Analytical Mechanics Recitation Session of Week 9

Jacob Shapiro

November 23, 2016

1 What are Eigenfrequencies, or Natural Frequencies?

1 Remark. What follows is a restatement of section 4.2.1 in the lecture's script, which I thought might be good to briefly recollect as the idea is what is behind the solution to the first exercise in homework number eight.

2 Remark. Actually most of this discussion is just a very long way of saying that any two quadratic forms may be simultaneously diagonalized if one of the is positive definite. See http://math.stackexchange.com/questions/154540/ simultaneously-diagonalizing-bilinear-forms.

Let $f \in \mathbb{N}_{\geq 1}$.

We consider a system whose state may be described by f real parameters–by some point in \mathbb{R}^{f} .

Let T and V be quadratic forms on \mathbb{R}^f (see definition 14). We assume that T is a positive definite form (see definition 15). This makes sense because the kinetic energy is always non-negative, and always strictly positive if the speed is non-zero. Via 16 this induces a positive definite inner product $\langle \cdot, \cdot \rangle_T : (\mathbb{R}^f)^2 \to \mathbb{R}$. The reason we work with the inner product induced by T is in order to *not* have to pick a basis for \mathbb{R}^f . So the point of what follows is a basis-free description of the problem.

3 Claim. There is a unique symmetric linear mapping $\tilde{V} : \mathbb{R}^f \to \mathbb{R}^f$ such that

$$V(x) = \langle x, \tilde{V}x \rangle_T \quad \forall x \in \mathbb{R}^f$$

Proof. T and V define matrices \mathscr{T} and \mathscr{V} in $Mat_{f \times f}(\mathbb{R})$:

 $T(x) = \langle x, \mathscr{T}x \rangle \, \forall x \in \mathbb{R}^f$

$$V(x) = \langle x, \mathscr{V}x \rangle \, \forall x \in \mathbb{R}^f$$

where $\langle \cdot, \cdot \rangle$ is the standard inner product on \mathbb{R}^{f} . Indeed, these matrices are

defined via: Let $\{e_i\}_i$ be the standard basis for \mathbb{R}^f .

$$\mathscr{T} := \sum_{i,j=1}^{f} \frac{1}{2} \left(T \left(e_i + e_j \right) - T \left(e_i \right) - T \left(e_j \right) \right) e_i \otimes e_j^*$$

and similarly for \mathscr{V} .

Note that \mathscr{T} and \mathscr{V} do not have to be symmetric. However, we may define $\mathscr{T}_S := \frac{1}{2} (\mathscr{T} + \mathscr{T}^T)$, so that $\mathscr{T}_S^T = \mathscr{T}_S$ and

$$\begin{aligned} \langle x, \, \mathscr{T}_{S}x \rangle &= \left\langle x, \frac{1}{2} \left(\mathscr{T} + \mathscr{T}^{T} \right) x \right\rangle \\ &= \left. \frac{1}{2} \left(\langle x, \, \mathscr{T}x \rangle + \langle x, \, \mathscr{T}^{T}x \rangle \right) \right. \\ &\left. \left(\text{By } \langle x, \, Ay \rangle = \langle A^{T}x, \, y \rangle \right) \right. \\ &= \left. \frac{1}{2} \left(\langle x, \, \mathscr{T}x \rangle + \langle \mathscr{T}x, \, x \rangle \right) \right. \\ &\left. \left(\text{By } \langle x, \, y \rangle = \langle y, \, x \rangle \text{ in } \mathbb{R}^{f} \right) \right. \\ &= \left\langle x, \, \mathscr{T}x \rangle \\ &\equiv T \left(x \right) \end{aligned}$$

We follow a similar procedure for V to obtain that \mathscr{V}_S is symmetric and

$$\langle x, \mathscr{V}_S x \rangle = V(x)$$

Note that because \mathscr{T}_S is positive definite and symmetric, 17 implies that there is some matrix $\mathscr{L} \in Mat_{f \times f}(\mathbb{R})$ such that $\mathscr{T}_S = \mathscr{L}^T \mathscr{L}$. Hence we find:

$$T(x) = \langle \mathscr{L}x, \mathscr{L}x \rangle \quad \forall x \in \mathbb{R}^{f}$$

Moreover, because T is positive definite, \mathscr{T}_S is invertible, so that \mathscr{L} is invertible as well. As a result, $\{\mathscr{L}^{-1}e_i\}_i$ is also a basis of \mathbb{R}^f (albeit not necessarily an orthogonal one–since \mathscr{T}_S is not necessarily diagonal). In this basis, the matrix \mathscr{T}_S is given by the components (i, j):

$$\begin{aligned} \left\langle \mathscr{L}^{-1} e_i, \, \mathscr{T}_S \mathscr{L}^{-1} e_j \right\rangle &= \left\langle e_i, \, \left(\mathscr{L}^{-1} \right)^T \mathscr{L}^T \mathscr{L} \mathscr{L}^{-1} e_j \right\rangle \\ &= \left\langle e_i, \, e_j \right\rangle \\ &= \delta_{ij} \end{aligned}$$

so that in this basis, the matrix $\mathscr{T}_S = \mathbb{1}_{f \times f}$. As a result, taking the usual inner product $\langle \cdot, \cdot \rangle$ in the $\{\mathscr{L}^{-1}e_i\}_i$ basis is like taking the $\langle \cdot, \cdot \rangle_T$ inner product in the standard basis.

We now define (manifestly symmetric)

$$ilde{\mathscr{V}} := \left(\mathscr{L}^{-1}
ight)^T \mathscr{V}_S \mathscr{L}^{-1}$$

which is simply the matrix \mathscr{V}_S in the basis $\{\mathscr{L}^{-1}e_i\}_i$. Hence

$$V(x) = \langle x, \mathcal{V}_S x \rangle$$

(in the basis $\{ \mathscr{L}^{-1} e_i \}_i$)
$$= \sum_{i,j=1}^f x_i \left((\mathscr{L}^{-1})^T \mathscr{V}_S \mathscr{L}^{-1} \right)_{ij} x_j$$

(in the basis $\{ \mathscr{L}^{-1} e_i \}_i$ the standard inner product is $\langle \cdot, \cdot \rangle_T$)
$$= \langle x, \tilde{\mathscr{V}} x \rangle_T$$

We define the system's energy at time $t\in\mathbb{R},$ corresponding to the trajectory $\gamma:\mathbb{R}\to\mathbb{R}^f$ via

$$E_{\gamma}(t) := T(\dot{\gamma}(t)) + V(\gamma(t))$$

The label t on the left hand-side is actually redundant, because we actually employ the assumption that

4 Assumption. E_{γ} does not depend on time.

So we shall drop that label.

 $5\ Claim.$ The assumption 4 implies that any trajectory must obey the differential equation

$$\ddot{\gamma} = -\dot{V}\gamma \tag{1}$$

Proof. Using our notation we may write E_{γ} as:

$$E_{\gamma} = T(\dot{\gamma}(t)) + V(\gamma(t))$$
$$= \langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle_{T} + \langle \gamma(t), \tilde{V}\gamma(t) \rangle_{T}$$

The fact E_{γ} is time-independent may be expressed as $\dot{E}_{\gamma} = 0$. Using the fact that $\langle \dot{x}, \dot{y} \rangle = \langle \dot{x}, y \rangle + \langle x, \dot{y} \rangle$ we get

$$\begin{array}{lll} 0 &=& \dot{E}_{\gamma} \\ &=& \langle \ddot{\gamma}\left(t\right), \, \dot{\gamma}\left(t\right) \rangle_{T} + \langle \dot{\gamma}\left(t\right), \, \ddot{\gamma}\left(t\right) \rangle_{T} + \left\langle \dot{\gamma}\left(t\right), \, \tilde{V}\gamma\left(t\right) \right\rangle_{T} + \left\langle \gamma\left(t\right), \, \tilde{V}\dot{\gamma}\left(t\right) \right\rangle_{T} \\ &\quad (\text{By symmetry of the forms involved}) \\ &=& 2 \left\langle \dot{\gamma}\left(t\right), \, \ddot{\gamma}\left(t\right) \right\rangle_{T} + 2 \left\langle \dot{\gamma}\left(t\right), \, \tilde{V}\gamma\left(t\right) \right\rangle_{T} \\ &=& 2 \left\langle \dot{\gamma}\left(t\right), \, \ddot{\gamma}\left(t\right) + \tilde{V}\gamma\left(t\right) \right\rangle_{T} \end{array}$$

Which readily implies via the positive-definiteness of T that either we have a constant solution (which we are not interested in) or

$$\ddot{\gamma}(t) + \tilde{V}\gamma(t) = 0 \tag{2}$$

6 Remark. Recall that real symmetric matrices are orthogonally diagonalizable. Thus we may find some orthonormal basis $\{e_i\}_{i=1}^f$ of \mathbb{R}^f such that

$$\tilde{\mathscr{V}}e_i = \lambda_i e_i \tag{3}$$

for some set of eigenvalues $\{\lambda_i\}_{i=1}^f$. Because $\tilde{\mathscr{V}}$ is real symmetric, $\lambda_i \in \mathbb{R}$.

7 Definition. For each eigenvalue $\lambda_i \in \mathbb{R}$ of $\tilde{\mathscr{V}}$, define $\omega_i := \sqrt{\lambda_i}$. Thus, ω_i may be either real or strictly imaginary. The collection of all ω_i 's are called the natural frequencies of the system defined by T and V; the name is due to equation (4).

8 Remark. We may also write

$$\gamma \quad = \quad \sum_{i=1}^{f} \left< e_i, \, \gamma \right>_T e_i$$

If we define $\xi_i(t) := \langle e_i, \gamma(t) \rangle_T$ we then have the equation of motion (2) equivalent to the following f equations (for each $i \in \{1, \ldots, f\}$):

$$\begin{split} \ddot{\xi}_{i}(t) &= \partial_{t}^{2} \langle e_{i}, \ddot{\gamma}(t) \rangle_{T} \\ &= \langle e_{i}, \ddot{\gamma}(t) \rangle_{T} \\ &\quad (\text{By the equation of motion}) \\ &= \left\langle e_{i}, -\tilde{V}\gamma(t) \right\rangle_{T} \\ &\quad (\text{By the fact } \tilde{V} \text{ is symmetric}) \\ &= -\left\langle \tilde{V}e_{i}, \gamma(t) \right\rangle_{T} \\ &\quad (\text{By the fact } e_{i} \text{ is an eigenbasis for } \tilde{V}) \\ &= -\langle \lambda_{i}e_{i}, \gamma(t) \rangle_{T} \\ &= -\lambda_{i}\xi_{i}(t) \end{split}$$

We find

$$\ddot{\xi}_i = -\omega_i^2 \xi_i \tag{4}$$

The general solution for γ is then easily obtain from (4) as these are simply f uncoupled oscillators. We find:

$$\begin{split} \gamma \left(t \right) &= \sum_{i=1}^{f} \xi_{i} \left(t \right) e_{i} \\ \text{(Plug in the general solution for an oscillator)} \\ &= \sum_{i=1}^{f} \left[\xi_{i} \left(0 \right) \cos \left(\omega_{i} t \right) + \frac{1}{\omega_{i}} \dot{\xi}_{i} \left(0 \right) \sin \left(\omega_{i} t \right) \right] e_{i} \\ &\equiv \sum_{i=1}^{f} \left[\langle e_{i}, \gamma \left(0 \right) \rangle_{T} \cos \left(\omega_{i} t \right) + \frac{1}{\omega_{i}} \langle e_{i}, \dot{\gamma} \left(0 \right) \rangle_{T} \sin \left(\omega_{i} t \right) \right] e_{i} \end{split}$$

9 Definition. A symmetry is a linear map $S : \mathbb{R}^f \to \mathbb{R}^f$ which leaves T and V invariant:

$$T \circ S = T \tag{5}$$

$$V \circ S = S \tag{6}$$

10 Remark. Equation (5) implies that S is an orthogonal map:

$$\begin{array}{rcl} T \circ S &=& T \\ & \updownarrow \\ (T \circ S) \left(x \right) &=& T \left(x \right) \quad \forall x \in \mathbb{R}^{f} \\ & \updownarrow \\ \langle Sx, \, Sx \rangle_{T} &=& \langle x, \, x \rangle_{T} \quad \forall x \in \mathbb{R}^{f} \end{array}$$

11 Remark. Equation (6) implies that $\left[S, \tilde{V}\right] = 0$. Indeed, we have

$$\begin{array}{rcl} \left\langle Sx, \tilde{V}Sx \right\rangle_T &=& \left\langle x, \tilde{V}x \right\rangle_T & \forall x \in \mathbb{R}^f \\ & \uparrow & \\ \left\langle x, S^T \tilde{V}Sx \right\rangle_T &=& \left\langle x, \tilde{V}x \right\rangle_T & \forall x \in \mathbb{R}^f \\ & \uparrow & (S \text{ is orthogonal}) \\ \left\langle x, S^{-1} \tilde{V}Sx \right\rangle_T &=& \left\langle x, \tilde{V}x \right\rangle_T & \forall x \in \mathbb{R}^f \\ & \uparrow & \\ S^{-1} \tilde{V}S &=& \tilde{V} \end{array}$$

Thus, the eigenspaces of S are \tilde{V} invariant: If x is an eigenvector of S with eigenvalue λ then $\tilde{V}x$ is also an eigenvector of S with eigenvector λ . In symbols: $Sx = \lambda x$ then $S\tilde{V}x = \tilde{V}Sx = \tilde{V}\lambda x = \lambda \tilde{V}x$.

12 Algorithm. In order to solve the eigenvalue problem (3) we can first decompose

$$\mathbb{R}^f = \bigoplus_{\lambda \in \sigma(S)} im(P_{\lambda})$$

where P_{λ} is the eigenprojection onto the eigenspace of S corresponding to eigenvalue λ . Since the eigenspaces of S (that is, $\{im(P_{\lambda})\}_{\lambda}$) are \tilde{V} invariant, \tilde{V} will also have a block-diagonal form:

$$\tilde{V} = \left. \bigoplus_{\lambda \in \sigma(S)} \tilde{V} \right|_{im(P_{\lambda})}$$

We then diagonalize each block $\tilde{V}\Big|_{im(P_{\lambda})}$ separately, which should be much easier than diagonalizing \tilde{V} .

2 Appendix: Forms

13 Definition. A symmetric bilinear form on an \mathbb{R} -vector space V is a map $B: V^2 \to \mathbb{R}$ which such that:

$$B = B \circ \mathfrak{s}$$

$$B \circ (\mathfrak{m}_{\mathbb{R} \times V} \times \mathbb{1}_{V}) = \mathfrak{m}_{\mathbb{R} \times \mathbb{R}} \circ (\mathfrak{1}_{\mathbb{R}} \times B)$$
$$B \circ (\mathfrak{a}_{V^{2}} \times \mathbb{1}_{V}) = \mathfrak{a}_{\mathbb{R}^{2}} \circ (B \times B) \circ \mathfrak{h}$$

where the maps \mathfrak{s} and \mathfrak{h} are defined as

$$V^2 \ni (v_1, v_2) \stackrel{\mathfrak{s}}{\mapsto} (v_2, v_1) \in V^2$$

$$V^3 \ni (v_1, v_2, v_3) \stackrel{\mathfrak{h}}{\mapsto} (v_1, v_3, v_2, v_3) \in V^4$$

 $\mathfrak{m}_{\mathbb{R}\times V}$, $\mathfrak{m}_{\mathbb{R}\times\mathbb{R}}$ are the scalar multiplication on V and \mathbb{R} respectively, and \mathfrak{a}_{V^2} , $\mathfrak{a}_{\mathbb{R}^2}$ are vector addition on V and \mathbb{R} respectively.

In other words, B is symmetric and \mathbb{R} -linear in both its entries.

14 Definition. A quadratic form on an \mathbb{R} -vector-space V is a map $f: V \to \mathbb{R}$ such that there exists some bilinear (not necessarily symmetric) form $B_f: V^2 \to \mathbb{R}$ with $f = B_f \circ \Delta$ where $\Delta : V \to V^2$ is the co-multiplication, given by $v \mapsto (v, v)$ for all $v \in V$.

15 Claim. A quadratic form $f: V \to \mathbb{R}$ is positive definite iff $f(V \setminus \{0\}) \subseteq \mathbb{R}_{>0}$.

16 Claim. Any quadratic form on an \mathbb{R} -vector-space V defines a unique symmetric bilinear form.

Proof. Let $f: V \to \mathbb{R}$ be any quadratic form. Define $C_f: V^2 \to \mathbb{R}$ via

$$C_f(v_1, v_2) := \frac{1}{2} (B_f(v_1, v_2) + B_f(v_2, v_1))$$

where B_f is the bilinear form guaranteed by the definition of f as a quadratic form. By construction, C_f is symmetric, and note that is also \mathbb{R} -linear in both its entries, and hence a symmetric bilinear form.

We find that

$$f(v) = B_f(v, v)$$

= $\frac{1}{2}(B_f(v, v) + B_f(v, v))$
= $C_f(v, v)$

Uniqueness follows by the polarization identity: Let $\tilde{C}_f: V^2 \to \mathbb{R}$ by any

other symmetric bilinear form such that $f = \tilde{C}_f \circ \Delta$. Then

3 Appendix: The Cholesky Decomposition

17 Claim. Iff $A \in Mat_{N \times N}(\mathbb{C})$ is Hermitian and positive definite then there exists some $L \in Mat_{N \times N}(\mathbb{C})$ such that $A = L^*L$.

Proof. See https://en.wikipedia.org/wiki/Cholesky_decomposition.

18 Remark. This is the analog of the theorem in C-star algebras that says that an element a is positive (that is, $\sigma(a) \subseteq [0, \infty)$ and self-adjoint) iff it can be written as $a = b^*b$ for some other element b.