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1 Limit Points of a Set
Let (X, d) be a metric space.

1.1 Recall A Few Definitions
1.1.1 Open Balls

Let x ∈ X and ε > 0. An open ball at x with radius ε, denoted by Bε (x), is defined as

Bε (x) := { y ∈ X | d (x, y) < ε }

1.1.2 Open Sets in a Metric Space

The property on subsets of metric spaces called being open: The set U ⊆ X is open iff ∀x ∈ U∃ε > 0Bε (x) ⊆ U . Denote the set of all
open sets on X as Open (X). Thus we have

Open (X) ≡ { U ⊆ X | ∀x ∈ U (∃ε > 0 : Bε (x) ⊆ U) }

1.2 Open Neighborhouds of a Point
An open neighborhoud of a point x ∈ X is an open subset U ∈ Open (X) which contains x: U ⊆ X is an open neighborhoud of x iff
U ∈ Open (X) ∧ x ∈ U .

1.3 Limit Points of a Subset in a Metric Space
• Let E ⊆ X. Let p ∈ X.

• Definition: p is a limit point of E iff every open neighborhoud U of p contains a point q ∈ U\ {p} such that q ∈ E.

– If you want a more “computerized” statement of the definition: p is a limit point of E iff (∀U ∈ Open (X) : (p ∈ U)) ∃q ∈
((U\ {p}) ∩ E).

– From this definition it follows immediately that
Claim: If W ⊆ E and p is a limit point of W then p is a limit point of E.
Proof:

∗ Let a nbhd U of p be given.
∗ Because p is a limit point of W , then ∃q ∈ ((U\ {p}) ∩W ).
∗ But W ⊆ E, so that q ∈ E as well.
∗ Thus ∃q ∈ ((U\ {p}) ∩ E).

�

– Note: we could also formulate everything with open balls instead. For metric spaces this is equivalent. The reason we insist
on formulating things in terms of open sets / open neighborhouds rather than open balls is that next year when you speka
about nonmetrizable topologies you will have an easy life. In fact,
Claim: p is a limit point of E ⇐⇒ ∀ε > 0∃q ∈ (Bε (p) \ {p}) ∩ E.
Proof:

∗ =⇒
· Assume p is a limit point of E.
· Let ε > 0 be given.
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· Then p ∈ Bε (p) ∈ Open (X), that is, the open ball Bε (p) around p is an open neighbourhoud of p.
· As such, we may apply the condition of p being a limit point of E on Bε (p) itself as the open neighborhoud to

conclude that: ∃q ∈ (Bε (p) \ {p}) ∩ E.
∗ ⇐=

· Assume ∀ε > 0∃q ∈ (Bε (p) \ {p}) ∩ E.
· Let some U ∈ Open (X) : p ∈ U be given (that is, let some open neighborhoud of p be given).
· Because U ∈ Open (X), ∃ε0 > 0 : Bε0 (p) ⊆ U .
· So apply the assumption on ε0 > 0, to obtain that ∃q ∈ (Bε0 (p) \ {p}) ∩ E.
· But Bε0 (p) ⊆ U , so that q ∈ Bε0 (p) \ {p} means q ∈ U\ {p}. Of course, we still have q ∈ E.
· Thus the condition for p being a limit point is fulfilled.

�

– Note that p ∈ X does not have to lie inside of E in order to be a limit point of E (see theorem and example below).
– Note that finite sets have no limit points (make a picture of an open nbhd around p which will clearly avoid any point of a

finite set).
– Speaking for the moment about the case where X = R and d = dEuclidean, there is a close connection between limit points

of sets, supremums and infimums. In fact,
Claim: If sup (E) /∈ E then sup (E) is a limit point of E.
Proof:
∗ We will use the above theorem in order to prove limit points with open balls.
∗ So let ε0 > 0 be given. We need to find that point q ∈ (Bε (sup (E)) \ {sup (E)}) ∩ E.
∗ Remember the approximation property for the supremum: ∀ε > 0∃xε ∈ E such that sup (E)− ε < xε ≤ sup (E).
∗ Recall that sup (E) /∈ E, and so it is actually possible to refine the above inequalities into sup (E)− ε < xε < sup (E).
∗ It will turn out that xε ∈ (Bε (sup (E)) \ {sup (E)}) ∩ E.
∗ We already know that xε ∈ E by the approximation property.
∗ Further, it is known that sup (E)− ε < xε < sup (E), which means that xε ∈ Bε (sup (E)) \ {sup (E)}.

�

– The very same theorem holds for inf (E) when inf (E) /∈ E, with an analogous proof.
– The above theorem would fail if sup (E) ∈ E, for instance, take E = (0, 1) ∪ {2}. Then sup (E) = 2, 2 ∈ E and we can find

nbhds around 2 which will contain no other members of E.
– The above theorem also doesn’t stipulate what happens if sup (E) ∈ E. It just says it can prove that if sup (E) /∈ E, then

sup (E) is a limit point of E. However, clearly we can find of situations where sup (E) ∈ E and sup (E) is still a limit point
of E: Take E = [0, 1]. Then sup (E) = 1 and clearly every open nbhd of 1 will contain some points of E.

• Example: Define the set E :=
{

1
n

∣∣ n ∈ N\ {0}
}

inside of the metric space (R, dEuclidean).
Claim: 0 ∈ R is a limit point of E (even though 0 /∈ E!)
Proof:

– First show that inf (E) = 0 (I trust you are able to do this).
– Observe that 0 /∈ E.
– Use the above theorem.

�

2 Limit Points of a Sequence
We are still assuming that (X, d) is a metric space.

• Recall that a sequence is just a map f : N → X.

2.1 Image of a Map
• Recall the definition of the image of a set under a map, f (N) ≡ { f (n) ∈ X | n ∈ N }. When we feed the whole domain set, we

call this the image of the map.

• Viewed as a subset of X, f (N) ⊆ X, we may ask, does f (N) have any limit points?

2.2 Limit Point of a Sequence (as opposed to of a Set)
• Definition: p ∈ X is “a limit point of the sequence (fn)n∈N” iff p ∈ X is a limit point of the set f (N), where “limit point of a set”

is as defined above, and by f (N) we mean the image of N under the map f : N → X corresponding to the sequence (fn)n∈N.
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2.3 Subsequences Attack Again
• Recall from last Friday that a subsequence is defined via a subset A ⊆ N such that |A| = |N| (forgot to mention this on

Friday: A cannot be finite!). Then we say that (fn)n∈A is a subsequence of (fn)n∈N and we could prove (or not) that a
subsequence converges using the same definition for the whole sequence, only now replacing everywhere N with A.

• Work with (X, d) = (R, dEuclidean) for simplicity now (to speak about order).

• A subsequence A diverges to infinity iff ∀M ∈ R∃mM ∈ A : ((n ≥ mM =⇒ fn > M)∀n ∈ A).

2.4 Lim Sup?
• Recall also the definition of the lim sup and lim inf: We defined, for a given sequence (fn)n∈N, the set E of all points in R, such

that ∃ a subsequence A of (fn)n∈N which converges to that point:

E(fn)n∈N
:=

{
x ∈ X

∣∣ ∃A ⊆ N : (fn)n∈A → x
}

we also agreed, by convention, that if (fn)n∈A diverges to infinity or minus infinity, then we include plus or minus infinity in E.

• Then we defined lim supn→∞ fn := sup
(
E(fn)n∈N

)
and lim infn→∞ := inf

(
E(fn)n∈N

)
.

2.5 Connection Between Limit Point of a Sequence and Subsequential Convergence
• Claim: If (fn)n∈N is a sequence which is constant with up to finitely many terms, then:

x ∈ R is a limit point of the sequence (fn)n∈N ⇐⇒ x ∈ E(fn)n∈N
.

Proof:

– =⇒
∗ Assume x ∈ R is a limit point of (fn)n∈N.
∗ Then let ε > 0 be given.
∗ Our goal is to show that there exist some A ⊆ N and some mε ∈ A such that (n ≥ mε =⇒ |fn − x| < ε) for all n ∈ A,

which will show that x is the limit point of the subsequence defined by A ⊆ N.
∗ So define A as follows:

· Because x ∈ R is a limit point of (fn)n∈N, we know that ∃n1 ∈ N such that fn1
∈ Bε (x) \ {x}, that is 0 < |fn1

− x| <
ε.

· Define ε1 := |fn1
− x|. Thus 0 < ε1 < ε.

· Because x is a limit point of (fn)n∈N, ∃n2 ∈ N : fn2
∈ Bε1 (x) \ {x}.

· However, we know that ε1 < ε. Thus, fn2 6= fn1 . Thus, n2 6= n1.
· Continue in this fashion ad infinitum (we are guaranteed that we can do this by the principle of inductive definition

(for details return to Halmos end of chapter 12 on recursive definition)).
· Define A := {n1, n2, n3, . . . }.

∗ By construction it is clear that A and n1 ∈ A obey the definition for the convergence of a subsequence, a subsequence
defined by A.

– ⇐=

∗ Assume x ∈ E(fn)n∈N
.

∗ For the moment assume that x 6= ±∞ (it is your homework to complete the proof by dealing with this case).
∗ Let A be the subsequence corresponding to x, that is (fn)n∈A → x.
∗ Our goal is to show that x is a limit point of the sequence (fn)n∈N, that is a limit point of the set f (N).
∗ To that end, let ε > 0 be given.
∗ Because (fn)n∈A → x, we know that ∃mε ∈ A such that (n ≥ mε =⇒ |fn − x| < ε)∀n ∈ A.
∗ If fmε

6= x then fmε
∈ Bε (x) \ {x} and we are done.

∗ Otherwise, because (fn)n∈N is constant for only finitely many terms, there must be some n0 ∈ A such that n0 ≥ mε and
fn0

6= x (otherwise fn is a constant (namely x) for infinitely many terms!).
∗ So take fn0 ∈ Bε (x) \ {x}.

�

• Claim: (fn)n∈N converges (or diverges to plus or minus infinity) iff
∣∣∣E(fn)n∈N

∣∣∣ = 1.
Proof: homework (not hard).
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3 Dense Subsets / Dense Sequences
• Let (X, d) be a metric space.

• Definition: A subset E ⊆ X is dense iff ∀x ∈ X, x ∈ E or x is a limit point of E.

– The definition of a dense sequence is obtained by considering the image set of the map corresponding to the sequence, as in
the discussion above for the limit point of a sequence.

• Claim: Q is dense in R.
Proof:

– Let x ∈ R be given.

– If by luck x ∈ Q then we are done, otherwise:

– Write the decimal expansion of x: we know this involves an infinite sequence, which is actually an infinite series, which
converges to x. Each item in this sequence is in fact a rational number (a decimal number with a finite representation) as
you have seen in class.

– Because we found a sequence of rational numbers whose limit is x, we can use the above theorem to conclude that x is a
limit point of the image set of that sequence.

– But the limit point of a subset is a limit point of a larger ambient set, and the image set of that sequence is a subset of Q.
Hence x is a limit point of Q.

�

3.1 An Example of A Dense Sequence
• Let α ∈ R\Q be given.

• Let {r} denote the fractional part of r: r − brc where bξc denotes the floor function (the smallest positive integer in ξ).

• Define xn := {αn} for all n ∈ N.

• Claim: (xn)n∈N is dense in [0, 1].
Proof 1:

– Claim: If (i, j) ∈ N2 such that i 6= j, then {iα} 6= {jα}.
∗ If this were not true, then

iα− biαc = {iα} = {jα} = jα− bjαc

and so iα − jα = biαc − bjαc or (i− j)α = biαc − bjαc. But then we have α =
biαc − bjαc

i− j
and

biαc − bjαc
i− j

∈ Q

(because the denominator and numerator are both integers!), which means that α ∈ Q, a contradiction.

– Hence, x (N) is an infinite subset of [0, 1].

– By the Bolzano-Weierstrass Theorem2, x (N) has a limit point in [0, 1], as (xn)n∈N is bounded.

– One can thus find pairs of elements of x (N) that are arbitrarily close, because there is a convergent subsequence!

– Let n ∈ N be given.

– So there exist distinct (i, j) ∈ N2 such that

0 < |{iα} − {jα}| < 1

n
.

– WLOG, it may be assumed that 0 < {iα} − {jα} <
1

n
.

– Let M be the largest positive integer such that M({iα} − {jα}) ≤ 1. (We can have M > n by chance.)

– The irrationality of α then yields
(∗) M({iα} − {jα}) < 1

(otherwise the fractional part of α is rational!)

– Next, observe that for any m ∈ {0, . . . , n− 1}, we can find a k ∈ {1, . . . ,M} such that

k({iα} − {jα}) ∈
[
m

n
,
m+ 1

n

]
This is because (the pigeon-hole principle):

1Adapted from http://math.stackexchange.com/a/272713/61151
2each bounded sequence in R has a convergent subsequence
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∗ m < n, so that
[
m
n , m+1

n

]
⊆ [0, 1].

∗ k < M , so that k({iα} − {jα}) < M({iα} − {jα}) < 1, so that k({iα} − {jα}) < 1.

∗ The length of the interval
[
m

n
,
m+ 1

n

]
equals

1

n
, while

∗ The distance between l ({iα} − {jα}) and (l + 1) ({iα} − {jα}) equals {iα} − {jα} and {iα} − {jα} <
1

n
. This holds

for all l ∈ N.

– On the other hand, there is another expression for k({iα} − {jα}):

k({iα} − {jα}) = {k({iα} − {jα})} (As 0 < k({iα} − {jα}) < 1; see ∗.) (1)
= {k[(iα− biαc)− (jα− bjαc)]} (2)
= {k(i− j)α+ k(bjαc − biαc)} (3)
= {k(i− j)α}. (The {·}function discards any integer part.) (4)

– Hence,

{k(i− j)︸ ︷︷ ︸
N

α} ∈
[
m

n
,
m+ 1

n

]
∩ x (N)

– As n is arbitrary, every non-degenerate sub-interval of [0, 1] (an interval which is not a singleton), no matter how small,
must contain an element of x (N).

– Thus, given any element β ∈ R, take an open ball around it, that’s a non-degenerate interval, which would contain an
element of x (N).

�
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