Analysis 1
 Colloquium of the Sixth Week
 Metric Spaces on S^{2} and $\mathbb{R} P^{2}$

Jacob Shapiro

October 22, 2014

1 Preface

1.1 Recall What a Metric Is

Let X be a set. A metric d on X is a map $d: X \times X \rightarrow \mathbb{R}$ such that $\forall(p, q) \in X^{2}$:

1. $p \neq q \Longrightarrow d(p, q)>0$
2. $d(p, p)=0$
3. $d(p, q)=d(q, p)$
4. $d(p, q) \leq d(p, r)+d(r, q)$ for any $r \in X$.

- Examples:

1. Claim: Let X be a set and let d be a metric on X. Let $A \subseteq X$ be a subset of X. Then d is also a metric on A.
2. Claim: If $\|\cdot\|$ is the Euclidean norm on \mathbb{R}^{n} (that is, $\|v\| \equiv \sqrt{\sum_{j=1}^{n}\left|v_{j}\right|^{2}}$) then $d(u, v):=\|u-v\|$ is a metric on \mathbb{R}^{n}, that is, $d(u, v)=\sqrt{\sum_{j=1}^{n}\left|u_{j}-v_{j}\right|^{2}}$
Proof: homework.
3. Let X be the set of all words in English. Each English word can be encoded as a finite sequence of digits $\left(w_{i}\right)_{i=1}^{N_{w}}$ where $w_{i} \in\{a, b, c, \ldots, x, y, z\}$ for all $i \in\left\{1, \ldots, N_{w}\right\}$. For example, the word "apple" will be the sequence $w_{1}={ }^{\prime} a^{\prime}, w_{2}=^{\prime}$ $p^{\prime}, w_{3}=^{\prime} p^{\prime}, w_{4}=^{\prime} l^{\prime}, w_{5}=^{\prime} e^{\prime}$ and we would also have $N_{w}=5$. The Levenshtein metric measures the minimum number of single-character edits (i.e. insertions, deletions or substitutions) required to change one word into the other. Define for any two words $\left(w_{i}\right)_{i=1}^{N_{w}}$ and $\left(z_{i}\right)_{i=1}^{N_{z}}$ their distance as:

$$
\left.d_{\text {Lev }}\left(\left(w_{i}\right)_{i=1}^{N_{w}},\left(z_{i}\right)_{i=1}^{N_{z}}\right):=\left\{\begin{array}{c}
\max \left(\left\{N_{w}, N_{z}\right\}\right) \\
\min \left(\left\{\begin{array}{c}
d_{\text {Lev }}\left(\left(w_{i}\right)_{i=1}^{N_{w}-1},\left(z_{i}\right)_{i=1}^{N_{z}}\right)+1, \\
d_{\text {Lev }}\left(\left(w_{i}\right)_{i=1}^{N_{w}},\left(z_{i}\right)_{i=1}^{N_{z}-1}\right)+1, \\
d_{\text {Lev }}\left(\left(w_{i}\right)_{i=1}^{N_{w}-1},\left(z_{i}\right)_{i=1}^{N_{z}-1}\right)+\left(1-\delta_{w_{N_{w}}, z_{N_{z}}}\right)
\end{array}\right\}\right.
\end{array}\right\}\right) \quad \begin{aligned}
& \text { if min }\left(\left\{N_{w}, N_{z}\right\}\right)=0
\end{aligned}
$$

A few examples are in order:

- The distance between any word of length N and the empty word is just the length of the first word, namely, N.
- The distance between "book" and "back" is 2 , because be had to change two characters to get from one to the other.
- The distance between two identical words is 0 (as you could verify by using the formula), and two non-identical strings will always greater longer than zero distance.

Proof: homework.

1.2 Two Important Sets

1.2.1 The 2-Sphere S^{2}

We define a subset of \mathbb{R}^{3}, the two-sphere, defined as $S^{2} \equiv\left\{x \in \mathbb{R}^{3} \mid d(x, 0)=1\right\}$, where d is the Euclidean metric as defined above.

- We can think of the two-sphere as the product of a "one point compactification" of \mathbb{C} or $\mathbb{R}^{2}, \mathbb{C} \cup\{\infty\}$.
- The set S^{2} is compact in the sense that it is closed and bounded: Closed in the sense that its complement $\mathbb{R}^{3} \backslash S^{2}$ is open (because given any point not on the surface of the two-sphere in \mathbb{R}^{3}, we can always find a small enough open ball around that point in \mathbb{R}^{3} that will not touch the two-sphere), and bounded in the sense that we can always put it in a large enough box and it will be completely contained inside of it.
- Note how this was not true for the set we started with \mathbb{R}^{2} : it was not bounded-you couldn't put it inside any large enough box.
- This "compactification" is done via the stereographic projection: $(X, Y)=\left(\frac{x}{1-z}, \frac{y}{1-z}\right)$ where X and Y are now coordinates in \mathbb{R}^{2} where as x, y and z are coordinates in \mathbb{R}^{3} or $(x, y, z)=\left(\frac{2 X}{1+X^{2}+Y^{2}}, \frac{2 Y}{1+X^{2}+Y^{2}}, \frac{-1+X^{2}+Y^{2}}{1+X^{2}+Y^{2}}\right)$ going the other way around. This is almost a bijection, except that the point $z=1$ gets sent outside of \mathbb{R}^{2} as you can see.

1.2.2 The Real Projective Plane $\mathbb{R} P^{2}$

- The real projective plane $\mathbb{R} P^{2}$ is equivalently as either one of the following:
- The set of all straight lines going through the origin in the plane \mathbb{R}^{3} (so we care only about the direction of the lines: that is the information that is being retained by the elements of the set).
- The two-sphere S^{2} with antipodal points identified (that means, if two points are antipodal then they are the same element).
- All the points in the southern hemisphere of S^{2} union with its boundary (a circle), but on the boundary, antipodal points again identified:

- All points in the interior of the two-disk, union with the boundary, but the boundary (a circle) having antipodal points identified.
- See how this is again a compactification of \mathbb{R}^{2} or \mathbb{C}, but this time it's certainly not a "one-point compactification": we add all the points on a circle at the boundary at infinity, that is, all possible directions in which a line can go to infinity, which is infinitely many points at infinity.
- This is part of a larger topic called projective geometry: a way to do geometry where all lines intersect. This means parallel lines must intersect somewhere: they intersect at infinity.

2 Metrics on \mathbb{R}^{2} Induced by Metrics on S^{2} and $\mathbb{R} P^{2}$

2.1 Metrics Induced from S^{2}

We will define some metrics on S^{2} and see what kind of distance they correspond to in \mathbb{R}^{2} when performing the stereographic projection back.

2.1.1 Euclidean Metric on \mathbb{R}^{3} and Thus on S^{2}-Woodworm Metric

The Euclidean metric on $\mathbb{R}^{3}, d_{E u c}(u, v) \equiv \sqrt{\left(u_{x}-v_{x}\right)^{2}+\left(u_{y}-v_{y}\right)^{2}+\left(u_{z}-v_{z}\right)^{2}}$ induces a metric on S^{2}, because $S^{2} \subset \mathbb{R}^{3}$.

- What kind of metric does this induce on \mathbb{R}^{2} via the stereographic projection back?

2.1.2 Arclength Metric on S^{2}-Ant Metric

The arclength on the sphere of radius 1 is just the angle spanned by two given unit-vectors.

$$
\begin{aligned}
d_{\operatorname{arcl}}(u, v) & :=\arccos (u \cdot v) \\
& \equiv \arccos \left(u_{x} v_{x}+u_{y} v_{y}+u_{z} v_{z}\right)
\end{aligned}
$$

. This is because $u \cdot v=\|u\|\|v\| \cos (\alpha)$ where α is the angle between u and v. However, as u and v lie on S^{2}, they have norm 1 .

- Claim: This indeed defines a metric on S^{2}.
- What kind of metric does this induce on \mathbb{R}^{2} via the stereographic projection back?

2.1.3 Discrete Metric on $S^{2}-$ Flea Metric

Define

$$
d_{\text {discr }}(u, v):= \begin{cases}0 & u=v \\ 1 & u \neq v\end{cases}
$$

- Claim: This indeed defines a metric on S^{2}.
- What kind of metric does this induce on \mathbb{R}^{2} via the stereographic projection back?

2.1.4 The Floor Arclength Metric on S^{2}-Small Flea Metric

Define

$$
d_{\text {farclength }}(u, v):=\left\lfloor d_{\text {arcl }}(u, v)\right\rfloor
$$

where $\lfloor x\rfloor$ is the largest integer larger than or equal to $x:\lfloor 3.14\rfloor=3$ and $\lfloor 0.9\rfloor=0$.

- Claim: This indeed defines a metric on S^{2}.
- What kind of metric does this induce on \mathbb{R}^{2} via the stereographic projection back?

2.1.5 Post Office Metric on S^{2}

Define

$$
d_{\text {post office }}(u, v):= \begin{cases}d_{\text {arcl }}(0, u)+d_{\text {arcl }}(0, v) & u \neq v \\ 0 & u=v\end{cases}
$$

- Claim: This indeed defines a metric on S^{2}.
- What kind of metric does this induce on \mathbb{R}^{2} via the stereographic projection back?

2.2 Metrics Induced from $\mathbb{R} P^{2}$

For each metric d on S^{2}, we can define a metric on $\mathbb{R} P^{2}$ via the following:

- If we employ the characterization of $\mathbb{R} P^{2}$ as the set of all points of S^{2} where antipodal points are identified, then we can write $\mathbb{R} P^{2}=\left\{\{x,-x\} \subset \mathbb{R}^{3} \mid x \in S^{2}\right\}$.
- Using this characterization, define the distance between two "points" $\{u,-u\}$ and $\{v,-v\}$ as:

$$
d_{\mathbb{R} P^{2}}(\{u,-u\},\{v,-v\}):=\min (d(u, v), d(-u, v), d(u,-v), d(-u,-v))
$$

- Claim: This indeed defines a metric on $\mathbb{R} P^{2}$, given that d is a bonafide metric on S^{2}.
- For each of the examples above given for S^{2}, what kind of metric does this induce on \mathbb{R}^{2} ?

