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Abstract
We describe a few properties of the Moebius transformations.

1 Preface
Define a set of maps (subset of C ∪ {∞}C∪{∞}) called “Moebius Transformations” by the following:

M :=

{
z 7→

{
az + b z ∈ C
∞ z = ∞

∈ C ∪ {∞}C∪{∞}

∣∣∣∣∣ (a, b) ∈ C2 : a 6= 0

}
︸ ︷︷ ︸

M1

∪

∪

 z 7→


az+b
cz+d z ∈ C\

{
−d

c

}
∞ z = −d

c
a
c z = ∞

∈ C ∪ {∞}C∪{∞}

∣∣∣∣∣∣∣ (a, b, c, d) ∈ C4 : (ad− bc 6= 0) ∧ c 6= 0

︸ ︷︷ ︸
M2

1.1 Remarks
1.1.1 M Does not Include Constant Maps

• For maps in M1:

– When a = 0 we get a constant map, so we don’t want to include that.

• For maps in M2:

– If c 6= 0, and a 6= 0 then:

az + b

cz + d
=

a
c z +

b
c

z + d
c

=
a

c
·
z + b

a

z + d
c
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– Thus the requirement that ad− bc 6= 0 is equivalent to not taking maps such that z 7→ a
c (a constant map).

– If c 6= 0 and a = 0, then

az + b

cz + d
=

b
c

z + d
c

and then the requirement that ad− bc 6= 0 is equivalent to, again, not taking constant maps.

1.1.2 Moebius Transformations Are Parametrized by Six Real Parameters

• For maps in the second set, c 6= 0 and we can thus divide by it to get: z 7→
a
c z+

b
c

z+ d
c

.

• Since a, b, c and d are otherwise unconstrained, all we care about is in fact the ratios a
c , b

c ,
d
c .

• Each such ratio is a complex number (a pair of real numbers).

• Thus the maps are in general parametrized by six real parameters.

1.1.3 Moebius Transformations Are Bijective

• Proof as Homework!

1.2 Geometric Interpretation
• Play around at (best with Chrome) ar ≡ < (a) and ai ≡ = (a):
http://www.phys.ethz.ch/~jshapiro/moebius.html

• Or a video:
https://www.youtube.com/watch?v=0z1fIsUNhO4

• If you have Mathematica this is a great visualization:
https://mathematica.stackexchange.com/questions/59271/mobius-transformations-revealed

We can think of a Moebius transformation as consisting of the following procedures:

1. Let a point z ∈ C on the plane be given.

2. Project the point onto the unit sphere S2 ≡


xy
z

 ∈ R3

∣∣∣∣∣∣ x2 + y2 + z2 = 1

:

(a) The projection looks like this (from a point P ′ ∈ C onto a point P ∈ S2):
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(b) It is given by the map z 7→




2<(z)

|z|2+1
2=(z)

|z|2+1
|z|2−1

|z|2+1

 z ∈ C

00
1

 z = ∞

3. Move the sphere to a new location in space (specified by three real numbers).

4. Rotate the sphere into a new orientation in space (specified by three real numbers–Euler angles).

5. Perform a stereographic projection from the new position of the sphere back to the plane.

6. All together, six real parameters.

2 Moebius Transformations Form a Group

2.1 What’s a Group?
• A group G is a mathematical object

– Consisting of:

∗ A nonempty set S.
∗ A map S2 c→ S called composition, denoted by c.

– Obeying the following conditions:

∗ c is associative:
· c ((a, c ((b, c)))) = c ((c ((a, b)) , c)) for all (a, b, c) ∈ S3.

∗ ∃e ∈ S such that c ((a, e)) = a and c ((e, a)) = a for all a ∈ S.
∗ ∀a ∈ S∃ã ∈ S such that c ((a, ã)) = e and c ((ã, a)) = e.

2.2 Moebius Transformations Indeed Form a Group
With a few (rather obvious) definitions we can “induce” a group out of M.

• Our set is M. It is nonempty because it contains the identity map!

• The composition map c is exactly composition of functions:

– c ((z 7→ f (z) , z 7→ g (z))) ≡ z 7→ g (f (z))

• Due to the fact that composition of functions is associative, our composition map is immediately associative.

• Is c well defined?

– c is single-valued: holds because more generally function composition is a single-valued map.
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– In order to verify this, we need to check that the range of c is indeed a subset of M: that two Moebius transformation
composed result in yet another Moebius transformation. This can either be seen very easily from the geometrical perspective
or algebraically by the following proof.
Proof:

∗ Let (f1, f2) ∈ M2 be given. We want to show that f1 ◦ f2 ∈ M.
∗ Case 1 : (f1, f2) ∈ M1

2.
· If z = ∞, f2 (z) = ∞, in which case, f1 ◦ f2 (z) = f1 (∞) = ∞.
· Otherwise, write fi (z) = aiz + bi for all i ∈ {1, 2}. Because (f1, f2) ∈ M2 we know that ai 6= 0∀i ∈ {1, 2}. Then

for all z ∈ C we have:

f1 ◦ f2 (z) = a1 (a2z + b2) + b1

= a1a2z + a1b2 + b1

· This clearly defines an element in M1 because C is a field and so a1a2 ∈ C and (a1b2 + b1) ∈ C and because a1 6= 0
and a2 6= 0 then a1a2 6= 0.

· That is, f1 ◦ f2 (z) =

{
a1a2z + a1b2 + b1 z ∈ C
∞ z = ∞

with a1a2 6= 0 and so f1 ◦ f2 ∈ M1 ⊂ M.

∗ Case 2 : f1 ∈ M1 and f2 ∈ M2.

· Write f1 (z) =

{
a1z + b1 z ∈ C
∞ z = ∞

where a1 6= 0 and f2 (z) =


a2z+b2
c2z+d2

z ∈ C\
{
−d2

c2

}
∞ z = −d2

c2
a2

c2
z = ∞

where c2 6= 0 and a2d2 −

b2c2 6= 0.
· If z = ∞, f2 (z) = a2

c2
and so (f1 ◦ f2) (z) = a1

a2

c2
+ b1.

· If z = −d2

c2
, f2 (z) = ∞ and so (f1 ◦ f2) (z) = f1 (∞) = ∞.

· If z ∈ C\
{
−d2

c2

}
,

f1 (f2 (z)) = f1

(
a2z + b2
c2z + d2

)
= a1

a2z + b2
c2z + d2

+ b1

=
a1a2z + a1b2 + b1c2z + b1d2

c2z + d2

=
(a1a2 + b1c2) z + a1b2 + b1d2

c2z + d2

· We know that a1 6= 0 and that a2d2 − b2c2 6= 0.
What do we know about (a1a2 + b1c2) d2 − (a1b2 + b1d2) c2?

(a1a2 + b1c2) d2 − (a1b2 + b1d2) c2 = a1a2d2 + b1c2d2 − a1b2c2 − b1d2c2

= a1 (a2d2 − b2c2)

6= 0
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· Thus we find that (f1 ◦ f2) (z) =


a1

a2

c2
+ b1 z = ∞

∞ z = −d2

c2
(a1a2+b1c2)z+a1b2+b1d2

c2z+d2
z ∈ C\

{
−d2

c2

} with (a1a2 + b1c2) d2− (a1b2 + b1d2) c2 6=

0 and again c2 6= 0. Due to the fact that C is a field we find again that f1 ◦ f2 ∈ M2.
∗ Case 3 : f1 ∈ M2 and f2 ∈ M1.

· Write f2 (z) =

{
a2z + b2 z ∈ C
∞ z = ∞

where a2 6= 0 and f1 (z) =


a1z+b1
c1z+d1

z ∈ C\
{
−d1

c1

}
∞ z = −d1

c1
a1

c1
z = ∞

where c1 6= 0 and a1d1 −

b1c1 6= 0.
· If z = ∞, f2 (z) = ∞ and so (f1 ◦ f2) (z) = a1

c1
.

· If z = − c1b2+d1

c1a2
, f2 (z) = a2

(
− c1b2+d1

c1a2

)
+ b2 = −a2c1b2+a2d1

c1a2
+ b2 = −d1

c1
and so (f1 ◦ f2) (z) = f1 (∞) = ∞.

· If z ∈ C\
{
− c1b2+d1

c1a2

}
,

f1 (f2 (z)) = f1 (a2z + b2)

=
a1 (a2z + b2) + b1
c1 (a2z + b2) + d1

=
a1a2z + a1b2 + b1
c1a2z + c1b2 + d1

· We know that a2 6= 0 and that a1d1 − b1c1 6= 0.
What do we know about a1a2 (c1b2 + d1)− (a1b2 + b1) c1a2?

a1a2 (c1b2 + d1)− (a1b2 + b1) c1a2 = a1a2c1b2 + a1a2d1 − a1b2c1a2 − b1c1a2

= a2 (a1d1 − b1c1)

6= 0

· Thus we find that (f1 ◦ f2) (z) =


a1

c1
z = ∞

∞ z = − c1b2+d1

c1a2

a1a2z+a1b2+b1
c1a2z+c1b2+d1

z ∈ C\
{
− c1b2+d1

c1a2

} with a1a2 (c1b2 + d1) − (a1b2 + b1) c1a2 6= 0

and c1a2 6= 0 (because c1 6= 0 and a2 6= 0). Due to the fact that C is a field we find again that f1 ◦ f2 ∈ M2.
∗ Case 4 : (f1, f2) ∈ M2

2:

· Write fi (z) =


aiz+bi
z+di

z ∈ C\ {−di}
∞ z = −di

ai z = ∞
aidi 6= bi for all i ∈ {1, 2}. We can do this, because, as we mentioned above,

for M2, the maps are parametrized by six real parameters exactly.
· Case 4.1 : a2 = −d1:
1. If z = ∞, then f2 (z) = a2 = −d1 and so (f1 ◦ f2) (z) = ∞.
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2. Otherwise if z ∈ C then

f1 (f2 (z)) = f1

(
a2z + b2
z + d2

)
=

a1
a2z+b2
z+d2

+ b1
a2z+b2
z+d2

+ d1

=
a1a2z + a1b2 + zb1 + d2b1
a2z + b2 + zd1 + d2d1

=
(a1a2 + b1) z + a1b2 + d2b1
(a2 + d1)︸ ︷︷ ︸

0

z + b2 + d2d1

=
(a1a2 + b1) z + a1b2 + d2b1

b2 + d2d1

=
(−a1d1 + b1) z + a1b2 + d2b1

b2 + d2d1

3. First, we need to show that this makes sense, that is, that under these circumstances it’s impossible that b2+d2d1 =
0. To that end, assume otherwise, that is, that b2 + d2d1 = 0. Then b2 = −d2d1. But we know that b2 6= a2d2 so
that we know that a2d2 6= −d2d1. Since we know that a2 = −d1 this can never happen.

4. In addition we also know that −a1d1 + b1 6= 0 by assumption on f1 ∈ M2 and so f1 ◦ f2 ∈ M1 ⊂ M as desired.
· Case 4.2: a2 6= d1:
1. If z = ∞, then f2 (z) = a2 and so (f1 ◦ f2) (z) = a1a2+b1

a2+d1
.

2. If z = − b2+d2d1

a2+d1
, then

f2 (z) =
a2

(
− b2+d2d1

a2+d1

)
+ b2(

− b2+d2d1

a2+d1

)
+ d2

=
−a2b2 − a2d2d1 + b2a2 + b2d1
−b2 − d2d1 + d2a2 + d2d1

=
−a2d2d1 + b2d1
−b2 + d2a2

= −d1

and so f1 (f2 (z)) = f1 (−d1) = ∞.

3. If z ∈ C\
{
− b2+d2d1

a2+d1

}
then

f1 (f2 (z)) = f1

(
a2z + b2
z + d2

)
=

a1
a2z+b2
z+d2

+ b1
a2z+b2
z+d2

+ d1

=
a1a2z + a1b2 + zb1 + d2b1
a2z + b2 + zd1 + d2d1

=
(a1a2 + b1) z + a1b2 + d2b1
(a2 + d1) z + b2 + d2d1
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4. We know that a2 6= −d1 which already satisfies one condition for f1 ◦ f2 being in M2.
5. Next, we would like to ascertain that (a1a2 + b1) (b2 + d2d1)− (a1b2 + d2b1) (a2 + d1) 6= 0:

(a1a2 + b1) (b2 + d2d1)− (a1b2 + d2b1) (a2 + d1) = a1a2b2 + a1a2d2d1 + b1b2 + b1d2d1

−a1b2a2 − a1b2d1 − d2b1a2 − d2b1d1

= a1a2d2d1 + b1b2 − a1b2d1 − d2b1a2

= a1d1 (a2d2 − b2) + b1 (b2 − a2d2)

= (a2d2 − b2) (a1d1 − b1)

6= 0

which works out beautifully.
6. As a result, we have fulfilled all the requirements for f1 ◦ f2 to be in M2.

�

• Intuitively we expect that the identity element e would be e ≡ z 7→ z ≡ 1C∪{∞}. Let us indeed verify that:

– Let f ∈ M be given. c
((
1C∪{∞}, f

))
= 1C∪{∞} ◦ f = f and c

((
f, 1C∪{∞}

))
= f ◦ 1C∪{∞} = f .

• The last remaining property to show that we indeed defined a group is to find inverses:

– Let f ∈ M be given.

– Case 1 : f ∈ M1.

∗ Write f (z) =

{
az + b z ∈ C
∞ z = ∞

with a 6= 0. Then define f̃ (z) :=

{
z−b
a z ∈ C

∞ z = ∞
. Because a 6= 0 then 1

a 6= 0 and so

f̃ ∈ M1.

∗ If z ∈ C then
(
f ◦ f̃

)
(z) = f

(
z−b
a

)
= a

(
z−b
a

)
+ b = z and

(
f̃ ◦ f

)
(z) = f̃ (az + b) = (az+b)−b

a = z.

∗ If z = ∞ then
(
f ◦ f̃

)
(z) = f (∞) = ∞ and

(
f̃ ◦ f

)
(z) = f̃ (∞) = ∞.

– Case 2: f ∈ M2.

∗ Write f (z) =


az+b
z+d z ∈ C\ {−d}
∞ z = −d

a z = ∞
where ad 6= b. Then define f̃ (z) :=


dz−b
−z+a z ∈ C\ {a}
∞ z = a

−d z = ∞
. Because −1 6= 0 the first

condition for M2 is fulfilled. For the second condition we would want that ad − (−b) (−1) 6= 0 which is true because
f ∈ M2.
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∗ If z ∈ C\ {a} then (
f ◦ f̃

)
(z) = f

(
dz − b

−z + a

)
∗
=

a
(

dz−b
−z+a

)
+ b(

dz−b
−z+a

)
+ d

=
adz − ab− bz + ab

dz − b− dz + da

=
adz − bz

−b+ da
= z

(observe that ∗ we justified because ad 6= b implies dz−b
−z+a 6= −d for any z ∈ C\ {a}, and so we have used the right line

in the application of f)

∗ If z = a then
(
f ◦ f̃

)
(z) = f (∞) = a.

∗ If z ∈ C\ {−d} then (
f̃ ◦ f

)
(z) = f̃

(
az + b

z + d

)
∗
=

d
(

az+b
z+d

)
− b

−
(

az+b
z+d

)
+ a

=
daz + db− bz − bd

−az − b+ az + ad

=
daz − bz

−b+ ad
= z

(where similarly ∗ was justified because we assume that az+b
z+d 6= a which follows from ad 6= b again).

∗ If z = ∞ then
(
f ◦ f̃

)
(z) = f (−d) = ∞ and

(
f̃ ◦ f

)
(z) = f̃ (a) = ∞.

∗ Thus f ◦ f̃ = 1C∪{∞}.

3 Moebius Transformations Send Circles and Straight Lines to Circles and Straight
Lines

• In the fourth homework sheet we have seen that z 7→ 1
z maps circles and straight lines into circles and straight lines.

• Assuming this fact, we can build any Moebius transformation as a composition of simpler Moebius transformations, each of which
respects this fact, and so the total composition must also respect this fact.

• First, it is clear that elements in M1 obey the condition because they merely correspond to translation, scaling, and rotation, all
of which preserve the geometric shapes.
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• If we are given a map in M2, f (z) =


az+b
z+d z ∈ C\ {−d}
∞ z = −d

a z = ∞
where ad 6= b, then we can construct it as:

1. Translation by d (a map in M1): z 7→ z + d

2. Inversion (a map in M2, but a special one which we dealt with in the homework!): z + d 7→ 1
z+d .

3. Scaling and rotation by b− ad 6= 0 (a map in M1): 1
z+d 7→ (b− ad) 1

z+d .

4. Translation by a (a map in M1):

(b− ad)
1

z + d
7→ (b− ad)

1

z + d
+ a

=
az + b

z + d

4 Moebius Transformations Determined Completely from their Values on Just Three
Points of C

Claim: Given (z1, z2, z3, w1, w2, w3) ∈ (C ∪ {∞})6 such that z1 6= z2 ∧ z1 6= z3 ∧ z2 6= z3 and w1 6= w2 ∧ w1 6= w3 ∧ w2 6= w3 there
exists a unique element of M which maps zi → wi for all i ∈ {1, 2, 3}.
Proof:

• Define f (z) =


(z−z1)(z2−z3)
(z−z3)(z2−z1)

z ∈ C\ {z3}
∞ z = z3
z2−z3
z2−z1

z = ∞
for all z ∈ C ∪ {∞}.

• Claim: f ∈ M2 ⊂ M.
Proof:

– Note that

f (z) ≡ (z − z1) (z2 − z3)

(z − z3) (z2 − z1)

=
(z2 − z3) z − z1 (z2 − z3)

(z2 − z1) z − z3 (z2 − z1)

– Because zi are all distinct, z2 − z1 6= 0, and so we already fulfill the first condition for a map in M2.

– For the second condition, (z2 − z3) [−z3 (z2 − z1)]− [−z1 (z2 − z3) (z2 − z1)], note that

(z2 − z3) [−z3 (z2 − z1)]− [−z1 (z2 − z3) (z2 − z1)] = (z2 − z3) (z2 − z1) (−z3) + z1 (z2 − z3) (z2 − z1)

= (z2 − z3) (z2 − z1) (z1 − z3)

6= 0

• Claim: Under f we have: z1
f7→ 0, z2

f7→ 1 and z3
f7→ ∞.

Proof:

9



– The last condition is true by definition.

– When we feed z1 we clearly get 0.

– When we feed z2, we clearly get 1.

• There is a similar map in M2, g, which maps w1
g7→ 0, w2

g7→ 1 and w3
g7→ ∞.

• Because the Moebius transformations are a group, g−1 ◦ f will map z1
f7→ 0

g−1

7→ w1. and so on: zi
g−1◦f7→ wi for all i ∈ {1, 2, 3}.

• So we have shown that the sought after map exists! What about uniqueness?

• Assume we found another map h ∈ M which maps zi
h7→ wi for all i ∈ {1, 2, 3}.

• Then g ◦ h ◦ f−1 will map 0
f−1

7→ z1
h7→ w1

g7→ 0, 1 f−1

7→ z2
h7→ w2

g7→ 1 and ∞ f−1

7→ z3
h7→ w3

g7→ ∞.

• Recall that h ∈ M so we could write it as
(
g ◦ h ◦ f−1

)
(z) =


az+b
z+d z ∈ C\ {−d}
∞ z = −d

a z = ∞
where ad 6= b or

(
g ◦ h ◦ f−1

)
(z) =

{
az + b z ∈ C
∞ z = ∞

with a 6= 0.

• We know that ∞ 7→ ∞ so that it must be the second possibility (i.e. g ◦ h ◦ f−1 ∈ M1).

• We know that 0 7→ 0 so that b = 0 necessarily.

• We know that 1 7→ 1 so that a = 1 necessarily.

• As a result, g ◦ h ◦ f−1 = 1C∪{∞}, which means h = g−1 ◦ f , that is, h is the same map we constructed ourselves.

• Because h was aribitrary, all such maps will be the very same map we constructed, and hence, g−1 ◦ f is unique.

�

5 Moebius Transformations Retain the Cross-Ratio
Claim: Let f ∈ M be given and let zi ∈ C for all i ∈ {1, 2, 3, 4} such that zi are all distinct and f (zi) 6= ∞∀i ∈ {1, 2, 3, 4}. Then

(z1 − z3) (z2 − z4)

(z2 − z3) (z1 − z4)
=

[f (z1)− f (z3)] [f (z2)− f (z4)]

[f (z2)− f (z3)] [f (z1)− f (z4)]

Proof:

• Case 1: f ∈ M1.

– Write f (z) =

{
az + b z ∈ C
∞ z = ∞

with a 6= 0.

– Left as homework exercise.
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• Case 2: f ∈ M2.

– Write f (z) =


az+b
z+d z ∈ C\ {−d}
∞ z = −d

a z = ∞
where ad 6= b.

– Claim: f (zi)− f (zj) =
(zi−zj)(ad−b)
(zi+d)(zj+d) if zi ∈ C\ {−d} and zj ∈ C\ {−d}.

Proof:

∗ Calculate

f (zi)− f (zj) =
azi + b

zi + d
− azj + b

zj + d

=
(azi + b) (zj + d)− (azj + b) (zi + d)

(zi + d) (zj + d)

=
azizj + adzi + bzj + bd− azjzi − adzj − bzi − bd

(zi + d) (zj + d)

=
(zi − zj) (ad− b)

(zi + d) (zj + d)

– Insert this calculation into the cross-ratio to obtain:

[f (z1)− f (z3)] [f (z2)− f (z4)]

[f (z2)− f (z3)] [f (z1)− f (z4)]
=

[
(z1−z3)(ad−b)
(z1+d)(z3+d)

] [
(z2−z4)(ad−b)
(z2+d)(z4+d)

]
[
(z2−z3)(ad−b)
(z2+d)(z3+d)

] [
(z1−z4)(ad−b)
(z1+d)(z4+d)

]
=

[
(z1−z3)

(z1+d)(z3+d)

] [
(z2−z4)

(z2+d)(z4+d)

]
[

(z2−z3)
(z2+d)(z3+d)

] [
(z1−z4)

(z1+d)(z4+d)

]
=

(z1 − z3) (z2 − z4)

(z2 − z3) (z1 − z4)

�

6 Pretty Examples (Homework)
• Maps which send the unit circle to the upper half plane.

• Maps which send the upper halfplane into itself.
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