Analysis 1 Colloquium of Week 9 Continuity, Continuous Extensions, and the Pasting Lemma

Jacob Shapiro

November 11, 2014

Abstract

We follow some examples from Spivak's *Calculus* (4th edition), present a lemma from Munkres' *Topology* (2nd edition) and show another example of continuous extensions (for more on that see Rudin's *Principles of Mathematical Analysis* chapter 4 exercise 5 (pp. 99)).

1 Some Examples for Continuity

• Define
$$f : \mathbb{R} \to \mathbb{R}$$
 by the following rule $x \mapsto \begin{cases} x & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$.

Claim: f is continuous at 0.
Proof:

- * Let $\varepsilon > 0$ be given.
- * We are looking for a neighborhood of 0, which we denote by $\delta(\varepsilon) > 0$, such that $f(B_{\delta(\varepsilon)}(0)) \subseteq B_{\varepsilon}(f(0))$.
- * Translating this into more "readable" notation, that would mean that if $x \in \mathbb{R}$ is such that $|x| < \delta(\varepsilon)$ (meaning $x \in B_{\delta(\varepsilon)}(0)$), then $|f(x) f(0)| < \varepsilon$ (meaning $f(x) \in B_{\varepsilon}(f(0))$).
- * Now we should start using the actual definition of f.
- * f(0) = 0 as $0 \in \mathbb{Q}$ and on \mathbb{Q} , f is the identity function (sends $x \mapsto x$).
- * So our conditions are that there should be some $\delta(\varepsilon) > 0$ such that if $x \in \mathbb{R}$ obeys $|x| < \delta(\varepsilon)$ then $|f(x)| < \varepsilon$.
- * So simply take $\delta(\varepsilon) := \varepsilon$. Why does this work?
 - \cdot Divide to two cases:

1. If
$$x \in \mathbb{Q}$$
 then $f(x) = x$ and then since $|x| < \underbrace{\delta(\varepsilon)}_{\varepsilon}$, of course $\underbrace{|f(x)|}_{|x|} < \varepsilon$.

2. If $x \in \mathbb{R} \setminus \mathbb{Q}$, then f(x) = 0 and then no matter what $\delta(\varepsilon)$ was chosen to be, $|0| < \varepsilon$.

- Claim: f is not continuous at x for all $x \in \mathbb{R} \setminus \{0\}$. Proof:
 - * Let some $x \in \mathbb{R} \setminus \{0\}$ be given.
 - * We need to find some $\varepsilon_0 > 0$ such that no matter which $\delta > 0$ we pick, there will always be a point $y \in B_{\delta}(x)$ which has $f(y) \notin B_{\varepsilon_0}(f(x))$.
 - * Case 1: If $x \in \mathbb{Q}$,
 - then f(x) = x and then simply take $\varepsilon_0 := \frac{1}{2} |x|$.
 - No matter how close we get to x (how small $\delta > 0$ we pick), that interval around x will always contain some irrational point $y \in B_{\delta}(x) \setminus \mathbb{Q}$. That irrational point is then arbitrarily close to x, however, its image is 0, and 0 is too far away to be in $B_{\frac{1}{2}|x|}(x)$ [draw picture of the line].
 - * Case 2: If $x \notin \mathbb{Q}$,
 - Then f(x) = 0. Take again $\varepsilon_0 := \frac{1}{2} |x|$.
 - Then let $\delta > 0$ be given (we need to show this breaks down for every $\delta > 0$).
 - So we can always find some rational $y \in B_{\min(\frac{1}{4}|x|,\delta)}(x) \cap \mathbb{Q}$ which is sufficiently close to x, and then we will have $|x-y| < \frac{1}{4}|x|$ which implies $||x| |y|| < \frac{1}{4}|x|$ which implies $|y| > \frac{3}{4}|x|$.
 - Then $|f(x) f(y)| = |f(y)| = |y| > \frac{3}{4} |x| > \frac{1}{2} |x| = \varepsilon_0.$

- Define $f : \mathbb{R} \to \mathbb{R}$ by the rule $x \mapsto \begin{cases} 0 & x \in \mathbb{R} \setminus \mathbb{Q} \\ \frac{1}{q} & x = \frac{p}{q} \land p \in \mathbb{Z} \land q \in \mathbb{N} \setminus \{0\} \land \gcd(p, q) = 1 \end{cases}$.
 - Claim: f is continuous at x for all $x \in \mathbb{R} \setminus \mathbb{Q}$. *Proof*: homework.
 - Claim: f is not continuous at x for all $x \in \mathbb{Q}$. *Proof*: homework.
- Claim: $\exists f \in \mathbb{R}^{\mathbb{R}}$ such that f is not continuous at x for all $x \in \mathbb{R}$ yet |f| (viewed as a new function $\mathbb{R} \to \mathbb{R}$ by the rule $x \mapsto |f(x)|$ • for all $x \in \mathbb{R}$) is continuous for all $x \in \mathbb{R}$. Proof: homework.
- Claim: $f: \mathbb{C} \to \mathbb{C}$ defined by $z \mapsto 2\overline{z}$ is continuous at z for all $z \in \mathbb{C}$. Proof:
 - Pick some $z \in \mathbb{C}$.
 - Let $\varepsilon > 0$ be given.
 - Take $\delta(\varepsilon, z) := \frac{1}{2}\varepsilon$.
 - Take $\sigma(\varepsilon, z)$, z' = z'- Then $z' \in B_{\delta(\varepsilon, z)}(z)$ implies $|z z'| < \underbrace{\delta(\varepsilon, z)}_{\frac{1}{2}\varepsilon}$.
 - Then

$$|f(z) - f(z')| = |2\overline{z} - 2\overline{z'}|$$

$$= 2 |\overline{z} - \overline{z'}|$$

$$= 2 |\overline{z - z'}|$$

$$= 2 |z - z'|$$

$$\leq 2 \frac{1}{2}\varepsilon$$

so we are in business.

$\mathbf{2}$ **Continuous Extensions**

• See example from Recitation session of week 8 about continuous extensions.

3 The Pasting Lemma

3.1A Reminder

- Recall that in the most general definition (the one that transcends metric spaces and with which you shall graduate your degree!) $f: X \to Y$ is continuous iff $f^{-1}(V) \in Open(X)$ for all $V \in Open(Y)$.
- Recall that $Closed(X) \equiv \{ F \subseteq X \mid X \setminus F \in Open(X) \}.$

3.2Subspace Topology

• Whatever Open(X) was defined as (we have defined it only for metric spaces. There is a more general definition, which is called a topology), given some $A \subseteq X$, we may define Open(A) as:

$$Open(A) := \{ U \subseteq A \mid \exists V \in Open(X) \land U = V \cap A \}$$

This is called the "subspace topology".

3.3The Actual Pasting Lemma

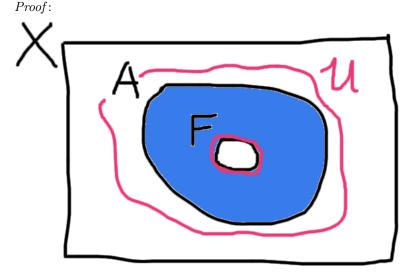
- Let X and Y be a metric spaces.
- Let $(A, B) \in Closed(X)^2$ and assume further that $X = A \cup B$.
- Assume that we have two functions $f: A \to Y$ and $g: B \to Y$.
- Assume that $f(x) = g(x) \forall x \in A \cap B$.

• Define a new function, $h: X \to Y$ by $x \mapsto \begin{cases} f(x) & x \in A \\ g(x) & x \in B \end{cases}$ (if $x \in A \cap B$ then we have no ambiguity by assumption).

- Claim: If both f and g are continuous then h is continuous. Proof:
 - Claim: $h: X \to Y$ is continuous iff $\forall F \in Closed(Y), h^{-1}(F) \in Closed(X)$. *Proof*:
 - * Assume that h is continuous.
 - · Let $F \in Closed(Y)$ be given.
 - Then $Y \setminus F \in Open(Y)$.
 - By the continuity of h we have that $h^{-1}(Y \setminus F) \in Open(X)$.
 - · However, as we know, the inverse image respects complements, and so $h^{-1}(Y \setminus F) = h^{-1}(Y) \setminus h^{-1}(F)$. • But $h^{-1}(Y) = X$.

 - Thus we have that $X \setminus h^{-1}(F) \in Open(X)$, which implies $h^{-1}(F) \in Closed(X)$ as desired.
 - * Assume that $\forall F \in Closed(Y), h^{-1}(F) \in Closed(X).$
 - · Let $U \in Open(Y)$ be given.
 - Then $Y \setminus U \in Closed(Y)$.
 - Then by the assumption, $h^{-1}(Y \setminus U) \in Closed(X)$.
 - · But as we've seen that means that $X \setminus h^{-1}(U) \in Closed(X)$, or $h^{-1}(U) \in Open(X)$ and so h is continuous.
 - Let $F \in Closed(Y)$ be given.
 - Claim: $h^{-1}(F) = f^{-1}(F) \cup q^{-1}(F)$.
 - Proof:
 - * |⊆
 - · Let $x \in h^{-1}(F)$ be given.
 - That implies that $h(x) \in F$.
 - · Case 1: $x \in A \setminus B$. Then h(x) = f(x) and so we have that $f(x) \in F$. This in turn implies that $x \in f^{-1}(F)$.
 - Case 2: $x \in B \setminus A$. The same logic implies that $x \in g^{-1}(F)$.
 - · Case 3: $x \in A \cap B$. Then h(x) = f(x) = g(x) and then $f(x) \in F$ and $g(x) \in F$ which implies that $x \in A \cap B$. $f^{-1}(F) \cap g^{-1}(F).$
 - In either case, we have that $x \in f^{-1}(F) \cup g^{-1}(F)$.

- · Let $x \in [f^{-1}(F) \cup g^{-1}(F)]$ be given.
- Case 1: $x \in A \setminus B$. Then either $f(x) \in F$ or $q(x) \in F$.
- 1. If $f(x) \in F$, then due to $x \in A$ we have f(x) = h(x) and so $h(x) \in F$ and so $x \in h^{-1}(F)$.
- 2. If $q(x) \in F$, then due to $x \in A$, we must have that $x \in A \cap B$ and so again $h(x) \in F$ or $x \in h^{-1}(F)$.
- 1. The other cases follow similarly.
- Because f and g are continuous, and $F \in Closed(Y)$, $f^{-1}(F) \in Closed(A)$ and $g^{-1}(F) \in Closed(B)$.
- Claim: If $A \in Closed(X)$ and $F \in Closed(A)$ then $F \in Closed(X)$.



* $A \in Closed(X)$ implies that $X \setminus A \in Open(X)$.

- * $F \in Closed(A)$ implies that $A \setminus F \in Open(A)$.
- * But $A \setminus F \in Open(A)$ implies that $A \setminus F = U \cap A$ for some $U \in Open(X)$.
- * But due to $F \subseteq A \subseteq X$ and the fact that unions of open sets are again open, we have:

$$\begin{split} X \backslash F &= (A \backslash F) \cup (X \backslash A) \\ &= (U \cap A) \cup (X \backslash A) \\ &\overset{HW1Q2(d)}{=} ((X \backslash A) \cup U) \cap \left(\underbrace{(X \backslash A) \cup A}_{X} \right) \\ &= \underbrace{(X \backslash A)}_{\in Open(X)} \cup \underbrace{U}_{\in Open(X)} \\ &\in Open(X) \end{split}$$

- * That is, $X \setminus F \in Open(X)$.
- * Thus $F \in Closed(X)$.
- As a result, we have $f^{-1}(F) \in Closed(X)$ and $g^{-1}(F) \in Closed(X)$.
- But then finite union of closed sets is again closed, that is, $[f^{-1}(F) \cup g^{-1}(F)] \in Closed(X)$ or $h^{-1}(F) \in Closed(X)$.
- Because $F \in Closed(X)$ was arbitrary, we conclude that h is continuous as it fulfills our (new) criteria for continuity.

- *Claim*: If *h* as given above is continuous then so are *f* and *g*. *Proof*:
 - First we prove an auxiliary result:
 - Claim: Let $\alpha : X \to Y$ be continuous and let $A \subseteq X$. Then the new function $\alpha|_A$ defined as $\alpha|_A : A \to Y$ by the rule $x \stackrel{\alpha|_A}{\mapsto} \alpha(x)$ for all $x \in A$ is continuous.
 - Proof:
 - * Claim: $\alpha|_A^{-1}(U) = a^{-1}(U) \cap A$ for all $U \subseteq Y$. Proof: homework.
 - * Let $U \in Open(Y)$ be given.
 - * Then $\alpha|_{A}^{-1}(U) = \alpha^{-1}(U) \cap A$.
 - * By the definition of $Open(A) \equiv \{ U \subseteq A \mid \exists V \in Open(X) \land U = V \cap A \}$ and the continuity of α (which implies $\alpha^{-1}(U) \in Open(X)$) we have that $\alpha|_A \stackrel{-1}{}(U) \in Open(A)$.
 - Because $f = h|_A$ and $g = h|_B$ it follows immediately that f and g are continuous.