Analysis 1 Recitation Session of Week 10

Jacob Shapiro

November 20, 2014

1 Exercise Sheet Number 8

1.1 Question 1

- Let $s \in \mathbb{Q}$ be given. *Claim*: The map $f : (0, \infty) \to \mathbb{R}$ given by $x \mapsto x^s$ is continuous. *Proof*:
 - Note: You may not use the fact that if f and g are continuous then so is their multiplication map, because $s \in \mathbb{Q}$ and not necessarily in \mathbb{Z} , so you may not write $x^s = \underbrace{x \cdot x \cdot x \cdots x}_{x \cdot x \cdot x \cdot x}$.
 - So we know the map is continuous for $s \in \mathbb{Z}$ so assume $s \notin \mathbb{Z}$ and write $s = \frac{p}{q}$ where $gcd(p, q) = 1, p \in \mathbb{Z}$ and $q \in \mathbb{N} \setminus \{0\}$.
 - We can write $x^{\frac{p}{q}} = \left(x^{\frac{1}{q}}\right)^p$, and again, we know that $x \mapsto x^p$ is continuous when $p \in \mathbb{Z}$, so WLOG we may assume that p = 1 (using the fact that composition of continuous functions is continuous).
 - Thus our goal is reduced to prove that $x \mapsto x^{\frac{1}{q}}$ where $q \in \mathbb{N} \setminus \{0\}$ is continuous at x for all $x \neq 0$.
 - So let $\varepsilon > 0$ be given and let some $x_0 \in (0, \infty)$ be given.
 - Take $\delta(x_0, \varepsilon) := \varepsilon \left| x_0^{\frac{1}{q}-1} \right|.$
 - Then if $|x x_0| < \varepsilon \left| x_0^{\frac{1}{q} 1} \right|$, we have

$$\begin{aligned} x^{\frac{1}{q}} - x_0^{\frac{1}{q}} &= \left| \frac{x - x_0}{x^{\frac{1}{q} - 1} + x^{\frac{1}{q} - 2} x_0 + \dots + x x_0^{\frac{1}{q} - 2} + x_0^{\frac{1}{q} - 1}} \right| \\ &\leq \frac{\varepsilon \left| x_0^{\frac{1}{q} - 1} \right|}{\left| x^{\frac{1}{q} - 1} + x^{\frac{1}{q} - 2} x_0 + \dots + x x_0^{\frac{1}{q} - 2} + x_0^{\frac{1}{q} - 1}} \right| \\ &\leq \frac{\varepsilon \left| x_0^{\frac{1}{q} - 1} \right|}{\left| x_0^{\frac{1}{q} - 1} \right|} \\ &\leq \varepsilon_0 \end{aligned}$$

- Part (b): Claim: $f : \mathbb{C} \setminus \{0\} \to \mathbb{C}$ has continuous extension on the whole of \mathbb{C} when s < 1. Proof:
 - In order to have an analytic extension, we need this new function $F: \mathbb{C} \to \mathbb{C}$ to obey the following two conditions:
 - 1. F has to be continuous on the whole of \mathbb{C} .
 - 2. F has to agree with f for the domain of $f, \mathbb{C} \setminus \{0\}$.
 - 1. Thus define $F : \mathbb{C} \to \mathbb{C}$ as $z \mapsto \begin{cases} f(z) & z \in \mathbb{C} \setminus \{0\} \\ w & z = 0 \end{cases}$.
 - 2. The only question that remains is what should this $w \in \mathbb{C}$ be, and the way to find out, is to demand that F is continuous at 0.
 - 3. For functions $\mathbb{C} \to \mathbb{C}$, continuity is equivalent to sequential continuity, so that we may just as well demand that $\lim_{z\to 0} F(z) \stackrel{!}{=} w$.
 - 4. But $\lim_{z\to 0} F(z) = \lim_{z\to 0} f(z)$ because F and f agree for all $z \neq 0$.

- 5. Thus we need to compute $\lim_{z\to 0} f(z)$.
- 6. If this limit exists then it should not depend on how we approach zero (theorem 4.2 in Rudin). In particular, we may approach zero via the real axis:

$$\lim_{z \to 0} f(z) = \lim_{R \to 0} \frac{\overline{R}}{|R|^s}$$

$$= \lim_{R \to 0} R^{1-s}$$

$$t \mapsto t^{1-s} \text{ is continuous } \left(\lim_{R \to 0} R\right)^{1-s}$$

$$= 0^{1-s}$$

$$= 0$$

where $R \in (0, \infty)$

7. Hence the limit exists, and thus if we define w = 0 then F is indeed continuous at 0 and we are set.

• This couldn't have worked for $s \ge 1$ because then the limit $\lim_{z\to 0} f(z)$ either diverges or does not exist.

1.2 Question 2

• Claim: $f: \mathbb{C} \setminus \mathbb{Z} \to \mathbb{C}$ defined by $z \mapsto \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - n^2}$ is continuous and f(z) = f(z+1). Note: There is an identity saying that $\pi \cot(\pi z) = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - n^2}$ but you are not supposed to know that. Proof:

- Define the partial sums $f_N(z) := \frac{1}{z} + \sum_{n=1}^N \frac{2z}{z^2 n^2}$ for all $N \in \mathbb{N}$.
- Define

$$M_N := \sup \left(\left\{ \left| f_N(z) - f(z) \right| \mid z \in \mathbb{C} \setminus \mathbb{Z} \right\} \right) \\ = \sup \left(\left\{ \left| \frac{1}{z} + \sum_{n=1}^N \frac{2z}{z^2 - n^2} - \pi \cot(\pi z) \right| \mid z \in \mathbb{C} \setminus \mathbb{Z} \right\} \right)$$

- We know that $f_N \to f$ uniformly on $\mathbb{C} \setminus \mathbb{Z}$ if and only if $M_N \to 0$ as $N \to \infty$ (theorem 7.9 in Rudin).
- But $M_N = \infty$ clearly, so that it does not converge to zero!
- Thus f_N cannot converge uniformly to f, and we may not use uniform convergence to conclude continuity of f.
- Instead, what you should have done is tried to prove uniform continuity on some subset of $\mathbb{C}\setminus\mathbb{Z}$.
- Let $z \in \mathbb{C} \setminus \mathbb{Z}$ be given, and pick some $\varepsilon > 0$ so that $\overline{B_{\varepsilon}(z)} \equiv \{ \omega \in \mathbb{C} \mid |z w| \le \varepsilon \} \subseteq \mathbb{C} \setminus \mathbb{Z}$.
 - * This is possible because $(\mathbb{C}\setminus\mathbb{Z}) \in Open(\mathbb{C})$ (because $\mathbb{Z} \in Closed(\mathbb{C})$ (because a singleton $\{z_0\} \in Closed(\mathbb{C})$ for all $z_0 \in \mathbb{C}$ and \mathbb{Z} is a union of closed such singletons)).
- Claim: $f_N|_{\overline{B_{\varepsilon}(z)}} \to f|_{\overline{B_{\varepsilon}(z)}}$ uniformly. *Proof*:

* Choose $N_1 \in \mathbb{N}$ so that $2(|z| + \varepsilon) \leq N_1$. Then for all $N > N_1$ we have

$$\begin{split} \tilde{M}_{N} &:= \sup\left(\left\{\left|f_{N}\right|_{\overline{B_{\varepsilon}(z)}}(w) - f\right|_{\overline{B_{\varepsilon}(z)}}(w)\right| \left| w \in \overline{B_{\varepsilon}(z)} \right\}\right) \\ &= \sup\left(\left\{\left|\sum_{n=N+1}^{\infty} \frac{2w}{w^{2} - n^{2}}\right| \left| w \in \overline{B_{\varepsilon}(z)} \right.\right\}\right) \\ &\leq \sup\left(\left\{\sum_{n=N+1}^{\infty} \left|\frac{2w}{w^{2} - n^{2}}\right| \left| w \in \overline{B_{\varepsilon}(z)} \right.\right\}\right) \\ &= \sup\left(\left\{2\left|w\right|\sum_{n=N+1}^{\infty} \frac{1}{n^{2}} \left|\frac{1}{\frac{w^{2}}{n^{2}} - 1}\right| \left| w \in \overline{B_{\varepsilon}(z)} \right.\right\}\right) \\ &\leq \sup\left(\left\{2\left(|z| + \varepsilon\right)\sum_{n=N+1}^{\infty} \frac{1}{n^{2}} \left|\frac{1}{\frac{(|z| + \varepsilon)^{2}}{N_{1}^{2}} - 1}\right| \left| w \in \overline{B_{\varepsilon}(z)} \right.\right\}\right) \\ &= \sup\left(\left\{\frac{2\left(|z| + \varepsilon\right)\left|\frac{1}{\frac{(|z| + \varepsilon)^{2}}{N_{1}^{2}} - 1}\right|}{\operatorname{bounded}}\sum_{\text{converges to zero as } N \to \infty}\right| w \in \overline{B_{\varepsilon}(z)}\right\}\right) \\ &\to 0 \end{split}$$

- Thus we can conclude that $f|_{\overline{B_{\varepsilon}(z)}}$ is continuous because $f_N|_{\overline{B_{\varepsilon}(z)}}$ are all continuous.
- Claim: If $f|_{\overline{B_{\varepsilon}(z)}}$ is continuous at z then f is continuous at z. (homework).
- But z was arbitrary, so that f is continuous for all $z \in \mathbb{C} \setminus \mathbb{Z}$.

1.3 Question 3

- Let A be some countable subset of \mathbb{R} , and let $\sum_{n=1}^{\infty} s_n$ be an absolutely convergent series of real numbers.
- Define $f(x) := \sum_{n=1}^{\infty} s_n sign(x a_n)$ where

$$sign(x) \equiv \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases}$$

- Claim: The partial sums $f_N \equiv \sum_{n=1}^N s_n sign(x-a_n)$ converge uniformly to f. Proof:
 - Use the Weierstrass M test with $M_n \equiv s_n$.
- Claim: f is continuous on $\mathbb{R}\setminus A$. Proof:
 - Follows from uniform convergence.
- Claim: $[\lim_{\varepsilon \to 0} f(a_n + \varepsilon)] [\lim_{\varepsilon \to 0} f(a_n \varepsilon)] = 2s_n$. Proof:
 - Make the calculation

$$\begin{split} \lim_{\varepsilon \to 0} f\left(a_n + \varepsilon\right) &= \lim_{\varepsilon \to 0} \lim_{N \to \infty} f_N\left(a_n + \varepsilon\right) \\ &= \lim_{\varepsilon \to 0} \lim_{N \to \infty} \sum_{j=1}^N s_j sign\left(a_n + \varepsilon - a_j\right) \\ &= \lim_{\varepsilon \to 0} \lim_{N \to \infty} \left\{ s_n \underbrace{sign\left(\varepsilon\right)}_{1} + \sum_{j=1, j \neq n}^N s_j sign\left(a_n + \varepsilon - a_j\right) \right\} \\ &= s_n + \lim_{\varepsilon \to 0} \lim_{N \to \infty} \sum_{j=1, j \neq n}^N s_j sign\left(a_n + \varepsilon - a_j\right) \\ &= \underbrace{s_n + \lim_{\varepsilon \to 0} \lim_{N \to \infty} \sum_{j=1, j \neq n}^N s_j sign\left(a_n + \varepsilon - a_j\right)}_P \end{split}$$

- In a very similar fashion we can calculate that $\lim_{\varepsilon \to 0} f(a_n - \varepsilon) = -s_n + P$.

- Still need to show that P exists to make this reigorous. Have a look in the official solutions for details.

- Claim: If $s_n > 0$ for all $n \in \mathbb{N}$ then f is monotonically increasing. *Proof*:
 - The function $x \mapsto s_n sign(x a_n)$ is monotonically increasing for any n (homework).
 - The sum of monotone increasing functions is monotone increasing.
 - Due to $a_n \leq b_n \Longrightarrow \lim a_n \leq \lim b_n$ we have that f is monotonically increasing.

1.4 Question 4

• Almost everyone did it well. Just remember that you must define the domain of a function whenever you are defining a function.

1.5 Question 5

- Let X and Y be metric spaces, and let $(A_j)_{j=0}^{n-1} \subseteq Closed(X)$ for some $n \in \mathbb{N}$. Define $A := \bigcup_{j=0}^{n-1} A_j$.
- Part (a): Claim: $f : A \to Y$ is continuous if and only if $f|_{A_i} : A_i \to Y$ is continuous for all $i \in \mathbb{Z}_n$. Proof:
 - \Longrightarrow * Let $i \in \mathbb{Z}_n$.

- * We know that $f : A \to Y$ is continuous. Thus, $\forall x \in A, \forall \varepsilon > 0 \ \exists \delta_f(\varepsilon, x) > 0$ such that if $\tilde{x} \in B_{\delta_f(\varepsilon, x)}(x)$ then $f(\tilde{x}) \in B_{\varepsilon}(f(x))$.
- * Let $\varepsilon > 0$ be given, and let $x \in A_i$ be given.
- * Take $\delta_{f|_{A_i}}(x, \varepsilon) := \delta_f(x, \epsilon).$
- * Then if $\tilde{x} \in B_{\delta_{f|_{A_i}}(x,\varepsilon)}(x) \cap A_i$ then $f(\tilde{x}) \in B_{\varepsilon}(f(x))$ which implies $f|_{A_i}(\tilde{x}) \in B_{\varepsilon}(f|_{A_i}(x))$ because both x and \tilde{x} lie in A_i .

```
- (
```

- * Let $x \in A$ and some $\varepsilon > 0$ be given.
- * Define $I := \{ i \in \mathbb{Z}_n \mid x \in A_i \}.$
- * $f|_{A_i}$ is continuous at x for all $i \in I$.
- * Then if $\tilde{x} \in B_{\delta_{f|_{A_{i}}}(x,\varepsilon)}(x) \cap A_{i}$ then $f|_{A_{i}}(\tilde{x}) \in B_{\varepsilon}\left(f|_{A_{i}}(x)\right)$ for all $i \in I$ (there exist such $\delta_{f|_{A_{i}}}(x,\varepsilon)$).
- * From this it follows that if $\tilde{x} \in B_{\delta_{f|_{A_{i}}}(x,\varepsilon)}(x) \cap A_{i}$ then $f(\tilde{x}) \in B_{\varepsilon}(f(x))$ for all $i \in I$ (there exist such $\delta_{f|_{A_{i}}}(x,\varepsilon)$).
- $* \text{ Define } \tilde{\delta}\left(x,\,\varepsilon\right) := \min\Big(\Big\{\left.\delta_{\left.f\right|_{A_{i}}}\left(x,\,\varepsilon\right)\,\Big|\,i\in I\,\Big\}\Big).$
- * Then if $\tilde{x} \in B_{\delta(x,\varepsilon)}(x) \cap \left(\bigcup_{i \in I} A_i\right)$ then $f(\tilde{x}) \in B_{\varepsilon}(f(x))$.
- * Define $J := \mathbb{Z}_n \setminus I$.
- * Define $C := \bigcup_{i \in J} A_i$.
- * Claim: $C \in Closed(X)$.

- \cdot C is a *finite* union of closed subsets of X. The property of being closed is "closed" under finite unions.
- * Claim: $x \notin C$. Proof:
 - \cdot By definition of I.
- * Thus $(X \setminus C) \in Open(X)$ such that $x \in (X \setminus C)$.
- * Thus, $\exists \tilde{\tilde{\delta}}(x, \varepsilon) > 0$ such that $B_{\tilde{\tilde{\delta}}(x, \varepsilon)}(x) \subseteq (X \setminus C)$.
- * Thus, $B_{\tilde{\delta}(x,\varepsilon)}(x) \cap C = \emptyset$.
- * Define $\delta(x, \varepsilon) := \min\left(\left\{\tilde{\delta}(x, \varepsilon), \tilde{\tilde{\delta}}(x, \varepsilon)\right\}\right)$.
- * Thus if $\tilde{x} \in B_{\delta(x,\varepsilon)}(x)$, then $\tilde{x} \notin C$ and so $\tilde{x} \in \left(\bigcup_{i \in I} A_i\right)$, and $x \in B_{\tilde{\delta}(x,\varepsilon)}(x)$ so that we may conclude $f(\tilde{x}) \in B_{\varepsilon}(f(x))$.
- For part (b):
 - Define $A_0 = [0, \infty)$ and $A_1 = (-\infty, 0)$, and define $f|_{A_0} := (x \mapsto 1)$ and $f|_{A_1} := (x \mapsto 0)$. Then define $f : \mathbb{R} \to \mathbb{R}$ as in (a), where $A_0 \cup A_1 = \mathbb{R}$.
 - Because the restrictions $f|_{A_0}$ and $f|_{A_1}$ are constant they are continuous, yet, f is not continuous at 0.4

1.6 Question 6

• This was largely covered in the colloquium on the Cantor set. You may read the summary of that colloquium and also the official solutions to the exercises.

2 Exercise Sheet Number 10

2.1 Differentiation

Let $f:[a, b] \to \mathbb{R}$ be a function. Then for any $x \in [a, b]$ define

$$f'(x) \equiv \lim_{t \to x} \frac{f(t) - f(x)}{t - x}$$

if the limit exists.

- If the limit exists, we say that f is differentiable at x, and that f' is its derivative at x.
- Claim: If f is differentiable at $x \in [a, b]$ then f is continuous at x. Proof:

- Use the limit characterization of continuity:

$$\lim_{t \to x} f(t) = \lim_{t \to x} \left[f(t) - f(x) + f(x) \right] \\ = \lim_{t \to x} \left[\frac{f(t) - f(x)}{t - x} (t - x) + f(x) \right] \\ = \lim_{t \to x} \left[\frac{f(t) - f(x)}{t - x} (t - x) \right] + f(x) \\ = \left[\lim_{t \to x} \frac{f(t) - f(x)}{t - x} \right] \left[\lim_{t \to x} (t - x) \right] + f(x) \\ = f'(x) \cdot 0 + f(x) \\ = f(x)$$

- The converse of this theorem is false! (Think about $x \mapsto |x|$ at 0).
- Example: Define $f : \mathbb{R} \to \mathbb{R}$ by $x \mapsto x^2$. Then

$$f'(x) = \lim_{t \to x} \frac{t^2 - x^2}{t - x}$$
$$= \lim_{t \to x} (t + x)$$
$$= 2x$$

2.2 Concrete Tips for the Homework Exercises

2.2.1 Question 1

- for part (a) use the bionomial formula on $\left[\cos\left(x\right)\right]^n = \left[\frac{e^{ix} + e^{-ix}}{2}\right]^n$
- For part (b) use
 - 1. induction
 - 2. the identity $\cos((n+1)x) = 2\cos(x)\cos(nx) + \cos((n-1)x)$ (which you can verify easily).

2.2.2 Question 2

- Calculate $\lim_{x\to\pm\frac{\pi}{2}} \tan(x)$ (from above or from below, depending on whether the plus or minus signs are chosen).
- Use the intermediate value theorem.

2.2.3 Question 3

- Use induction together with:
 - 1. the "ordinary" Leibniz rool.

2. the fact that
$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

2.2.4 Question 4

• May not use the intermediate value theorem, because f' is not necessarily continuous!

2.2.5 Question 5

- Define $\forall k \in \mathbb{Z}_n \equiv \{0, \ldots, n-1\} f_k(x) := \left[\left(1 x^2\right)^n \right]^{(k)}$.
- Then $P_n(x) = \frac{1}{2^n n!} f_n(x)$.
- Show that $f_k(-1) = 0 = f_k(1)$.
- For part (b):
 - Define $f(x) := (x^2 1) p'(x)$ where $p(x) := (x^2 1)^n$.
 - Compute $f^{(n+1)}(x)$ once with $f(x) = (x^2 1) p'(x)$ and once with f(x) = 2nxp(x), and substract the two equations you get.
 - Mulitply by ... to get the desired equation.
 - Use question 3 (a).

2.2.6 Question 6

- Compute $\lim_{x \to \pm \infty} f(x)$.
- Show that f'(x) > 0 for all x.
- Compute f''(x) and conclude where f is concave and where it is convex.

2.2.7 Question 7

- For t = 0 you must compute the derivative by the actual definition.
- Show f' is not continuous at 0.
- Define $t_k := \frac{1}{(2k+1)\pi}$ and show that $\lim_{k\to\infty} t_k = 0$ and $f'(t_k) = 3$ for all $k \in \mathbb{N}$.