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1 Prologue to HW4

Use the redacted solutions, they contain some background information about
this exercise.

1.1 Question 1–Perihelion Precession

This question uses pages 11 till 16 from the script heavily, so be sure to read
them prior to attempting this question.

1.1.1 Part i)

You simply need to figure out what Ũ (u) is for our case, as defined in equation
(2.3) and above (2.6) in the script. Then simply plug this into (2.7).

1.1.2 Part ii)

The concept is as follows: we choose initial conditions such that if α were equal
to zero, we would get an elliptic orbit. Now we “turn on” α and assume that
for sufficiently small α, we would get orbits which may deviate from ellipses,
but want to quantify precisely how. One way is to to compute the perihelion
precession per orbit, which is what this exercise is all about. We shall do all
calculations up to linear order in α.

• The perihelion is defined as the minimum value r obtains along the tra-
jectory. Thus, ϕ0 is a perihelion angle iff r (ϕ0) is minimal. This implies
that u′ (ϕ0) = 0 (recall u ≡ r−1 so that r minimal means u maximal).

• The first occurrence of the perihelion is, by choice of parametrization, at
ϕ = 0. Let us denote the next occurrence of the perihelion, after a full
orbit, by ϕ0. Thus, for the α = 0 case ϕ0 = 2π. The perihelion precession
(what we have to actually compute here) is denoted by ∆ϕ so that by
definition

ϕ0 = 2π +∆ϕ
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• Now we make a Taylor expansion of u′ around 2π (recall u′ (ϕ0) = 0
because the perihelion is an extremal point of the trajectory) in the small
parameter ∆ϕ (which is going to be linear in α in our approximation):

u′ (ϕ0)
︸ ︷︷ ︸

≡0

= u′ (2π +∆ϕ)

≈ u′ (2π) + u′′ (2π)∆ϕ+O
(

α2
)

hence

∆ϕ ≈ −
u′ (2π)

u′′ (2π)
+O

(

α2
)

(1)

• We start by analyzing the α = 0 case (see the redacted solutions for full
details).

• We denote by u0 the solution to the α = 0 equations of motion. That is,
u0 satisfies

u′′

0 + u0 = l−2M

This equation is solved with the initial conditions u′

0 (0) = 0 (we want to
parametrize u0 such that at ϕ = 0 it starts precisely at the perihelion)
so that u0 (0) should be the perihelion. u0 (0) may be obtained from the
energy equation E = T + V evaluated at ϕ = 0. We find:

u0 (0) = d−1 (1 + ε)

where d ≡ l2M−1 and ε ≡
√
2El2M−2 + 1. Then the trajectory is given

by

u0 (ϕ) = d−1 [1 + ε cos (ϕ)] (2)

• Next we turn to consider the full equation u′′+u = l−2
(

M − 3αu2
)

. The
initial values are the same: u′ (0) = 0 and u (0) = d−1 (1 + ε).

• Define v := u − u0. Since u depends on α, v depends on α as well.
Furthermore, v must be at least linear in α because for α = 0 we have
u = u0 so that v = 0.

• v obeys the initial conditions

{

v (0) = 0

v′ (0) = 0
and the differential equation

v′′+v = −3l−2α (v − u0)
2. Because we are interested only in linear orders

in α, and v is at least of linear order in α, we may just as well write

v′′ + v = −3l−2αu2

0

into which we may readily plug in (2):

v′′ + v = −3l−2αd−2 − 6l−2αd−2ε cos−3l−2αd−2ε2 cos2 (3)

(this is a function equation)
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• In terms of v, the perihelion precession ∆ϕ is given by

∆ϕ ≈ −
u′ (2π)

u′′ (2π)

= −
v′ (2π) + u′

0 (2π)

v′′ (2π) + u′′

0
(2π)

(

u′

0 (2π) ≡ 0 ∧ u′′

0 (2π) = −εd−1
)

= −
v′ (2π)

v′′ (2π)− εd−1

(v′′ (2π) is at least linear in α)

≈
d

ε
v′ (2π) +O

(

α2
)

• We write v′ = v′per + v′n.p. where v′per is the periodic part of v′ (that is,
v′per (ϕ) = v′per (ϕ+ 2π) for all ϕ) and v′n.p. ≡ v′ − v′per . Then

v′ (2π) = v′per (2π) + v′n.p. (2π)

= v′per (0) + v′n.p. (2π) (4)

• Now we inspect (3) to understand which part of its solution is periodic
and which isn’t. The full solution is a sum of the solution to the homo-
geneous equation and the particular solutions. The homogeneous solution
is periodic (being a linear combination of a sine and a cosine) and so its
derivative is also periodic. We use the hint on the exercise which gives
us the particular solutions. Of these, the first and third terms produce
periodic particular solutions and so do their derivatives. Only the second
term produces a non-periodic solution with non-periodic derivative. It is
proportional to

vpar,2 (ϕ) ∝ ϕ sin (ϕ)

so that

v′par,2 (ϕ) ∝ sin (ϕ) + ϕ cos (ϕ)

As a result, v′n.p. (0) = 0 so that continuing (4) we have

v′ (2π) = v′per (0) + 0 + v′n.p. (2π)

= v′per (0) + v′n.p. (0) + v′n.p. (2π)

= v′ (0) + v′n.p. (2π)

(v′ (0) ≡ 0)

= v′n.p. (2π)

from which we get

∆ϕ ≈
d

ε
v′n.p. (2π) +O

(

α2
)

and the result readily follows from the hint, by considering only the par-
ticular solution corresponding to the second term.
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1.1.3 Part iii)

For the third part, compute the force which corresponds to a term in the po-
tential proportional to

x2
3

r5

when evaluated at x3 = 0.

1.1.4 Part iv)

Now we use α = −Ml2 and plug this into the same equation for ∆ϕ which we
obtained.

Figure out the dimensions of the constants to get back to a formula with G
and c.

2 Epilogue to HW3

2.1 Question 1

• Talk about signs. Does it make sense that v (m) ∝ log (m)? Is this
physical?

• Time dependence is implicit! Get v in terms of m, not both in terms of t!
(Not wrong, just more work).

2.2 Question 2

In this question, we are doing perturbation theory (that is, expanding a function)

around two small (dimensionless) parameters: ω
√

l
g

and yi

l
with i ∈ { 1, 2 }.

The first parameter is small as long as l has a diameter much smaller than the

diameter of the sun (simply put in the numbers with the condition ω
√

l
g
≪ 1.

The second parameter is simply assumed to be small a-priori (this is a reasonable
assumption since in the case ω = 0 and with suitable initial conditions, these
parameters are indeed small).

For the unperturbed (ω = 0) problem, we have

y1 (t) ≈ lθ (t)

ÿ1 = −gθ

so that

y1 (t)

l
≈ θ0 sin

(√

g

l
t

)

and so

ẏ1 (t) = θ0l

√

g

l
cos

(√

g

l
t

)
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so that

O (Coriolis) ∝ O (ωẏ1 (t))

∝ ω

√

g

l

= ω

√

l

g
︸ ︷︷ ︸

linear order in small parameter

g

l

O (Centrifugal) ∝ O
(

ω2y
)

∝ ω2l

= ω2
l

g
︸︷︷︸

second order in small parameter

g

l

Finally, (for the last part)

O (ωẏ1) ∝ ωl

√

g

l

= ω

√

l

g
︸ ︷︷ ︸

first order in small parameter

g

so that if we want to solve the third component of the equation of motion order
by order, we must neglect this term as well.
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