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1 Exercise Sheet Number 8

1.1 Question 1

e Let s € Q be given.
Claim: The map f : (0, o0) = R given by = — z° is continuous.
Proof:

Note: You may not use the fact that if f and g are continuous then so is their multiplication map, because s € Q and not
necessarily in Z, so you may not write 2° =g -z -x--- - x.
| —
s-times
So we know the map is continuous for s € Z so assume s ¢ Z and write s = g where ged (p, q) =1, p € Z and g € N\ {0}.

, p
We can write z7 = (mé) , and again, we know that x — 2P is continuous when p € Z, so WLOG we may assume that

p =1 (using the fact that composition of continuous functions is continuous).

Thus our goal is reduced to prove that  — x¢ where q € N\ {0} is continuous at z for all = # 0.

So let € > 0 be given and let some ¢ € (0, co) be given.

Take 0 (g, €) :==¢ ‘xo %71‘.

: 1
Then if |z — x| < € ’xo a 1‘, we have
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e Part (b): Claim: f:C\ {0} — C has continuous extension on the whole of C when s < 1.
Proof:

.ThusdeﬁneF:C—>(Casz»—>{

In order to have an analytic extension, we need this new function F': C — C to obey the following two conditions:

1. F has to be continuous on the whole of C.
2. F has to agree with f for the domain of f, C\ {0}.

1) zec\{op

w z=0

. The only question that remains is what should this w € C be, and the way to find out, is to demand that F' is continuous

at 0.

For functions C — C, continuity is equivalent to sequential continuity, so that we may just as well demand that lim, o F' (2) .

w.

But lim,_,o F () = lim,_,¢ f (2) because F' and f agree for all z # 0.



5. Thus we need to compute lim,_,o f (2).
6. If this limit exists then it should not depend on how we approach zero (theorem 4.2 in Rudin). In particular, we may
approach zero via the real axis:

R
1 = li
lim £ (2) 2% 1R
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R—0

t—¢1~° is continuous . 1-s
= lim R
R—0
— Ol—s
= 0

where R € (0, c0)
7. Hence the limit exists, and thus if we define w = 0 then F' is indeed continuous at 0 and we are set.

e This couldn’t have worked for s > 1 because then the limit lim,_,q f (2) either diverges or does not exist.

1.2 Question 2
e Claim: f:C\Z — C defined by z+— 1 + 3> 2 is contlnuous and f(2)=f(z+1).

1 22-n2 n2
Note: There is an identity saying that mweot (mz) = ; +> ZL”Q but you are not supposed to know that.
Proof:
— Define the partial sums fy (2) := L + Zn | == forall N € N.
— Define

My = sup({|fn(2) = f(2)] |2 € C\Z})
N

= sup ({ %JFZ% —mcot (mz)| | z € C\Z })
— We know that fy — f uniformly on C\Z if and only if My — 0 as N — oo (theorem 7.9 in Rudin).
— But My = oo clearly, so that it does not converge to zero!
— Thus fy cannot converge uniformly to f, and we may not use uniform convergence to conclude continuity of f.
Instead, what you should have done is tried to prove uniform continuity on some subset of C\Z.
— Let z € C\Z be given, and pick some ¢ > 0 so that B, (2) = {w € C ||z —w| < e} C C\Z
* This is possible because (C\Z) € Open (C) (because Z € Closed (C) (because a singleton { zp } € Closed (C) for all
2o € C and Z is a union of closed such singletons)).

n=1

— Claim: fN|m — f|m uniformly.
Proof:
% Choose Ny € N so that 2 (|z] +

£)
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< Nj. Then for all N > N; we have
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— Thus we can conclude that f \T(Z) is continuous because f N|37(Z) are all continuous.
— Claim: If f \37(2) is continuous at z then f is continuous at z. (homework).

— But z was arbitrary, so that f is continuous for all z € C\Z.

1.3 Question 3
e Let A be some countable subset of R, and let )

ZO=1 sn be an absolutely convergent series of real numbers.

e Define f(x) := .27, s,sign (v — a,) where

n=1

1 x>0
sign(z) =<0 x=0
-1 <0

e Claim: The partial sums fy = ij:l Snsign (x — a,,) converge uniformly to f.
Proof:

— Use the Weierstrass M test with M,, = s,,.

e Claim: f is continuous on R\ A.
Proof:

— Follows from uniform convergence.

o Claim: [lim._0 f (an +¢)] — [limeso f (an — €)] = 25,.
Proof:

— Make the calculation

lim f (ap, +¢) = lim lim fn(a,+¢)
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— In a very similar fashion we can calculate that lim¢_o f (a, — €) = —s, + P.

— Still need to show that P exists to make this reigorous. Have a look in the official solutions for details.

e Claim: If s, > 0 for all n € N then f is monotonically increasing.
Proof:

— The function z — s,sign (z — a,) is monotonically increasing for any n (homework).
— The sum of monotone increasing functions is monotone increasing.

— Due to a, < b, = lima,, <limb, we have that f is monotonically increasing.

1.4 Question 4

e Almost everyone did it well. Just remember that you must define the domain of a function whenever you are defining a function.

1.5 Question 5
e Let X and Y be metric spaces, and let (Aj)?:_ol C Closed (X) for some n € N. Define A := U?:_Ol Aj.

e Part (a): Claim: f:A— Y is continuous if and only if f|, :A; — Y is continuous for all i € Zj,.
Proof:

- =1

« Let i € Z,,.
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We know that f : A — Y is continuous. Thus, Vx € AVe > 0 30y (¢, ) > 0 such that if ¥ € Bs,(c o) (z) then
f(2) € B-(f (x)).

Let € > 0 be given, and let € A; be given.

Take 6, (z,¢):= 65 (z, ).

Then if & € Bs | (s,¢) (¥) N A; then f(Z) € B. (f (x)) which implies f|,, (%) € Be (fl4, (x)) because both x and Z lie
in Ai- '
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e For part

Let € A and some € > 0 be given.

Define I :={i€Z, |z € A;}.

fl4, is continuous at x for all 7 € 1.

Then if & € Bs | (s,¢) (¥) N A; then f[, (%) € B. (f|Ai (z)) for all i € I (there exist such 6f, (w,€)).

From this it follows that if Z € B6f|A,i (z,¢) (£) VA then f (%) € Be (f (z)) for all i € I (there exist such 5f|A7.- (z, €)).

Define 6 (z, €) := min ({ 5f‘Ai (z, €) ‘ iel })
Then if & € By, ) (z) N (User Ai) then f (&) € B. (f (2)).
Define J := Z,\I.
Define C' := {J; ; 4Ai-
Claim: C € Closed (X).
Proof:
- C is a finite union of closed subsets of X. The property of being closed is “closed” under finite unions.
Claim: x ¢ C.
Proof:
- By definition of I.
Thus (X\C) € Open (X) such that z € (X\C).
Thus, 36 (z, €) > 0 such that B (x) € (X\CO).

Thus, Bg(La) (x)NnC=o.

Define 4 (z, €) := min ({5 (z, €), g(m, 5)})
Thus if & € By, <) (), then @ ¢ C andso @ € (U;c; Ai), and x € Bj(,. o) (%) so that we may conclude f (Z) € B (f (2)).

(b):

(z, €)

— Define Ag = [0, c0) and A; = (—o00, 0), and define f|, := (v + 1) and f[, = (z — 0). Then define f: R — R as in (a),
where Ao @] A1 =R.

— Because the restrictions f| 4, and fl 4, are constant they are continuous, yet, f is not continuous at 0.4

1.6 Question 6

e This was largely covered in the colloquium on the Cantor set. You may read the summary of that colloquium and also the official
solutions to the exercises.

2 Exercise Sheet Number 10

2.1 Differentiation
Let f : [a, b] — R be a function. Then for any x € [a, b] define

if the limit exists.

e If the limit exists, we say that f is differentiable at z, and that f’ is its derivative at z.

e Claim: If f is differentiable at x € [a, b] then f is continuous at x.

Proof



— Use the limit characterization of continuity:

lim £(f) = lim[f(5) — f (@) + f ()

- [H P en v s0)
- }E[M(t—x)]—b—f(x)
= | O -] + s
= F@)0+f @
f(z)

e The converse of this theorem is false! (Think about z — |z| at 0).

e Example: Define f : R — R by 2 + z2. Then

2 _ g2

’ _ .
file) = lim——om
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= 2z
2.2 Concrete Tips for the Homework Exercises
2.2.1 Question 1

e for part (a) use the bionomial formula on [cos (z)]" = [%}

e For part (b) use
1. induction

2. the identity cos ((n + 1) ) = 2cos (z) cos (nz) + cos ((n — 1) z) (which you can verify easily).

2.2.2 Question 2

e Calculate lim,,+ = tan (z) (from above or from below, depending on whether the plus or minus signs are chosen).

e Use the intermediate value theorem.

2.2.3 Question 3
e Use induction together with:

1. the “ordinary” Leibniz rool.

n+1\ n n
2. the fact that ( i ) = (k—l) + (k)

2.2.4 Question 4

e May not use the intermediate value theorem, because f’ is not necessarily continuous!

2.2.5 Question 5
e Define ¥k € Z, = {0, ..., n—1} fi (z) == [(1—22)"]“.
e Then P, (z) = 5 fn (2).
e Show that fi (—1) =0 = f (1).
e For part (b):
— Define f (z) := (22 — 1) p’ () where p(z) == (2% — 1)".

— Compute f"+) (z) once with f (z) = (¥2 — 1) p’ (z) and once with f (z) = 2nzp (z), and substract the two equations you
get.

— Mulitply by ... to get the desired equation.
— Use question 3 (a).



2.2.6 Question 6
e Compute lim, 1+, f ().
e Show that f’ (z) > 0 for all .

e Compute f” (z) and conclude where f is concave and where it is convex.

2.2.7 Question 7

e For t = 0 you must compute the derivative by the actual definition.
e Show f’ is not continuous at 0.

e Define t;, := m and show that limy_, . tx = 0 and f’ (¢x) = 3 for all k € N.



