Analytical Mechanics Recitation Session of Week 9

Jacob Shapiro

November 23, 2016

1 What are Eigenfrequencies, or Natural Frequencies?

1 Remark. What follows is a restatement of section 4.2.1 in the lecture's script, which I thought might be good to briefly recollect as the idea is what is behind the solution to the first exercise in homework number eight.

2 Remark. Actually most of this discussion is just a very long way of saying that any two quadratic forms may be simultaneously diagonalized if one of the is positive definite. See http://math.stackexchange.com/questions/154540/ simultaneously-diagonalizing-bilinear-forms.

Let $f \in \mathbb{N}_{\geq 1}$.
We consider a system whose state may be described by f real parameters-by some point in \mathbb{R}^{f}.

Let T and V be quadratic forms on \mathbb{R}^{f} (see definition 14). We assume that T is a positive definite form (see definition 15). This makes sense because the kinetic energy is always non-negative, and always strictly positive if the speed is non-zero. Via 16 this induces a positive definite inner product $\langle\cdot, \cdot\rangle_{T}:\left(\mathbb{R}^{f}\right)^{2} \rightarrow$ \mathbb{R}. The reason we work with the inner product induced by T is in order to not have to pick a basis for \mathbb{R}^{f}. So the point of what follows is a basis-free description of the problem.
3 Claim. There is a unique symmetric linear mapping $\tilde{V}: \mathbb{R}^{f} \rightarrow \mathbb{R}^{f}$ such that

$$
V(x)=\langle x, \tilde{V} x\rangle_{T} \quad \forall x \in \mathbb{R}^{f}
$$

Proof. T and V define matrices \mathscr{T} and \mathscr{V} in $\operatorname{Mat}_{f \times f}(\mathbb{R})$:

$$
\begin{aligned}
& T(x)=\langle x, \mathscr{T} x\rangle \forall x \in \mathbb{R}^{f} \\
& V(x)=\langle x, \mathscr{V} x\rangle \forall x \in \mathbb{R}^{f}
\end{aligned}
$$

where $\langle\cdot, \cdot\rangle$ is the standard inner product on \mathbb{R}^{f}. Indeed, these matrices are
defined via: Let $\left\{e_{i}\right\}_{i}$ be the standard basis for \mathbb{R}^{f}.

$$
\mathscr{T}:=\sum_{i, j=1}^{f} \frac{1}{2}\left(T\left(e_{i}+e_{j}\right)-T\left(e_{i}\right)-T\left(e_{j}\right)\right) e_{i} \otimes e_{j}^{*}
$$

and similarly for \mathscr{V}.
Note that \mathscr{T} and \mathscr{V} do not have to be symmetric. However, we may define $\mathscr{T}_{S}:=\frac{1}{2}\left(\mathscr{T}+\mathscr{T}^{T}\right)$, so that $\mathscr{T}_{S}^{T}=\mathscr{T}_{S}$ and

$$
\begin{aligned}
\left\langle x, \mathscr{T}_{S} x\right\rangle= & \left\langle x, \frac{1}{2}\left(\mathscr{T}+\mathscr{T}^{T}\right) x\right\rangle \\
= & \frac{1}{2}\left(\langle x, \mathscr{T} x\rangle+\left\langle x, \mathscr{T}^{T} x\right\rangle\right) \\
& \left(\operatorname{By}\langle x, A y\rangle=\left\langle A^{T} x, y\right\rangle\right) \\
= & \frac{1}{2}(\langle x, \mathscr{T} x\rangle+\langle\mathscr{T} x, x\rangle) \\
& \left(\text { By }\langle x, y\rangle=\langle y, x\rangle \text { in } \mathbb{R}^{f}\right) \\
= & \langle x, \mathscr{T} x\rangle \\
\equiv & T(x)
\end{aligned}
$$

We follow a similar procedure for V to obtain that \mathscr{V}_{S} is symmetric and

$$
\left\langle x, \mathscr{V}_{S} x\right\rangle=V(x)
$$

Note that because \mathscr{T}_{S} is positive definite and symmetric, 17 implies that there is some matrix $\mathscr{L} \in M a t_{f \times f}(\mathbb{R})$ such that $\mathscr{T}_{S}=\mathscr{L}^{T} \mathscr{L}$. Hence we find:

$$
T(x)=\langle\mathscr{L} x, \mathscr{L} x\rangle \quad \forall x \in \mathbb{R}^{f}
$$

Moreover, because T is positive definite, \mathscr{T}_{S} is invertible, so that \mathscr{L} is invertible as well. As a result, $\left\{\mathscr{L}^{-1} e_{i}\right\}_{i}$ is also a basis of \mathbb{R}^{f} (albeit not necessarily an orthogonal one-since \mathscr{T}_{S} is not necessarily diagonal). In this basis, the matrix \mathscr{T}_{S} is given by the components (i, j) :

$$
\begin{aligned}
\left\langle\mathscr{L}^{-1} e_{i}, \mathscr{T}_{S} \mathscr{L}^{-1} e_{j}\right\rangle & =\left\langle e_{i},\left(\mathscr{L}^{-1}\right)^{T} \mathscr{L}^{T} \mathscr{L}^{\mathscr{L}^{-1}} e_{j}\right\rangle \\
& =\left\langle e_{i}, e_{j}\right\rangle \\
& =\delta_{i j}
\end{aligned}
$$

so that in this basis, the matrix $\mathscr{T}_{S}=\mathbb{1}_{f \times f}$. As a result, taking the usual inner product $\langle\cdot, \cdot\rangle$ in the $\left\{\mathscr{L}^{-1} e_{i}\right\}_{i}$ basis is like taking the $\langle\cdot, \cdot\rangle_{T}$ inner product in the standard basis.

We now define (manifestly symmetric)

$$
\tilde{\mathscr{V}}:=\left(\mathscr{L}^{-1}\right)^{T} \mathscr{V}_{S} \mathscr{L}^{-1}
$$

which is simply the matrix \mathscr{V}_{S} in the basis $\left\{\mathscr{L}^{-1} e_{i}\right\}_{i}$. Hence

$$
\begin{aligned}
V(x)= & \left\langle x, \mathscr{V}_{S} x\right\rangle \\
& \left(\text { in the basis }\left\{\mathscr{L}^{-1} e_{i}\right\}_{i}\right) \\
= & \sum_{i, j=1}^{f} x_{i}\left(\left(\mathscr{L}^{-1}\right)^{T} \mathscr{V}_{S} \mathscr{L}^{-1}\right)_{i j} x_{j}
\end{aligned}
$$

(in the basis $\left\{\mathscr{L}^{-1} e_{i}\right\}_{i}$ the standard inner product is $\langle\cdot, \cdot\rangle_{T}$)
$=\langle x, \tilde{\mathscr{V}} x\rangle_{T}$

We define the system's energy at time $t \in \mathbb{R}$, corresponding to the trajectory $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{f}$ via

$$
E_{\gamma}(t):=T(\dot{\gamma}(t))+V(\gamma(t))
$$

The label t on the left hand-side is actually redundant, because we actually employ the assumption that
4 Assumption. E_{γ} does not depend on time.
So we shall drop that label.
5 Claim. The assumption 4 implies that any trajectory must obey the differential equation

$$
\begin{equation*}
\ddot{\gamma}=-\tilde{V} \gamma \tag{1}
\end{equation*}
$$

Proof. Using our notation we may write E_{γ} as:

$$
\begin{aligned}
E_{\gamma} & =T(\dot{\gamma}(t))+V(\gamma(t)) \\
& =\langle\dot{\gamma}(t), \dot{\gamma}(t)\rangle_{T}+\langle\gamma(t), \tilde{V} \gamma(t)\rangle_{T}
\end{aligned}
$$

The fact E_{γ} is time-independent may be expressed as $\dot{E}_{\gamma}=0$. Using the fact that $\langle x, y\rangle=\langle\dot{x}, y\rangle+\langle x, \dot{y}\rangle$ we get

$$
\begin{aligned}
0= & \dot{E}_{\gamma} \\
= & \langle\ddot{\gamma}(t), \dot{\gamma}(t)\rangle_{T}+\langle\dot{\gamma}(t), \ddot{\gamma}(t)\rangle_{T}+\langle\dot{\gamma}(t \\
& (\text { By symmetry of the forms invovled }) \\
= & 2\langle\dot{\gamma}(t), \ddot{\gamma}(t)\rangle_{T}+2\langle\dot{\gamma}(t), \tilde{V} \gamma(t)\rangle_{T} \\
= & 2\langle\dot{\gamma}(t), \ddot{\gamma}(t)+\tilde{V} \gamma(t)\rangle_{T}
\end{aligned}
$$

$$
=\langle\ddot{\gamma}(t), \dot{\gamma}(t)\rangle_{T}+\langle\dot{\gamma}(t), \ddot{\gamma}(t)\rangle_{T}+\langle\dot{\gamma}(t), \tilde{V} \gamma(t)\rangle_{T}+\langle\gamma(t), \tilde{V} \dot{\gamma}(t)\rangle_{T}
$$

Which readily implies via the positive-definiteness of T that either we have a constant solution (which we are not interested in) or

$$
\begin{equation*}
\ddot{\gamma}(t)+\tilde{V} \gamma(t)=0 \tag{2}
\end{equation*}
$$

6 Remark. Recall that real symmetric matrices are orthogonally diagonalizable. Thus we may find some orthonormal basis $\left\{e_{i}\right\}_{i=1}^{f}$ of \mathbb{R}^{f} such that

$$
\begin{equation*}
\tilde{\mathscr{V}} e_{i}=\lambda_{i} e_{i} \tag{3}
\end{equation*}
$$

for some set of eigenvalues $\left\{\lambda_{i}\right\}_{i=1}^{f}$. Because $\tilde{\mathscr{V}}$ is real symmetric, $\lambda_{i} \in \mathbb{R}$.
7 Definition. For each eigenvalue $\lambda_{i} \in \mathbb{R}$ of $\tilde{\mathscr{V}}$, define $\omega_{i}:=\sqrt{\lambda_{i}}$. Thus, ω_{i} may be either real or strictly imaginary. The collection of all ω_{i} 's are called the natural frequencies of the system defined by T and V; the name is due to equation (4).

8 Remark. We may also write

$$
\gamma=\sum_{i=1}^{f}\left\langle e_{i}, \gamma\right\rangle_{T} e_{i}
$$

If we define $\xi_{i}(t):=\left\langle e_{i}, \gamma(t)\right\rangle_{T}$ we then have the equation of motion (2) equivalent to the following f equations (for each $i \in\{1, \ldots, f\}$):

$$
\begin{aligned}
\ddot{\xi}_{i}(t)= & \partial_{t}^{2}\left\langle e_{i}, \ddot{\gamma}(t)\right\rangle_{T} \\
= & \left\langle e_{i}, \ddot{\gamma}(t)\right\rangle_{T} \\
& (\text { By the equation of motion }) \\
= & \left\langle e_{i},-\tilde{V} \gamma(t)\right\rangle_{T} \\
& (\text { By the fact } \tilde{V} \text { is symmetric }) \\
= & -\left\langle\tilde{V} e_{i}, \gamma(t)\right\rangle_{T} \\
& \left(\text { By the fact } e_{i} \text { is an eigenbasis for } \tilde{V}\right) \\
= & -\left\langle\lambda_{i} e_{i}, \gamma(t)\right\rangle_{T} \\
= & -\lambda_{i} \xi_{i}(t)
\end{aligned}
$$

We find

$$
\begin{equation*}
\ddot{\xi}_{i}=-\omega_{i}{ }^{2} \xi_{i} \tag{4}
\end{equation*}
$$

The general solution for γ is then easily obtain from (4) as these are simply f uncoupled oscillators. We find:

$$
\begin{aligned}
\gamma(t)= & \sum_{i=1}^{f} \xi_{i}(t) e_{i} \\
& \text { (Plug in the general solution for an oscillator) } \\
= & \sum_{i=1}^{f}\left[\xi_{i}(0) \cos \left(\omega_{i} t\right)+\frac{1}{\omega_{i}} \dot{\xi}_{i}(0) \sin \left(\omega_{i} t\right)\right] e_{i} \\
\equiv & \sum_{i=1}^{f}\left[\left\langle e_{i}, \gamma(0)\right\rangle_{T} \cos \left(\omega_{i} t\right)+\frac{1}{\omega_{i}}\left\langle e_{i}, \dot{\gamma}(0)\right\rangle_{T} \sin \left(\omega_{i} t\right)\right] e_{i}
\end{aligned}
$$

9 Definition. A symmetry is a linear map $S: \mathbb{R}^{f} \rightarrow \mathbb{R}^{f}$ which leaves T and V invariant:

$$
\begin{align*}
& T \circ S=T \tag{5}\\
& V \circ S=S \tag{6}
\end{align*}
$$

10 Remark. Equation (5) implies that S is an orthogonal map:

$$
\begin{aligned}
T \circ S & =T \\
& \imath \\
(T \circ S)(x) & =T(x) \quad \forall x \in \mathbb{R}^{f} \\
& \downarrow \\
\langle S x, S x\rangle_{T} & =\langle x, x\rangle_{T} \quad \forall x \in \mathbb{R}^{f}
\end{aligned}
$$

11 Remark. Equation (6) implies that $[S, \tilde{V}]=0$. Indeed, we have

$$
\begin{array}{rlr}
\langle S x, \tilde{V} S x\rangle_{T} & =\langle x, \tilde{V} x\rangle_{T} \quad \forall x \in \mathbb{R}^{f} \\
& \imath & \\
\left\langle x, S^{T} \tilde{V} S x\right\rangle_{T} & =\langle x, \tilde{V} x\rangle_{T} \quad \forall x \in \mathbb{R}^{f} \\
& \downarrow(S \text { is orthogonal) } \\
\left\langle x, S^{-1} \tilde{V} S x\right\rangle_{T} & =\langle x, \tilde{V} x\rangle_{T} \quad \forall x \in \mathbb{R}^{f} \\
& \imath \\
S^{-1} \tilde{V} S & =\tilde{V}
\end{array}
$$

Thus, the eigenspaces of S are \tilde{V} invariant: If x is an eigenvector of S with eigenvalue λ then $\tilde{V} x$ is also an eigenvector of S with eigenvector λ. In symbols: $S x=\lambda x$ then $S \tilde{V} x=\tilde{V} S x=\tilde{V} \lambda x=\lambda \tilde{V} x$.

12 Algorithm. In order to solve the eigenvalue problem (3) we can first decompose

$$
\mathbb{R}^{f}=\bigoplus_{\lambda \in \sigma(S)} i m\left(P_{\lambda}\right)
$$

where P_{λ} is the eigenprojection onto the eigenspace of S corresponding to eigenvalue λ. Since the eigenspaces of S (that is, $\left.\left\{\operatorname{im}\left(P_{\lambda}\right)\right\}_{\lambda}\right)$ are \tilde{V} invariant, \tilde{V} will also have a block-diagonal form:

$$
\tilde{V}=\left.\bigoplus_{\lambda \in \sigma(S)} \tilde{V}\right|_{i m\left(P_{\lambda}\right)}
$$

We then diagonalize each block $\left.\tilde{V}\right|_{i m\left(P_{\lambda}\right)}$ separately, which should be much easier than diagonalizing \tilde{V}.

2 Appendix: Forms

13 Definition. A symmetric bilinear form on an \mathbb{R}-vector space V is a map $B: V^{2} \rightarrow \mathbb{R}$ which such that:

$$
\begin{gathered}
B=B \circ \mathfrak{s} \\
B \circ\left(\mathfrak{m}_{\mathbb{R} \times V} \times \mathbb{1}_{V}\right)=\mathfrak{m}_{\mathbb{R} \times \mathbb{R}} \circ\left(\mathbb{1}_{\mathbb{R}} \times B\right) \\
B \circ\left(\mathfrak{a}_{V^{2}} \times \mathbb{1}_{V}\right)=\mathfrak{a}_{\mathbb{R}^{2}} \circ(B \times B) \circ \mathfrak{h}
\end{gathered}
$$

where the maps \mathfrak{s} and \mathfrak{h} are defined as

$$
\begin{gathered}
V^{2} \ni\left(v_{1}, v_{2}\right) \quad \stackrel{\mathfrak{s}}{\mapsto} \quad\left(v_{2}, v_{1}\right) \in V^{2} \\
V^{3} \ni\left(v_{1}, v_{2}, v_{3}\right) \quad \stackrel{\mathfrak{h}}{\mapsto} \quad\left(v_{1}, v_{3}, v_{2}, v_{3}\right) \in V^{4}
\end{gathered}
$$

$\mathfrak{m}_{\mathbb{R} \times V}, \mathfrak{m}_{\mathbb{R} \times \mathbb{R}}$ are the scalar multiplication on V and \mathbb{R} respectively, and $\mathfrak{a}_{V^{2}}$, $\mathfrak{a}_{\mathbb{R}^{2}}$ are vector addition on V and \mathbb{R} respectively.

In other words, B is symmetric and \mathbb{R}-linear in both its entries.

14 Definition. A quadratic form on an \mathbb{R}-vector-space V is a map $f: V \rightarrow \mathbb{R}$ such that there exists some bilinear (not necessarily symmetric) form $B_{f}: V^{2} \rightarrow$ \mathbb{R} with $f=B_{f} \circ \Delta$ where $\Delta: V \rightarrow V^{2}$ is the co-multiplication, given by $v \mapsto(v, v)$ for all $v \in V$.

15 Claim. A quadratic form $f: V \rightarrow \mathbb{R}$ is positive definite iff $f(V \backslash\{0\}) \subseteq \mathbb{R}_{>0}$.

16 Claim. Any quadratic form on an \mathbb{R}-vector-space V defines a unique symmetric bilinear form.

Proof. Let $f: V \rightarrow \mathbb{R}$ be any quadratic form. Define $C_{f}: V^{2} \rightarrow \mathbb{R}$ via

$$
C_{f}\left(v_{1}, v_{2}\right):=\frac{1}{2}\left(B_{f}\left(v_{1}, v_{2}\right)+B_{f}\left(v_{2}, v_{1}\right)\right)
$$

where B_{f} is the bilinear form guaranteed by the definition of f as a quadratic form. By construction, C_{f} is symmetric, and note that is is also \mathbb{R}-linear in both its entries, and hence a symmetric bilinear form.

We find that

$$
\begin{aligned}
f(v) & =B_{f}(v, v) \\
& =\frac{1}{2}\left(B_{f}(v, v)+B_{f}(v, v)\right) \\
& \equiv C_{f}(v, v)
\end{aligned}
$$

Uniqueness follows by the polarization identity: Let $\tilde{C}_{f}: V^{2} \rightarrow \mathbb{R}$ by any
other symmetric bilinear form such that $f=\tilde{C}_{f} \circ \Delta$. Then

$$
\begin{aligned}
\tilde{C}_{f}\left(v_{1}, v_{2}\right)= & \frac{1}{4}\left[\tilde{C}_{f}\left(v_{1}, v_{1}\right)+\tilde{C}_{f}\left(v_{2}, v_{1}\right)+\tilde{C}_{f}\left(v_{1}, v_{2}\right)+\tilde{C}_{f}\left(v_{2}, v_{2}\right)\right] \\
& -\frac{1}{4}\left[\tilde{C}_{f}\left(v_{1}, v_{1}\right)-\tilde{C}_{f}\left(v_{2}, v_{1}\right)-\tilde{C}_{f}\left(v_{1}, v_{2}\right)+\tilde{C}_{f}\left(v_{2}, v_{2}\right)\right] \\
= & \frac{1}{4}\left[\tilde{C}_{f}\left(v_{1}+v_{2}, v_{1}+v_{2}\right)-\tilde{C}_{f}\left(v_{1}-v_{2}, v_{1}-v_{2}\right)\right] \\
= & \frac{1}{4}\left[f\left(v_{1}+v_{2}\right)-f\left(v_{1}-v_{2}\right)\right]
\end{aligned}
$$

(By the same calculation in reverse using C_{f})
$=C_{f}\left(v_{1}, v_{2}\right)$

3 Appendix: The Cholesky Decomposition

17 Claim. Iff $A \in \operatorname{Mat}_{N \times N}(\mathbb{C})$ is Hermitian and positive definite then there exists some $L \in M a t_{N \times N}(\mathbb{C})$ such that $A=L^{*} L$.

Proof. See https://en.wikipedia.org/wiki/Cholesky_decomposition.
18 Remark. This is the analog of the theorem in C-star algebras that says that an element a is positive (that is, $\sigma(a) \subseteq[0, \infty)$ and self-adjoint) iff it can be written as $a=b^{*} b$ for some other element b.

