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Abstract

We describe a few properties of the Moebius transformations.

1 Preface

CU{OO})

Define a set of maps (subset of CU {oco} called “Moebius Transformations” by the following:

b
M = {Z’_){CLZ—F =cC E(CU{OO}(CU{OO} (a,b)GCQ:a#O}U
00 z =00
My
= seo\(-4 C
U 2z ¢ 00 z= =4 € CU {0} | (4, b, ¢, d) €C*: (ad—be#0)Ac#£0
2 zZ =00

Mo

1.1 Remarks
1.1.1 M Does not Include Constant Maps
e For maps in My:
— When a = 0 we get a constant map, so we don’t want to include that.
e For maps in Ms:

— If ¢ # 0, and a # 0 then:

az+b gz4+0
cz+d z+%
_a ztg

= d
Z+E



— Thus the requirement that ad — bc # 0 is equivalent to not taking maps such that z — 2 (a constant map).
— If ¢# 0 and a = 0, then

az+b b

C

cz+d Z"‘%

and then the requirement that ad — bc # 0 is equivalent to, again, not taking constant maps.

1.1.2 Moebius Transformations Are Parametrized by Six Real Parameters

a b
e For maps in the second set, ¢ # 0 and we can thus divide by it to get: z +— < T_; .

e Since a, b, ¢ and d are otherwise unconstrained, all we care about is in fact the ratios ¢, %, %.

e Each such ratio is a complex number (a pair of real numbers).

e Thus the maps are in general parametrized by six real parameters.

1.1.3 Moebius Transformations Are Bijective

e Proof as Homework!

1.2 Geometric Interpretation

e Play around at (best with Chrome) a, = R (a) and a; = S (a):
http://www.phys.ethz.ch/~jshapiro/moebius.html

e Or a video:
https://www.youtube.com/watch?v=0z1fIsUNh04

e If you have Mathematica this is a great visualization:
https://mathematica.stackexchange.com/questions/59271/mobius-transformations-revealed

We can think of a Moebius transformation as consisting of the following procedures:
1. Let a point z € C on the plane be given.

x
2. Project the point onto the unit sphere S? = yl eR® |22 +9y2+22=1
z

(a) The projection looks like this (from a point P’ € C onto a point P € S?):
Z

N




zeC

(b) Tt is given by the map z +—

3. Move the sphere to a new location in space (specified by three real numbers).

S

. Rotate the sphere into a new orientation in space (specified by three real numbers—Euler angles).

5. Perform a stereographic projection from the new position of the sphere back to the plane.

[=p}

. All together, six real parameters.

2 Moebius Transformations Form a Group

2.1 What’s a Group?
e A group G is a mathematical object
— Consisting of:

x A nonempty set S.
% A map S? 5 S called composition, denoted by c.

— Obeying the following conditions:

* ¢ is associative:

¢ ((a, e ((b, ) =c ((c ((a, b)), ¢)) for all (a, b, c) € S3.
* Je € S such that ¢((a, €)) =a and c((e, a)) =a for alla € S.
* Ya € S3a € S such that ¢((a, a)) = e and ¢((a, a)) = e.

2.2 Moebius Transformations Indeed Form a Group

With a few (rather obvious) definitions we can “induce” a group out of M.
e Our set is M. It is nonempty because it contains the identity map!
e The composition map c is exactly composition of functions:
—c((z f(2), 22 9(2) =2 g(f(2))
e Due to the fact that composition of functions is associative, our composition map is immediately associative.
e Is ¢ well defined?

— c is single-valued: holds because more generally function composition is a single-valued map.



— In order to verify this, we need to check that the range of c¢ is indeed a subset of M: that two Moebius transformation
composed result in yet another Moebius transformation. This can either be seen very easily from the geometrical perspective
or algebraically by the following proof.

Proof:
x Let (f1, f2) € M? be given. We want to show that f; o fo € M.
x Case 1: (f1, f2) € My 2.
- If z =00, fo(2) = 00, in which case, f1 o fa(z) = f1 (00) = 0.
- Otherwise, write f; (z) = a;z + b; for all i € {1, 2}. Because (f1, fa) € M? we know that a; # 0Vi € {1, 2}. Then
for all z € C we have:

fiofa(2) = ay(azz+by)+ b
= a1a2z—|—a1b2—|—b1
- This clearly defines an element in M; because C is a field and so ajas € C and (a1b2 4 b1) € C and because a; # 0

and ay # 0 then ajaq # 0.
{alagz +aiby+b; ze€C

z =00

- That is, f1 0 fa(2) = with ajas # 0 and so fi o fo € My C M.

x Case 2: f1 € My and fy € Mo.
a2ztbs € C\ {ff—z}

b (C coz+ds
- Write f1 (2) = {alz to z€ where a1 # 0 and f2 (2) = { o 4= = where ¢y # 0 and asds —
00 Z =00 c2
‘c‘—j Z =00
b202 75 0.
- Ifz=o00, fo(2) = 2 and so (fi0 f2) (2) = a1 ¢ + b1.
CIfz= —%7 f2(2) = o0 and so (f1 0 fa2) (2) = f1(c0) = 0.
da
Iz e (C\ {—a},
fiR() = p(2Et
1\J2 (% = 1 oz + do
asz + b2
= ——+b
“ oz + da o
- a1a2z+a1b2+b102z+b1d2
- CozZ + d2
- (a1a2 +b102)z+a1b2+b1d2
a oz + doy
- We know that a; # 0 and that asds — bacy # 0.
What do we know about (ajas + b1ca) do — (a1ba + b1da) c2?
(a1a2 + blcg) dg — (a1b2 + b1d2) Cy = a1a2d2 + b162d2 - aleCg — b1d282
= a1 (azdy — bacz)
# 0



a1®2 4+ b Z =00
2

- Thus we find that (f1 o f2) (Z) =X z = _(C% with ((11(12 + b102) do — (albg + bldg) Co 7&

(araz+bice)z+taiba4bids _do
coz+do z € (C\ co

0 and again cs # 0. Due to the fact that C is a field we find again that f; o fo € Mo.
x Case 3: f1 € My and fo € M;.

a12+by ZG(C\{_‘LI}
. az+by ze€C c1z+d; c1
- Write fo(2) = - o where as # 0 and f1 (2) = { o ¥ = —?‘fl where ¢; # 0 and aid; —
a Z =00

Cc1

b1017é0.
- If z =00, fo(2) =00 and so (f1 0 fa) (2) = 4.

c1

If 2= ekt f (2) = ag (*M)erQ:*MJrlb:*% and so (f1 0 f2) (2) = f1 (00) = o0.

ci1as c1a2 ci1a2

reey{oasn)
ciaz
fi(f2(2)) = fi(azz+bo)
ay (CLQZ + b2) + bl
c1 (agz + be) + d4
aia2z + a1bs + by
ClaQZ+Clb2 +d1

- We know that as # 0 and that a;dy — bicy # 0.
What do we know about ajas (c1by + di) — (arbs + b1) c1as?

araz (ciba +di) — (aibs + b1) crae = arazcibs + arasdi — arbaciag — bicias

= a2 (aldl - b101)

£ 0
‘;—i Z =00

. Thus we find that (f; o f2) (z) = { © z= —7612,’12;3[1 with ayas (c1by + di) — (a1be + b1) cras # 0
aiazz+aiba+by = C\ _Clb2+d1
ciasz+cibo+dy ci1az2

and cjas # 0 (because ¢; # 0 and ag # 0). Due to the fact that C is a field we find again that f; o fo € M.
x Case 4: (f1, f2) € Ma%:
wzthi 2 e C\{—d;}
- Write f; (z) = ¢ o0 z = —d; a;d; # b; for all i € {1, 2}. We can do this, because, as we mentioned above,
a; Z =00
for M3, the maps are parametrized by six real parameters exactly.
- Case 4.1: ap = —dq:
1. If z = o0, then f3(2) = ag = —dy and so (f1 o f2) (2) = 0.



2. Otherwise if z € C then

fi(f2(2))

asz + ba

= fl _—
z+do

a1 a;i;iiz + b

o
a1a2z + arbs + 2b1 + daby
a2z + ba + zdy + dady
(a1a2 + b1) z + a1by + daby
(CLQ + dl) z+ by + dody
0

(araz +b1) z + a1by + daby
by + dady

(—a1d1 + bl) z 4+ ai1bs + daby
ba + dady

3. First, we need to show that this makes sense, that is, that under these circumstances it’s impossible that ba+dody =
0. To that end, assume otherwise, that is, that bs + dod; = 0. Then by = —dad;. But we know that bs # asds so
that we know that asds # —dad;. Since we know that ag = —d; this can never happen.

4. In addition we also know that —ayd; + b; # 0 by assumption on f; € My and so f1 o fo € My C M as desired.

- Case 4.2: as # dy:

1. If 2 = oo, then f5 (2) = ag and so (fy o fo) (2) = “%thbL

_ _botdody
2. If z = PR h , then

and so fi (f2(2)) = f1 (~
3. Isz(C\{ b2+d2d1}then

dy) =

oQ.

f2(2) =

fi(f2(2))

az+dy

w (-t ) + b
ba+dady
<_ az+dy ) + da
—a2by — axdady + baag + bad,
—by — dody + daas + dady
7(12d2d1 —+ del

—by + daaq
—dy

- f a2z + b2
o ! z+do
a “Eh2 + b

a22+b2 Ty
a1asz + a1bs + zby + daby
a2z + ba + zdy + dod;
(alag + bl) z 4+ a1bs + daby
(a2 +di) z + by + dady




4. We know that as # —d; which already satisfies one condition for f; o fo being in M.
5. Next, we would like to ascertain that (ajas + b1) (ba + dadi1) — (a1be + daby) (a2 4+ di) # 0:

aiasbs + ajasdsady + biba + bidad;
—a1baas — arbady — dobias — dobidy
= ajagodad; + b1by — a1bady — dabias
= a1dy (azdy — ba) + b1 (b2 — azds)

(ar1a2 +b1) (b2 + dady) — (a1bg + doby) (a2 +d1) =

= (azdz - bz) (a1d1 - bl)

£ 0

which works out beautifully.
6. As a result, we have fulfilled all the requirements for fi o fo to be in M.

e Intuitively we expect that the identity element e would be e = 2 + 2 = Icy(so)- Let us indeed verify that:

— Let f € M be given. ¢ ((]]-(Cu{oo}v f)) = lcufocy o f = f and c((f7 IL(CU{OO})) = folcufee} = [-

e The last remaining property to show that we indeed defined a group is to find inverses:

— Let f € M be given.

— Case 1: f € M.
z—b
x Write f (z) = {az—l—b zeC with a # 0. Then define f (z) := { a 2€eC . Because a # 0 then 2 # 0 and so
(0. ¢] z =00 o0 zZ =00
fe./\/ll.
% If z € C then (fOf)(z):f(Z_b):a(z—_b)—i—b:zand (fOf)(z): f(az +b) = laztbl=b _
* If 2 = oo then (fOf)(z):f(oo):ooand (f0f>(z):f(oo):oo.
— Case 2: f € Ms.
b ;e C\{-d} ~ L2t 2eC\{d}
x Write f (z) = ¢ oo z=—d where ad # b. Then define f (z) := < oo z=ua . Because —1 # 0 the first
a zZ =00 —d Z =00

condition for My is fulfilled. For the second condition we would want that ad — (—b) (—1) # 0 which is true because

fe./\/lg.



x If z € C\ {a} then

(observe that * we justified because ad # b implies

in the application of f)

x If 2 = a then (f0f>(z):f(oo):a.

x If z € C\ {—d} then

1ES

dz—b

—z+a

[

dz—b
f(—z—i—a)
a(4=) 4+
(45%) +d
adz — ab — bz + ab

dz—b—dz+da
adz — bz

—b+da
z

# —d for any z € C\ {a}, and so we have used the right line

(52
a(57) -
daz + db — bz — bd

—az —b+az+ad
daz — bz

—b+ ad
z

(where similarly * was justified because we assume that % = a which follows from ad # b again).

* If z = oo then (fof)(z)zf(—d)zooand (f0f>(z):f(a):oo.

x Thus f o f = ]1(Cu{oo}~

3 Moebius Transformations Send Circles and Straight Lines to Circles and Straight

Lines

e In the fourth homework sheet we have seen that z +— % maps circles and straight lines into circles and straight lines.

e Assuming this fact, we can build any Moebius transformation as a composition of simpler Moebius transformations, each of which
respects this fact, and so the total composition must also respect this fact.

e First, it is clear that elements in M; obey the condition because they merely correspond to translation, scaling, and rotation, all

of which preserve the geometric shapes.



azth e O\ {—d}

z+d
o If we are given a map in Mo, f(z) =< oo z2=—d where ad # b, then we can construct it as:
a z =00

1. Translation by d (a map in M;): z+— z+d

1
z+d*

2. Inversion (a map in Mo, but a special one which we dealt with in the homework!): z + d

3. Scaling and rotation by b — ad # 0 (a map in M;): ﬁ — (b— ad) Z}_d.

4. Translation by a (a map in M;):

1 1
(b_ad)z—l—d > (b—ad)m—&—a
_az+b
- z4d

4 Moebius Transformations Determined Completely from their Values on Just Three
Points of C

Claim: Given (z1, 22, 23, wy, wa, w3) € (CU {oo})6 such that 21 # 20 A 21 # 23 A 23 # 23 and wy # wo A w1 # w3 A wy # w3 there
exists a unique element of M which maps z; — w; for all ¢ € {1, 2, 3}.
Proof:
e 2 €C\{=s}
e Define f(2) = { > z=2z3 for all z € CU {o0}.
e Z =00
zZ2—2z21

e Claim: f e My C M.
Proof:

— Note that

~

—~
S

S~—
|

(
(
(22 — 23) 2 — 21 (22 — 23)
(20— 21) 2 — 23 (20 — 21)

— Because z; are all distinct, zo — z; # 0, and so we already fulfill the first condition for a map in Ms.

— For the second condition, (z3 — 23) [—23 (22 — 21)] — [—21 (22 — 23) (22 — 21)], note that
(22 —z3) [~23 (22 —21)] = [F21 (22 — 23) (2 —21)] = (22— 23) (22 — 21) (—23) + 21 (22 — 23) (22 — 21)
= (22—2) (22— 21) (21 — 23)
# 0

e Claim: Under f we have: z; »i> 0, 29 i> 1 and z3 »i> 0.
Proof:



— The last condition is true by definition.
— When we feed z; we clearly get 0.

— When we feed zo, we clearly get 1.

e There is a similar map in Ms, ¢, which maps wy *» 0, wa ¥ 1 and w3 % co.

1 —1
e Because the Moebius transformations are a group, ¢~' o f will map 2; i> 0% w;. and soon: z; Y l—ff w; for all 7 € {1, 2, 3}.

e So we have shown that the sought after map exists! What about uniqueness?

e Assume we found another map h € M which maps z; P w; for all i € {1, 2, 3}.

—1 —1 —1
e Then goho f! willmap0f|—> zlliwliio,l{% 22>ﬁ>w2£>1andoofl—> 25 o w3 ¥ 00,

azth e C\ {—d}

z+d
e Recall that h € M so we could write it as (goho f71)(2) = ¢ o0 z=—d where ad # b or (goho f71)(z) =
a z =00
{az—i—b ze€C with a £ 0.
00 z =00

e We know that oo + 0o so that it must be the second possibility (i.e. goho f=1 € My).
e We know that 0 — 0 so that b = 0 necessarily.

e We know that 1 +— 1 so that a = 1 necessarily.

1

e Asaresult, goho f~1 = Lcu{so), Which means h = g7 o f, that is, h is the same map we constructed ourselves.

1

e Because h was aribitrary, all such maps will be the very same map we constructed, and hence, g7 o f is unique.

5 Moebius Transformations Retain the Cross-Ratio
Claim: Let f € M be given and let z; € C for all ¢ € {1, 2, 3, 4} such that z; are all distinct and f (z;) # ooVi € {1, 2, 3, 4}. Then

(21 —2) (22 —za) _ [f(2) = F(2)][f (22) = [ (24)]
(22 — 23) (21 — 24) [f (z2) = [ (23)] [f (21) — [ (24)]

Proof:
o Case 1: f € My.

- Writef(z)—{az+b zeC with a # 0.

o0 Z =00

— Left as homework exercise.
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e Case 2: f € Ma.

w2 eC\{-d}

— Write f(2) = ¢ o0 z=—d where ad # b.

a zZ =00

— Claim: f(z) — [ (z;) = E=20040 ¢ e €\ {~d} and z; € C\ {—d}.

= (zitd)(z;+d)
Proof:

* Calculate

[ (zi) = f(z)

az; +b az; +b
zi+d  zj+d
(az; +0) (2 +d) — (az; +b) (z; + d)
(2 +d) (5 + )
az;zj + adz; + bzj + bd — az;z; — adz; — bz; — bd
(zi +d) (z; + d)
(zi — zj) (ad = b)
(zi +d) (z; + d)

— Insert this calculation into the cross-ratio to obtain:

(21—23)(ad—0) (z2—24)(ad=0b)
21+d)(23+d) (z2+d)(za+d)

6 Pretty Examples (Homework)

s S

[f (z2) — f (23)][f (z1) — f(z)] [ 22— 23)(ad— b)} {(zl—u)(ad—b)}
[
[

Z2+d) 23+d) (Z1+d)(24+d)

(z1—23) }{ (z2—24) }
(z1+d)(z3+d) | | (22+d)(z4+d)

(z2—23) (z1—24)
(z2+d)( 33+d):| {(z1+d)(z4+d)}
(2’1 - 23) (2’2 - 24)
(22 — z3) (21 — 24)

e Maps which send the unit circle to the upper half plane.

e Maps which send the upper halfplane into itself.
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