Analysis 1 Colloquium of Week 12 Taylor Series and Power Series Expansions

Jacob Shapiro

December 3, 2014

Abstract

We present a few results taken from Rudin's *Principles of Mathematical Analysis*. This may be a repetition of material from the lecture, intended to solidify your knowledge.

1 Taylor's Theorem

- Taylor's theorem allows us to take any sufficiently-well-behaved function and approximate it as a polynomial around some point. This is the bread and butter of physics, and also some forms of math: $sin(x) \approx x$, $cos(x) \approx 1 + \frac{1}{2}x^2$ and so on.
- Let $n \in \mathbb{N} \setminus \{0\}$, let $(a, b) \in \mathbb{R}^2$ such that a < b and let $f \in C^{n-1}([a, b], \mathbb{R})$ such that $f^{(n)} \in C^0((a, b))$.
- Recall that means that f⁽ⁿ⁻¹⁾ is continuous (to say this we must implicitly say f is n 1-times differentiable) and that f⁽ⁿ⁾ exists and is continuous on the *open* interval (a, b).
- Let $x_0 \in [a, b]$ and take some $\alpha \in \mathbb{R} \setminus \{0\}$ such that $(x_0 + \alpha) \in [a, b]$.
- The point is that we want to make an approximation for the value of $f(x_0 + \alpha)$ (given that we know the value of $f^{(j)}(x_0)$ for any $j \in \mathbb{N} \cup \{0\}$) as some kind of polynomial in powers of α . If α is very small, then the higher powers we take (that is, the larger n) the better the approximation is (assuming the remainder is small).
- Define $P(t) = \sum_{j=0}^{n-1} \frac{f^{(j)}(x_0)}{j!} (t-x_0)^j$ for any $t \in \mathbb{R}$.
- *Claim*: $\exists x \in \mathbb{R}$ such that $x \in [x_0, x_0 + \alpha]$ or $x \in [x_0 + \alpha, x_0]$ (depending on the sign of α) such that

$$f(x_0 + \alpha) = \underbrace{P(x_0 + \alpha)}_{\text{polynomial in } \alpha} + \frac{f^{(n)}(x)}{n!} \alpha^n$$
$$= \sum_{j=0}^{n-1} \frac{f^{(j)}(x_0)}{j!} \alpha^j + \frac{f^{(n)}(x)}{n!} \alpha^n$$

Note: For n = 1 this is just the mean value theorem. In general, if we know the bounds on $|f^{(n)}(x)|$ we can estimate the deviation of $f(x_0 + \alpha)$ from a polynomial in α . *Proof*:

- Define $M := \frac{f(x_0 + \alpha) P(x_0 + \alpha)}{\alpha^n}$.
- For any $t \in [a, b]$, define $g(t) := f(t) P(t) M(t x_0)^n$.
- Our goal is to show that $\exists x \text{ between } x_0 \text{ and } x_0 + \alpha \text{ such that } M = \frac{f^{(\pi)}(x)}{\pi!}$.
- Compute $g^{(n)}(t)$:

$$g^{(n)}(t) = (f(t) - P(t) - M(t - x_0)^n)^{(n)}$$

= $f^{(n)}(t) - \underbrace{P^{(n)}(t)}_{0 \text{ as } P(t) \propto t^{n-1}} - n!M$
 $\stackrel{?}{=} 0$

This is true $\forall t (a, b)$ (and not for all $t \in [a, b]$ as we don't assume $f^{(n)}$ exists on the end points).

- *Claim*: $g^{(n)}(x) = 0$ for some x between x_0 and $x_0 + \alpha$ (and thus the proof would be complete). *Poorf*:

* Note that $\forall k \in \{0, ..., n-1\}$ we have

$$\begin{split} P^{(k)}(x_0) &= \left. \left(\sum_{j=0}^{n-1} \frac{f^{(j)}(x_0)}{k!} \left(t - x_0 \right)^j \right)^{(k)} \right|_{t=x_0} \\ &= \left. \left(\sum_{j=0}^{n-1} \frac{f^{(j)}(x_0)}{k!} j \left(j - 1 \right) \dots \left(j - (k-1) \right) \left(t - x_0 \right)^{j-k} \right) \right|_{t=x_0} \\ &= \left. \left(\sum_{j=k}^{n-1} \frac{f^{(j)}(x_0)}{k!} j \left(j - 1 \right) \dots \left(j - (k-1) \right) \left(t - x_0 \right)^{j-k} \right) \right|_{t=x_0} \\ &= \left. f^{(k)}(x_0) \end{split}$$

* Then

$$g^{(k)}(x_0) = f^{(k)}(x_0) - P^{(k)}(x_0) = 0$$

for all $k \in \{0, \ldots, n-1\}$.

* Note that

$$g(x_0 + \alpha) = f(x_0 + \alpha) - P(x_0 + \alpha) - \underbrace{M}_{\frac{f(x_0 + \alpha) - P(x_0 + \alpha)}{\alpha^n}} \alpha^n$$
$$= 0$$

- * So we have that $g(x_0) = g(x_0 + \alpha) = 0$.
- * Recall the mean value theorem: if g is a real continuous function on [s, t] which is differentiable in (s, t) then $\exists x \in (s, t)$ such that g(t) g(s) = (t s) g'(x).
- * Thus we apply the mean value theorem to get that \exists some x_1 between x_0 and $x_0 + \alpha$ such that $g'(x_1) = 0$.
- * But $g'(x_0) = 0$ as well, so we may repeat the process to find some x_2 between x_0 and x_1 such that $g''(x_2) = 0$.
- * After n steps we arrive at the conclusion that $g^{(n)}(x_n) = 0$ for some x_n between x_0 and x_{n-1} . But x_{n-1} was between x_0 and x_{n-2} ... which was between x_0 and $x_0 + \alpha$.

- Next, let $f: (-R, R) \to \mathbb{R}$ be some map, where $R \in (0, \infty]$, such that $f(x) = \sum_{n=0}^{\infty} c_n x^n$ is a power series expansion of f which converges for |x| < R. Recall that functions of this form (which can be written as a power series expansion) are called analytic functions.
- Using the Weierstrass M-test we can prove that the power series expansion in fact converges *uniformly* in $[R \varepsilon, R + \varepsilon]$ for any $\varepsilon > 0$ and so f is continuous and differentiable in that restricted closed interval.
- Then we can show that (Theorem 8.1 in Rudin):

-
$$c_0 = f(0), c_1 = f'(0), c_2 = \frac{1}{2}f''(0)$$
, and in general $c_n = \frac{1}{n!}f^{(n)}(0)$.

• Thus an analytic function has a power series expansion as

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(0) x^{n}$$

in its radius of convergence.

• Furthermore, if f is analytic and has a power series expansion given above, and if $a \in (-R, R)$, then f can *also* be expanded in a power series about the point a, and this new power series converges in in |x - a| < R - |a|, and

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(a) (x-a)^n$$

2 Non-Analytic Smooth Function

• Claim: $f^{(n)}(0) = 0$ for all $n \in \mathbb{N} \cup \{0\}$. Proof:

- Claim: For $x \neq 0$ we have $f^{(n)}(x) = \frac{P_{2n-2}(x)e^{-\frac{1}{x^2}}}{x^{3n}}$ where $P_k(x)$ is some polynomial in x with degree k. *Proof*:

- * We proceed by induction:
- * For n = 1 we have:

•
$$f'(x) = \frac{e^{-x^2}}{x^3} 2$$
 so the polynomial is $P_0(X) = 2$.

* Assume true for some n. So that $f^{(n)}(x) = \frac{P_{2n-2}(x)e^{-\frac{1}{x^2}}}{x^{3n}}$. Check n + 1:

$$f^{(n+1)}(x) = (f^{(n)}(x))'$$

$$= \left(\frac{P_{2n-2}(x)e^{-\frac{1}{x^2}}}{x^{3n}}\right)'$$

$$= \frac{e^{-\frac{1}{x^2}}}{x^{3(n+1)}} \left[(2-3nx^2)P_{2n-2}(x) + x^3 \underbrace{(P_{2n-2}(x))'}_{\text{poly. of deg. } 2n-3}}_{\text{poly. of deg. } 2n-2(n+1)-2} \right]$$

- Claim: $\lim_{x\to 0^+} \frac{e^{-\frac{1}{x^2}}}{x^m} = 0$ for all $m \in \mathbb{N} \cup \{0\}$. *Proof*:

* Make a change of variable so that

$$\lim_{x \to 0} \frac{e^{-\frac{1}{x^2}}}{x^m} = \lim_{x \to +\infty} \frac{e^{-x^2}}{x^{-m}}$$
$$= \lim_{x \to \infty} \frac{x^m}{e^{x^2}}$$

- * Now observe that $e^{x^2} \ge e^x$ for all x > 0 due to the monotone increasing nature of exp so that $0 \le \frac{x^m}{e^{x^2}} \le \frac{x^m}{e^x}$.
- * However, $\lim_{x\to\infty} \frac{x^m}{e^x} = 0$ by m applications of l'Hopital's rule.
- * Thus due to $a_n \leq b_n$ implying $\limsup a_n \leq \limsup b_n$ we have our result.
- * Also direct proof for the case m = 0: we have to compute the limit: $\lim_{x\to 0} e^{-\frac{1}{x^2}} \stackrel{?}{=} 0$.
 - · So for any $\varepsilon > 0$, we need to find a $\delta > 0$ such that if $|x| < \delta$ then $e^{-\frac{1}{x^2}} < \varepsilon$.
 - So pick $\delta(\varepsilon) := \sqrt{\left|\frac{1}{\log(\varepsilon)}\right|}$ (assuming $\varepsilon \neq 1$, otherwise the task is easy).
 - Thus if $x < \sqrt{\left|\frac{1}{\log(\varepsilon)}\right|}$ then $x^2 < \left|\frac{1}{\log(\varepsilon)}\right|$. If $\varepsilon < 1$ (which we can assume WLOG, because we are trying to see what happens for *small* ε) then $\log(\varepsilon) < 0$, and so $\left|\frac{1}{\log(\varepsilon)}\right| = -\frac{1}{\log(\varepsilon)}$.
 - Thus we have $x^2 < -\frac{1}{\log(\epsilon)}$ which implies $-\frac{1}{x^2} < \log(\epsilon)$.
 - \cdot If a < b then exp (a) < exp (b) because the exponent is a monotone increasing function.

• Thus we have that $x < \delta(\varepsilon)$ implies that $e^{-\frac{1}{x^2}} < \varepsilon$.

- Now comes the actual proof, which proceeds by induction:
- For the case n = 1 we have:

$$f'(0) = \lim_{t \to 0} \frac{f(t) - f(0)}{t}$$
$$= \lim_{t \to 0} \frac{e^{-\frac{1}{t^2}} - 0}{t}$$
$$= 0$$

using the above.

– Assume $f^{(j)}\left(0\right)=0$ for all $j\leqslant n$ for some $n\in\mathbb{N}.$ Check

$$f^{(n+1)}(0) = \lim_{t \to 0} \frac{f^{(n)}(t) - f^{(n)}(0)}{t}$$

$$= \lim_{t \to 0} \frac{\frac{P_{2n-2}(t)e^{-\frac{1}{t^2}}}{t^{3n}} - 0}{t}$$

$$= \lim_{t \to 0} e^{-\frac{1}{t^2}} \frac{P_{2n-2}(t)}{t^{3n+1}}$$

$$= \lim_{t \to \infty} P_{2n-2}\left(\frac{1}{t}\right) \frac{t^{3n+1}}{e^{-t^2}}$$

$$= \underbrace{P_{2n-2}(0)}_{\text{const.}}\left(\underbrace{\lim_{t \to \infty} \frac{t^{3n+1}}{e^{-t^2}}}_{\to 0}\right)$$

- So the Taylor series of f is given by 0!
- But now it is clear that

$$f(x) \neq \sum_{n=0}^{\infty} \frac{1}{n!} \underbrace{f^{(n)}(0)}_{0} x^{n}$$

unless x = 0!

• Such a function is called non-analytic, as it is not equal to its Taylor series expansion.