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1 Exercise Sheet Number 8

1.1 Question 1
• Let s ∈ Q be given.

Claim: The map f : (0, ∞) → R given by x 7→ xs is continuous.
Proof :

– Note: You may not use the fact that if f and g are continuous then so is their multiplication map, because s ∈ Q and not
necessarily in Z, so you may not write xs = x · x · x · · · · x︸ ︷︷ ︸

s-times
.

– So we know the map is continuous for s ∈ Z so assume s /∈ Z and write s = p
q where gcd (p, q) = 1, p ∈ Z and q ∈ N\ {0}.

– We can write x
p
q =

(
x

1
q

)p
, and again, we know that x 7→ xp is continuous when p ∈ Z, so WLOG we may assume that

p = 1 (using the fact that composition of continuous functions is continuous).

– Thus our goal is reduced to prove that x 7→ x
1
q where q ∈ N\ {0} is continuous at x for all x 6= 0.

– So let ε > 0 be given and let some x0 ∈ (0, ∞) be given.

– Take δ (x0, ε) := ε
∣∣∣x0

1
q−1
∣∣∣.

– Then if |x− x0| < ε
∣∣∣x0

1
q−1
∣∣∣, we have

∣∣∣x 1
q − x0

1
q

∣∣∣ =

∣∣∣∣ x− x0

x
1
q−1 + x

1
q−2x0 + · · ·+ xx0

1
q−2 + x0

1
q−1

∣∣∣∣
≤

ε
∣∣∣x0

1
q−1
∣∣∣∣∣∣x 1

q−1 + x
1
q−2x0 + · · ·+ xx0

1
q−2 + x0

1
q−1
∣∣∣

≤
ε
∣∣∣x0

1
q−1
∣∣∣∣∣∣x0

1
q−1
∣∣∣

≤ ε0

�

• Part (b): Claim: f : C\ {0} → C has continuous extension on the whole of C when s < 1.
Proof :

– In order to have an analytic extension, we need this new function F : C → C to obey the following two conditions:

1. F has to be continuous on the whole of C.
2. F has to agree with f for the domain of f , C\ {0}.

1. Thus define F : C → C as z 7→

{
f (z) z ∈ C\ {0}
w z = 0

.

2. The only question that remains is what should this w ∈ C be, and the way to find out, is to demand that F is continuous
at 0.

3. For functions C → C, continuity is equivalent to sequential continuity, so that we may just as well demand that limz→0 F (z)
!
=

w.

4. But limz→0 F (z) = limz→0 f (z) because F and f agree for all z 6= 0.
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5. Thus we need to compute limz→0 f (z).
6. If this limit exists then it should not depend on how we approach zero (theorem 4.2 in Rudin). In particular, we may

approach zero via the real axis:

lim
z→0

f (z) = lim
R→0

R

|R|s

= lim
R→0

R1−s

t7→t1−s is continuous
=

(
lim
R→0

R
)1−s

= 01−s

= 0

where R ∈ (0, ∞)

7. Hence the limit exists, and thus if we define w = 0 then F is indeed continuous at 0 and we are set.

�

• This couldn’t have worked for s ≥ 1 because then the limit limz→0 f (z) either diverges or does not exist.

1.2 Question 2
• Claim: f : C\Z → C defined by z 7→ 1

z +
∑∞

n=1
2z

z2−n2 is continuous and f (z) = f (z + 1).
Note: There is an identity saying that π cot (πz) = 1

z +
∑∞

n=1
2z

z2−n2 but you are not supposed to know that.
Proof :

– Define the partial sums fN (z) := 1
z +

∑N
n=1

2z
z2−n2 for all N ∈ N.

– Define

MN := sup ({ |fN (z)− f (z)| | z ∈ C\Z })

= sup

({ ∣∣∣∣∣1z +

N∑
n=1

2z

z2 − n2
− π cot (πz)

∣∣∣∣∣
∣∣∣∣∣ z ∈ C\Z

})
– We know that fN → f uniformly on C\Z if and only if MN → 0 as N → ∞ (theorem 7.9 in Rudin).
– But MN = ∞ clearly, so that it does not converge to zero!
– Thus fN cannot converge uniformly to f , and we may not use uniform convergence to conclude continuity of f .
– Instead, what you should have done is tried to prove uniform continuity on some subset of C\Z.
– Let z ∈ C\Z be given, and pick some ε > 0 so that Bε (z) ≡ { ω ∈ C | |z − w| ≤ ε } ⊆ C\Z.

∗ This is possible because (C\Z) ∈ Open (C) (because Z ∈ Closed (C) (because a singleton { z0 } ∈ Closed (C) for all
z0 ∈ C and Z is a union of closed such singletons)).

– Claim: fN |
Bε(z)

→ f |
Bε(z)

uniformly.
Proof :
∗ Choose N1 ∈ N so that 2 (|z|+ ε) ≤ N1. Then for all N > N1 we have

M̃N := sup
({ ∣∣∣fN |

Bε(z)
(w)− f |

Bε(z)
(w)
∣∣∣ ∣∣∣ w ∈ Bε (z)

})
= sup

({ ∣∣∣∣∣
∞∑

n=N+1

2w

w2 − n2

∣∣∣∣∣
∣∣∣∣∣ w ∈ Bε (z)

})

≤ sup

({ ∞∑
n=N+1

∣∣∣∣ 2w

w2 − n2

∣∣∣∣
∣∣∣∣∣ w ∈ Bε (z)

})

= sup

({
2 |w|

∞∑
n=N+1

1

n2

∣∣∣∣∣ 1
w2

n2 − 1

∣∣∣∣∣
∣∣∣∣∣ w ∈ Bε (z)

})

≤ sup

 2 (|z|+ ε)

∞∑
n=N+1

1

n2

∣∣∣∣∣∣ 1
(|z|+ε)2

N1
2 − 1

∣∣∣∣∣∣
∣∣∣∣∣∣ w ∈ Bε (z)




= sup




2 (|z|+ ε)

∣∣∣∣∣∣ 1
(|z|+ε)2

N1
2 − 1

∣∣∣∣∣∣︸ ︷︷ ︸
bounded

∞∑
n=N+1

1

n2︸ ︷︷ ︸
converges to zero as N→∞

∣∣∣∣∣∣∣∣∣∣∣
w ∈ Bε (z)




→ 0
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– Thus we can conclude that f |
Bε(z)

is continuous because fN |
Bε(z)

are all continuous.

– Claim: If f |
Bε(z)

is continuous at z then f is continuous at z. (homework).

– But z was arbitrary, so that f is continuous for all z ∈ C\Z.

1.3 Question 3
• Let A be some countable subset of R, and let

∑∞
n=1 sn be an absolutely convergent series of real numbers.

• Define f (x) :=
∑∞

n=1 snsign (x− an) where

sign (x) ≡


1 x > 0

0 x = 0

−1 x < 0

• Claim: The partial sums fN ≡
∑N

n=1 snsign (x− an) converge uniformly to f .
Proof :

– Use the Weierstrass M test with Mn ≡ sn.

• Claim: f is continuous on R\A.
Proof :

– Follows from uniform convergence.

• Claim: [limε→0 f (an + ε)]− [limε→0 f (an − ε)] = 2sn.
Proof :

– Make the calculation

lim
ε→0

f (an + ε) = lim
ε→0

lim
N→∞

fN (an + ε)

= lim
ε→0

lim
N→∞

N∑
j=1

sjsign (an + ε− aj)

= lim
ε→0

lim
N→∞

sn sign (ε)︸ ︷︷ ︸
1

+

N∑
j=1,j 6=n

sjsign (an + ε− aj)


= sn + lim

ε→0
lim

N→∞

N∑
j=1,j 6=n

sjsign (an + ε− aj)︸ ︷︷ ︸
P

– In a very similar fashion we can calculate that limε→0 f (an − ε) = −sn + P .

– Still need to show that P exists to make this reigorous. Have a look in the official solutions for details.

• Claim: If sn > 0 for all n ∈ N then f is monotonically increasing.
Proof :

– The function x 7→ snsign (x− an) is monotonically increasing for any n (homework).

– The sum of monotone increasing functions is monotone increasing.

– Due to an ≤ bn =⇒ lim an ≤ lim bn we have that f is monotonically increasing.

1.4 Question 4
• Almost everyone did it well. Just remember that you must define the domain of a function whenever you are defining a function.

1.5 Question 5
• Let X and Y be metric spaces, and let (Aj)

n−1
j=0 ⊆ Closed (X) for some n ∈ N. Define A :=

⋃n−1
j=0 Aj .

• Part (a): Claim: f : A → Y is continuous if and only if f |Ai
: Ai → Y is continuous for all i ∈ Zn.

Proof :

– =⇒
∗ Let i ∈ Zn.
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∗ We know that f : A → Y is continuous. Thus, ∀x ∈ A,∀ε > 0 ∃δf (ε, x) > 0 such that if x̃ ∈ Bδf (ε, x) (x) then
f (x̃) ∈ Bε (f (x)).

∗ Let ε > 0 be given, and let x ∈ Ai be given.
∗ Take δ f |Ai

(x, ε) := δf (x, ε).

∗ Then if x̃ ∈ Bδ f|Ai
(x, ε) (x) ∩Ai then f (x̃) ∈ Bε (f (x)) which implies f |Ai

(x̃) ∈ Bε

(
f |Ai

(x)
)

because both x and x̃ lie
in Ai.

– ⇐=

∗ Let x ∈ A and some ε > 0 be given.
∗ Define I := { i ∈ Zn | x ∈ Ai }.
∗ f |Ai

is continuous at x for all i ∈ I.
∗ Then if x̃ ∈ Bδ f|Ai

(x, ε) (x) ∩Ai then f |Ai
(x̃) ∈ Bε

(
f |Ai

(x)
)

for all i ∈ I (there exist such δ f |Ai
(x, ε)).

∗ From this it follows that if x̃ ∈ Bδ f|Ai
(x, ε) (x) ∩Ai then f (x̃) ∈ Bε (f (x)) for all i ∈ I (there exist such δ f |Ai

(x, ε)).

∗ Define δ̃ (x, ε) := min
({

δ f |Ai
(x, ε)

∣∣∣ i ∈ I
})

.

∗ Then if x̃ ∈ Bδ̃(x, ε) (x) ∩
(⋃

i∈I Ai

)
then f (x̃) ∈ Bε (f (x)).

∗ Define J := Zn\I.
∗ Define C :=

⋃
i∈J Ai.

∗ Claim: C ∈ Closed (X).
Proof :
· C is a finite union of closed subsets of X. The property of being closed is “closed” under finite unions.

∗ Claim: x /∈ C.
Proof :
· By definition of I.

∗ Thus (X\C) ∈ Open (X) such that x ∈ (X\C).

∗ Thus, ∃˜̃δ (x, ε) > 0 such that B˜̃
δ(x, ε)

(x) ⊆ (X\C).

∗ Thus, B˜̃
δ(x, ε)

(x) ∩ C = ∅.

∗ Define δ (x, ε) := min
({

δ̃ (x, ε) ,
˜̃
δ (x, ε)

})
.

∗ Thus if x̃ ∈ Bδ(x, ε) (x), then x̃ /∈ C and so x̃ ∈
(⋃

i∈I Ai

)
, and x ∈ Bδ̃(x, ε) (x) so that we may conclude f (x̃) ∈ Bε (f (x)).

• For part (b):

– Define A0 = [0, ∞) and A1 = (−∞, 0), and define f |A0
:= (x 7→ 1) and f |A1

:= (x 7→ 0). Then define f : R → R as in (a),
where A0 ∪A1 = R.

– Because the restrictions f |A0
and f |A1

are constant they are continuous, yet, f is not continuous at 0.4

1.6 Question 6
• This was largely covered in the colloquium on the Cantor set. You may read the summary of that colloquium and also the official

solutions to the exercises.

2 Exercise Sheet Number 10

2.1 Differentiation
Let f : [a, b] → R be a function. Then for any x ∈ [a, b] define

f ′ (x) ≡ lim
t→x

f (t)− f (x)

t− x

if the limit exists.

• If the limit exists, we say that f is differentiable at x, and that f ′ is its derivative at x.

• Claim: If f is differentiable at x ∈ [a, b] then f is continuous at x.
Proof :
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– Use the limit characterization of continuity:

lim
t→x

f (t) = lim
t→x

[f (t)− f (x) + f (x)]

= lim
t→x

[
f (t)− f (x)

t− x
(t− x) + f (x)

]
= lim

t→x

[
f (t)− f (x)

t− x
(t− x)

]
+ f (x)

=

[
lim
t→x

f (t)− f (x)

t− x

] [
lim
t→x

(t− x)
]
+ f (x)

= f ′ (x) · 0 + f (x)

= f (x)

• The converse of this theorem is false! (Think about x 7→ |x| at 0).

• Example: Define f : R → R by x 7→ x2. Then

f ′ (x) = lim
t→x

t2 − x2

t− x
= lim

t→x
(t+ x)

= 2x

2.2 Concrete Tips for the Homework Exercises
2.2.1 Question 1

• for part (a) use the bionomial formula on [cos (x)]
n
=
[
eix+e−ix

2

]n
• For part (b) use

1. induction
2. the identity cos ((n+ 1)x) = 2 cos (x) cos (nx) + cos ((n− 1)x) (which you can verify easily).

2.2.2 Question 2

• Calculate limx→±π
2
tan (x) (from above or from below, depending on whether the plus or minus signs are chosen).

• Use the intermediate value theorem.

2.2.3 Question 3

• Use induction together with:

1. the “ordinary” Leibniz rool.

2. the fact that
(
n+ 1
k

)
=

(
n

k − 1

)
+

(
n
k

)
2.2.4 Question 4

• May not use the intermediate value theorem, because f ′ is not necessarily continuous!

2.2.5 Question 5

• Define ∀k ∈ Zn ≡ { 0, . . . , n− 1 } fk (x) :=
[(
1− x2

)n](k).
• Then Pn (x) =

1
2nn!fn (x).

• Show that fk (−1) = 0 = fk (1).

• For part (b):

– Define f (x) :=
(
x2 − 1

)
p′ (x) where p (x) :=

(
x2 − 1

)n.

– Compute f (n+1) (x) once with f (x) =
(
x2 − 1

)
p′ (x) and once with f (x) = 2nxp (x), and substract the two equations you

get.
– Mulitply by ... to get the desired equation.
– Use question 3 (a).
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2.2.6 Question 6

• Compute limx→±∞ f (x).

• Show that f ′ (x) > 0 for all x.

• Compute f ′′ (x) and conclude where f is concave and where it is convex.

2.2.7 Question 7

• For t = 0 you must compute the derivative by the actual definition.

• Show f ′ is not continuous at 0.

• Define tk := 1
(2k+1)π and show that limk→∞ tk = 0 and f ′ (tk) = 3 for all k ∈ N.
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