Analysis 1
 Recitation Session of Week 14

Jacob Shapiro

December 19, 2014

1 Exercise Sheet Number 12

1.1 Question 1

- For all $(f, g) \in\left([a, b]^{\mathbb{R}}\right)^{2}$ define $\langle f, g\rangle:=\int_{a}^{b} f(x) g(x) d x$.
- Claim: $\mathrm{C}^{0}([\mathrm{a}, \mathrm{b}], \mathbb{R})$ together with $\langle\cdot, \cdot\rangle$ defined above gives rise to a (real) inner product space. Proof:
- Claim: $\mathrm{C}^{0}([\mathrm{a}, \mathrm{b}], \mathbb{R})$ is a (real) vector space.

Proof:

* Define'addition' as a map $\left(\mathrm{C}^{0}([\mathrm{a}, \mathrm{b}], \mathbb{R})\right)^{2} \rightarrow \mathrm{C}^{0}([\mathrm{a}, \mathrm{b}], \mathbb{R})$ by: $\forall(\mathrm{f}, \mathrm{g}) \in\left[\mathrm{C}^{0}([\mathrm{a}, \mathrm{b}], \mathbb{R})\right]^{2}, \mathrm{f}+\mathrm{g}:=(\mathrm{x} \mapsto \mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x}) \forall \mathrm{x} \in[\mathrm{a}$ This map is well defined because of the theorem that says that the sum of two continuous maps is again continuous.
* We must establish that this 'addition' operation endows $C^{0}([a, b], \mathbb{R})$ with the structure of a commutative group:
- The identity element of the group is given by $(x \mapsto 0 \forall x \in[a, b]) \in C^{0}([a, b], \mathbb{R})$ because constant maps are continuous.
- The inverse element of $f \in C^{0}([a, b], \mathbb{R})$ is $(x \mapsto-f(x) \forall x \in[a, b]) \in C^{0}([a, b], \mathbb{R})$ because multiplication of a map by -1 leaves a continuous map continuous.
- Addition is associative due to associativity of addition in \mathbb{R}.
- Addition is commutative due to commutativity of addition in \mathbb{R}.
* Define 'scalar multiplication' as a map $\mathbb{R} \times C^{0}([a, b], \mathbb{R}) \rightarrow C^{0}([a, b], \mathbb{R})$ by $\forall(\alpha, f) \in \mathbb{R} \times C^{0}([a, b], \mathbb{R})$, $\alpha f:=$ $(x \mapsto \alpha f(x) \forall x \in[a, b])$. This map is well defined because multiplication of a continuous map by a constant is again continuous.
* We must to establish three properties of the two 'scalar multiplication' and 'addition' maps:

1. $\forall(\alpha, f, g) \in \mathbb{R} \times\left[C^{0}([a, b], \mathbb{R})\right]^{2}, \alpha(f+g)=\alpha f+\alpha g$ indeed:

- $\forall x \in[a, b] \alpha(f(x)+g(x))=\alpha f(x)+\alpha g(x)$ because of distributivity in \mathbb{R}.

2. $\forall(\alpha, \beta, f) \in \mathbb{R}^{2} \times C^{0}([a, b], \mathbb{R}),(\alpha+\beta) f=\alpha f+\beta f$ and $(\alpha \beta) f=\alpha(\beta f)$.

- $\forall x \in[a, b](\alpha+\beta) f(x)=\alpha f(x)+\beta f(x)$, thanks to distributivity in \mathbb{R}.
- $\forall x \in[a, b](\alpha \beta) f(x)=\alpha(\beta f(x))$ due to associtivity of multplication in \mathbb{R}.

3. $\forall f \in C^{0}([a, b], \mathbb{R}), 1 f=f$

- Indeed, as $\forall x \in[a, b]$ $1 f(x)=f(x)$.
- Now we need to establish that \langle, \cdot,$\rangle is indeed an inner product. It is a map from \left[C^{0}([a, b], \mathbb{R})\right]^{2} \rightarrow \mathbb{R}$ because the integral produces a real number. It obeys the properties of the inner product. $\forall(f, g) \in C^{\mathcal{O}}([a, b], \mathbb{R})$,

1. Symmetric:

$$
\begin{aligned}
\langle f, g\rangle & \equiv \int_{a}^{b} f(x) g(x) d x \\
& =\int_{a}^{b} g(x) f(x) d x \\
& \equiv\langle g, f\rangle
\end{aligned}
$$

2. Positive:

$$
\begin{aligned}
\langle f, f\rangle & \equiv \int_{a}^{b}[f(x)]^{2} d x \\
& \leqslant(b-a) \underbrace{\min \left(\left\{[f(x)]^{2} \mid x \in[a, b]\right\}\right)}_{\geqslant 0}
\end{aligned}
$$

3. Zero iff zero vector:

$$
\begin{aligned}
\langle 0,0\rangle & =\int_{a}^{b} 0 d x \\
& =0
\end{aligned}
$$

and if $\langle f, f\rangle=0$ then $\int_{a}^{b}[f(x)]^{2} d x=0$. Now suppose f^{2} is not identically zero. Then $\exists x_{0} \in[a, b]$ such that $\left[f\left(x_{0}\right)\right]^{2}>0$. Because f is continuous, f^{2} is also continuous. So $\forall \varepsilon>0 \exists \delta(\varepsilon)>0$ such that if $\left|x-x_{0}\right|<\delta(\varepsilon)$ then $\left|[f(x)]^{2}-\left[f\left(x_{0}\right)\right]^{2}\right|<\varepsilon$ for all $x \in[a, b]$. Pick $\varepsilon=\frac{1}{2}\left[f\left(x_{0}\right)\right]^{2}>0$. Then $[f(x)]^{2}>\frac{1}{2}\left[f\left(x_{0}\right)\right]^{2}$ for all $x \in\left[x_{0}-\delta\left(\frac{1}{2}\left[f\left(x_{0}\right)\right]^{2}\right), x_{0}+\delta\left(\frac{1}{2}\left[f\left(x_{0}\right)\right]^{2}\right)\right]$. Then a lower sum on a partition that contains the interval $\left[x_{0}-\delta\left(\frac{1}{2}\left[f\left(x_{0}\right)\right]^{2}\right), x_{0}+\delta\left(\frac{1}{2}\left[f\left(x_{0}\right)\right]^{2}\right)\right]$ is larger than or equal to $\left[f\left(x_{0}\right)\right]^{2} \delta\left(\frac{1}{2}\left[f\left(x_{0}\right)\right]^{2}\right)>0$. But the lower sums become only larger as the partitions become finer (Theorem 6.4 in Rudin). As a result, $\int_{a}^{b}[f(x)]^{2} d x>0$, which is a contradiction to the initial hypotheis that $\int_{a}^{b}[f(x)]^{2} d x=0$.
4. Linearity in first slot:

Let $(\alpha, \beta, h) \in \mathbb{R}^{2} \times\left[C^{0}([a, b], \mathbb{R})\right]^{2}$ be given. Then we want to show that

$$
\langle\alpha f+\beta g, h\rangle=\alpha\langle f, h\rangle+\beta\langle g, h\rangle
$$

which follows easily from Rudin's Theorem 6.12:

$$
\begin{aligned}
\langle\alpha f+\beta g, h\rangle & \equiv \int_{a}^{b}\{[\alpha f(x)+\beta g(x)] h(x)\} d x \\
& =\int_{a}^{b}[\alpha f(x) h(x)+\beta g(x) h(x)] d x \\
& =\int_{a}^{b}[\alpha f(x) h(x)] d x+\int_{a}^{b}[\beta g(x) h(x)] d x \\
& =\alpha \int_{a}^{b}[f(x) h(x)] d x+\beta \int_{a}^{b}[g(x) h(x)] d x \\
& \equiv \alpha\langle f, h\rangle+\beta\langle g, h\rangle
\end{aligned}
$$

2 Holiday Exercise Sheet (Number 13)

2.1 Convex Functions

(question 5.23 in Rudin)

- Let $f \in(a, b)^{\mathbb{R}}$ be given.
- f is called convex iff

$$
f(\lambda x+(1-\lambda) y) \leqslant \lambda f(x)+(1-\lambda) f(y)
$$

for all $(x, y, \lambda) \in(a, b)^{2} \times(0,1)$.

- Claim: If f is convex then f is continuous. Proof:

1. Claim: $\forall\left(y, x_{0}, x\right) \in(a, b)^{3}$ such that $a<y<x_{0}<x<b$ the following relation holds

$$
\frac{f\left(x_{0}\right)-f(y)}{x_{0}-y} \leqslant \frac{f(x)-f(y)}{x-y} \leqslant \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

Proof:

- Define $\lambda:=\frac{x_{0}-y}{x-y}$. Note that $\lambda \in(0,1)$ by definition.
- Then $1-\lambda=1-\frac{x_{0}-y}{x-y}=\frac{x-y-x_{0}+y}{x-y}=\frac{x-x_{0}}{x-y}$ and so

$$
\begin{aligned}
(1-\lambda)(x-y) & =x-x_{0} \\
x-y-\lambda(x-y) & =x-x_{0} \\
-y-\lambda(x-y) & =-x_{0} \\
x_{0} & =\lambda x+(1-\lambda) y
\end{aligned}
$$

- Thus we have

$$
\begin{array}{rll}
f\left(x_{0}\right) & = & f(\lambda x+(1-\lambda) y) \\
& \leqslant & \\
& \leqslant & \\
& = & \frac{x_{0}-y}{x-y} f(x)+\frac{x-x_{0}}{x-y} f(y)
\end{array}
$$

and so

$$
\begin{aligned}
(x-y) f\left(x_{0}\right) & \leqslant\left(x_{0}-y\right) f(x)+\left(x-x_{0}\right) f(y) \\
(x-y) f\left(x_{0}\right)-(x-y) f(y) & \leqslant\left(x_{0}-y\right) f(x)+\left(x-x_{0}\right) f(y)-(x-y) f(y) \\
(x-y)\left[f\left(x_{0}\right)-f(y)\right] & \leqslant\left(x_{0}-y\right)[f(x)-f(y)] \\
\frac{f\left(x_{0}\right)-f(y)}{x_{0}-y} & \leqslant \frac{f(x)-f(y)}{x-y}
\end{aligned}
$$

We also have

$$
\begin{aligned}
(x-y) f\left(x_{0}\right) & \leqslant\left(x_{0}-y\right) f(x)+\left(x-x_{0}\right) f(y) \\
-(x-y) f\left(x_{0}\right) & \geqslant-\left(x_{0}-y\right) f(x)-\left(x-x_{0}\right) f(y) \\
(x-y) f(x)-(x-y) f\left(x_{0}\right) & \geqslant(x-y) f(x)-\left(x_{0}-y\right) f(x)-\left(x-x_{0}\right) f(y) \\
(x-y)\left[f(x)-f\left(x_{0}\right)\right] & \geqslant\left(x-x_{0}\right)[f(x)-f(y)] \\
\frac{f(x)-f(y)}{x-y} & \leqslant \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
\end{aligned}
$$

2. Let $\left(y, \alpha, x_{0}, \beta, x\right) \in(a, b)^{5}$ be given such that $y<\alpha<x_{0}<\beta<x$. Then by the preceding claim, we have that

$$
\frac{f\left(x_{0}\right)-f(y)}{x_{0}-y} \leqslant \frac{f\left(x_{0}\right)-f(\alpha)}{x_{0}-\alpha} \leqslant \frac{f(\beta)-f\left(x_{0}\right)}{\beta-x_{0}} \leqslant \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

3. Define $\begin{cases}m & :=\frac{f\left(x_{0}\right)-f(y)}{x_{0}-y} \\ M & :=\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}\end{cases}$
4. Thus we have

$$
m \leqslant \frac{f\left(x_{0}\right)-f(\alpha)}{x_{0}-\alpha} \leqslant \frac{f(\beta)-f\left(x_{0}\right)}{\beta-x_{0}} \leqslant M
$$

or

$$
\left\{\begin{array}{l}
m \leqslant \frac{f\left(x_{0}\right)-f(\alpha)}{x_{0}-\alpha} \leqslant M \\
m \leqslant \frac{f(\beta)-f\left(x_{0}\right)}{\beta-x_{0}} \leqslant M
\end{array}\right.
$$

5. For the first inequality, $m \leqslant \frac{f\left(x_{0}\right)-f(\alpha)}{x_{0}-\alpha} \leqslant M$, or

$$
m\left(x_{0}-\alpha\right) \leqslant\left[f\left(x_{0}\right)-f(\alpha)\right] \leqslant M\left(x_{0}-\alpha\right)
$$

- If $m>0$ and $M>0$, define $\delta:=\frac{\varepsilon}{M}$.
* Then if $0<x_{0}-\alpha<\delta$ then $\left[f\left(x_{0}\right)-f(\alpha)\right]<\varepsilon$.
* Because $\left(x_{0}-\alpha\right) m>0,\left(x_{0}-\alpha\right) m>-\varepsilon$ so that $f\left(x_{0}\right)-f(\alpha)>-\varepsilon$, so that $\left|f\left(x_{0}\right)-f(\alpha)\right|<\varepsilon$.
* Thus

$$
\lim _{\alpha \rightarrow x_{0}^{-}} f(\alpha)=f\left(x_{0}\right)
$$

- If $\mathrm{m}<0$ and $M>0$, define $\delta:=\varepsilon \min \left(\left\{\frac{1}{|\mathrm{~m}|}, \frac{1}{M}\right\}\right)$.
* Then the right hand side is fulfilled.
* The left hand side has:
- $x_{0}-\alpha<\delta$ then $m\left(x_{0}-\alpha\right)>-\varepsilon$
- thus $f\left(x_{0}\right)-f(\alpha)>-\varepsilon$
* Thus $\left|f\left(x_{0}\right)-f(\alpha)\right|<\varepsilon$.
- If $m<0$ and $M<0$, define $\delta:=\varepsilon \frac{1}{|m|}$.
* Then $f\left(x_{0}\right)-f(\alpha)<0<\varepsilon$ and $f\left(x_{0}\right)-f(\alpha)>\left(x_{0}-\alpha\right) m>-\varepsilon$
- If $m=0$ and so $M \geqslant 0$, define $\delta:=\frac{\varepsilon}{M}$ (unless $M=0$, in which case any δ will do).
- If $M=0$ and so $m \leqslant 0$, define $\delta:=\frac{\varepsilon}{|m|}$ unless $m=0$ and then any δ will do.

6. Final conclusion:

$$
\lim _{\alpha \rightarrow x_{0}^{-}} f(\alpha)=f\left(x_{0}\right)
$$

7. In a similar analysis we can conclude also that

$$
\lim _{\beta \rightarrow x_{0}^{+}} f(\beta)=f\left(x_{0}\right)
$$

8. That means that $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$. Thus according to Rudin's Theorem 4.6 f is continuous at x_{0}.
9. As x_{0} was arbitrary, f is continuous.

- Claim: Every increasing convex function of a convex function is convex.

Proof:

1. Let $(f, g) \in\left[(a, b)^{\mathbb{R}}\right]^{2}$ be given such that f is convex and g is convex and increasing.
2. Define $h \in(a, b)^{\mathbb{R}}$ by $h:=g \circ f$.
3. The statement of the claim is then that h is convex itself, as well.
4. That means that h should obey

$$
h(\lambda x+(1-\lambda) y) \leqslant \lambda h(x)+(1-\lambda) h(y)
$$

for all $(x, y, \lambda) \in(a, b)^{2} \times(0,1)$.
5. $h(\lambda x+(1-\lambda) y)=g(f(\lambda x+(1-\lambda) y))$ by definition.
6. Use the fact that f is convex, so that $f(\lambda x+(1-\lambda) y) \leqslant \lambda f(x)+(1-\lambda) f(y)$.
7. Use the fact that g is increasing, so if $\alpha \leqslant \beta$ then $g(\alpha) \leqslant g(\beta)$. In our case, that means that $g(f(\lambda x+(1-\lambda) y)) \leqslant$ $g(\lambda f(x)+(1-\lambda) f(y))$.
8. Use the fact that g is convex so that $g(\lambda f(x)+(1-\lambda) f(y)) \leqslant \lambda g(f(x))+(1-\lambda) g(f(y))$.

2.2 Differential Equations

2.3 Fourier Series

2.4 Riemann-Stieltjes Integral

2.5 Convolution and the Stone Weierstrass Theorem

