Analysis 1
 Colloquium of Week 12
 Taylor Series and Power Series Expansions

Jacob Shapiro

December 3, 2014

Abstract

We present a few results taken from Rudin's Principles of Mathematical Analysis. This may be a repetition of material from the lecture, intended to solidify your knowledge.

1 Taylor's Theorem

- Taylor's theorem allows us to take any sufficiently-well-behaved function and approximate it as a polynomial around some point. This is the bread and butter of physics, and also some forms of math: $\sin (x) \approx x, \cos (x) \approx 1+\frac{1}{2} x^{2}$ and so on.
- Let $n \in \mathbb{N} \backslash\{0\}$, let $(a, b) \in \mathbb{R}^{2}$ such that $a<b$ and let $f \in C^{n-1}([a, b], \mathbb{R})$ such that $f^{(n)} \in C^{0}((a, b))$.
- Recall that means that $f^{(n-1)}$ is continuous (to say this we must implicitly say f is $n-1$-times differentiable) and that $f^{(n)}$ exists and is continuous on the open interval (a, b).
- Let $x_{0} \in[a, b]$ and take some $\alpha \in \mathbb{R} \backslash\{0\}$ such that $\left(x_{0}+\alpha\right) \in[a, b]$.
- The point is that we want to make an approximation for the value of $f\left(x_{0}+\alpha\right)$ (given that we know the value of $f(j)\left(x_{0}\right)$ for any $j \in \mathbb{N} \cup\{0\}$) as some kind of polynomial in powers of α. If α is very small, then the higher powers we take (that is, the larger n) the better the approximation is (assuming the remainder is small).
- Define $P(t)=\sum_{j=0}^{n-1} \frac{f^{(j)}\left(x_{0}\right)}{j!}\left(t-x_{0}\right)^{j}$ for any $t \in \mathbb{R}$.
- Claim: $\exists x \in \mathbb{R}$ such that $x \in\left[x_{0}, x_{0}+\alpha\right]$ or $x \in\left[x_{0}+\alpha, x_{0}\right]$ (depending on the sign of α) such that

$$
\begin{aligned}
f\left(x_{0}+\alpha\right) & =\underbrace{P\left(x_{0}+\alpha\right)}_{\text {polynomial in } \alpha}+\frac{f^{(n)}(x)}{n!} \alpha^{n} \\
& =\sum_{j=0}^{n-1} \frac{f^{(j)}\left(x_{0}\right)}{j!} \alpha^{j}+\frac{f^{(n)}(x)}{n!} \alpha^{n}
\end{aligned}
$$

Note: For $n=1$ this is just the mean value theorem. In general, if we know the bounds on $\left|f^{(n)}(x)\right|$ we can estimate the deviation of $f\left(x_{0}+\alpha\right)$ from a polynomial in α.
Proof:

- Define $M:=\frac{f\left(x_{0}+\alpha\right)-P\left(x_{0}+\alpha\right)}{\alpha^{n}}$.
- For any $t \in[a, b]$, define $g(t):=f(t)-P(t)-M\left(t-x_{0}\right)^{n}$.
- Our goal is to show that $\exists x$ between x_{0} and $x_{0}+\alpha$ such that $M=\frac{f^{(n)}(x)}{n!}$.
- Compute $g^{(n)}(t)$:

$$
\begin{aligned}
g^{(n)}(t) & =\left(f(t)-P(t)-M\left(t-x_{0}\right)^{n}\right)^{(n)} \\
& =f^{(n)}(t)-\underbrace{P^{(n)}(t)}_{0 \operatorname{as~} P(t) \propto t^{n-1}}-n!M \\
& \stackrel{?}{=} 0
\end{aligned}
$$

This is true $\forall t(a, b)$ (and not for all $t \in[a, b]$ as we don't assume $f^{(n)}$ exists on the end points).

- Claim: $\mathrm{g}^{(\mathrm{n})}(\mathrm{x})=0$ for some x between x_{0} and $\mathrm{x}_{0}+\alpha$ (and thus the proof would be complete).

Poorf:

* Note that $\forall k \in\{0, \ldots, n-1\}$ we have

$$
\begin{aligned}
P^{(k)}\left(x_{0}\right) & =\left.\left(\sum_{j=0}^{n-1} \frac{f^{(j)}\left(x_{0}\right)}{k!}\left(t-x_{0}\right)^{j}\right)^{(k)}\right|_{t=x_{0}} \\
& =\left.\left(\sum_{j=0}^{n-1} \frac{f^{(j)}\left(x_{0}\right)}{k!} j(j-1) \ldots(j-(k-1))\left(t-x_{0}\right)^{j-k}\right)\right|_{t=x_{0}} \\
& =\left.\left(\sum_{j=k}^{n-1} \frac{f^{(j)}\left(x_{0}\right)}{k!} j(j-1) \ldots(j-(k-1))\left(t-x_{0}\right)^{j-k}\right)\right|_{t=x_{0}} \\
& =f^{(k)}\left(x_{0}\right)
\end{aligned}
$$

* Then

$$
\begin{aligned}
g^{(k)}\left(x_{0}\right) & =f^{(k)}\left(x_{0}\right)-p^{(k)}\left(x_{0}\right) \\
& =0
\end{aligned}
$$

for all $k \in\{0, \ldots, n-1\}$.

* Note that

$$
\begin{aligned}
g\left(x_{0}+\alpha\right) & =f\left(x_{0}+\alpha\right)-P\left(x_{0}+\alpha\right)-\underbrace{M}_{\frac{f\left(x_{0}+\alpha\right)-P\left(x_{0}+\alpha\right)}{\alpha^{n}}} \alpha^{n} \\
& =0
\end{aligned}
$$

* So we have that $g\left(x_{0}\right)=g\left(x_{0}+\alpha\right)=0$.
* Recall the mean value theorem: if g is a real continuous function on $[\mathrm{s}, \mathrm{t}]$ which is differentiable in (s, t) then $\exists \mathrm{x} \in(\mathrm{s}, \mathrm{t})$ such that $\mathrm{g}(\mathrm{t})-\mathrm{g}(\mathrm{s})=(\mathrm{t}-\mathrm{s}) \mathrm{g}^{\prime}(\mathrm{x})$.
* Thus we apply the mean value theorem to get that \exists some x_{1} between x_{0} and $x_{0}+\alpha$ such that $g^{\prime}\left(x_{1}\right)=0$.
* But $g^{\prime}\left(x_{0}\right)=0$ as well, so we may repeat the process to find some x_{2} between x_{0} and x_{1} such that $g^{\prime \prime}\left(x_{2}\right)=0$.
* After n steps we arrive at the conclusion that $g^{(n)}\left(x_{n}\right)=0$ for some x_{n} between x_{0} and x_{n-1}. But x_{n-1} was between x_{0} and $x_{n-2} \ldots$ which was between x_{0} and $x_{0}+\alpha$.
- Next, let $f:(-R, R) \rightarrow \mathbb{R}$ be some map, where $R \in(0, \infty]$, such that $f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$ is a power series expansion of f which converges for $|x|<R$. Recall that functions of this form (which can be written as a power series expansion) are called analytic functions.
- Using the Weierstrass M-test we can prove that the power series expansion in fact converges uniformly in $[R-\varepsilon, R+\varepsilon]$ for any $\varepsilon>0$ and so f is continuous and differentiable in that restricted closed interval.
- Then we can show that (Theorem 8.1 in Rudin):
$-c_{0}=f(0), c_{1}=f^{\prime}(0), c_{2}=\frac{1}{2} f^{\prime \prime}(0)$, and in general $c_{n}=\frac{1}{n!} f^{(n)}(0)$.
- Thus an analytic function has a power series expansion as

$$
f(x)=\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(0) x^{n}
$$

in its radius of convergence.

- Furthermore, if f is analytic and has a power series expansion given above, and if $a \in(-R, R)$, then f can also be expanded in a power series about the point a, and this new power series converges in in $|x-a|<R-|a|$, and

$$
f(x)=\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(a)(x-a)^{n}
$$

2 Non-Analytic Smooth Function

- Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $\mathrm{x} \mapsto \mathrm{e}^{-\frac{1}{x^{2}}}$

- Claim: $\mathrm{f}^{(\mathrm{n})}(0)=0$ for all $\mathfrak{n} \in \mathbb{N} \cup\{0\}$.

Proof:

- Claim: For $x \neq 0$ we have $f^{(n)}(x)=\frac{P_{2 n-2}(x) e^{-\frac{1}{x^{2}}}}{x^{3 n}}$ where $P_{k}(x)$ is some polynomial in x with degree k.

Proof:

* We proceed by induction:
* For $n=1$ we have:
- $f^{\prime}(x)=\frac{e^{-\frac{1}{x^{2}}}}{x^{3}} 2$ so the polynomial is $P_{\mathcal{O}}(X)=2$.
* Assume true for some n. So that $f^{(n)}(x)=\frac{P_{2 n-2}(x) e^{-\frac{1}{x^{2}}}}{x^{3 n}}$.Check $n+1$:

$$
\left.\begin{array}{rl}
f^{(n+1)}(x) & =\left(f^{(n)}(x)\right)^{\prime} \\
& =\left(\frac{P_{2 n-2}(x) e^{-\frac{1}{x^{2}}}}{x^{3 n}}\right)^{\prime} \\
& =\frac{e^{-\frac{1}{x^{2}}}}{x^{3(n+1)}}[\left(2-3 n x^{2}\right) P_{2 n-2}(x)+\underbrace{x^{3}}_{\text {poly. of deg. } 2 n=2(n+1)-2} \underbrace{\left(P_{2 n-2}(x)\right)^{\prime}}_{\begin{array}{l}
\text { poly. of deg.2n-3 }
\end{array}}
\end{array}\right]
$$

- Claim: $\lim _{x \rightarrow 0^{+}} \frac{e^{-\frac{1}{x^{2}}}}{x^{m}}=0$ for all $m \in \mathbb{N} \cup\{0\}$.

Proof:

* Make a change of variable so that

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{e^{-\frac{1}{x^{2}}}}{x^{m}} & =\lim _{x \rightarrow+\infty} \frac{e^{-x^{2}}}{x^{-m}} \\
& =\lim _{x \rightarrow \infty} \frac{x^{m}}{e^{x^{2}}}
\end{aligned}
$$

* Now observe that $e^{x^{2}} \geqslant e^{x}$ for all $x>0$ due to the monotone increasing nature of exp so that $0 \leqslant \frac{x^{m}}{e^{x^{2}}} \leqslant \frac{x^{m}}{e^{x}}$.
* However, $\lim _{x \rightarrow \infty} \frac{x^{m}}{e^{x}}=0$ by m applications of l'Hopital's rule.
* Thus due to $a_{n} \leqslant b_{n}$ implying lim sup $a_{n} \leqslant \lim \sup b_{n}$ we have our result.
* Also direct proof for the case $m=0$: we have to compute the limit: $\lim _{x \rightarrow 0} e^{-\frac{1}{x^{2}}} \stackrel{?}{=} 0$.
. So for any $\varepsilon>0$, we need to find a $\delta>0$ such that if $|x|<\delta$ then $e^{-\frac{1}{x^{2}}}<\varepsilon$.
. So pick $\delta(\varepsilon):=\sqrt{\left|\frac{1}{\log (\varepsilon)}\right|}$ (assuming $\varepsilon \neq 1$, otherwise the task is easy).
. Thus if $x<\sqrt{\left|\frac{1}{\log (\varepsilon)}\right|}$ then $x^{2}<\left|\frac{1}{\log (\varepsilon)}\right|$. If $\varepsilon<1$ (which we can assume WLOG, because we are trying to see what happens for small ε) then $\log (\varepsilon)<0$, and so $\left|\frac{1}{\log (\varepsilon)}\right|=-\frac{1}{\log (\varepsilon)}$.
- Thus we have $x^{2}<-\frac{1}{\log (\varepsilon)}$ which implies $-\frac{1}{x^{2}}<\log (\varepsilon)$.
- If $\mathrm{a}<\mathrm{b}$ then $\exp (\mathrm{a})<\exp (\mathrm{b})$ because the exponent is a monotone increasing function.
- Thus we have that $x<\delta(\varepsilon)$ implies that $e^{-\frac{1}{x^{2}}}<\varepsilon$.
- Now comes the actual proof, which proceeds by induction:
- For the case $n=1$ we have:

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{t \rightarrow 0} \frac{f(t)-f(0)}{t} \\
& =\lim _{t \rightarrow 0} \frac{e^{-\frac{1}{t^{2}}}-0}{t} \\
& =0
\end{aligned}
$$

using the above.

- Assume $f^{(j)}(0)=0$ for all $j \leqslant n$ for some $n \in \mathbb{N}$. Check

$$
\begin{aligned}
f^{(n+1)}(0) & =\lim _{t \rightarrow 0} \frac{f^{(n)}(t)-f^{(n)}(0)}{t} \\
& =\lim _{t \rightarrow 0} \frac{\frac{P_{2 n-2}(t) e^{-\frac{1}{t^{2}}}}{t^{3 n}}-0}{t} \\
& =\lim _{t \rightarrow 0} e^{-\frac{1}{t^{2}}} \frac{P_{2 n-2}(t)}{t^{3 n+1}} \\
& =\lim _{t \rightarrow \infty} P_{2 n-2}\left(\frac{1}{t}\right) \frac{t^{3 n+1}}{e^{-t^{2}}} \\
& =\underbrace{P_{2 n-2}(0)}_{\text {const. }}(\underbrace{\lim _{t \rightarrow \infty} \frac{t^{3 n+1}}{e^{-t^{2}}}}_{\rightarrow 0}) \\
& =0
\end{aligned}
$$

- So the Taylor series of f is given by 0 !
- But now it is clear that

$$
f(x) \neq \sum_{n=0}^{\infty} \frac{1}{n!} \underbrace{f^{(n)}(0)}_{0} x^{n}
$$

unless $x=0$!

- Such a function is called non-analytic, as it is not equal to its Taylor series expansion.

