# Analysis 1 <br> Colloquium of Week 14 Post-Midterm Review 

Jacob Shapiro

## December 17, 2014


#### Abstract

Even though many of the questions in the exam could have been solved easily using smart "tricks", in what follows I attempt to present the most naive, straight forward solution that a student could have been expected to come up with during the exam.


## 1 Taylor Expansions

- In question 5 of the open section, you were asked to compute the Taylor expansion of a function at 0 up to order 4 .
- The general recipe to do this is as follows:
- Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is given which is sufficiently many times differentiable.
- Then we have

$$
f(x) \approx f(0)+f^{\prime}(0) x+\frac{1}{2} f^{\prime \prime}(0) x^{2}+\frac{1}{6} f^{(3)}(0) x^{3}+\frac{1}{24} f^{(4)}(0) x^{4}+\mathcal{O}\left(x^{5}\right)
$$

- Thus the proble is reduced to computing derivatives of a function and evaluating those derivatives at 0 .
- Let's take the particular example that was given on the exam:
- $\mathrm{f}(\mathrm{x})=\sqrt{1-2 \mathrm{x}^{2}}$ :

$$
\left\{\begin{aligned}
f(x) & =\sqrt{1-2 x^{2}} \\
f^{(1)}(x) & =\frac{1}{2}\left(1-2 x^{2}\right)^{-\frac{1}{2}}(-2)(2 x)=\frac{-2 x}{\sqrt{1-2 x^{2}}} \\
f^{(2)}(x) & =-2\left(\frac{1}{\sqrt{1-2 x^{2}}}+x\left(-\frac{1}{2}\right)\left(1-2 x^{2}\right)^{-\frac{3}{2}}(-2)(2 x)\right)=\frac{-2}{\sqrt{1-2 x^{2}}}-\frac{4 x^{2}}{\left(1-2 x^{2}\right)^{\frac{3}{2}}} \\
f^{(3)}(x) & =-2\left(-\frac{1}{2}\right)\left(1-2 x^{2}\right)^{-\frac{3}{2}}(-2)(2 x)-4\left(\frac{2 x}{\left(1-2 x^{2}\right)^{\frac{3}{2}}}+x^{2}\left(-\frac{3}{2}\right)\left(1-2 x^{2}\right)^{-\frac{5}{2}}(-2)(2 x)\right)=\frac{-12 x}{\left(1-2 x^{2}\right)^{\frac{3}{2}}}-\frac{24 x^{3}}{\left(1-2 x^{2}\right)^{\frac{5}{2}}} \\
f^{(4)}(x) & =-12\left(\frac{1}{\left(1-2 x^{2}\right)^{\frac{3}{2}}}+x\left(-\frac{3}{2}\right)\left(1-2 x^{2}\right)^{-\frac{5}{2}}(-2)(2 x)\right)-24\left(3 x^{2} \frac{1}{\left(1-2 x^{2}\right)^{\frac{5}{2}}}+x^{3}\left(-\frac{5}{3}\right)\left(1-2 x^{2}\right)^{-\frac{7}{2}}(-2)(2 x)\right)= \\
& =-\frac{12}{\left(1-2 x^{2}\right)^{\frac{3}{2}}}-\frac{144 x^{2}}{\left(1-2 x^{2}\right)^{\frac{5}{2}}}-\frac{240 x^{4}}{\left(1-2 x^{2}\right)^{\frac{7}{2}}}
\end{aligned}\left\{\begin{array}{ll}
f(0) & =1 \\
f^{(1)}(0) & =0 \\
f^{(2)}(0) & =-2 \\
f^{(3)}(0) & =0 \\
f^{(4)}(0) & =-12
\end{array}\right]\right.
$$

- This was expected, because $f$ is an even function, so its Taylor expansion should contain only even powers and if $f$ were an odd function its Taylor expansion would have contained only odd powers.
- Thus we have

$$
\begin{aligned}
f(x) & \approx f(0)+f^{\prime}(0) x+\frac{1}{2} f^{\prime \prime}(0) x^{2}+\frac{1}{6} f^{(3)}(0) x^{3}+\frac{1}{24} f^{(4)}(0) x^{4}+\mathcal{O}\left(x^{5}\right) \\
& =1+\frac{1}{2}(-2) x^{2}+\frac{1}{24}(-12) x^{4}+\mathcal{O}\left(x^{5}\right) \\
& =1-x^{2}-\frac{1}{2} x^{4}+\mathcal{O}\left(x^{5}\right)
\end{aligned}
$$

## 2 Integrals

### 2.1 Sinus Squared

- We would like to compute

$$
I:=\int_{0}^{\pi}[\sin (x)]^{2} d x
$$

- Write $[\sin (x)]^{2}=\frac{1}{2}-\frac{1}{2} \cos (2 x)$ using the formula $\cos (2 x)=1-2[\sin (x)]^{2}$.
- Thus we have

$$
\begin{aligned}
\text { I } & =\int_{0}^{\pi}\left[\frac{1}{2}-\frac{1}{2} \cos (2 x)\right] d x \\
& =\frac{1}{2} \int_{0}^{\pi}[1-\cos (2 x)] d x \\
& =\frac{1}{2}\left\{\int_{0}^{\pi} d x-\int_{0}^{\pi} \cos (2 x) d x\right\} \\
& =\frac{1}{2}\{\left.x\right|_{0} ^{\pi}-\underbrace{\int_{0}^{\pi} \cos (2 x) d x}_{u=2 x}\} \\
& =\frac{1}{2}\left\{\left.x\right|_{0} ^{\pi}-\int_{0}^{2 \pi} \cos (u) \frac{1}{2} d u\right\} \\
& =\frac{1}{2}\left\{\left.x\right|_{0} ^{\pi}-\left.\frac{1}{2} \sin (u)\right|_{0} ^{2 \pi}\right\} \\
& =\left.\left\{\frac{1}{2} x-\frac{1}{4} \sin (2 x)\right\}\right|_{0} ^{2 \pi} \\
& =\frac{\pi}{2}
\end{aligned}
$$

### 2.2 Logs

- We want to evaluate

$$
\mathrm{I}:=\int_{0}^{\frac{1}{2}} \frac{1}{1-x^{2}} \mathrm{~d} x
$$

- The first step is to perform partial fraction decomposition. We know that $\left(1-x^{2}\right)=(1-x)(1+x)$, so we expect $\frac{1}{1-x^{2}}$ to decompose as $\frac{A}{1-x}+\frac{B}{1+x}$ where $A$ and $B$ are unknown.
- To find $A$ and $B$, we find the common denominator and get

$$
\begin{aligned}
\frac{1}{1-x^{2}} & \stackrel{!}{=} \frac{A}{1-x}+\frac{B}{1+x} \\
& =\frac{A(1+x)+B(1-x)}{1-x^{2}} \\
& =\frac{(A-B) x+A+B}{1-x^{2}}
\end{aligned}
$$

from which it must follow that $\left\{\begin{array}{ll}A-B & \stackrel{!}{=} 0 \\ A+B & \stackrel{!}{=}\end{array}\right.$ so that $A=\frac{1}{2}$ and $B=\frac{1}{2}$ :

$$
\frac{1}{1-x^{2}}=\frac{\frac{1}{2}}{1-x}+\frac{\frac{1}{2}}{1+x}
$$

- Thus we have

$$
\begin{aligned}
I & =\int_{0}^{\frac{1}{2}}\left[\frac{\frac{1}{2}}{1-x}+\frac{\frac{1}{2}}{1+x}\right] \mathrm{d} x \\
& =\frac{1}{2} \int_{0}^{\frac{1}{2}}\left[\frac{1}{1-x}+\frac{1}{1+x}\right] \mathrm{d} x \\
& =\frac{1}{2}\left[\int_{0}^{\frac{1}{2}} \frac{1}{1-x} \mathrm{~d} x+\int_{0}^{\frac{1}{2}} \frac{1}{1+x} \mathrm{~d} x\right] \\
& =\frac{1}{2}\left[\int_{0}^{\frac{1}{2}} \frac{1}{1-x} \mathrm{~d} x+\int_{0}^{\frac{1}{2}} \frac{1}{1+x} \mathrm{~d} x\right] \\
& =\frac{1}{2}[\underbrace{\frac{1}{2}}_{0} \frac{1}{1-x} \mathrm{~d} x+\underbrace{\frac{1}{2}}_{0} \frac{1}{1+x} \mathrm{~d} x \\
& =\frac{1}{2}\left[\int_{1}^{\frac{1}{2}} \frac{1}{\mathrm{u}}(-\mathrm{du})+\int_{1}^{\frac{3}{2}} \frac{1}{v} \mathrm{~d} v\right] \\
& =\frac{1}{2}\left[-\left.\log (|u|)\right|_{1} ^{\frac{1}{2}}+\left.\log (|v|)\right|_{1} ^{\frac{3}{2}}\right] \\
& =\frac{1}{2}\left[-\left.\log (|1-x|)\right|_{0} ^{\frac{1}{2}}+\left.\log (|1+x|)\right|_{0} ^{\frac{1}{2}}\right] \\
& =\left.\frac{1}{2}[-\log (|1-x|)+\log (|1+x|)]\right|_{0} ^{\frac{1}{2}} \\
& =\left.\frac{1}{2}\left[\log \left(\frac{|1+x|}{|1-x|}\right)\right]\right|_{0} ^{\frac{1}{2}} \\
& =\frac{1}{2}[\log \left(\frac{\frac{3}{2}}{\frac{1}{2}}\right)-\underbrace{\log (1)}_{0}] \\
& =\frac{1}{2} \log (3)
\end{aligned}
$$

### 2.3 Some Facts

- Define a function by this graph (at every $n \in \mathbb{N}$ ):

- This function is then continuous on $[0, \infty)$, and is unbounded!
- Yet the integral of this function must exist, because the area of the triangle is bounded by $n \times \frac{2}{n^{3}}=\frac{2}{n^{2}}$ and $\sum \frac{2}{n^{2}}<\infty$.
- $\int_{0}^{\infty} \frac{1}{x+1} d x$ is an integral of a continuous function, which converges to zero at infinity, yet the integral does not exist.
- There are differentiable functions whose derivative is not integrable! The best recipe to reach non-integrability is to look at unbounded functions, because we define Riemann integrability exactly on bounded functions. Note that this wouldn't work for improper integrals, but only for integrals on a closed interval. For example: $f(x):=\left\{\begin{array}{ll}x^{2} \sin \left(\frac{1}{x^{2}}\right) & x \neq 0 \\ 0 & x=0\end{array}\right.$ is differentiable on $[-1,1]$, yet $f^{\prime}$ is not bounded on $[-1,1]: f^{\prime}(x)=2 x \sin \left(\frac{1}{x^{2}}\right)-\frac{2 \cos \left(\frac{1}{x^{2}}\right)}{x}$.
- The last statement is exactly Theorem 6.20 in Rudin.


## 3 The Continuum Hypothesis

- The continuum hypothesis says that there is no cardinality strictly between $|\mathbb{N}|$ and $|\mathbb{R}|$.
- An uncountable subset must have cardinality bigger than $|\mathbb{N}|$.
- A subset of $\mathbb{R}$ must have cardinality smaller than or equal to $|\mathbb{R}|$.
- Thus necessarily the continuum hypothesis leads to the fact that every uncountable subset of $\mathbb{R}$ has cardinality $|\mathbb{R}|$.
- Thus the third choice must be correct.
- Even though it is true that $|\mathbb{R}|=\left|2^{\mathbb{N}}\right|$, this is not the hypothesis (it is a simple result of the binary expansion of real numbers!)
- The fourth option is exactly the converse of the statement.


## 4 Infinite Series

### 4.1 Question About Series in General.

(aside: series is an English word which is the same in both singular and plural form)

- The first option cannot be true because we know

$$
\sum_{n \in \mathbb{N} \backslash\{0\}} \frac{(-1)^{n}}{n}
$$

converges.

- The second option cannot hold because we know that

$$
\sum_{n \in \mathbb{N}} \frac{1}{n}
$$

diverges.

- False again by penultimate example.
- The last option must hold then, which indeed it does.


### 4.2 Question about $\sum_{n \in \mathbb{N} \backslash\{0\}} \frac{(-1)^{n}}{n}$

- Absolute convergence is when $\sum\left|a_{n}\right|$ converges, which, this one doesn't. But it does converge, and thus, not absolutely.
- It is true that if we re-arrange the order of the series, it could be made to converge to any other number (Theorem 3.54 in Rudin). However, written as $\sum_{n \in \mathbb{N} \backslash\{0\}} \frac{(-1)^{n}}{n}$ this series has only one limit.


## 5 Intermediate Value Theorem

Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Then if $u$ is a number between $f(a)$ and $f(b)$ then $\exists c \in(a, b): f(c)=u$.

## 6 Continuity

- Sequential continuity must hold for every sequence. (Theorem 4.2 in Rudin).

