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Abstract

A summary of some notions from Paul Halmos’ book Naive Set Theory.

1 Introduction
The “Peano Axioms”, introduced in 1889 by Peano, and based on earlier work
by Dedekind, give an axiomatisation of “natural number”. This axiomatization
is a list of properties which we expect the “natural numbers” (denoted by N) to
have in order to build upon them the rest of mathematics:
natural numbers N = {0, 1, 2, . . . } −→
integers Z = {0, ±1, ±2, . . . } −→
rationals Q =

{
p
q

∣∣∣ p ∈ Z ∧ q ∈ N\ {0} ∧ p and q have no mutual factors
}
−→

reals R (all numbers, including π, e,
√
2 and so on)−→

analysis −→
geometry −→
physics

1.1 The Peano Axioms
1. Zero is a natural number:

0 ∈ N

2. If n is a natural number, so is n+ 1:
n ∈ N =⇒ (n+ 1) ∈ N

3. The induction principle: If a statement S (n) is true for n = 0 and
[S (n+ 1) is true whenever S (n) is true] for all n ∈ N, then S (n) is
true for all natural numbers n. (also called minimal property):
(S (0) ∧ [(S (n) =⇒ S (n+ 1)) ∀n ∈ N]) =⇒ S (n)∀n ∈ N

4. For any natural number n, n+ 1 = 0 is false:
(n+ 1 6= 0) ∀n ∈ N
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5. For any two natural numbers n and m, if n+ 1 = m+ 1 then n = m:
∀n ∈ N, ∀m ∈ N : ((n+ 1 = m+ 1) =⇒ (n = m))

These axioms were chosen to list all the facts we expect to be true about the
natural numbers. Two questions arise: does there exist a mathematical rigorous
object that obeys these conditions, and if so, is it unique?

The answer to these questions is given by set theory.

2 Construction of the Axioms as Theorems from
Set Theory

Our aim is to define the natural numbers out of sets, and see how from the
basic axioms of sets we can prove the Peano Axioms as mere theorems. Having
done that, we will have been able to give a foundation for a huge corpus of
mathematics in terms of sets.

Note: It is a general goal of mathematics to ultimately convert all assump-
tions of higher-level mathematics to theorems that depend on the axioms of set
theory (or some other foundation of mathematics).

2.1 Definition of the Natural Numbers within Set Theory
• For every set x, define the succssor set of the set x (Nachfolge), denoted

by x+ as
x+ := x ∪ {x} .

– Example: Assume x = {1, 2, 3, 4}. Then x+ = x∪{x} = {1, 2, 3, 4, x} =
{1, 2, 3, 4, {1, 2, 3, 4}}. Note that then |x| = 4 and |x+| = |x|+1 = 5.
We always have that |x+| = |x|+ 1.

• Define 0 to be the set with zero number of elements. We use the definite
article “the” because there is only one such set (by the axiom of extension),
namely, the empty set.
0 := ∅ .

• Define the rest of the natural numbers as succesors of 0:

– 1 := 0+ = ∅ ∪ {∅} = {∅} = {0}

– 2 := 1+ = {∅} ∪ {{∅}} = {∅, {∅}} = {0, 1}

– 3 := 2+ = {∅, {∅}} ∪ {{∅, {∅}}} = {∅, {∅} , {∅, {∅}}} = {0, 1, 2}

– and so on.

• Define a successor set as a set such that one of its elements is the empty
set and for every one of its elements, it also contains the successor set of
that element.
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That is, for a given set, A, to be “a successor set”, the following two
conditions must be fulilled:

1. ∅ ∈ A

2. x+ ∈ A for all x ∈ A.

• Recall (or find out) The “axiom of infinity”: there exists a successor set.
This is one of the axioms of set theory, the underlying basis of mathemat-
ics. It says that in the world of all possible sets, there is one set that obeys
the two conditions we stipulated just above. It doesn’t say what the set
is, just that there is one. It is easy to see why this is called the axiom of
infinity.

• Claim: The non-empty intersection of every family of successor sets is a
successor set itself.
Proof:

– Let {Ai}i∈I be a family of successor sets. That is, {A1, A2, A3, . . . }
if I = {1, 2, 3, . . . }, where each Ai is “a successor set”.
We want to show that ∩i∈IAi ≡ A1∩A2∩A3∩ . . . is a successor set.

– Since Ai is a successor set for each i ∈ I, ∅ ∈ Ai for each i ∈ I. As
a result, ∅ ∈ ∩i∈IAi.

– Take some x ∈ ∩i∈IAi. That means that x ∈ Ai for all i ∈ I. Since
each Ai is a successor set for all i ∈ I, x+ ∈ Ai for all i ∈ I. As a
result, x+ ∈ ∩i∈IAi.

�

• Let A0 be some arbitrary successor set (we know one exists by the axiom
of infinity).

• Define N, the natural numbers, as the intersection of all successor sets
which are subsets of A0. From the above that means that N is itself a
successor set.

• Note that this definition sounds crazy for now, because why should a
universal important object such as N, depend on our choice of A0? We
will see that in fact it does not, and the same result would be for any A0

we choose.

• In symbols we have

N :=
⋂

X is a successor set that is a subset of A0

X

• Claim: N ⊂ B0 for any other successor set B0.
Proof:
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– Let B0 be a given successor set.

– Since A0 and B0 are successor sets, A0∩B0 is also a successor set by
the above claim.

– A0 ∩B0 ⊂ A0 is always true for any two sets.

– Thus, A0 ∩ B0 is a successor set which is a subset of A0. But this
subset of A0 also goes into the definition of N.

– As a result, N must be a subset of A0∩B0 according to its definition:
N ⊂ A0 ∩B0.

– But from N ⊂ A0 ∩B0 it necessarily follows as well that N ⊂ B0.

�

• Thus we see that N indeed does not depend on A0, because we find N to
the smallest successor set: it is a successor set with the property that it
is a subset of every other successor set!

• Claim: N is unique.
Proof:

– Assume otherwise, that is, assume ψ is another successor set that is
included in any possible successor set, just like N.

– Since N is a successor set, ψ ⊂ N.

– But N is also “a successor set that is included in any other successor
set”, so that N ⊂ ψ.

– As a result we see that N and ψ have exactly the same elements.

– Recall (or find out)
The axiom of extension: Two sets are equal iff they have the same elements.

– Thus we have ψ = N, and so, any successor set with the property
that “it is included in any other successor set” has to be equal to N.

�

• Define a “natural number” to be an element in N, and “the natural num-
bers” as N.

• Note: we pay a price for a set-theoretic definition of natural numbers:
we obtain “superfluous” structure which say, for instance, that not only
7+ = 8, but also that 7 ∈ 8: a very peculiar fact.

2.2 The “Axioms” Follow from Set Theoretic Definitons
2.2.1 The First “Axiom”

• Claim: Zero is a natural number.
Proof:
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– Since N, the set of natural numbers is a successor set, and successor
sets contain ∅, ∅ ∈ N.

– However, 0 = ∅, so that 0 ∈ N, as we had hoped.

�

2.2.2 The Second “Axiom”

• Claim: If n is a natural number, so is n+ 1.
Proof:

– We identify n+ 1 as n+.

– Since n is a natural number, n ∈ N.

– But since N is a successor set, that means that n+ ∈ N, that is,
(n+ 1) ∈ N.

�

2.2.3 The Third Axiom – The Principle of Mathematical Induction

• Claim: If a statement S (n) is true for n = 0 and [S (n+ 1) is true when-
ever S (n) is true] for all n ∈ N, then S (n) is true for all natural numbers
n.
Proof:

– Define the set X := { n ∈ N | S (n) is true }.
– Claim: X is a successor set.

Proof:

∗ We are given that S (0) is true, and so 0 ∈ X.
∗ We are given that S (n+ 1) is true if S (n) is true for all n ∈ N.

This means that (n+ 1) ∈ X if n ∈ X for all n ∈ N.
∗ Thus we have proven that X is a successor set.

– But N is a successor set that is a subset of any other successor set
(minimality property), which means that N ⊂ X. But by the defini-
tion of X, X ⊂ N.

– Thus by the extension axiom, X = N and so the statement S (n) is
true for all n ∈ N.

�

2.2.4 The Fourth Axiom

• Claim: For any natural number n, n+ 1 = 0 is false.
Proof:

– Note that 0 = ∅, that is, 0 is a set containing no elements.
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– n+ 1 ≡ n+ ≡ n ∪ {n}, that is, n ∈ n+. Thus, necessarily, n+ has an
element, and is not empty.

– By the axiom of extension n+ 6= 0.
– Since n was arbitrary this is true for all n ∈ N.

�

2.2.5 The Fifth Axiom

• Claim: For any two natural numbers n and m, if n + 1 = m + 1 then
n = m.
Proof:

– Claim 1: No natural number is a subset of any of its elements. In
symbols: ∀n ∈ N (∀m ∈ n (n * m)).
Proof:
∗ Define S := { n ∈ N | ∀m ∈ n (n * m) }.
∗ Claim: S = N.

Proof:
· 0 = ∅, so 0 ∈ S because the condition holds vacuously (there

are no m ∈ 0 to violate the condition).
· Let some n ∈ S be given. We want to show now that n+ ∈ S,

that is, ∀m ∈ n+, n+ * m.
· n+ ≡ {1, 2, . . . , n} = n ∪ {n}.
· Case 1–m = n: n ⊂ n trivially, so that we cannot have n ∈ n

(otherwise n would not have been in S). But n ∈ n+, so that
we found some object (n) which is in n+ and not in n, and
thus n+ * n.

· Case 2–m ∈ {1, 2, . . . n− 1}: Then assume otherwise, that
n+ ⊂ m. Then also n ⊂ m because n+ ≡ n ∪ {n}. But
n ∈ S, so that means that m /∈ n. This is a contradiction as
we know that m ∈ {1, 2, . . . , n− 1} ≡ n. Thus it must be
the case that n+ * m.

· Thus we have by the third axiom that S = N.
– Claim 2: Every element of a natural number is a subset of it. In

symbols: ∀n ∈ N (∀m ∈ n (m ⊂ n)).
Proof:
∗ Define S := { n ∈ N | ∀m ∈ n (m ⊂ n) }.
∗ Claim: S = N.

Proof:
· 0 ∈ S because the condition is vacuously satisfied for 0 = ∅

which has no elements.
· Let some n ∈ S be given. We want to show now that n+ ∈ S,

that is, ∀m ∈ n+, m ⊂ n+.
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· n+ ≡ {1, 2, . . . , n} = n ∪ {n}.
· Case 1–m ∈ {1, 2, . . . , n− 1}: Then m ∈ n and because
n ∈ S, m ⊂ n. But n ⊂ n+(n+ ≡ n ∪ {n}) so that m ⊂ n+.

· Case 2–m = n: By definition, n ⊂ n+, and so m ⊂ n+.
· Thus we found that n+ ∈ S.
· Using the third axiom we have that S = N.

– Let n ∈ N and m ∈ N be given and further assume that n+ = m+.

– Because n ∈ n+, n ∈ m+. But m+ = m ∪ {m}, so that either n ∈ m
or n = m.

– By a symmetric argument we have that either m ∈ n or m = n.

– Assume n 6= m. Then the two arguments above imply that both
n ∈ m and m ∈ n are true.

– By Claim 2, every element of a natural number is a subset of it.
m ∈ n where n is a natural number. So we have m ⊂ n. But m ⊂ n
and n ∈ m implies that n ∈ n. But this is of course a contradiction
using Claim 1 because we always have that n ⊂ n (for every set) and
so n ∈ n and n ⊂ n imply a contradiction with Claim 1.

– As a result we must have n = m.

�

3 A Few More Theorems (Homework)
• Claim: (n 6= n+)∀n ∈ N.

• Claim: ∀n ∈ N(n 6= 0 =⇒ n = m+ for some m ∈ N).

• Claim: Every element of a natural number is a subset of it: ∀m ∈ N
(m ⊂ N).

• Claim: ∀n ∈ N (∀E ⊂ n such that E 6= ∅ (∃k ∈ E such that (k ∈ m
whenever m ∈ E\ {k}))).

4 Next Steps
Arithmetic and Order: chapters 13 and 14.

7


