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Abstract

Even though many of the questions in the exam could have been solved easily using smart “tricks”, in what follows I attempt to
present the most naive, straight forward solution that a student could have been expected to come up with during the exam.

1 Taylor Expansions

• In question 5 of the open section, you were asked to compute the Taylor expansion of a function at 0 up to order 4.

• The general recipe to do this is as follows:

• Suppose f : R → R is given which is sufficiently many times differentiable.

• Then we have
f (x) ≈ f (0) + f ′ (0) x+

1

2
f ′′ (0) x2 +

1

6
f(3) (0) x3 +

1

24
f(4) (0) x4 +O

(
x5
)

• Thus the proble is reduced to computing derivatives of a function and evaluating those derivatives at 0.

• Let’s take the particular example that was given on the exam:

• f (x) =
√
1− 2x2:

f (x) =
√
1− 2x2

f(1) (x) = 1
2

(
1− 2x2

)− 1
2 (−2) (2x) = −2x√

1−2x2

f(2) (x) = −2

(
1√

1−2x2
+ x

(
−1

2

) (
1− 2x2

)− 3
2 (−2) (2x)

)
= −2√

1−2x2
− 4x2(

1−2x2
) 3
2

f(3) (x) = −2
(
−1

2

) (
1− 2x2

)− 3
2 (−2) (2x) − 4

(
2x(

1−2x2
) 3
2

+ x2
(
−3

2

) (
1− 2x2

)− 5
2 (−2) (2x)

)
= −12x(

1−2x2
) 3
2

− 24x3(
1−2x2

) 5
2

f(4) (x) = −12

(
1(

1−2x2
) 3
2

+ x
(
−3

2

) (
1− 2x2

)− 5
2 (−2) (2x)

)
− 24

(
3x2 1(

1−2x2
) 5
2

+ x3
(
−5

3

) (
1− 2x2

)− 7
2 (−2) (2x)

)
=

= − 12(
1−2x2

) 3
2

− 144x2(
1−2x2

) 5
2

− 240x4(
1−2x2

) 7
2 

f (0) = 1

f(1) (0) = 0

f(2) (0) = −2

f(3) (0) = 0

f(4) (0) = −12

• This was expected, because f is an even function, so its Taylor expansion should contain only even powers and if f were an odd
function its Taylor expansion would have contained only odd powers.

• Thus we have

f (x) ≈ f (0) + f ′ (0) x+
1

2
f ′′ (0) x2 +

1

6
f(3) (0) x3 +

1

24
f(4) (0) x4 +O

(
x5
)

= 1+
1

2
(−2) x2 +

1

24
(−12) x4 +O

(
x5
)

= 1− x2 −
1

2
x4 +O

(
x5
)
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2 Integrals

2.1 Sinus Squared

• We would like to compute

I :=

ˆ π

0

[sin (x)]2 dx

• Write [sin (x)]2 = 1
2 − 1

2 cos (2x) using the formula cos (2x) = 1− 2 [sin (x)]2.

• Thus we have

I =

ˆ π

0

[
1

2
−

1

2
cos (2x)

]
dx

=
1

2

ˆ π

0

[1− cos (2x)]dx

=
1

2

{ˆ π

0

dx−

ˆ π

0

cos (2x)dx
}

=
1

2

x|π0 −

ˆ π

0

cos (2x)dx︸ ︷︷ ︸
u=2x


=

1

2

{
x|π0 −

ˆ 2π

0

cos (u)
1

2
du

}

=
1

2

{
x|π0 −

1

2
sin (u)|2π0

}
=

{
1

2
x−

1

4
sin (2x)

}∣∣∣∣2π
0

=
π

2

2.2 Logs

• We want to evaluate

I :=

ˆ 1
2

0

1

1− x2
dx

• The first step is to perform partial fraction decomposition. We know that
(
1− x2

)
= (1− x) (1+ x), so we expect 1

1−x2 to decom-
pose as A

1−x + B
1+x where A and B are unknown.

• To find A and B, we find the common denominator and get

1

1− x2
!
=

A

1− x
+

B

1+ x

=
A (1+ x) +B (1− x)

1− x2

=
(A−B) x+A+B

1− x2

from which it must follow that

A−B
!
= 0

A+B
!
= 1

so that A = 1
2 and B = 1

2 :

1

1− x2
=

1
2

1− x
+

1
2

1+ x

2



• Thus we have

I =

ˆ 1
2

0

[
1
2

1− x
+

1
2

1+ x

]
dx

=
1

2

ˆ 1
2

0

[
1

1− x
+

1

1+ x

]
dx

=
1

2

[ˆ 1
2

0

1

1− x
dx+

ˆ 1
2

0

1

1+ x
dx

]

=
1

2

[ˆ 1
2

0

1

1− x
dx+

ˆ 1
2

0

1

1+ x
dx

]

=
1

2


ˆ 1

2

0

1

1− x
dx︸ ︷︷ ︸

u=1−x

+

ˆ 1
2

0

1

1+ x
dx︸ ︷︷ ︸

v=1+x


=

1

2

[ˆ 1
2

1

1

u
(−du) +

ˆ 3
2

1

1

v
dv

]

=
1

2

[
− log (|u|)|

1
2
1 + log (|v|)|

3
2
1

]
=

1

2

[
− log (|1− x|)|

1
2
0 + log (|1+ x|)|

1
2
0

]
=

1

2
[− log (|1− x|) + log (|1+ x|)]|

1
2
0

=
1

2

[
log

(
|1+ x|

|1− x|

)]∣∣∣∣ 12
0

=
1

2

log

(
3
2
1
2

)
− log (1)︸ ︷︷ ︸

0


=

1

2
log (3)

2.3 Some Facts

• Define a function by this graph (at every n ∈ N):

• This function is then continuous on [0, ∞), and is unbounded!

• Yet the integral of this function must exist, because the area of the triangle is bounded by n× 2
n3 = 2

n2 and
∑ 2

n2 < ∞.

•
´∞
0

1
x+1dx is an integral of a continuous function, which converges to zero at infinity, yet the integral does not exist.

• There are differentiable functions whose derivative is not integrable! The best recipe to reach non-integrability is to look at
unbounded functions, because we define Riemann integrability exactly on bounded functions. Note that this wouldn’t work

for improper integrals, but only for integrals on a closed interval. For example: f (x) :=

{
x2 sin

(
1
x2

)
x 6= 0

0 x = 0
is differentiable on

[−1, 1], yet f ′ is not bounded on [−1, 1]: f ′ (x) = 2x sin
(

1
x2

)
−

2 cos
(

1

x2

)
x .

• The last statement is exactly Theorem 6.20 in Rudin.
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3 The Continuum Hypothesis

• The continuum hypothesis says that there is no cardinality strictly between |N| and |R|.

• An uncountable subset must have cardinality bigger than |N|.

• A subset of R must have cardinality smaller than or equal to |R|.

• Thus necessarily the continuum hypothesis leads to the fact that every uncountable subset of R has cardinality |R|.

• Thus the third choice must be correct.

• Even though it is true that |R| =
∣∣2N

∣∣, this is not the hypothesis (it is a simple result of the binary expansion of real numbers!)

• The fourth option is exactly the converse of the statement.

4 Infinite Series

4.1 Question About Series in General.

(aside: series is an English word which is the same in both singular and plural form)

• The first option cannot be true because we know ∑
n∈N\{0}

(−1)n

n

converges.

• The second option cannot hold because we know that ∑
n∈N

1

n

diverges.

• False again by penultimate example.

• The last option must hold then, which indeed it does.

4.2 Question about
∑

n∈N\{0}
(−1)n

n

• Absolute convergence is when
∑

|an| converges, which, this one doesn’t. But it does converge, and thus, not absolutely.

• It is true that if we re-arrange the order of the series, it could be made to converge to any other number (Theorem 3.54 in Rudin).
However, written as

∑
n∈N\{0}

(−1)n

n this series has only one limit.

5 Intermediate Value Theorem

Let f : [a, b] → R be continuous. Then if u is a number between f (a) and f (b) then ∃c ∈ (a, b) : f (c) = u.

6 Continuity

• Sequential continuity must hold for every sequence. (Theorem 4.2 in Rudin).
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