Analysis 1 Colloquium of Week 11 Everywhere Continuous Nowhere Differentiable Map

Jacob Shapiro

November 26, 2014

Abstract

We present Theorem 7.18 from Rudin's Principles of Mathematical Analysis pp. 154.

1 Debt from Last Rectiation Session: Differential Equations

1.1 Ordinary Equations

Ordinary equations specify conditions which are either true or false; as such they are logical statements. For example, the equation $2=3$ is false while $2014=2014$ is true. Certain equations are parametrized by a variable, which ranges over some set. For example,

$$
x^{2}=1 \text { where } x \text { ranges over } \mathbb{R}
$$

is an equation (a condition) parameterized by x. Then we may ask for which values in \mathbb{R} the condition is true. In a way, what the equation (read: "the condition") is telling you is a recipe: Take an element of \mathbb{R}, multiply it by itself, and check if the result is equal to 1. If yes, the condition is met and you found a solution to your equation.

1.2 Differential Equations

Sometimes, the parameter of the equation ranges over a set not of numbers, but over a set of maps. For example: consider the following equation:

$$
[f(x)=5 \forall x \in \mathbb{R}] \text { where } f \text { ranges over } \mathbb{R}^{\mathbb{R}}
$$

is an equation parametrized by f. As above, we may ask, for which values in $\mathbb{R}^{\mathbb{R}}$ (now values are whole maps from \mathbb{R} to \mathbb{R}) the condition is true. What the equation is saying is: take some element of $\mathbb{R}^{\mathbb{R}}$, evaluate it at some point x (any point), and the result should equal 5. The condition should hold for every x. The answer is clear: the solution to the equation is $(x \mapsto 5) \in \mathbb{R}^{\mathbb{R}}$. In a way, this is how we have been defining functions all along: by giving conditions.

But sometimes the conditions may involve more complicated operations-operations we have only studied about in the past few weeks. This is still fine. One such operation is differentiation. Consider the following equation:

$$
\left[\mathrm{f}^{\prime}(\mathrm{x})=5 \forall x \in \mathbb{R}\right] \text { where } \mathrm{f} \text { ranges over } \mathbb{R}^{\mathbb{R}}
$$

It is telling you to take an element of $\mathbb{R}^{\mathbb{R}}$, differentiate it, evaluate the result at some x (chosen arbitrarily), and the result should equal 5. I claim that a solution to this equation is given by $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $x \mapsto 5 x+C$ where C is any real number. To verify this, plug it into the equation:

$$
(5 x+C)^{\prime}=5
$$

is indeed true. So we have found a solution. Later on you will study some theorems that prove existence and uniqueness of solutions to differential equations (equations where the unknown is a function, and there is differentiation of the functions).

2 A Continuous Function that is Nowhere Differentiable

- Claim: $\exists \mathrm{f} \in \mathbb{R}^{\mathbb{R}}$ such that f is continuous yet nowhere differentiable.

Proof:

- Every number $r \in \mathbb{R}$ may be written uniquely as $2 n_{r}+\alpha_{r}$ for some $n \in \mathbb{Z}$ and some $\alpha \in[-1,1]$.

$$
\varphi(x):=\left|\alpha_{x}\right|
$$

for all $x \in \mathbb{R}$. Observe that $\varphi(x+2)=\varphi(x) \forall x \in \mathbb{R}$.

- Claim: φ is continuous on \mathbb{R}.

Proof:

* Claim: $\forall(s, t) \in \mathbb{R}^{2},|\varphi(s)-\varphi(t)| \leqslant|s-t|$. Proof:
- Let $(s, t) \in \mathbb{R}^{2}$ be given. Then we know that we may write uniquely $s=2 n_{s}+\alpha_{s}$ and $t=2 n_{t}+\alpha_{t}$ for some $\left(n_{s}, n_{t}\right) \in \mathbb{Z}^{2}$ and $\left(\alpha_{s}, \alpha_{t}\right) \in[-1,1]^{2}$.
- Then

$$
\begin{aligned}
|\varphi(s)-\varphi(t)| & =\left\|\alpha_{s}|-| \alpha_{t}\right\| \\
& \leqslant\left|\alpha_{s}-\alpha_{t}\right|
\end{aligned}
$$

- If $n_{s}=n_{t}$ then we are finished: $\left|\alpha_{s}-\alpha_{t}\right|=\left|\alpha_{s}+2 n_{s}-2 n_{t}-\alpha_{t}\right|=|s-t|$.
- If $n_{s} \neq n_{t}$ then

$$
\begin{aligned}
\left|\alpha_{s}-\alpha_{t}\right| & =\left|\alpha_{s}+2 n_{s}-2 n_{s}+2 n_{t}-2 n_{t}-\alpha_{t}\right| \\
& =\left|s-2 n_{s}+2 n_{t}-t\right| \\
& \leqslant|s-t|+\left|2 n_{t}-2 n_{s}\right| \\
& <|s-t|
\end{aligned}
$$

- Define a new function, $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
x \stackrel{f}{\mapsto} \sum_{n \in \mathbb{N} \cup\{0\}}\left(\frac{3}{4}\right)^{n} \varphi\left(4^{n} x\right)
$$

- Using the Weierstrass M-test (Theorem 7.10 in Rudin) we can conclude that $\sum_{n}^{N}\left(\frac{3}{4}\right)^{n} \varphi\left(4^{n} x\right) \xrightarrow{N \rightarrow \infty}$ f uniformly:
* Define $M_{n}:=\left(\frac{3}{4}\right)^{n}$.
* Then $\left|\left(\frac{3}{4}\right)^{n} \varphi\left(4^{n} x\right)\right|=\left(\frac{3}{4}\right)^{n} \varphi\left(4^{n} x\right) \leqslant M_{n}$ because $\varphi(y) \in[0,1]$ for all $y \in \mathbb{R}$.
* But $\sum M_{n}$ converges.
- But then it follows that f is continuous, as $\mathbb{R} \rightarrow \mathbb{R}$ given by $x \mapsto \sum_{n}^{N}\left(\frac{3}{4}\right)^{n} \varphi\left(4^{n} x\right)$ is continuous for all $N \in \mathbb{N} \cup\{0\}$ (Theorem 7.12 in Rudin).
- Claim: f is not differentiable at any given point on \mathbb{R}.

Proof:

* Let $x \in \mathbb{R}$ be some given point.
* Define a new numerical sequence $\left(\delta_{\mathfrak{m}}\right)_{\mathfrak{m} \in \mathbb{N}}$ by the following rule:

$$
\delta_{\mathfrak{m}}:= \begin{cases}\frac{1}{2} 4^{-\mathfrak{m}} & \nexists l \in \mathbb{Z} \cap\left(4^{\mathrm{m}} x, 4^{\mathrm{m}} x+\frac{1}{2}\right) \\ -\frac{1}{2} 4^{-\mathfrak{m}} & \nexists l \in \mathbb{Z} \cap\left(4^{\mathrm{m}} x-\frac{1}{2}, 4^{\mathrm{m}} x\right)\end{cases}
$$

* Claim: $\left(\delta_{\mathfrak{m}}\right)_{\mathfrak{m} \in \mathbb{N}} \longrightarrow 0$ as $\mathrm{m} \rightarrow \infty$.
* Define

$$
\gamma_{n, m}:=\frac{\varphi\left(4^{n}\left(x+\delta_{m}\right)\right)-\varphi\left(4^{n} x\right)}{\delta_{m}}
$$

for all $(n, m) \in \mathbb{N}^{2}$ and $x \in \mathbb{R}$.

- Claim: $\left|\gamma_{\mathrm{m}, \mathrm{m}}\right|=4^{\mathrm{m}}$.

Proof:

$$
\begin{aligned}
\left|\gamma_{\mathfrak{m}, \mathfrak{m}}\right| & =\left|\frac{\varphi\left(4^{\mathfrak{m}}\left(x+\delta_{\mathfrak{m}}\right)\right)-\varphi\left(4^{\mathfrak{m}} x\right)}{\delta_{\mathfrak{m}}}\right| \\
& =\frac{\left|\varphi\left(4^{\mathfrak{m}}\left(x+\delta_{\mathfrak{m}}\right)\right)-\varphi\left(4^{\mathrm{m}} x\right)\right|}{\left|\delta_{\mathfrak{m}}\right|}
\end{aligned}
$$

now, because as we defined φ, there is no integer between $4^{m}\left(x+\delta_{\mathfrak{m}}\right)$ and $4^{m} x,\left|\varphi\left(4^{m}\left(x+\delta_{\mathfrak{m}}\right)\right)-\varphi\left(4^{m} x\right)\right|=\frac{1}{2}$ (we are evaluating the function along one unbroken straight line, so we'll merely get the distance between the two points). As a result,

$$
\begin{aligned}
\left|\gamma_{\mathrm{m}, \mathrm{~m}}\right| & =\frac{\frac{1}{2}}{\left| \pm \frac{1}{2} 4^{-m}\right|} \\
& =4^{\mathrm{m}}
\end{aligned}
$$

- Claim: $\gamma_{n, m}=0$ for all $n>m$.

Proof:
Observe that if $n>m, 4^{n} \delta_{m} \in 2 \mathbb{Z}$ because $4^{n} \delta_{m}= \pm 4^{n} \frac{1}{2} 4^{-m}= \pm 4^{n-m} \frac{1}{2} \in 2 \mathbb{Z}$. Thus, when $n>m$ we have

$$
\begin{aligned}
\gamma_{n, m} & =\frac{\varphi\left(4^{n} x+4^{n} \delta_{m}\right)-\varphi\left(4^{n} x\right)}{\delta_{m}} \\
& =\frac{\varphi\left(4^{n} x\right)-\varphi\left(4^{n} x\right)}{\delta_{m}} \\
& =0
\end{aligned}
$$

- Claim: When $n \in\{0, \ldots, m\},\left|\gamma_{n}, m\right| \leqslant 4^{n}$.

Proof:
Using the fact that $\forall(s, t) \in \mathbb{R}^{2},|\varphi(s)-\varphi(t)| \leqslant|s-t|$, we ascertain that

$$
\begin{aligned}
\left|\gamma_{n, m}\right| & \equiv\left|\frac{\varphi\left(4^{n}\left(x+\delta_{m}\right)\right)-\varphi\left(4^{n} x\right)}{\delta_{m}}\right| \\
& \leqslant\left|\frac{4^{n}\left(x+\delta_{m}\right)-4^{n} x}{\delta_{m}}\right| \\
& =4^{n}
\end{aligned}
$$

* Claim: $\left|\frac{f\left(x+\delta_{m}\right)-f(x)}{\delta_{m}}\right| \geqslant \frac{1}{2}\left(3^{m}+1\right)$ for all $m \in \mathbb{N}$.

Proof:

- Compute

$$
\begin{aligned}
&\left|\frac{f\left(x+\delta_{\mathfrak{m}}\right)-f(x)}{\delta_{\mathfrak{m}}}\right| \equiv\left|\frac{\sum_{n \in \mathbb{N} \cup\{0\}}\left(\frac{3}{4}\right)^{n} \varphi\left(4^{n}\left(x+\delta_{m}\right)\right)-\sum_{n \in \mathbb{N} \cup\{0\}}\left(\frac{3}{4}\right)^{n} \varphi\left(4^{n} x\right)}{\delta_{m}}\right| \\
& \text { uni. conv. }\left|\frac{\sum_{n \in \mathbb{N} \cup\{0\}}\left(\frac{3}{4}\right)^{n}\left[\varphi\left(4^{n}\left(x+\delta_{m}\right)\right)-\varphi\left(4^{n} x\right)\right]}{\delta_{m}}\right| \\
&=\left|\sum_{n \in \mathbb{N} \cup\{0\}}\left(\frac{3}{4}\right)^{n} \gamma_{n, m}\right| \\
&=\left|\sum_{n=0}^{m}\left(\frac{3}{4}\right)^{n} \gamma_{n, m}\right| \\
&=\left|3^{m}-\sum_{n=0}^{m-1}\left(\frac{3}{4}\right)^{n} \gamma_{n, m}\right| \\
& \geqslant 3^{m}-\sum_{n=0}^{m-1}\left(\frac{3}{4}\right)^{n}\left|\gamma_{n, m}\right| \\
& \geqslant 3^{m}-\sum_{n=0}^{m-1}\left(\frac{3}{4}\right)^{n} 4^{n} \\
&=3^{m}-\sum_{n=0}^{m-1} 3^{n} \\
&=\frac{1}{2}_{\left(3^{m}+1\right)}
\end{aligned}
$$

* In particular, if the limit existed, then $\lim _{t \rightarrow x} \frac{f(t)-f(x)}{t-x}=\lim _{m \rightarrow \infty} \frac{f\left(x+\delta_{m}\right)-f(x)}{\delta_{m}}$ as $\delta_{m} \rightarrow \infty$ and if the limit exists then it doesn't matter how we approach it. But we just showed that $\lim _{m \rightarrow \infty} \frac{f\left(x+\delta_{m}\right)-f(x)}{\delta_{m}}=\infty$. Hence f cannot be differentiable at x.

