Analysis 1
 Colloquium of Week 9
 Continuity, Continuous Extensions, and the Pasting Lemma

Jacob Shapiro

November 11, 2014

Abstract

We follow some examples from Spivak's Calculus (4th edition), present a lemma from Munkres' Topology (2nd edition) and show another example of continuous extensions (for more on that see Rudin's Principles of Mathematical Analysis chapter 4 exercise 5 (pp. 99)).

1 Some Examples for Continuity

- Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by the following rule $x \mapsto\left\{\begin{array}{ll}x & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \backslash \mathbb{Q}\end{array}\right.$.
- Claim: f is continuous at 0 .

Proof:

* Let $\varepsilon>0$ be given.
* We are looking for a neighborhood of 0 , which we denote by $\delta(\varepsilon)>0$, such that $f\left(B_{\delta(\varepsilon)}(0)\right) \subseteq B_{\varepsilon}(f(0))$.
* Translating this into more "readable" notation, that would mean that if $x \in \mathbb{R}$ is such that $|x|<\delta(\varepsilon)$ (meaning $\left.x \in B_{\delta(\varepsilon)}(0)\right)$, then $|f(x)-f(0)|<\varepsilon\left(\right.$ meaning $\left.f(x) \in B_{\varepsilon}(f(0))\right)$.
* Now we should start using the actual definition of f.
* $f(0)=0$ as $0 \in \mathbb{Q}$ and on \mathbb{Q}, f is the identity function (sends $x \mapsto x$).
* So our conditions are that there should be some $\delta(\varepsilon)>0$ such that if $x \in \mathbb{R}$ obeys $|x|<\delta(\varepsilon)$ then $|f(x)|<\varepsilon$.
* So simply take $\delta(\varepsilon):=\varepsilon$. Why does this work?
- Divide to two cases:

1. If $x \in \mathbb{Q}$ then $f(x)=x$ and then since $|x|<\underbrace{\delta(\varepsilon)}_{\varepsilon}$, of course $\underbrace{|f(x)|}_{|x|}<\varepsilon$.
2. If $x \in \mathbb{R} \backslash \mathbb{Q}$, then $f(x)=0$ and then no matter what $\delta(\varepsilon)$ was chosen to be, $|0|<\varepsilon$.

- Claim: f is not continuous at x for all $x \in \mathbb{R} \backslash\{0\}$.

Proof:

* Let some $x \in \mathbb{R} \backslash\{0\}$ be given.
* We need to find some $\varepsilon_{0}>0$ such that no matter which $\delta>0$ we pick, there will always be a point $y \in B_{\delta}(x)$ which has $f(y) \notin B_{\varepsilon_{0}}(f(x))$.
* Case 1: If $x \in \mathbb{Q}$,
- then $f(x)=x$ and then simply take $\varepsilon_{0}:=\frac{1}{2}|x|$.
- No matter how close we get to x (how small $\delta>0$ we pick), that interval around x will always contain some irrational point $y \in B_{\delta}(x) \backslash \mathbb{Q}$. That irrational point is then arbitrarily close to x, however, its image is 0 , and 0 is too far away to be in $B_{\frac{1}{2}|x|}(x)$ [draw picture of the line].
* Case 2: If $x \notin \mathbb{Q}$,
- Then $f(x)=0$. Take again $\varepsilon_{0}:=\frac{1}{2}|x|$.
- Then let $\delta>0$ be given (we need to show this breaks down for every $\delta>0$).
- So we can always find some rational $y \in B_{\min \left(\frac{1}{4}|x|, \delta\right)}(x) \cap \mathbb{Q}$ which is sufficiently close to x, and then we will have $|x-y|<\frac{1}{4}|x|$ which implies $\| x|-|y||<\frac{1}{4}|x|$ which implies $|y|>\frac{3}{4}|x|$.
- Then $|f(x)-f(y)|=|f(y)|=|y|>\frac{3}{4}|x|>\frac{1}{2}|x|=\varepsilon_{0}$.
- Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by the rule $x \mapsto\left\{\begin{array}{ll}0 & x \in \mathbb{R} \backslash \mathbb{Q} \\ \frac{1}{q} & x=\frac{p}{q} \wedge p \in \mathbb{Z} \wedge q \in \mathbb{N} \backslash\{0\} \wedge \operatorname{gcd}(p, q)=1\end{array}\right.$.
- Claim: f is continuous at x for all $x \in \mathbb{R} \backslash \mathbb{Q}$.

Proof: homework.

- Claim: f is not continuous at x for all $x \in \mathbb{Q}$.

Proof: homework.

- Claim: $\exists f \in \mathbb{R}^{\mathbb{R}}$ such that f is not continuous at x for all $x \in \mathbb{R}$ yet $|f|$ (viewed as a new function $\mathbb{R} \rightarrow \mathbb{R}$ by the rule $x \mapsto|f(x)|$ for all $x \in \mathbb{R}$) is continuous for all $x \in \mathbb{R}$.
Proof: homework.
- Claim: $f: \mathbb{C} \rightarrow \mathbb{C}$ defined by $z \mapsto 2 \bar{z}$ is continuous at z for all $z \in \mathbb{C}$.

Proof:

- Pick some $z \in \mathbb{C}$.
- Let $\varepsilon>0$ be given.
- Take $\delta(\varepsilon, z):=\frac{1}{2} \varepsilon$.
- Then $z^{\prime} \in B_{\delta(\varepsilon, z)}(z)$ implies $\left|z-z^{\prime}\right|<\underbrace{\delta(\varepsilon, z)}_{\frac{1}{2} \varepsilon}$.
- Then

$$
\begin{aligned}
\left|f(z)-f\left(z^{\prime}\right)\right| & =\left|2 \bar{z}-2 \overline{z^{\prime}}\right| \\
& =2\left|\bar{z}-\overline{z^{\prime}}\right| \\
& =2\left|\overline{z-z^{\prime}}\right| \\
& =2\left|z-z^{\prime}\right| \\
& \leq 2 \frac{1}{2} \varepsilon
\end{aligned}
$$

so we are in business.

2 Continuous Extensions

- See example from Recitation session of week 8 about continuous extensions.

3 The Pasting Lemma

3.1 A Reminder

- Recall that in the most general definition (the one that transcends metric spaces and with which you shall graduate your degree!) $f: X \rightarrow Y$ is continuous iff $f^{-1}(V) \in \operatorname{Open}(X)$ for all $V \in \operatorname{Open}(Y)$.
- Recall that $C l o s e d ~(X) \equiv\{F \subseteq X \mid X \backslash F \in \operatorname{Open}(X)\}$.

3.2 Subspace Topology

- Whatever Open (X) was defined as (we have defined it only for metric spaces. There is a more general definition, which is called a topology), given some $A \subseteq X$, we may define $\operatorname{Open}(A)$ as:

$$
\operatorname{Open}(A):=\{U \subseteq A \mid \exists V \in \operatorname{Open}(X) \wedge U=V \cap A\}
$$

This is called the "subspace topology".

3.3 The Actual Pasting Lemma

- Let X and Y be a metric spaces.
- Let $(A, B) \in C \operatorname{losed}(X)^{2}$ and assume further that $X=A \cup B$.
- Assume that we have two functions $f: A \rightarrow Y$ and $g: B \rightarrow Y$.
- Assume that $f(x)=g(x) \forall x \in A \cap B$.
- Define a new function, $h: X \rightarrow Y$ by $x \stackrel{h}{\mapsto}\left\{\begin{array}{ll}f(x) & x \in A \\ g(x) & x \in B\end{array}\right.$ (if $x \in A \cap B$ then we have no ambiguity by assumption).
- Claim: If both f and g are continuous then h is continuous.

Proof:

- Claim: $h: X \rightarrow Y$ is continuous iff $\forall F \in \operatorname{Closed}(Y), h^{-1}(F) \in \operatorname{Closed}(X)$.

Proof:

* Assume that h is continuous.
- Let $F \in \operatorname{Closed}(Y)$ be given.
- Then $Y \backslash F \in \operatorname{Open}(Y)$.
- By the continuity of h we have that $h^{-1}(Y \backslash F) \in O p e n(X)$.
- However, as we know, the inverse image respects complements, and so $h^{-1}(Y \backslash F)=h^{-1}(Y) \backslash h^{-1}(F)$.
- But $h^{-1}(Y)=X$.
- Thus we have that $X \backslash h^{-1}(F) \in \operatorname{Open}(X)$, which implies $h^{-1}(F) \in \operatorname{Closed}(X)$ as desired.
* Assume that $\forall F \in \operatorname{Closed}(Y), h^{-1}(F) \in \operatorname{Closed}(X)$.
- Let $U \in \operatorname{Open}(Y)$ be given.
- Then $Y \backslash U \in \operatorname{Closed}(Y)$.
- Then by the assumption, $h^{-1}(Y \backslash U) \in \operatorname{Closed}(X)$.
- But as we've seen that means that $X \backslash h^{-1}(U) \in \operatorname{Closed}(X)$, or $h^{-1}(U) \in O p e n(X)$ and so h is continuous.
- Let $F \in \operatorname{Closed}(Y)$ be given.
- Claim: $h^{-1}(F)=f^{-1}(F) \cup g^{-1}(F)$.

Proof:

* \subseteq
- Let $x \in h^{-1}(F)$ be given.
- That implies that $h(x) \in F$.
- Case 1: $x \in A \backslash B$. Then $h(x)=f(x)$ and so we have that $f(x) \in F$. This in turn implies that $x \in f^{-1}(F)$.
- Case 2: $x \in B \backslash A$. The same logic implies that $x \in g^{-1}(F)$.
- Case 3: $x \in A \cap B$. Then $h(x)=f(x)=g(x)$ and then $f(x) \in F$ and $g(x) \in F$ which implies that $x \in$ $f^{-1}(F) \cap g^{-1}(F)$.
In either case, we have that $x \in f^{-1}(F) \cup g^{-1}(F)$.
*
- Let $x \in\left[f^{-1}(F) \cup g^{-1}(F)\right]$ be given.
- Case 1: $x \in A \backslash B$. Then either $f(x) \in F$ or $g(x) \in F$.

1. If $f(x) \in F$, then due to $x \in A$ we have $f(x)=h(x)$ and so $h(x) \in F$ and so $x \in h^{-1}(F)$.
2. If $g(x) \in F$, then due to $x \in A$, we must have that $x \in A \cap B$ and so again $h(x) \in F$ or $x \in h^{-1}(F)$.
3. The other cases follow similarly.

- Because f and g are continuous, and $F \in \operatorname{Closed}(Y), f^{-1}(F) \in \operatorname{Closed}(A)$ and $g^{-1}(F) \in \operatorname{Closed}(B)$.
- Claim: If $A \in \operatorname{Closed}(X)$ and $F \in \operatorname{Closed}(A)$ then $F \in \operatorname{Closed}(X)$.

Proof:

* $A \in \operatorname{Closed}(X)$ implies that $X \backslash A \in \operatorname{Open}(X)$.
* $F \in \operatorname{Closed}(A)$ implies that $A \backslash F \in \operatorname{Open}(A)$.
* But $A \backslash F \in O p e n(A)$ implies that $A \backslash F=U \cap A$ for some $U \in O p e n(X)$.
* But due to $F \subseteq A \subseteq X$ and the fact that unions of open sets are again open, we have:

$$
\begin{array}{rll}
X \backslash F \quad & = & (A \backslash F) \cup(X \backslash A) \\
& = & (U \cap A) \cup(X \backslash A) \\
H W 1 Q 2(d) & & ((X \backslash A) \cup U) \cap(\underbrace{(X \backslash A) \cup A}_{X}) \\
& =\underbrace{(X \backslash A)}_{\in O \operatorname{pen}(X)} \cup \underbrace{U}_{\in O \operatorname{pen}(X)} \\
\in & & \operatorname{Open}(X)
\end{array}
$$

* That is, $X \backslash F \in$ Open (X).
* Thus $F \in \operatorname{Closed}(X)$.
- As a result, we have $f^{-1}(F) \in \operatorname{Closed}(X)$ and $g^{-1}(F) \in \operatorname{Closed}(X)$.
- But then finite union of closed sets is again closed, that is, $\left[f^{-1}(F) \cup g^{-1}(F)\right] \in \operatorname{Closed}(X)$ or $h^{-1}(F) \in \operatorname{Closed}(X)$.
- Because $F \in \operatorname{Closed}(X)$ was arbitrary, we conclude that h is continuous as it fulfills our (new) criteria for continuity.
- Claim: If h as given above is continuous then so are f and g.

Proof:

- First we prove an auxiliary result:
- Claim: Let $\alpha: X \rightarrow Y$ be continuous and let $A \subseteq X$. Then the new function $\left.\alpha\right|_{A}$ defined as $\left.\alpha\right|_{A}: A \rightarrow Y$ by the rule $x \stackrel{\left.\alpha\right|_{A}}{\mapsto} \alpha(x)$ for all $x \in A$ is continuous.
Proof:
* Claim: $\left.\alpha\right|_{A}{ }^{-1}(U)=a^{-1}(U) \cap A$ for all $U \subseteq Y$. Proof: homework.
* Let $U \in \operatorname{Open}(Y)$ be given.
* Then $\left.\alpha\right|_{A}{ }^{-1}(U)=\alpha^{-1}(U) \cap A$.
* By the definition of $\operatorname{Open}(A) \equiv\{U \subseteq A \mid \exists V \in \operatorname{Open}(X) \wedge U=V \cap A\}$ and the continuity of α (which implies $\left.\alpha^{-1}(U) \in \operatorname{Open}(X)\right)$ we have that $\left.\alpha\right|_{A}{ }^{-1}(U) \in \operatorname{Open}(A)$.
- Because $f=\left.h\right|_{A}$ and $g=\left.h\right|_{B}$ it follows immediately that f and g are continuous.

