{ is } (x \mapsto -f(x) \ \forall x \in \left[a, \ b\right]\right) \in C^0\left(\left[a, \ b\right], \mathbb{R}\right) \text{ because multiplication of a map}$
 - by -1 leaves a continuous map continuous.
 - $\cdot\,$ Addition is associative due to associativity of addition in $\mathbb R.$
 - $\cdot\,$ Addition is commutative due to commutativity of addition in $\mathbb R.$
 - * Define 'scalar multiplication' as a map $\mathbb{R} \times C^0([a, b], \mathbb{R}) \to C^0([a, b], \mathbb{R})$ by $\forall (\alpha, f) \in \mathbb{R} \times C^0([a, b], \mathbb{R})$, $\alpha f := (x \mapsto \alpha f(x) \forall x \in [a, b])$. This map is well defined because multiplication of a continuous map by a constant is again continuous.
 - * We must to establish three properties of the two 'scalar multiplication' and 'addition' maps:
 - 1. $\forall (\alpha, f, g) \in \mathbb{R} \times [C^0([\alpha, b], \mathbb{R})]^2, \alpha(f+g) = \alpha f + \alpha g \text{ indeed:}$
 - $\forall x \in [a, b] \alpha (f(x) + g(x)) = \alpha f(x) + \alpha g(x)$ because of distributivity in \mathbb{R} .
 - 2. $\forall (\alpha, \beta, f) \in \mathbb{R}^2 \times C^0([\alpha, b], \mathbb{R}), (\alpha + \beta) f = \alpha f + \beta f \text{ and } (\alpha\beta) f = \alpha (\beta f).$
 - · $\forall x \in [a, b] (\alpha + \beta) f(x) = \alpha f(x) + \beta f(x)$, thanks to distributivity in \mathbb{R} .
 - · $\forall x \in [a, b] (\alpha\beta) f(x) = \alpha (\beta f(x))$ due to associtivity of multiplication in \mathbb{R} .
 - 3. $\forall f \in C^0([a, b], \mathbb{R}), 1f = f$
 - · Indeed, as $\forall x \in [a, b] \ lf(x) = f(x)$.
 - Now we need to establish that $\langle \cdot, \cdot \rangle$ is indeed an inner product. It is a map from $[C^0([a, b], \mathbb{R})]^2 \to \mathbb{R}$ because the integral produces a real number. It obeys the properties of the inner product. $\forall (f, g) \in C^0([a, b], \mathbb{R}), \mathbb{R}$
 - 1. Symmetric:

2. Positive:

$$\begin{array}{ll} \langle f, f \rangle & \equiv & \int_{a}^{b} \left[f(x) \right]^{2} dx \\ & \leqslant & (b-a) \underbrace{\min\left(\left\{ \left[f(x) \right]^{2} \mid x \in [a, b] \right\} \right)}_{\geqslant 0} \end{array}$$

3. Zero iff zero vector:

$$\langle 0, 0 \rangle = \int_{a}^{b} 0 dx$$

= 0

and if $\langle f, f \rangle = 0$ then $\int_{\alpha}^{b} [f(x)]^{2} dx = 0$. Now suppose f^{2} is not identically zero. Then $\exists x_{0} \in [\alpha, b]$ such that $[f(x_{0})]^{2} > 0$. Because f is continuous, f^{2} is also continuous. So $\forall \varepsilon > 0 \exists \delta(\varepsilon) > 0$ such that if $|x - x_{0}| < \delta(\varepsilon)$ then $|[f(x)]^{2} - [f(x_{0})]^{2}| < \varepsilon$ for all $x \in [\alpha, b]$. Pick $\varepsilon = \frac{1}{2} [f(x_{0})]^{2} > 0$. Then $[f(x)]^{2} > \frac{1}{2} [f(x_{0})]^{2}$ for all $x \in [x_{0} - \delta(\frac{1}{2} [f(x_{0})]^{2})$, $x_{0} + \delta(\frac{1}{2} [f(x_{0})]^{2})]$. Then a lower sum on a partition that contains the interval $\left[x_{0} - \delta(\frac{1}{2} [f(x_{0})]^{2}), x_{0} + \delta(\frac{1}{2} [f(x_{0})]^{2})\right]$ is larger than or equal to $[f(x_{0})]^{2} \delta(\frac{1}{2} [f(x_{0})]^{2}) > 0$. But the lower sums become only *larger* as the partitions become finer (Theorem 6.4 in Rudin). As a result, $\int_{\alpha}^{b} [f(x)]^{2} dx > 0$, which is a contradiction to the initial hypotheis that $\int_{\alpha}^{b} [f(x)]^{2} dx = 0$. 4. Linearity in first slot:

Let $(\alpha, \beta, h) \in \mathbb{R}^2 \times [C^0([a, b], \mathbb{R})]^2$ be given. Then we want to show that

$$\langle \alpha f + \beta g, h \rangle = \alpha \langle f, h \rangle + \beta \langle g, h \rangle$$

which follows easily from Rudin's Theorem 6.12:

$$\begin{aligned} \langle \alpha f + \beta g, h \rangle &\equiv \int_{a}^{b} \left\{ \left[\alpha f(x) + \beta g(x) \right] h(x) \right\} dx \\ &= \int_{a}^{b} \left[\alpha f(x) h(x) + \beta g(x) h(x) \right] dx \\ &= \int_{a}^{b} \left[\alpha f(x) h(x) \right] dx + \int_{a}^{b} \left[\beta g(x) h(x) \right] dx \\ &= \alpha \int_{a}^{b} \left[f(x) h(x) \right] dx + \beta \int_{a}^{b} \left[g(x) h(x) \right] dx \\ &\equiv \alpha \langle f, h \rangle + \beta \langle g, h \rangle \end{aligned}$$

2 Holiday Exercise Sheet (Number 13)

2.1 Convex Functions

(question 5.23 in Rudin)

- Let $f \in (a, b)^{\mathbb{R}}$ be given.
- f is called *convex* iff

$$f(\lambda x + (1 - \lambda) y) \leq \lambda f(x) + (1 - \lambda) f(y)$$

for all $(x, y, \lambda) \in (a, b)^2 \times (0, 1)$.

• *Claim*: If f is convex then f is continuous. *Proof*:

1. *Claim*: \forall (y, x₀, x) \in (a, b)³ such that a < y < x₀ < x < b the following relation holds

$$\frac{f(x_0) - f(y)}{x_0 - y} \leqslant \frac{f(x) - f(y)}{x - y} \leqslant \frac{f(x) - f(x_0)}{x - x_0}$$

Proof:

- Define $\lambda := \frac{x_0 - y}{x - y}$. Note that $\lambda \in (0, 1)$ by definition.

- Then $1 - \lambda = 1 - \frac{x_0 - y}{x - y} = \frac{x - y - x_0 + y}{x - y} = \frac{x - x_0}{x - y}$ and so

$$\begin{array}{rcl} (1 - \lambda) \, (x - y) &=& x - x_0 \\ x - y - \lambda \, (x - y) &=& x - x_0 \\ - y - \lambda \, (x - y) &=& - x_0 \\ x_0 &=& \lambda x + (1 - \lambda) \, y \end{array}$$

- Thus we have

$$f(x_0) = f(\lambda x + (1 - \lambda) y)$$

convexivity
$$\leqslant \lambda f(x) + (1 - \lambda) f(y)$$

$$= \frac{x_0 - y}{x - y} f(x) + \frac{x - x_0}{x - y} f(y)$$

and so

$$\begin{array}{rcl} (x-y)\,f(x_0) &\leqslant & (x_0-y)\,f(x)+(x-x_0)\,f(y) \\ (x-y)\,f(x_0)-(x-y)\,f(y) &\leqslant & (x_0-y)\,f(x)+(x-x_0)\,f(y)-(x-y)\,f(y) \\ & (x-y)\,[f(x_0)-f(y)] &\leqslant & (x_0-y)\,[f(x)-f(y)] \\ & \quad \frac{f(x_0)-f(y)}{x_0-y} &\leqslant & \frac{f(x)-f(y)}{x-y} \end{array}$$

We also have

$$\begin{array}{rcl} (x-y)\,f(x_0) &\leqslant & (x_0-y)\,f(x)+(x-x_0)\,f(y)\\ &-(x-y)\,f(x_0) &\geqslant & -(x_0-y)\,f(x)-(x-x_0)\,f(y)\\ (x-y)\,f(x)-(x-y)\,f(x_0) &\geqslant & (x-y)\,f(x)-(x_0-y)\,f(x)-(x-x_0)\,f(y)\\ &(x-y)\,[f(x)-f(x_0)] &\geqslant & (x-x_0)\,[f(x)-f(y)]\\ &\frac{f(x)-f(y)}{x-y} &\leqslant & \frac{f(x)-f(x_0)}{x-x_0}\end{array}$$

2. Let $(y, \alpha, x_0, \beta, x) \in (a, b)^5$ be given such that $y < \alpha < x_0 < \beta < x$. Then by the preceding claim, we have that

$$\frac{f(x_0) - f(y)}{x_0 - y} \leqslant \frac{f(x_0) - f(\alpha)}{x_0 - \alpha} \leqslant \frac{f(\beta) - f(x_0)}{\beta - x_0} \leqslant \frac{f(x) - f(x_0)}{x - x_0}$$

3. Define $\begin{cases} m & := \frac{f(x_0) - f(y)}{x_0 - y} \\ M & := \frac{f(x) - f(x_0)}{x - x_0} \end{cases}$

4. Thus we have

or

$$m \leq \frac{f(x_0) - f(\alpha)}{x_0 - \alpha} \leq \frac{f(\beta) - f(x_0)}{\beta - x_0} \leq M$$
$$\int m \leq \frac{f(x_0) - f(\alpha)}{x_0 - \alpha} \leq M$$

$$m \leqslant \frac{f(\beta) - f(x_0)}{\beta - x_0} \leqslant M$$

5. For the first inequality, $\mathfrak{m} \leqslant \frac{f(x_0)-f(\alpha)}{x_0-\alpha} \leqslant M$, or

$$m(x_0 - \alpha) \leqslant [f(x_0) - f(\alpha)] \leqslant M(x_0 - \alpha)$$

- If m > 0 and M > 0, define $\delta := \frac{\varepsilon}{M}$.

- * Then if $0 < x_0 \alpha < \delta$ then $[f(x_0) f(\alpha)] < \epsilon$.
- * Because $(x_0 \alpha) m > 0$, $(x_0 \alpha) m > -\varepsilon$ so that $f(x_0) f(\alpha) > -\varepsilon$, so that $|f(x_0) f(\alpha)| < \varepsilon$.
- * Thus

$$\lim_{\alpha \to x_0^-} f(\alpha) = f(x_0)$$

- If m < 0 and M > 0, define $\delta := \varepsilon \min\left(\left\{\frac{1}{|m|}, \frac{1}{M}\right\}\right)$.

- * Then the right hand side is fulfilled.
- * The left hand side has:
 - $\cdot x_0 \alpha < \delta$ then m $(x_0 \alpha) > -\varepsilon$
 - · thus $f(x_0) f(\alpha) > -\varepsilon$
- $* \ Thus \left|f\left(x_{0}\right)-f\left(\alpha\right)\right|<\epsilon.$
- If m < 0 and M < 0, define $\delta := \varepsilon \frac{1}{|m|}$.
 - * Then $f(x_0) f(\alpha) < 0 < \epsilon$ and $f(x_0) f(\alpha) > (x_0 \alpha) m > -\epsilon$
- If m = 0 and so $M \ge 0$, define $\delta := \frac{\varepsilon}{M}$ (unless M = 0, in which case any δ will do).
- If M = 0 and so $m \leq 0$, define $\delta := \frac{\epsilon}{|m|}$ unless m = 0 and then any δ will do.

6. Final conclusion:

$$\lim_{\alpha \to x_{0}^{-}} f(\alpha) = f(x_{0})$$

7. In a similar analysis we can conclude also that

$$\lim_{\beta \to x_0^+} f(\beta) = f(x_0)$$

- 8. That means that $\lim_{x\to x_0} f(x) = f(x_0)$. Thus according to Rudin's Theorem 4.6 f is continuous at x_0 .
- 9. As x_0 was arbitrary, f is continuous.

- *Claim*: Every increasing convex function of a convex function is convex. *Proof*:
 - 1. Let $(f, g) \in [(a, b)^{\mathbb{R}}]^2$ be given such that f is convex and g is convex and increasing.
 - 2. Define $h \in (a, b)^{\mathbb{R}}$ by $h := g \circ f$.
 - 3. The statement of the claim is then that h is convex itself, as well.
 - 4. That means that h should obey

 $h\left(\lambda x+\left(1-\lambda\right)y\right)\leqslant\lambda h\left(x\right)+\left(1-\lambda\right)h\left(y\right)$

for all $(x, y, \lambda) \in (\mathfrak{a}, \mathfrak{b})^2 \times (\mathfrak{0}, 1)$.

- 5. $h(\lambda x + (1 \lambda)y) = g(f(\lambda x + (1 \lambda)y))$ by definition.
- 6. Use the fact that f is convex, so that $f(\lambda x + (1 \lambda) y) \leq \lambda f(x) + (1 \lambda) f(y)$.
- 7. Use the fact that g is increasing, so if $\alpha \leq \beta$ then $g(\alpha) \leq g(\beta)$. In our case, that means that $g(f(\lambda x + (1 \lambda)y)) \leq g(\lambda f(x) + (1 \lambda)f(y))$.
- 8. Use the fact that g is convex so that $g(\lambda f(x) + (1 \lambda) f(y)) \leq \lambda g(f(x)) + (1 \lambda) g(f(y))$.

- 2.2 Differential Equations
- 2.3 Fourier Series
- 2.4 Riemann-Stieltjes Integral
- 2.5 Convolution and the Stone Weierstrass Theorem