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1.1 Question 1

• Claim: limt→0 [1+ 2 sin (t)]cot(t) = e2.
Proof :

– Start out by using the fact that x = elog(x).

– As such,

[1+ 2 sin (t)]cot(t) = e
log

(
[1+2 sin(t)]cot(t)

)
= ecot(t) log{[1+2 sin(t)]}

= e
log{[1+2 sin(t)]}

tan(t)

– Thus we have

lim
t→0

[1+ 2 sin (t)]cot(t) = lim
t→0

exp
(

log {[1+ 2 sin (t)]}

tan (t)

)
exp is continuous

= exp
(

lim
t→0

log {[1+ 2 sin (t)]}

tan (t)

)

– Now we compute limt→0
log{[1+2 sin(t)]}

tan(t) .

– We have a limit of the form 0
0 , so try to use the Hospital’s:

(log {[1+ 2 sin (t)]}) ′

(tan (t)) ′
=

(
2 cos(t)

1+2 sin(t)

)
(

1

[cos(t)]2

)

and indeed limt→0

(
2 cos(t)

1+2 sin(t)

)
(

1

[cos(t)]2

) = 2 exists, so we conclude that limt→0
log{[1+2 sin(t)]}

tan(t) = 2.

– As a result, limt→0 [1+ 2 sin (t)]cot(t) = e2.

�

• Note that
(
at

) ′ 6= tat−1! Use

at = elog
(
at

)
= et log(a)

and so (
at

) ′
=

(
et log(a)

) ′

= et log(a) log (a)

= at log (a)
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1.2 Question 2

Let f ∈ R[a, b] be differentiable and assume further that for some x ∈ (a, b), f ′ is differentiable at x.

• Claim: limh→0
f(x+h)−2f(x)+f(x−h)

h2 = f ′′ (x).
Proof :

– We try to evaluate the limit limh→0
f(x+h)−2f(x)+f(x−h)

h2 .

∗ Observe that because f is differentiable at x, f is continuous at x and so the limit is of the form 0
0 .

∗ Thus we try to employ the Hospital’s rule on it (note that the derivative is with respect to h because that is the variable
of the limit.) and obtain that:

(f (x+ h) − 2f (x) + f (x− h)) ′(
h2

) ′ =
f ′ (x+ h) − f ′ (x− h)

2h

∗ Thus if limh→0
f ′(x+h)−f ′(x−h)

2h exists then limh→0
f(x+h)−2f(x)+f(x−h)

h2 = limh→0
f ′(x+h)−f ′(x−h)

2h :

lim
h→0

f ′ (x+ h) − f ′ (x− h)

2h
= lim

h→0

f ′ (x+ h) − f ′ (x) + f ′ (x) − f ′ (x− h)

2h

= lim
h→0

[
f ′ (x+ h) − f ′ (x)

2h
+

f ′ (x) − f ′ (x− h)

2h

]
=

1

2

{[
lim
h→0

f ′ (x+ h) − f ′ (x)

h

]
+

[
lim
h→0

f ′ (x− h) − f ′ (x)

−h

]}
=

1

2

{[
lim
h→0

f ′ (x+ h) − f ′ (x)

h

]
+

[
lim
h̃→0

f ′
(
x+ h̃

)
− f ′ (x)

h̃

]}

=
1

2

{
f ′′ (x) + f ′′ (x)

}
= f ′′ (x)

�

2 Partial Review for Midterm

2.1 Cauchy Sequences

• Definition: A sequence (pn)n∈N in a metric space X is said to be a Cauchy sequence iff ∀ε > 0∃m (ε) ∈ N such that dX (pn, pl) < ε

for all (n, l) ∈ N2 such that {[n > m (ε)]∧ [l > m (ε)]}.

• Every convergent sequence is a Cauchy sequence.

• The converse, is in general not true:

– The first counter example that should come to your mind is the metric space Q defined with the usual Euclidean metric
dQ (p, q) ≡ |p− q|.

– We can define a Cauchy sequence by the decimal expansion of any irrational number, for example, take the decimal expan-
sion of

√
2 and the sequence defined by it:

a1 := 1

a2 := 1.4
a3 := 1.41
a4 := 1.414
a5 := 1.4142

. . .

– Each element of the sequence aj ∈ Q.
– It is very easy to show that

(
aj

)
j∈N

is a Cauchy sequence (it converges in R, so it is Cauchy).

– However, it does not converge in Q.
– The property of a metric space where a Cauchy sequence does not converge is called not complete.

– Another handy example is the sequence converging to e = limn→∞ (
1+ 1

n

)n.

• Take-home-message: if you are working in a complete metric space (such as Rn and in particular R or C) then sometimes to
prove convergence it is enough to prove that the sequence is Cauchy. Especially if you don’t know and don’t care what the
sequence convergences to, but just need to see that it indeed converges.
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2.2 Sequences of Functions

Recall from the colloquium of week 8:

• Let f ∈ YN×X be a family of maps from X → Y, indexed by N. One particular map is denoted by fn : X → Y.

• Observe that for each x ∈ X, the set of numbers { fn (x) | n ∈ N } actually defines a sequence (fn (x))n∈N (a whole sequence for
each x ∈ X).

• Assume that for each x ∈ X, this sequence (fn (x))n∈N indeed converges, to some number which we denote as αx: (fn (x))n∈N →
αx.

• Thus this induces a new function ϕ : X → Y, x ϕ7→ αx, which, at any point x, is defined as the limit of (fn (x))n∈N. This function
is well defined due to our hypothesis that (fn (x))n∈N indeed converges for all x ∈ X.

• Under this circumstances, we use a special terminology: we say that (fn)n∈N converges pointwise to ϕ. Observe how now, in
our notation, the x does not appear. This is because now we are talking about a sequence of functions (fn)n∈N rather than a
sequence of numbers (fn (x))n∈N, for each x ∈ X.

• Recall that a sequence of functions can converge to a given function in many different “ways”, and that pointwise convergence is
in a way a rather weak type of convergence of functions.

• We say that (fn)n∈N → ϕ uniformly iff

• ∀x ∈ X, ∀ε > 0∃m (ε) ∈ N : ∀n ∈ N : n > m (ε) =⇒ dY (fn (x) , ϕ (x)) where m (ε) does not depend on x ∈ X.

2.2.1 Cauchy Criterion for Uniform Convergence

• The sequence of functions (fn)n∈N converges uniformly on X iff ∀ε > 0∃m (ε) ∈ N such that if (n, l) ∈ N2 such that [n > m (ε)]∧

[l > m (ε)] and x ∈ X implies |fn (x) − fl (x)| 6 ε.

• Example:

– Define fn : [0, 1] → R by x 7→ xn

n .

– Clearly, fn → 0 pointwise on R.

– We want to see how (fn)n∈N defines a uniformly Cauchy sequence of functions:∣∣∣∣xnn −
xl

l

∣∣∣∣ 6

∣∣∣∣xnn
∣∣∣∣+ ∣∣∣∣xll

∣∣∣∣
6

1

n
+

1

l

2.3 Integrals

2.3.1 Root Integrals

• With root integrals, most of the time you need to make a trigonometric substritution.

• Example:

–
´

t3√
t2+1

dt =?

– Make the substitution t = sinh (u).

– Then
√
t2 + 1 =

√
sinh (u)2 + 1 =

√
cosh (u)2 = cosh (u).

– In addition, dt = d [sinh (u)] = cosh (u)du.

– Thus we have
ˆ

t3√
t2 + 1

dt =

ˆ
[sinh (u)]3

cosh (u)
cosh (u)du

=

ˆ
[sinh (u)]3 du

– This we can integrate easily by using the fact that sinh (u) ≡ 1
2 (eu − e−u) and so

[sinh (u)]3 =
1

8

(
eu − e−u

)3
=

1

8

(
e3u − e−3u + 3e−u − 3eu

)
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and using the fact that
´
eaxdx = 1

ae
ax so we get:ˆ

[sinh (u)]3 du =

ˆ
1

8

(
e3u − e−3u + 3e−u − 3eu

)
du

=
1

8

(
1

3
e3u +

1

3
e−3u − 3e−u − 3eu

)
=

1

8

(
2

3
cosh (3u) − 6 cosh (u)

)

=
1

12

 cosh (3u)︸ ︷︷ ︸
4 cosh3(u)−3 cosh(u)

−9 cosh (u)


=

1

12

(
4 cosh3 (u) − 12 cosh (u)

)
=

1

3
cosh3 (u) − cosh (u)

=
1

3

[√
t2 + 1

]3
−
√

t2 + 1

2.3.2 Integrals of Rational Functions

We are interested in integrals of the form R (x) := a0+a1x+...+anx
n

b0+b1x+...+bmxm .

• Definition: R (x) is called proper if n < m, and improper if n > m.

General Algorithm

1. If R (x) is proper (n < m), proceed to step 2 and define r0 + r1x+ . . .+ rkx
k := a0 + a1x+ . . .+ anx

n, otherwise:

(a) We assume that n > m.
(b) Use polynomial division (long division) to write

a0 + a1x+ . . .+ anx
n

b0 + b1x+ . . .+ bmxm
=

(
c0 + c1x+ . . .+ clx

l
)
+

r0 + r1x+ . . .+ rkx
k

b0 + b1x+ . . .+ bmxm

where necessarily k < m. Then
(
c0 + c1x+ . . .+ clx

l
)

can be integrated easily and we concentrate on r0+r1x+...+rkx
k

b0+b1x+...+bmxm .
(c) Example:

2. Thus we have k < m.

3. Use partial fraction decomposition on r0+r1x+...+rkx
k

b0+b1x+...+bmxm to simplify the denominator (the general algorithm is complicated,
usually this will be simple).

• Example:

–
´

x3−4
x2−x−2

dx =?
– 3 > 2, so we need to do polynomial division:

x3 − 4

x2 − x− 2
= (x+ 1) +

3x− 2

x2 − x− 2

– Now we can do partial fraction decomposition on 3x−2
x2−x−2

to get:

x3 − 4

x2 − x− 2
= (x+ 1) +

4
3

x− 2
+

5
3

x+ 1

– Thus integrating this we get:
ˆ

x3 − 4

x2 − x− 2
dx =

ˆ [
(x+ 1) +

4
3

x− 2
+

5
3

x+ 1

]
dx

=
1

2
x2 + x+

4

3
log (|x− 2|) +

5

3
log (|x+ 1|) +C

• Don’t forget the result from homework 12 exercise 3:ˆ
Ax+B

x2 + 2a+ b
dx =

A

2
log

(∣∣∣x2 + 2a+ b
∣∣∣)+

B− aA

b− a2
arctan

(
x+ a√
b− a2

)
I recommend memorizing this.
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