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Abstract

We present a few results taken from Rudin’s Principles of Mathematical Analysis. This may be a repetition of material from the lecture,
intended to solidify your knowledge.
1 Taylor’s Theorem

e Taylor’s theorem allows us to take any sufficiently-well-behaved function and approximate it as a polynomial around some
point. This is the bread and butter of physics, and also some forms of math: sin (x) = x, cos (x) ~ 1+ %xz and so on.

Letn € N\{0},let (a, b) € R? such that a < band let f € C™~ ([, b], R) such that (™) e C° ((a, b)).

Recall that means that f("~1) is continuous (to say this we must implicitly say f is n — 1-times differentiable) and that f(™) exists
and is continuous on the open interval (a, b).

Let xg € [a, b] and take some o € IR\ {0} such that (xg + «) € [a, b].

The point is that we want to make an approximation for the value of f (xo + &) (given that we know the value of f) (xo) for any
j € NU{0}) as some kind of polynomial in powers of o. If ot is very small, then the higher powers we take (that is, the larger n)
the better the approximation is (assuming the remainder is small).

Define P (t) = ZJT‘;()] f(j)j(!x") (t—xo) for any t € R.

Claim: 3x € R such that x € [xg, xo + & or x € [xo + «, xo] (depending on the sign of «) such that
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Note: For n = 1 this is just the mean value theorem. In general, if we know the bounds on ‘f (") (x) ’ we can estimate the deviation
of f (xo + ) from a polynomial in «.
Proof:
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— Define M = f(xote)—Plxota),
— Forany t € [a, b], define g (t) :== f(t) — P (t) — M (t —x0)™.
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— Our goal is to show that Ix between xy and x + « such that M = f nfx) .

— Compute g™ (t):
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This is true Vt (a, b) (and not for all t € [a, b] as we don’t assume (™) exists on the end points).



— Claim: g™ (x) = 0 for some x between xo and x¢ + & (and thus the proof would be complete).
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x Note thatVk € {0, ..., n—1}we have
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* So we have that g (xg) = g (xo + «) = 0.

* Recall the mean value theorem: if g is a real continuous function on [s, t] which is differentiable in (s, t) then 3x € (s, t)
such that g (t) —g(s) = (t—s) g’ (x).

* Thus we apply the mean value theorem to get that 3 some x; between x¢ and x¢ + o such that g’ (x1) = 0.

x But g’ (xo) = 0 as well, so we may repeat the process to find some x, between xo and x; such that g” (x2) = 0.

% After n steps we arrive at the conclusion that g(“) (xn) = 0 for some x,, between xy and x,,_7. But x,_1 was between
xo and x,,_> ... which was between x¢ and xg + «.

e Next, let f : (—R, R) — R be some map, where R € (0, 0], such that f (x) = }__, cnx™ is a power series expansion of f which
converges for x| < R. Recall that functions of this form (which can be wrltten as a power series expansion) are called analytic
functions.

e Using the Weierstrass M-test we can prove that the power series expansion in fact converges uniformly in [R — ¢, R + €] for any
¢ > 0 and so f is continuous and differentiable in that restricted closed interval.

e Then we can show that (Theorem 8.1 in Rudin):
— co =f(0),c1 =f'(0), c2 = 3£”(0), and in general ¢, = -5 (™) (0).
e Thus an analytic function has a power series expansion as
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e Furthermore, if f is analytic and has a power series expansion given above, and if a € (—R, R), then f can also be expanded in a
power series about the point a, and this new power series converges in in [x — a| < R —lal, and
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2 Non-Analytic Smooth Function
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e Consider the function f: R — R given by x — e x2
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e Claim: f(") (0) = 0 for all n € N U{0}.

Proof:
1
— Claim: For x # 0 we have f(") (x) = PZ“ZX(% where Py (x) is some polynomial in x with degree k.
Proof:

* We proceed by induction:

*+ Forn =1 we have:
1

St (x) = 6X§2 2 so the polynomial is Py (X) = 2.

% Assume true for some n. So that f(") (x) = M .Checkn+1:
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— Claim: limy_, o+ exmz =0foralmeNU{0}.

Proof:

* Make a change of variable so that
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* Now observe that e*” > e* for all x > 0 due to the monotone increasing nature of exp so that 0 < XXTZl < G—T
e
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However, limy_ o, ’;—T = 0 by m applications of I'Hopital’s rule.

* Thus due to an < by implying limsup a,, < limsup b, we have our result.
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Also direct proof for the case m = 0: we have to compute the limit: lim,_,pe
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- So for any ¢ > 0, we need to find a § > 0 such that if [x| < 5 thene *x? <.

- So pick § (¢) == log

- Thus if x < 4/ log(

happens for small €) then log (¢) < 0, and so

7| (assuming e # 1, otherwise the task is easy).

oare] g( . If ¢ < 1 (which we can assume WLOG, because we are trying to see what
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- Thus we have x? < — 7 which implies — 25 <log ().

log(
- If a < b then exp (a) < exp (b) because the exponent is a monotone increasing function.
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- Thus we have that x < § (¢) implies thate *? < e.
— Now comes the actual proof, which proceeds by induction:

— For the case n = 1 we have:
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using the above.
— Assume fU) (0) = 0 for all j < n for some n € IN. Check
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e So the Taylor series of f is given by 0!
e But now it is clear that -
f(x)# Y — M (0)x"
oy n. ;\O,_/

unless x = 0!

e Such a function is called non-analytic, as it is not equal to its Taylor series expansion.



