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1.1 Question 1

• For all (f, g) ∈
(
[a, b]R

)2
define 〈f, g〉 :=

´ b
a f (x)g (x)dx.

• Claim: C0 ([a, b] , R) together with 〈·, ·〉 defined above gives rise to a (real) inner product space.
Proof :

– Claim: C0 ([a, b] , R) is a (real) vector space.
Proof :

∗ Define ’addition’ as a map
(
C0 ([a, b] , R)

)2 → C0 ([a, b] , R) by: ∀ (f, g) ∈
[
C0 ([a, b] , R)

]2, f+g := (x 7→ f (x) + g (x) ∀x ∈ [a, b]).
This map is well defined because of the theorem that says that the sum of two continuous maps is again continuous.

∗ We must establish that this ’addition’ operation endows C0 ([a, b] , R) with the structure of a commutative group:
· The identity element of the group is given by (x 7→ 0∀x ∈ [a, b]) ∈ C0 ([a, b] , R) because constant maps are contin-

uous.
· The inverse element of f ∈ C0 ([a, b] , R) is (x 7→ −f (x) ∀x ∈ [a, b]) ∈ C0 ([a, b] , R) because multiplication of a map

by −1 leaves a continuous map continuous.
· Addition is associative due to associativity of addition in R.
· Addition is commutative due to commutativity of addition in R.

∗ Define ’scalar multiplication’ as a map R × C0 ([a, b] , R) → C0 ([a, b] , R) by ∀ (α, f) ∈ R × C0 ([a, b] , R), αf :=

(x 7→ αf (x) ∀x ∈ [a, b]). This map is well defined because multiplication of a continuous map by a constant is again
continuous.

∗ We must to establish three properties of the two ’scalar multiplication’ and ’addition’ maps:

1. ∀ (α, f, g) ∈ R ×
[
C0 ([a, b] , R)

]2, α (f+ g) = αf+αg indeed:
· ∀x ∈ [a, b]α (f (x) + g (x)) = αf (x) +αg (x) because of distributivity in R.

2. ∀ (α, β, f) ∈ R2 ×C0 ([a, b] , R), (α+β) f = αf+βf and (αβ) f = α (βf).
· ∀x ∈ [a, b] (α+β) f (x) = αf (x) +βf (x), thanks to distributivity in R.
· ∀x ∈ [a, b] (αβ) f (x) = α (βf (x)) due to associtivity of multplication in R.

3. ∀f ∈ C0 ([a, b] , R), 1f = f

· Indeed, as ∀x ∈ [a, b] 1f (x) = f (x).

– Now we need to establish that 〈·, ·〉 is indeed an inner product. It is a map from
[
C0 ([a, b] , R)

]2 → R because the integral
produces a real number. It obeys the properties of the inner product. ∀ (f, g) ∈ C0 ([a, b] , R),

1. Symmetric:

〈f, g〉 ≡
ˆ b

a

f (x)g (x)dx

=

ˆ b

a

g (x) f (x)dx

≡ 〈g, f〉

2. Positive:

〈f, f〉 ≡
ˆ b

a

[f (x)]2 dx

6 (b− a)min
({

[f (x)]2
∣∣∣ x ∈ [a, b]

})
︸ ︷︷ ︸

>0
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3. Zero iff zero vector:

〈0, 0〉 =

ˆ b

a

0dx

= 0

and if 〈f, f〉 = 0 then
´ b
a
[f (x)]2 dx = 0. Now suppose f2 is not identically zero. Then ∃x0 ∈ [a, b] such that [f (x0)]2 > 0.

Because f is continuous, f2 is also continuous. So ∀ε > 0∃δ (ε) > 0 such that if |x− x0| < δ (ε) then
∣∣∣[f (x)]2 − [f (x0)]

2
∣∣∣ < ε

for all x ∈ [a, b]. Pick ε = 1
2 [f (x0)]

2 > 0. Then [f (x)]2 > 1
2 [f (x0)]

2 for all x ∈
[
x0 − δ

(
1
2 [f (x0)]

2
)

, x0 + δ
(
1
2 [f (x0)]

2
)]

.

Then a lower sum on a partition that contains the interval
[
x0 − δ

(
1
2 [f (x0)]

2
)

, x0 + δ
(
1
2 [f (x0)]

2
)]

is larger than or

equal to [f (x0)]
2 δ

(
1
2 [f (x0)]

2
)
> 0. But the lower sums become only larger as the partitions become finer (Theorem 6.4

in Rudin). As a result,
´ b
a
[f (x)]2 dx > 0, which is a contradiction to the initial hypotheis that

´ b
a
[f (x)]2 dx = 0.

4. Linearity in first slot:
Let (α, β, h) ∈ R2 ×

[
C0 ([a, b] , R)

]2 be given. Then we want to show that

〈αf+βg, h〉 = α 〈f, h〉+β 〈g, h〉

which follows easily from Rudin’s Theorem 6.12:

〈αf+βg, h〉 ≡
ˆ b

a

{[αf (x) +βg (x)]h (x)}dx

=

ˆ b

a

[αf (x)h (x) +βg (x)h (x)]dx

=

ˆ b

a

[αf (x)h (x)]dx+

ˆ b

a

[βg (x)h (x)]dx

= α

ˆ b

a

[f (x)h (x)]dx+β

ˆ b

a

[g (x)h (x)]dx

≡ α 〈f, h〉+β 〈g, h〉

�

2 Holiday Exercise Sheet (Number 13)

2.1 Convex Functions

(question 5.23 in Rudin)

• Let f ∈ (a, b)R be given.

• f is called convex iff
f (λx+ (1− λ)y) 6 λf (x) + (1− λ) f (y)

for all (x, y, λ) ∈ (a, b)2 × (0, 1).

• Claim: If f is convex then f is continuous.
Proof :

1. Claim: ∀ (y, x0, x) ∈ (a, b)3 such that a < y < x0 < x < b the following relation holds

f (x0) − f (y)

x0 − y
6

f (x) − f (y)

x− y
6

f (x) − f (x0)

x− x0

Proof :

– Define λ := x0−y
x−y . Note that λ ∈ (0, 1) by definition.

– Then 1− λ = 1− x0−y
x−y = x−y−x0+y

x−y = x−x0
x−y and so

(1− λ) (x− y) = x− x0

x− y− λ (x− y) = x− x0

−y− λ (x− y) = −x0

x0 = λx+ (1− λ)y
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– Thus we have

f (x0) = f (λx+ (1− λ)y)

convexivity
6 λf (x) + (1− λ) f (y)

=
x0 − y

x− y
f (x) +

x− x0
x− y

f (y)

and so

(x− y) f (x0) 6 (x0 − y) f (x) + (x− x0) f (y)

(x− y) f (x0) − (x− y) f (y) 6 (x0 − y) f (x) + (x− x0) f (y) − (x− y) f (y)

(x− y) [f (x0) − f (y)] 6 (x0 − y) [f (x) − f (y)]

f (x0) − f (y)

x0 − y
6

f (x) − f (y)

x− y

We also have

(x− y) f (x0) 6 (x0 − y) f (x) + (x− x0) f (y)

− (x− y) f (x0) > −(x0 − y) f (x) − (x− x0) f (y)

(x− y) f (x) − (x− y) f (x0) > (x− y) f (x) − (x0 − y) f (x) − (x− x0) f (y)

(x− y) [f (x) − f (x0)] > (x− x0) [f (x) − f (y)]

f (x) − f (y)

x− y
6

f (x) − f (x0)

x− x0

2. Let (y, α, x0, β, x) ∈ (a, b)5 be given such that y < α < x0 < β < x. Then by the preceding claim, we have that

f (x0) − f (y)

x0 − y
6

f (x0) − f (α)

x0 −α
6

f (β) − f (x0)

β− x0
6

f (x) − f (x0)

x− x0

3. Define

{
m :=

f(x0)−f(y)
x0−y

M :=
f(x)−f(x0)

x−x0

4. Thus we have
m 6

f (x0) − f (α)

x0 −α
6

f (β) − f (x0)

β− x0
6 M

or {
m 6 f(x0)−f(α)

x0−α 6 M

m 6 f(β)−f(x0)
β−x0

6 M

5. For the first inequality, m 6 f(x0)−f(α)
x0−α 6 M, or

m (x0 −α) 6 [f (x0) − f (α)] 6 M (x0 −α)

– If m > 0 and M > 0, define δ := ε
M .

∗ Then if 0 < x0 −α < δ then [f (x0) − f (α)] < ε.
∗ Because (x0 −α)m > 0, (x0 −α)m > −ε so that f (x0) − f (α) > −ε, so that |f (x0) − f (α)| < ε.
∗ Thus

lim
α→x−

0

f (α) = f (x0)

– If m < 0 and M > 0, define δ := εmin
({

1
|m|

, 1
M

})
.

∗ Then the right hand side is fulfilled.
∗ The left hand side has:

· x0 −α < δ then m (x0 −α) > −ε

· thus f (x0) − f (α) > −ε

∗ Thus |f (x0) − f (α)| < ε.
– If m < 0 and M < 0, define δ := ε 1

|m|
.

∗ Then f (x0) − f (α) < 0 < ε and f (x0) − f (α) > (x0 −α)m > −ε

– If m = 0 and so M > 0, define δ := ε
M (unless M = 0, in which case any δ will do).

– If M = 0 and so m 6 0, define δ := ε
|m|

unless m = 0 and then any δ will do.
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6. Final conclusion:
lim

α→x−
0

f (α) = f (x0)

7. In a similar analysis we can conclude also that
lim

β→x+
0

f (β) = f (x0)

8. That means that limx→x0
f (x) = f (x0). Thus according to Rudin’s Theorem 4.6 f is continuous at x0.

9. As x0 was arbitrary, f is continuous.

�

• Claim: Every increasing convex function of a convex function is convex.
Proof :

1. Let (f, g) ∈
[
(a, b)R

]2
be given such that f is convex and g is convex and increasing.

2. Define h ∈ (a, b)R by h := g ◦ f.
3. The statement of the claim is then that h is convex itself, as well.

4. That means that h should obey
h (λx+ (1− λ)y) 6 λh (x) + (1− λ)h (y)

for all (x, y, λ) ∈ (a, b)2 × (0, 1).

5. h (λx+ (1− λ)y) = g (f (λx+ (1− λ)y)) by definition.

6. Use the fact that f is convex, so that f (λx+ (1− λ)y) 6 λf (x) + (1− λ) f (y).

7. Use the fact that g is increasing, so if α 6 β then g (α) 6 g (β). In our case, that means that g (f (λx+ (1− λ)y)) 6
g (λf (x) + (1− λ) f (y)).

8. Use the fact that g is convex so that g (λf (x) + (1− λ) f (y)) 6 λg (f (x)) + (1− λ)g (f (y)).

�

2.2 Differential Equations

2.3 Fourier Series

2.4 Riemann-Stieltjes Integral

2.5 Convolution and the Stone Weierstrass Theorem
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