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Abstract

We present a few results taken from Rudin’s Principles of Mathematical Analysis. This may be a repetition of material from the lecture,
intended to solidify your knowledge.

1 Taylor’s Theorem

• Taylor’s theorem allows us to take any sufficiently-well-behaved function and approximate it as a polynomial around some
point. This is the bread and butter of physics, and also some forms of math: sin (x) ≈ x, cos (x) ≈ 1+ 1

2x
2 and so on.

• Let n ∈ N\ { 0 }, let (a, b) ∈ R2 such that a < b and let f ∈ Cn−1 ([a, b] , R) such that f(n) ∈ C0 ((a, b)).

• Recall that means that f(n−1) is continuous (to say this we must implicitly say f is n− 1-times differentiable) and that f(n) exists
and is continuous on the open interval (a, b).

• Let x0 ∈ [a, b] and take some α ∈ R\ { 0 } such that (x0 +α) ∈ [a, b].

• The point is that we want to make an approximation for the value of f (x0 +α) (given that we know the value of f(j) (x0) for any
j ∈ N ∪ { 0 }) as some kind of polynomial in powers of α. If α is very small, then the higher powers we take (that is, the larger n)
the better the approximation is (assuming the remainder is small).

• Define P (t) =
∑n−1

j=0
f(j)(x0)

j! (t− x0)
j for any t ∈ R.

• Claim: ∃x ∈ R such that x ∈ [x0, x0 +α] or x ∈ [x0 +α, x0] (depending on the sign of α) such that

f (x0 +α) = P (x0 +α)︸ ︷︷ ︸
polynomial in α

+
f(n) (x)

n!
αn

=

n−1∑
j=0

f(j) (x0)

j!
αj +

f(n) (x)

n!
αn

Note: For n = 1 this is just the mean value theorem. In general, if we know the bounds on
∣∣∣f(n) (x)

∣∣∣ we can estimate the deviation
of f (x0 +α) from a polynomial in α.
Proof :

– Define M :=
f(x0+α)−P(x0+α)

αn .

– For any t ∈ [a, b], define g (t) := f (t) − P (t) −M (t− x0)
n.

– Our goal is to show that ∃x between x0 and x0 +α such that M =
f(n)(x)

n! .

– Compute g(n) (t):

g(n) (t) =
(
f (t) − P (t) −M (t− x0)

n)(n)

= f(n) (t) − P(n) (t)︸ ︷︷ ︸
0 as P(t)∝tn−1

−n!M

?
= 0

This is true ∀t (a, b) (and not for all t ∈ [a, b] as we don’t assume f(n) exists on the end points).
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– Claim: g(n) (x) = 0 for some x between x0 and x0 +α (and thus the proof would be complete).
Poorf :

∗ Note that ∀k ∈ { 0, . . . , n− 1 } we have

P(k) (x0) =

n−1∑
j=0

f(j) (x0)

k!
(t− x0)

j

(k)
∣∣∣∣∣∣∣
t=x0

=

n−1∑
j=0

f(j) (x0)

k!
j (j− 1) . . . (j− (k− 1)) (t− x0)

j−k

∣∣∣∣∣∣
t=x0

=

n−1∑
j=k

f(j) (x0)

k!
j (j− 1) . . . (j− (k− 1)) (t− x0)

j−k

∣∣∣∣∣∣
t=x0

= f(k) (x0)

∗ Then

g(k) (x0) = f(k) (x0) − P(k) (x0)

= 0

for all k ∈ { 0, . . . , n− 1 }.
∗ Note that

g (x0 +α) = f (x0 +α) − P (x0 +α) − M︸︷︷︸
f
(
x0+α

)
−P

(
x0+α

)
αn

αn

= 0

∗ So we have that g (x0) = g (x0 +α) = 0.
∗ Recall the mean value theorem: if g is a real continuous function on [s, t] which is differentiable in (s, t) then ∃x ∈ (s, t)

such that g (t) − g (s) = (t− s)g ′ (x).
∗ Thus we apply the mean value theorem to get that ∃ some x1 between x0 and x0 +α such that g ′ (x1) = 0.
∗ But g ′ (x0) = 0 as well, so we may repeat the process to find some x2 between x0 and x1 such that g ′′ (x2) = 0.
∗ After n steps we arrive at the conclusion that g(n) (xn) = 0 for some xn between x0 and xn−1. But xn−1 was between

x0 and xn−2 ... which was between x0 and x0 +α.

�

• Next, let f : (−R, R) → R be some map, where R ∈ (0, ∞], such that f (x) =
∑∞

n=0 cnx
n is a power series expansion of f which

converges for |x| < R. Recall that functions of this form (which can be written as a power series expansion) are called analytic
functions.

• Using the Weierstrass M-test we can prove that the power series expansion in fact converges uniformly in [R− ε, R+ ε] for any
ε > 0 and so f is continuous and differentiable in that restricted closed interval.

• Then we can show that (Theorem 8.1 in Rudin):

– c0 = f (0), c1 = f ′ (0), c2 = 1
2 f

′′ (0), and in general cn = 1
n! f

(n) (0).

• Thus an analytic function has a power series expansion as

f (x) =

∞∑
n=0

1

n!
f(n) (0) xn

in its radius of convergence.

• Furthermore, if f is analytic and has a power series expansion given above, and if a ∈ (−R, R), then f can also be expanded in a
power series about the point a, and this new power series converges in in |x− a| < R− |a|, and

f (x) =

∞∑
n=0

1

n!
f(n) (a) (x− a)n
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2 Non-Analytic Smooth Function

• Consider the function f : R → R given by x 7→ e
− 1

x2

• Claim: f(n) (0) = 0 for all n ∈ N ∪ {0}.
Proof :

– Claim: For x 6= 0 we have f(n) (x) =
P2n−2(x)e

− 1
x2

x3n where Pk (x) is some polynomial in x with degree k.
Proof :

∗ We proceed by induction:
∗ For n = 1 we have:

· f ′ (x) = e
− 1

x2

x3 2 so the polynomial is P0 (X) = 2.

∗ Assume true for some n. So that f(n) (x) =
P2n−2(x)e

− 1
x2

x3n .Check n+ 1:

f(n+1) (x) =
(
f(n) (x)

) ′

=

P2n−2 (x) e
− 1

x2

x3n

 ′

=
e
− 1

x2

x3(n+1)


(
2− 3nx2

)
P2n−2 (x) + x3 (P2n−2 (x))

′︸ ︷︷ ︸
poly. of deg.2n−3︸ ︷︷ ︸

poly. of deg. 2n=2(n+1)−2



– Claim: limx→0+
e
− 1

x2

xm = 0 for all m ∈ N ∪ { 0 }.
Proof :

∗ Make a change of variable so that

lim
x→0

e
− 1

x2

xm
= lim

x→+∞ e−x2

x−m

= lim
x→∞ xm

ex
2

∗ Now observe that ex2
> ex for all x > 0 due to the monotone increasing nature of exp so that 0 6 xm

ex2
6 xm

ex .

∗ However, limx→∞ xm

ex = 0 by m applications of l’Hopital’s rule.
∗ Thus due to an 6 bn implying lim supan 6 lim supbn we have our result.

∗ Also direct proof for the case m = 0: we have to compute the limit: limx→0 e
− 1

x2
?
= 0.

· So for any ε > 0, we need to find a δ > 0 such that if |x| < δ then e
− 1

x2 < ε.

· So pick δ (ε) :=

√∣∣∣ 1
log(ε)

∣∣∣ (assuming ε 6= 1, otherwise the task is easy).

· Thus if x <

√∣∣∣ 1
log(ε)

∣∣∣ then x2 <
∣∣∣ 1

log(ε)

∣∣∣. If ε < 1 (which we can assume WLOG, because we are trying to see what

happens for small ε) then log (ε) < 0, and so
∣∣∣ 1

log(ε)

∣∣∣ = − 1
log(ε) .

· Thus we have x2 < − 1
log(ε) which implies − 1

x2 < log (ε).

· If a < b then exp (a) < exp (b) because the exponent is a monotone increasing function.
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· Thus we have that x < δ (ε) implies that e−
1

x2 < ε.

– Now comes the actual proof, which proceeds by induction:

– For the case n = 1 we have:

f ′ (0) = lim
t→0

f (t) − f (0)

t

= lim
t→0

e
− 1

t2 − 0

t

= 0

using the above.

– Assume f(j) (0) = 0 for all j 6 n for some n ∈ N. Check

f(n+1) (0) = lim
t→0

f(n) (t) − f(n) (0)

t

= lim
t→0

P2n−2(t)e
− 1

t2

t3n
− 0

t

= lim
t→0

e
− 1

t2
P2n−2 (t)

t3n+1

= lim
t→∞P2n−2

(
1

t

)
t3n+1

e−t2

= P2n−2 (0)︸ ︷︷ ︸
const.

 lim
t→∞ t3n+1

e−t2︸ ︷︷ ︸
−→0


= 0

• So the Taylor series of f is given by 0!

• But now it is clear that

f (x) 6=
∞∑

n=0

1

n!
f(n) (0)︸ ︷︷ ︸

0

xn

unless x = 0!

• Such a function is called non-analytic, as it is not equal to its Taylor series expansion.
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