Analysis 1
 Recitation Session of Week 10

Jacob Shapiro

November 20, 2014

1 Exercise Sheet Number 8

1.1 Question 1

- Let $s \in \mathbb{Q}$ be given.

Claim: The map $f:(0, \infty) \rightarrow \mathbb{R}$ given by $x \mapsto x^{s}$ is continuous.
Proof:

- Note: You may not use the fact that if f and g are continuous then so is their multiplication map, because $s \in \mathbb{Q}$ and not necessarily in \mathbb{Z}, so you may not write $x^{s}=\underbrace{x \cdot x \cdot x \cdots x}_{s \text {-times }}$.
- So we know the map is continuous for $s \in \mathbb{Z}$ so assume $s \notin \mathbb{Z}$ and write $s=\frac{p}{q}$ where $\operatorname{gcd}(p, q)=1, p \in \mathbb{Z}$ and $q \in \mathbb{N} \backslash\{0\}$.
- We can write $x^{\frac{p}{q}}=\left(x^{\frac{1}{q}}\right)^{p}$, and again, we know that $x \mapsto x^{p}$ is continuous when $p \in \mathbb{Z}$, so WLOG we may assume that $p=1$ (using the fact that composition of continuous functions is continuous).
- Thus our goal is reduced to prove that $x \mapsto x^{\frac{1}{q}}$ where $q \in \mathbb{N} \backslash\{0\}$ is continuous at x for all $x \neq 0$.
- So let $\varepsilon>0$ be given and let some $x_{0} \in(0, \infty)$ be given.
- Take $\delta\left(x_{0}, \varepsilon\right):=\varepsilon\left|x_{0}{ }^{\frac{1}{q}-1}\right|$.
- Then if $\left|x-x_{0}\right|<\varepsilon\left|x_{0}{ }^{\frac{1}{q}-1}\right|$, we have

$$
\begin{aligned}
\left|x^{\frac{1}{q}}-x_{0}{ }^{\frac{1}{q}}\right| & =\left|\frac{x-x_{0}}{x^{\frac{1}{q}-1}+x^{\frac{1}{q}-2} x_{0}+\cdots+x x_{0}{ }^{\frac{1}{q}-2}+x_{0}{ }^{\frac{1}{q}-1}}\right| \\
& \left.\leq \frac{\varepsilon\left|x_{0}^{\frac{1}{q}-1}\right|}{\left\lvert\, x^{\frac{1}{q}-1}+x^{\frac{1}{q}-2} x_{0}+\cdots+x x_{0}{ }^{\frac{1}{q}-2}+x_{0} \frac{1}{q}-1\right.} \right\rvert\, \\
& \leq \frac{\varepsilon\left|x_{0} 0^{\frac{1}{q}-1}\right|}{\left|x_{0}^{\frac{1}{q}-1}\right|} \\
& \leq \varepsilon_{0}
\end{aligned}
$$

- Part (b): Claim: $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$ has continuous extension on the whole of \mathbb{C} when $s<1$.

Proof:

- In order to have an analytic extension, we need this new function $F: \mathbb{C} \rightarrow \mathbb{C}$ to obey the following two conditions:

1. F has to be continuous on the whole of \mathbb{C}.
2. F has to agree with f for the domain of $f, \mathbb{C} \backslash\{0\}$.
3. Thus define $F: \mathbb{C} \rightarrow \mathbb{C}$ as $z \mapsto\left\{\begin{array}{ll}f(z) & z \in \mathbb{C} \backslash\{0\} \\ w & z=0\end{array}\right.$.
4. The only question that remains is what should this $w \in \mathbb{C}$ be, and the way to find out, is to demand that F is continuous at 0 .
5. For functions $\mathbb{C} \rightarrow \mathbb{C}$, continuity is equivalent to sequential continuity, so that we may just as well demand that $\lim _{z \rightarrow 0} F(z) \stackrel{!}{=}$ w.
6. But $\lim _{z \rightarrow 0} F(z)=\lim _{z \rightarrow 0} f(z)$ because F and f agree for all $z \neq 0$.
7. Thus we need to compute $\lim _{z \rightarrow 0} f(z)$.
8. If this limit exists then it should not depend on how we approach zero (theorem 4.2 in Rudin). In particular, we may approach zero via the real axis:

$$
\begin{array}{rlr}
\lim _{z \rightarrow 0} f(z) & = & \lim _{R \rightarrow 0} \frac{\bar{R}}{|R|^{s}} \\
& = & \lim _{R \rightarrow 0} R^{1-s} \\
& =t \rightarrow t^{1-s} & \text { is } \\
\stackrel{\text { continuous }}{ } & \left(\lim _{R \rightarrow 0} R\right)^{1-s} \\
& = & 0^{1-s} \\
& = & 0
\end{array}
$$

where $R \in(0, \infty)$
7. Hence the limit exists, and thus if we define $w=0$ then F is indeed continuous at 0 and we are set.

- This couldn't have worked for $s \geq 1$ because then the $\operatorname{limit}^{\lim }{ }_{z \rightarrow 0} f(z)$ either diverges or does not exist.

1.2 Question 2

- Claim: $f: \mathbb{C} \backslash \mathbb{Z} \rightarrow \mathbb{C}$ defined by $z \mapsto \frac{1}{z}+\sum_{n=1}^{\infty} \frac{2 z}{z^{2}-n^{2}}$ is continuous and $f(z)=f(z+1)$.

Note: There is an identity saying that $\pi \cot (\pi z)=\frac{1}{z}+\sum_{n=1}^{\infty} \frac{2 z}{z^{2}-n^{2}}$ but you are not supposed to know that. Proof:

- Define the partial sums $f_{N}(z):=\frac{1}{z}+\sum_{n=1}^{N} \frac{2 z}{z^{2}-n^{2}}$ for all $N \in \mathbb{N}$.
- Define

$$
\begin{aligned}
M_{N} & :=\sup \left(\left\{\left|f_{N}(z)-f(z)\right| \mid z \in \mathbb{C} \backslash \mathbb{Z}\right\}\right) \\
& =\sup \left(\left\{\left.\left|\frac{1}{z}+\sum_{n=1}^{N} \frac{2 z}{z^{2}-n^{2}}-\pi \cot (\pi z)\right| \right\rvert\, z \in \mathbb{C} \backslash \mathbb{Z}\right\}\right)
\end{aligned}
$$

- We know that $f_{N} \rightarrow f$ uniformly on $\mathbb{C} \backslash \mathbb{Z}$ if and only if $M_{N} \rightarrow 0$ as $N \rightarrow \infty$ (theorem 7.9 in Rudin).
- But $M_{N}=\infty$ clearly, so that it does not converge to zero!
- Thus f_{N} cannot converge uniformly to f, and we may not use uniform convergence to conclude continuity of f.
- Instead, what you should have done is tried to prove uniform continuity on some subset of $\mathbb{C} \backslash \mathbb{Z}$.
- Let $z \in \mathbb{C} \backslash \mathbb{Z}$ be given, and pick some $\varepsilon>0$ so that $\overline{B_{\varepsilon}(z)} \equiv\{\omega \in \mathbb{C}||z-w| \leq \varepsilon\} \subseteq \mathbb{C} \backslash \mathbb{Z}$.
* This is possible because $(\mathbb{C} \backslash \mathbb{Z}) \in \operatorname{Open}(\mathbb{C})$ (because $\mathbb{Z} \in \operatorname{Closed}(\mathbb{C})$ (because a singleton $\left\{z_{0}\right\} \in \operatorname{Closed}(\mathbb{C})$ for all $z_{0} \in \mathbb{C}$ and \mathbb{Z} is a union of closed such singletons)).
- Claim: $\left.\left.f_{N}\right|_{\overline{B_{\varepsilon}(z)}} \rightarrow f\right|_{\overline{B_{\varepsilon}(z)}}$ uniformly.

Proof:

* Choose $N_{1} \in \mathbb{N}$ so that $2(|z|+\varepsilon) \leq N_{1}$. Then for all $N>N_{1}$ we have

$$
\left.\begin{array}{rl}
\tilde{M}_{N} & :=\sup \left(\left\{\left|f_{N}\right|_{\overline{B_{\varepsilon}(z)}}(w)-\left.f\right|_{\overline{B_{\varepsilon}(z)}}(w)| | w \in \overline{B_{\varepsilon}(z)}\right\}\right) \\
& =\sup \left(\left\{\left.\left|\sum_{n=N+1}^{\infty} \frac{2 w}{w^{2}-n^{2}}\right| \right\rvert\, w \in \overline{B_{\varepsilon}(z)}\right\}\right) \\
& \leq \sup \left(\left\{\left.\sum_{n=N+1}^{\infty}\left|\frac{2 w}{w^{2}-n^{2}}\right| \right\rvert\, w \in \overline{B_{\varepsilon}(z)}\right\}\right) \\
& =\sup \left(\left\{\left.2|w| \sum_{n=N+1}^{\infty} \frac{1}{n^{2}}\left|\frac{1}{\frac{w^{2}}{n^{2}}-1}\right| \right\rvert\, w \in \overline{B_{\varepsilon}(z)}\right\}\right) \\
& \leq \sup \left(\left\{\left.2(|z|+\varepsilon) \sum_{n=N+1}^{\infty} \frac{1}{n^{2}}\left|\frac{1}{\frac{(|z|+\varepsilon)^{2}}{N_{1} 2^{2}}-1}\right| \right\rvert\, w \in \overline{B_{\varepsilon}(z)}\right\}\right) \\
& =\sup \left(\left\{2(|z|+\varepsilon)\left|\frac{1}{\frac{(|z|+\varepsilon)^{2}}{N_{1} 2}-1}\right|\right.\right.
\end{array} \underbrace{\sum_{n=N+1}^{\infty} \frac{1}{n^{2}}}_{\text {bounded }} \right\rvert\, w \in \overline{B_{\varepsilon}(z)}\}) \quad \underbrace{\infty}_{\text {converges to zero as } N \rightarrow \infty} \mid)
$$

- Thus we can conclude that $\left.f\right|_{\overline{B_{\varepsilon}(z)}}$ is continuous because $\left.f_{N}\right|_{\overline{B_{\varepsilon}(z)}}$ are all continuous.
- Claim: If $\left.f\right|_{\overline{B_{\varepsilon}(z)}}$ is continuous at z then f is continuous at z. (homework).
- But z was arbitrary, so that f is continuous for all $z \in \mathbb{C} \backslash \mathbb{Z}$.

1.3 Question 3

- Let A be some countable subset of \mathbb{R}, and let $\sum_{n=1}^{\infty} s_{n}$ be an absolutely convergent series of real numbers.
- Define $f(x):=\sum_{n=1}^{\infty} s_{n} \operatorname{sign}\left(x-a_{n}\right)$ where

$$
\operatorname{sign}(x) \equiv \begin{cases}1 & x>0 \\ 0 & x=0 \\ -1 & x<0\end{cases}
$$

- Claim: The partial sums $f_{N} \equiv \sum_{n=1}^{N} s_{n} \operatorname{sign}\left(x-a_{n}\right)$ converge uniformly to f.

Proof:

- Use the Weierstrass M test with $M_{n} \equiv s_{n}$.
- Claim: f is continuous on $\mathbb{R} \backslash A$.

Proof:

- Follows from uniform convergence.
- Claim: $\left[\lim _{\varepsilon \rightarrow 0} f\left(a_{n}+\varepsilon\right)\right]-\left[\lim _{\varepsilon \rightarrow 0} f\left(a_{n}-\varepsilon\right)\right]=2 s_{n}$.

Proof:

- Make the calculation

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0} f\left(a_{n}+\varepsilon\right) & =\lim _{\varepsilon \rightarrow 0} \lim _{N \rightarrow \infty} f_{N}\left(a_{n}+\varepsilon\right) \\
& =\lim _{\varepsilon \rightarrow 0} \lim _{N \rightarrow \infty} \sum_{j=1}^{N} s_{j} \operatorname{sign}\left(a_{n}+\varepsilon-a_{j}\right) \\
& =\lim _{\varepsilon \rightarrow 0} \lim _{N \rightarrow \infty}\{s_{n} \underbrace{\operatorname{sign}(\varepsilon)}_{1}+\sum_{j=1, j \neq n}^{N} s_{j} \operatorname{sign}\left(a_{n}+\varepsilon-a_{j}\right)\} \\
& =s_{n}+\underbrace{\lim _{\varepsilon \rightarrow \infty} \lim _{N \rightarrow \infty} \sum_{j=1, j \neq n}^{N} s_{j} \operatorname{sign}\left(a_{n}+\varepsilon-a_{j}\right)}_{P \rightarrow 0}
\end{aligned}
$$

- In a very similar fashion we can calculate that $\lim _{\varepsilon \rightarrow 0} f\left(a_{n}-\varepsilon\right)=-s_{n}+P$.
- Still need to show that P exists to make this reigorous. Have a look in the official solutions for details.
- Claim: If $s_{n}>0$ for all $n \in \mathbb{N}$ then f is monotonically increasing.

Proof:

- The function $x \mapsto s_{n} \operatorname{sign}\left(x-a_{n}\right)$ is monotonically increasing for any n (homework).
- The sum of monotone increasing functions is monotone increasing.
- Due to $a_{n} \leq b_{n} \Longrightarrow \lim a_{n} \leq \lim b_{n}$ we have that f is monotonically increasing.

1.4 Question 4

- Almost everyone did it well. Just remember that you must define the domain of a function whenever you are defining a function.

1.5 Question 5

- Let X and Y be metric spaces, and let $\left(A_{j}\right)_{j=0}^{n-1} \subseteq \operatorname{Closed}(X)$ for some $n \in \mathbb{N}$. Define $A:=\bigcup_{j=0}^{n-1} A_{j}$.
- Part (a): Claim: $f: A \rightarrow Y$ is continuous if and only if $\left.f\right|_{A_{i}}: A_{i} \rightarrow Y$ is continuous for all $i \in \mathbb{Z}_{n}$. Proof:
$-\Longrightarrow$
* Let $i \in \mathbb{Z}_{n}$.
* We know that $f: A \rightarrow Y$ is continuous. Thus, $\forall x \in A, \forall \varepsilon>0 \exists \delta_{f}(\varepsilon, x)>0$ such that if $\tilde{x} \in B_{\delta_{f}(\varepsilon, x)}(x)$ then $f(\tilde{x}) \in B_{\varepsilon}(f(x))$.
* Let $\varepsilon>0$ be given, and let $x \in A_{i}$ be given.
* Take $\delta_{\left.f\right|_{A_{i}}}(x, \varepsilon):=\delta_{f}(x, \epsilon)$.
* Then if $\tilde{x} \in B_{\delta_{\left.f\right|_{A_{i}}}(x, \varepsilon)}(x) \cap A_{i}$ then $f(\tilde{x}) \in B_{\varepsilon}(f(x))$ which implies $\left.f\right|_{A_{i}}(\tilde{x}) \in B_{\varepsilon}\left(\left.f\right|_{A_{i}}(x)\right)$ because both x and \tilde{x} lie in A_{i}.
$-\Longleftarrow$
* Let $x \in A$ and some $\varepsilon>0$ be given.
* Define $I:=\left\{i \in \mathbb{Z}_{n} \mid x \in A_{i}\right\}$.
* $\left.f\right|_{A_{i}}$ is continuous at x for all $i \in I$.
* Then if $\tilde{x} \in B_{\delta_{\left.f\right|_{A_{i}}}}(x, \varepsilon)(x) \cap A_{i}$ then $\left.f\right|_{A_{i}}(\tilde{x}) \in B_{\varepsilon}\left(\left.f\right|_{A_{i}}(x)\right)$ for all $i \in I$ (there exist such $\left.\delta_{\left.f\right|_{A_{i}}}(x, \varepsilon)\right)$.
* From this it follows that if $\tilde{x} \in B_{\delta_{\left.f\right|_{A_{i}}}}(x, \varepsilon)(x) \cap A_{i}$ then $f(\tilde{x}) \in B_{\varepsilon}(f(x))$ for all $i \in I$ (there exist such $\left.\delta_{\left.f\right|_{A_{i}}}(x, \varepsilon)\right)$.
* Define $\tilde{\delta}(x, \varepsilon):=\min \left(\left\{\delta_{\left.f\right|_{A_{i}}}(x, \varepsilon) \mid i \in I\right\}\right)$.
* Then if $\tilde{x} \in B_{\tilde{\delta}(x, \varepsilon)}(x) \cap\left(\bigcup_{i \in I} A_{i}\right)$ then $f(\tilde{x}) \in B_{\varepsilon}(f(x))$.
* Define $J:=\mathbb{Z}_{n} \backslash I$.
* Define $C:=\bigcup_{i \in J} A_{i}$.
* Claim: $C \in \operatorname{Closed}(X)$.

Proof:

- C is a finite union of closed subsets of X. The property of being closed is "closed" under finite unions.
* Claim: $x \notin C$.

Proof:

- By definition of I.
* Thus $(X \backslash C) \in$ Open (X) such that $x \in(X \backslash C)$.
* Thus, $\exists \tilde{\tilde{\delta}}(x, \varepsilon)>0$ such that $B_{\tilde{\tilde{\delta}}(x, \varepsilon)}(x) \subseteq(X \backslash C)$.
* Thus, $B_{\tilde{\delta}(x, \varepsilon)}(x) \cap C=\varnothing$.
* Define $\delta(x, \varepsilon):=\min (\{\tilde{\delta}(x, \varepsilon), \tilde{\tilde{\delta}}(x, \varepsilon)\})$.
* Thus if $\tilde{x} \in B_{\delta(x, \varepsilon)}(x)$, then $\tilde{x} \notin C$ and so $\tilde{x} \in\left(\bigcup_{i \in I} A_{i}\right)$, and $x \in B_{\tilde{\delta}(x, \varepsilon)}(x)$ so that we may conclude $f(\tilde{x}) \in B_{\varepsilon}(f(x))$.
- For part (b):
- Define $A_{0}=[0, \infty)$ and $A_{1}=(-\infty, 0)$, and define $\left.f\right|_{A_{0}}:=(x \mapsto 1)$ and $\left.f\right|_{A_{1}}:=(x \mapsto 0)$. Then define $f: \mathbb{R} \rightarrow \mathbb{R}$ as in (a), where $A_{0} \cup A_{1}=\mathbb{R}$.
- Because the restrictions $\left.f\right|_{A_{0}}$ and $\left.f\right|_{A_{1}}$ are constant they are continuous, yet, f is not continuous at 0.4

1.6 Question 6

- This was largely covered in the colloquium on the Cantor set. You may read the summary of that colloquium and also the official solutions to the exercises.

2 Exercise Sheet Number 10

2.1 Differentiation

Let $f:[a, b] \rightarrow \mathbb{R}$ be a function. Then for any $x \in[a, b]$ define

$$
f^{\prime}(x) \equiv \lim _{t \rightarrow x} \frac{f(t)-f(x)}{t-x}
$$

if the limit exists.

- If the limit exists, we say that f is differentiable at x, and that f^{\prime} is its derivative at x.
- Claim: If f is differentiable at $x \in[a, b]$ then f is continuous at x.

Proof:

- Use the limit characterization of continuity:

$$
\begin{aligned}
\lim _{t \rightarrow x} f(t) & =\lim _{t \rightarrow x}[f(t)-f(x)+f(x)] \\
& =\lim _{t \rightarrow x}\left[\frac{f(t)-f(x)}{t-x}(t-x)+f(x)\right] \\
& =\lim _{t \rightarrow x}\left[\frac{f(t)-f(x)}{t-x}(t-x)\right]+f(x) \\
& =\left[\lim _{t \rightarrow x} \frac{f(t)-f(x)}{t-x}\right]\left[\lim _{t \rightarrow x}(t-x)\right]+f(x) \\
& =f^{\prime}(x) \cdot 0+f(x) \\
& =f(x)
\end{aligned}
$$

- The converse of this theorem is false! (Think about $x \mapsto|x|$ at 0).
- Example: Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $x \mapsto x^{2}$. Then

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{t \rightarrow x} \frac{t^{2}-x^{2}}{t-x} \\
& =\lim _{t \rightarrow x}(t+x) \\
& =2 x
\end{aligned}
$$

2.2 Concrete Tips for the Homework Exercises

2.2.1 Question 1

- for part (a) use the bionomial formula on $[\cos (x)]^{n}=\left[\frac{e^{i x}+e^{-i x}}{2}\right]^{n}$
- For part (b) use

1. induction
2. the identity $\cos ((n+1) x)=2 \cos (x) \cos (n x)+\cos ((n-1) x)$ (which you can verify easily).

2.2.2 Question 2

- Calculate $\lim _{x \rightarrow \pm \frac{\pi}{2}} \tan (x)$ (from above or from below, depending on whether the plus or minus signs are chosen).
- Use the intermediate value theorem.

2.2.3 Question 3

- Use induction together with:

1. the "ordinary" Leibniz rool.
2. the fact that $\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}$

2.2.4 Question 4

- May not use the intermediate value theorem, because f^{\prime} is not necessarily continuous!

2.2.5 Question 5

- Define $\forall k \in \mathbb{Z}_{n} \equiv\{0, \ldots, n-1\} f_{k}(x):=\left[\left(1-x^{2}\right)^{n}\right]^{(k)}$.
- Then $P_{n}(x)=\frac{1}{2^{n} n!} f_{n}(x)$.
- Show that $f_{k}(-1)=0=f_{k}(1)$.
- For part (b):
- Define $f(x):=\left(x^{2}-1\right) p^{\prime}(x)$ where $p(x):=\left(x^{2}-1\right)^{n}$.
- Compute $f^{(n+1)}(x)$ once with $f(x)=\left(x^{2}-1\right) p^{\prime}(x)$ and once with $f(x)=2 n x p(x)$, and substract the two equations you get.
- Mulitply by ... to get the desired equation.
- Use question 3 (a).

2.2.6 Question 6

- Compute $\lim _{x \rightarrow \pm \infty} f(x)$.
- Show that $f^{\prime}(x)>0$ for all x.
- Compute $f^{\prime \prime}(x)$ and conclude where f is concave and where it is convex.

2.2.7 Question 7

- For $t=0$ you must compute the derivative by the actual definition.
- Show f^{\prime} is not continuous at 0 .
- Define $t_{k}:=\frac{1}{(2 k+1) \pi}$ and show that $\lim _{k \rightarrow \infty} t_{k}=0$ and $f^{\prime}\left(t_{k}\right)=3$ for all $k \in \mathbb{N}$.

